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Abstract

Digital soil mapping (DSM) is an effective mapping technique that supports

the increased need for quantitative soil data. In DSM, soil properties are corre-

lated with environmental characteristics using statistical models such as

regression. However, many of these relationships are explicitly described in

mechanistic simulation models. Therefore, the mechanistic relationships can,

in theory, replace the statistical relationships in DSM. This study aims to

develop a mechanistic model to predict soil organic matter (SOM) stocks in

Natura2000 areas of the Cantabria region (Spain). The mechanistic model is

established in four steps: (a) identify major processes that influence SOM

stocks, (b) review existing models describing the major processes and the

respective environmental data that they require, (c) establish a database with

the required input data, and (d) calibrate the model with field observations.

The SOM stocks map resulting from the mechanistic model had a mean error

(ME) of −2 t SOM ha−1 and a root mean square error (RMSE) of 66 t SOM

ha−1. The Lin's concordance correlation coefficient was 0.47 and the amount

of variance explained (AVE) was 0.21. The results of the mechanistic model

were compared to the results of a statistical model. It turned out that the corre-

lation coefficient between the two SOM stock maps was 0.8. This study illus-

trated that mechanistic soil models can be used for DSM, which brings new

opportunities. Mechanistic models for DSM should be considered for mapping

soil characteristics that are difficult to predict by statistical models, and for

extrapolation purposes.

Highlights

• Theoretically, mechanistic models can replace the statistical relationships in

digital soil mapping.
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• Mechanistic soil models were used to develop a mechanistic model for digi-

tal soil mapping that predicted SOM stocks.

• The applicability of the mechanistic approach needs to be explored for dif-

ferent soil properties and regions.
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1 | INTRODUCTION

Digital soil mapping (DSM) is a widely adopted and recog-
nized technique to obtain quantitative, spatially exhaustive
soil data (Minasny & McBratney, 2016). The technique
predicts soil properties spatially by finding a relationship
between observed soil properties and selected explanatory
variables that are considered to represent the soil-forming
factors defined by Jenny (1941): climate, organisms, relief,
parent material and time. Often, the relationships between
observed soil properties and explanatory variables are
described by statistical models. If the residuals (i.e.,
observed minus predicted values) of these statistical
models show spatial autocorrelation, the estimates can be
improved by correcting for the interpolated residuals. The
methodology for DSM was originally based on regression
kriging (Hengl, Heuvelink, & Rossiter, 2007), but is
increasingly replaced by linear mixed models (Lark &
Cullis, 2004; Lark, Cullis, & Welham, 2006). DSM is seen
as an efficient tool for predicting the spatial distribution of
soil properties (Ma, Minasny, & Wu, 2017).

Many different statistical models are used for DSM,
including multiple regression, regression tree, neural net-
work and fuzzy models (McBratney, Mendonça Santos, &
Minasny, 2003). Although statistical models have proven
their predictive power, there are certain soil properties
that are difficult to predict at a regional scale (e.g., Dorji,
Odeh, Field, & Baillie, 2014; Kempen, Brus, &
Stoorvogel, 2011; Zhao et al., 2014). They often only
incorporate pedological knowledge in the selection of
environmental variables. Various authors have explored
alternative methods that incorporate pedological knowl-
edge into the conceptual model. For example, Minasny
and McBratney (2006) incorporated the within-profile
transport of nutrients by using the same relationship as
two mechanistic models (Elzein & Balesdent, 1995;
Rosenbloom, Harden, Neff, & Schimel, 2006), and
Angelini, Heuvelink, Kempen, and Morrás (2016)
explored the use of structural equation modelling.
Although these approaches incorporated pedological
knowledge, they still relied on statistical algorithms for
the spatial prediction. Given the many mechanistic soil

models that are available, we want to know whether the
relationships of these models can be used for DSM. This
study aims to explore whether mechanistic models can
be used for DSM of soil organic matter (SOM) stocks.

This study focused on the prediction of SOM stocks for
three reasons. First, SOM contributes to different soil func-
tions, such as carbon sequestration, nutrient availability
and water-holding capacity (Bot & Benites, 2005). These
functions are essential in the structure and functioning of
ecosystems, which makes SOM an important soil property
for a wide range of studies dealing with, for example, cli-
mate change, agriculture and biodiversity. Second, pro-
cesses that influence SOM stocks are complex and non-
linear, which can result in poor prediction using, for exam-
ple, linear regression models. This especially occurs when
a limited number of soil observations or explanatory vari-
ables is available, or when the explanatory variables are
not available at the required scale. Third, processes that
influence SOM stocks have been exhaustively studied by
many mechanistic soil models (Campbell & Paustian, 2015;
Shibu, Leffelaar, Van Keulen, & Aggarwal, 2006).

Member states of the European Union need to monitor
the state of Natura2000 areas. Natura2000 is a network of
areas across 28 countries of the European Union, where the
long-term survival of Europe's most valuable and threat-
ened species and habitats needs to be ensured (Sundseth,
Wegefelt, & Mézard, 2008). The network was established in
1992. It is the largest coordinated network of protected
areas in the world. Maps of the SOM stocks help monitor
land recovery and can be used in vegetation models. This
study developed a mechanistic model that spatially predicts
SOM stocks for the Natura2000 areas of the Cantabria
region (Spain). It is hypothesized that this approach has
potential for extrapolation and can easily be updated.

2 | MATERIALS AND METHODS

2.1 | Study area

The Natura2000 areas of the Cantabrian region (43�200N,
4�000W) (Figure 1) have an Atlantic climate along the
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coast and an Alpine climate in the mountainous area.
Annual average temperatures range from 15�C at 23 m to
2�C at 2,531 m above sea level. Long-term (1950–1999)
annual precipitation ranges between 526 and 2,155 mm
(Ninyerola, Pons, & Roure, 2007). Montane glaciation,
periglacial phenomena, alluvial terraces and marine
dynamics formed the landscape. This resulted in a hilly
to mountainous landscape, with steep slopes and active
erosion. The steep slopes and the frequency of dry winds
encourage wildfires in autumn and winter, mainly cau-
sed by local farmers practising spring grazing. Geomor-
phological processes also resulted in a rich variation in
lithology, including shales, sandstone, limestone, con-
glomerates and slates. The most dominant soil types are
the mollic, haplic, gleyic Solonetz, the albic and haplic
Luvisol and the orthic Podzol (IUSS Working Group
WRB, 2015). The eutric Cambisol dominates on sloping
land (Carballas et al., 2016). The rich lithology and the
environmental heterogeneity of the area have resulted in
unique ecosystems. The area harbours a mix of temperate
deciduous and sclerophyllous vegetation species, includ-
ing beeches (Fagus sylvatica), oaks (Quercus petraea, Q.
robur) and birches (Betula spp) in colder, wetter areas,
and other oak species (Q. pyrenaica and Q. rotundifolia)
in warmer and dryer areas. Most of the mature forest was
deforested during the 20th century for timber production
and agriculture. However, nature recovered quickly after

the European Union Directive designated the area a Spe-
cial Protection Area in 1992. After many years of this
protected status, it is assumed that the nature in the area
has reached a state of equilibrium. Secondary forests,
shrub patches and abandoned and extensive pastures
(�Alvarez-Martínez, Suárez-Seoane, Stoorvogel, & de Luis
Calabuig, 2014) now characterize the area. Brambles
(Rubus spp.), roses (Rosa spp.), hawthorn (Crataegus
monogyna) and blackthorn (Prunus spinosa) dominate
the abandoned pastures (�Alvarez-Martínez et al., 2018).
In flatter alluvial terraces, agriculture still takes place. At
high altitudes, well-managed grasslands are used for
extensive grazing. It is likely that the variation in climate,
geomorphology, lithology and land use results in consid-
erable variation in SOM stocks.

2.2 | Data collection

2.2.1 | Environmental variables

To develop the sampling scheme and to select input data
for the models, high-resolution and spatially exhaustive
environmental variables were used. The variables were cat-
egorized according to the five soil-forming factors (Table 1).
Climatic data were obtained from the Iberian Peninsula
dataset of Ninyerola et al. (2007). Land-use and land-cover

FIGURE 1 The location of the

study area in the Natura2000 areas

of the Cantabria region (Spain)

[Color figure can be viewed at

wileyonlinelibrary.com]
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data represent the soil-forming factor “organisms”. A com-
posite, cloud-free land-use map was created using Landsat
8 Operational Land Imager (OLI) scene mosaic data from

2013 to 2016 (Path 202, Row 30; �Alvarez-Martínez
et al., 2018). This satellite image was also used to derive the
Normalized Difference Vegetation Index (NDVI; Rouse,

TABLE 1 Environmental covariates available for the Cantabria region (Spain)

Soil-forming
factor Description Variable Unit Code Source

Climate Mean and coefficient of
variation 1981–2010

Precipitation mm P Spanish Climatic Map (Ninyerola
et al., 2007)

Max. temperature �C Tmax Spanish Climatic Map (Ninyerola
et al., 2007)

Mean temperature �C Tmean Spanish Climatic Map (Ninyerola
et al., 2007)

Min. temperature �C Tmin Spanish Climatic Map (Ninyerola
et al., 2007)

Mean solar radiation 2014 Solar radiation W/m2/year Srad DEM (CNIG, 2016)

Organisms Land cover 2014 Deciduous forest % occupation DF Landsat 8 OLI (USGS, 2016)

Pine forest % occupation PF Landsat 8 OLI (USGS, 2016)

Shrub land % occupation SL Landsat 8 OLI (USGS, 2016)

Agricultural land % occupation AL Landsat 8 OLI (USGS, 2016)

Grassland % occupation GL Landsat 8 OLI (USGS, 2016)

Rock outcrops % occupation Rock Landsat 8 OLI (USGS, 2016)

Urban % occupation Urban Landsat 8 OLI (USGS, 2016)

Average normalized
difference vegetation
index (NDVI) 2014

NDVI - NDVI Landsat 8 OLI (USGS, 2016)

Average normalized
difference water index
(NDWI) 2014

NDWI - NDWI Landsat 8 OLI (USGS, 2016)

Brightness vegetation Tasseled cap component 1,
brightness

- Bn Landsat 8 OLI (USGS, 2016)

Greenness vegetation Tasseled cap component 2,
greenness

- Gn Landsat 8 OLI (USGS, 2016)

Wetness vegetation Tasseled cap component 3,
wetness

- Wn Landsat 8 OLI (USGS, 2016)

Average vegetation height
2014

Vegetation height m Vegheight LiDAR PNOA (CNIG, 2016)

Relief Digital elevation Altitude m Alt DEM (CNIG, 2016)

Model Slope Degrees Sl DEM (CNIG, 2016)

Southness � South DEM (CNIG, 2016)

Eastness � East DEM (CNIG, 2016)

Topographic wetness
index

- TWI DEM (CNIG, 2016)

Parent
material

Geological map Geological unit Categorical GU GEODE, (CNIG, 2016)

Time Lithology class 1 Categorical Lit1 GEODE, (CNIG, 2016)

Lithology class 2 Categorical Lit2 GEODE, (CNIG, 2016)

Age 1 Categorical Age1 GEODE, (CNIG, 2016)

Age 2 Categorical Age2 GEODE, (CNIG, 2016)
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Haas, Schell, & Deering, 1973), the Normalized Difference
Water Index (NDWI) and the Tasselled Cap (TC) transfor-
mation (Crist & Cicone, 1984). Data on vegetation height
were derived from LiDAR data (�Alvarez-Martínez
et al., 2018). Relief is represented by a digital elevation
model at 5-m resolution, obtained from the National Geo-
graphical Information Centre of Spain (CNIG, 2016), from
which various topographic parameters were calculated (e.
g., slope and topographic wetness index). Parent material
and time were represented by the Continuous Geological
Map of Spain from the Geological and Mining Institute of
Spain. All variables were resampled to 30-m resolution
before they were used for the analysis. For continuous vari-
ables the nearest neighbour assignment was used to
resample the original datasets, whereas the majority algo-
rithm was used for categorical variables.

2.2.2 | Soil sampling and laboratory
analysis

For the calibration of the mechanistic model, soil data
were collected using a sampling protocol that covers most

of the spatial soil variation within the study area. The
area was stratified using a two-step approach. Firstly, the
environmental variables were analysed by a principal
component analysis (PCA). Secondly, a cluster analysis
(CA) was carried out on the results of the PCA using the
Iso cluster algorithm (Ball & Hall, 1967). The CA sets a
threshold for the maximum number of classes at 20. The
algorithm performs an iterative, self-organizing cluster-
ing. Clusters will merge with neighbours when their sta-
tistical values are similar after the clusters become stable.
Initial strata were evaluated in terms of expert knowledge
related to vegetation composition (see �Alvarez-Martínez
et al., 2018; Rodrígues-Arango et al., 2003) and freely
available land-cover and vegetation maps such as The
National Forestry Inventory of Spain, and Corine Land
Cover maps. This process divided the study area into 12
homogeneous strata (Figure 2a). The geological map and
land-use map were not included in the CA because these
two maps were already used to subdivide the area into 12
homogeneous strata. We are aware of the potential loss
of information caused by the removal of these two maps.
The lithology classes of the geological map were
reclassified into 12 major classes (Figure 2b). If present,

FIGURE 2 Soil sampling procedure. The area was divided into 12 strata (a). Twelve lithology classes were reclassified from the

continuous geological map (b). If present, three land-cover classes, including forest, shrubs and grassland, were sampled in each occurring

combination of strata and lithology. The accessibility of the study area is limited and therefore the samples were taken within a 2-km buffer

around the paved roads (c) [Color figure can be viewed at wileyonlinelibrary.com]
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three land-cover classes (forest, shrubs and pasture) were
sampled in each occurring combination of strata and
lithology. This resulted in 100 sampling locations. The
accessibility of the study area is limited and therefore the
samples were taken within a 2-km buffer around the
paved roads (Figure 2c). A representative sample per stra-
tum was taken within the accessible area at a location
where the slope, altitude, vegetation height and NDVI
were most similar to the average of the unit. The sam-
pling protocol was specifically designed for the calibra-
tion of the mechanistic model by maximizing the
variation in sampling conditions. In the second step of
DSM (i.e., kriging of the residuals), the spatial autocorre-
lation of the residuals is considered (Lark et al., 2006;
Lark & Cullis, 2004). The limitation of the sampling
design is that it can result in an insufficient number of
samples at different intervals apart to model the spatial
autocorrelation.

A composite sample was taken at each sampling loca-
tion. The design draws a square and takes one sample in
the centre of the square and four in each corner. The dis-
tance from the centre to the corner was about 5 m. Each
composite sample was assumed to represent a support of
50m2. At each point, the depth of the soil profile (i.e.,
depth to saprolite or bedrock) was annotated and a mixed
sample from the entire soil profile was taken. The depth
of the soil profile was averaged over the five points and
the samples were thoroughly mixed. After removing
coarse fragments (> 2000ųm) and roots, the soil samples
were analysed for SOM content using the Walkley and
Black method (Walkley, 1947; Walkley & Black, 1934).
The SOM stocks were estimated by multiplying the SOM
content by the soil profile depth and the bulk density.
Soil texture was determined using the pipette method
(Gee & Or, 2002). The bulk density was estimated on the
basis of soil texture and soil organic matter according to
the pedotransfer function of Balland, Pollacco, and
Arp (2008). The input parameters for this pedotransfer
function were soil depth and soil organic matter content.
This sampling protocol did not account for changes in
soil properties (e.g., bulk density) within the soil profile
and did not account for stoniness within the soil profile
to estimate the SOM stock of the soil profile.

2.3 | Mechanistic model

The mechanistic model was developed in four steps.
Step 1: Selection of major processes that influence

SOM stocks and that dominate at the regional scale. The
selection was based on a comparison of soil models that
describe associated carbon (C) and nitrogen (N) (Grace &
Malhi, 2002; Shibu et al., 2006). Processes that could be

modelled at a regional scale and that occurred most fre-
quently in soil models were selected.

Step 2: Evaluation of processes in various soil models.
Much research has been carried out on the understand-
ing of the carbon flows in the soil system (Shibu
et al., 2006). Soil models often describe a process using
similar parameters and relationships. For example, the
amount of SOM that turns into CO2 and nutrients is con-
sidered to be exponentially related to the potential miner-
alizable carbon, the mineralization rate and time
(Andrén & Paustian, 1987; Rey & Jarvis, 2006; Stanford &
Smith, 1972). To describe the major processes in our
model, we make use of these known and exhaustively
studied relationships.

Step 3: Collection of the input data for the model. It is
likely that not all variables that are used for mechanistic
soil models are available as maps and therefore the model
potentially needs to make use of proxies or default values.
The available environmental variables listed in Table 1
can be selected for the model, either directly or as a
proxy.

Step 4: It can be assumed that natural systems, or sys-
tems that did not undergo major changes over last
decades, have reached a certain level of equilibrium
(Jenkinson, Adams, & Wild, 1991; Pimm, 1982). There-
fore, the model included various fixed parameters. These
parameters were estimated using the generalized reduced
gradient non-linear algorithm. As such, the Lin's concor-
dance correlation coefficient (Lin, 1989) is maximized,
whereas the root mean square error (RMSE) of the resid-
uals is minimized. The model sensitivity is tested by re-
estimating the fixed parameters with various initializa-
tions of the fixed parameters.

2.4 | Statistical model

To analyse the potential of a mechanistic approach for
DSM, we also estimated a statistical model. For a better
comparison of the statistical model and the mechanistic
model, regression kriging was selected in which the lin-
ear regression can be replaced directly by the mechanistic
model. Subsequently, the residuals of both models can be
analysed in a similar way. It should be noted that regres-
sion kriging is one method out of a wide array of different
statistical models (e.g. linear mixed models, neural net-
works and structural equation modelling).

In comparison to the mechanistic model, all the envi-
ronmental variables listed in Table 1 enter the regression
model. Variables that show most statistically insignificant
deterioration of the model fit are one by one deleted from
the regression equation using backward elimination. The
regression is completed when no other variable can be
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deleted without a statistically significant loss of fit. There
are many other, and perhaps even better, statistical
models available. We chose regression kriging because it
is easy to understand by the wider audience.
Lamichhane, Kumar, and Wilson (2019) gave a detailed
review of other digital DSM techniques and their suitabil-
ity for predicting SOC, but the study also confirmed the
strengths of regression kriging.

2.5 | Evaluation of the SOM stock
models and maps

The SOM stock models and maps that result from the
mechanistic and statistical model were evaluated by
estimating:

1. The goodness of fit for each model by calculating
the bias (Equation (1)), error (Equation (2)), the
Lin's concordance correlation coefficient (ρc) (Equa-
tion (3)) and the variation explained by the model
(Equation (4)):

ME=
1
n

Xn
i=1

SOMobs,i−SOMpred,i
� �

, ð1Þ

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i=1

SOMobs,i−SOMpred,i
� �2s

, ð2Þ

in which ME is the mean error, RMSE is the root mean
square error, SOMobsi, is the observed SOM stocks at loca-
tion i, SOMpred,i is the predicted SOM stocks at location i,
and n is the total number of samples.

ρc =
2ρσobsσpred

σ2obs + σ2pred + μobs−μpred

� �2 , ð3Þ

in which μobs and μpred are the means of the observed
and predicted SOM stocks, σobs and σpred are the
corresponding variances and ρ is the correlation coeffi-
cient between the observed and predicted SOM stocks.

AVE=

Pn
i=1

^SOMi− �SOM
� �2

Pn
i=1 SOMi− �SOMð Þ2

, ð4Þ

in which AVE is the amount of variance explained, ^SOMi

the predicted SOM stocks at location i and �SOM is the
overall SOM stocks mean.

2. The ME, RMSE, Lin's concordance correlation coef-
ficient and the AVE of the SOM stock maps using the soil
observations.

3. The Pearson correlation coefficient between the
two SOM stock maps to compare both models and maps.

3 | RESULTS AND DISCUSSION

3.1 | Data collection

3.1.1 | Environmental variables

The area is dominated by deciduous forest (38%) and
shrubland (43%), followed by grassland (12%) and rock
outcrops (6%). The average and interquartile range (IQR)
of the environmental variables are given in Table 2. Vege-
tation height, maximum temperature and slope have the
highest IQR, indicating largest variation within the study
area. Some pairs of environmental variables are highly
correlated with each other. For statistical models it is pre-
ferred that environmental variables are weakly correlated
with each other, because it increases the potential for
fitting a combination of environmental variables to
explain the variation in SOM stocks. High correlation
coefficients existed, for example, between vegetation
height and NDVI or NDWI, altitude and minimum tem-
perature, and solar radiation and southness of slope.

3.1.2 | Summary statistics of soil
observations

Soil profile depths ranged between 10 and 27 cm. Bed-
rock or saprolite was reached immediately below the A-
horizon. The bulk density was predicted to be between
0.84 and 1.21 g cm−3. The soil profile depth and bulk den-
sity were used to estimate SOM stocks. The SOM stocks
ranged between 164 and 482 t ha−1. The SOM stocks of
the samples were positively skewed (Figure 3), with Q1,
Q2 and Q3 being 193, 222 and 248 t ha−1, respectively.
Although vegetation was assumed to be a good predictor
for SOM stocks, a weak correlation coefficient was found
between SOM stocks and vegetation height and between
SOM stocks and NDVI. This can be caused by the low
mineralization rate in the sparsely vegetated, wet and
cold mountainous areas in the southern part of the study
area. A stronger correlation coefficient was found
between SOM stocks and altitude (r = 0.44), probably
also caused by the low mineralization rate in colder cli-
mates (Manzoni & Porporato, 2009). There is also a nega-
tive correlation between SOM stocks and slope
(r = −0.22), which indicates that erosional processes
might influence the SOM stocks in the study area. In gen-
eral, the Pearson correlation coefficient between SOM
stocks and environmental variables is weak (Table 3).
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In our study, soil samples with an exceptional high
organic matter content of 17% or higher were tested twice
in the laboratory and resulted in nearly the same values.
Nine out of 13 samples with organic matter content
above 17% were taken in grasslands, which could have
been influenced by human activities. The other samples
corresponded to the SOM contents that were measured in
the Cantabria region by Rodríguez Martín et al. (2016).
These grasslands are dominantly located in the highlands

where the mineralization rates are lower due to the low
temperatures or in poorly drained valleys. In total, 48
samples were collected in shrubland, 43 in forest and
nine in grasslands.

3.2 | Mechanistic model

3.2.1 | Developing the mechanistic
model

The mechanistic model was developed by applying the
four steps described in Section 2.3.

Step 1. Available soil models describe carbon pro-
cesses in different levels of detail and complexity (Grace
& Malhi, 2002), but the processes each carbon model
includes can be framed in the following generic way: (a)
part of the organic matter inputs, including roots, wood
and leaves, decomposes, (b) resistant plant material
breaks down into CO2, microbial biomass and humified
organic matter, (c) organic matter humifies and enters
the organic matter pool(s), and (d) carbon mineralizes,
releasing CO2 and nutrients. Besides mineralization, ero-
sion can also cause a severe depletion of the organic car-
bon pool (Lal, 2003). Based on the characteristics of our
study area, we decided to select erosion as a major pro-
cess as well. This resulted in the selection of three major
processes: humification, mineralization and erosion. A
conceptual framework of the mechanistic model is shown
in Figure 4. Start and end products are indicated by the

TABLE 2 Average and interquartile range (IQR) of

environmental variables for the Natura2000 areas in the Cantabria

region (Spain)

Average IQR

Precipitation (mm) 1,260 289

Max. temperature (�C) 11.4 7.6

Mean temperature (�C) 5.6 2.2

Min. temperature (�C) 3.9 1

Solar radiation (W/m2/year) 1,107,690 318,692

Normalized difference vegetation
index (−)

0.64 0.19

Normalized difference water index
(−)

0.49 0.15

Brightness 0.85 0.15

Greenness 0.30 0.18

Wetness 0.19 0.08

Vegetation height (m) 4.40 7.30

Altitude (m) 1,067 587

Slope (�) 24 14

Southness −0.16 –

Eastness 0.08 –

Topographic wetness index 9.8 1.5

FIGURE 3 The frequency distribution of the soil organic

matter stocks resulting from 100 soil samples that were collected in

the Natura2000 areas of the Cantabria region (Spain)

TABLE 3 Pearson correlation coefficients between soil organic

matter (SOM) stocks and available environmental variables

Environmental variable SOM stocks

NDVIa −0.01

TWIb −0.02

NDWIc −0.01

Elevation 0.44

Slope −0.22

Radiation 0.16

Southness −0.10

Mean precipitation −0.02

Mean temperature −0.42

CVd of precipitation −0.06

CV of temperature 0.36

aNormalized Difference Vegetation Index.
bTopographic wetness index.
cNormalized Difference Wetness Index.
dCoefficient of Variation.
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rounded boxes and the major processes by the squared
boxes.

Steps 2 and 3. Compared to dynamic soil models, the
processes in our mechanistic model had to be simplified.
Processes had to be described at regional scale and by
environmental variables that are spatially available. The
mechanistic model also considered only one organic car-
bon pool to reduce complexity. The relatively simple car-
bon model Roth-C (Coleman & Jenkinson, 2014) was
used as a starting point for building the mechanistic SOC
model.

The SOM input was estimated by multiplying the lit-
ter production (LP) by the humification rate (HR). The
LP depends on vegetation type and cover. Temperate
deciduous forests produce between 8,800 and 14,100 kg
ha−1 per year (Tateno, Hishi, & Takeda, 2004) and the
Carpathian grasslands produce about 1,470 to 2,870 kg
ha−1 litter per year (Galvánek & Lepš, 2012). A linear
relationship was considered between litter production
and NDVI. Therefore, NDVI is taken as a proxy for the
LP (Equation (5)):

LP= c1 + c2NDVI, ð5Þ

in which c1 and c2 are fixed parameters.
The humification rate (HR) of humified organic mat-

ter to soil organic matter depends on the clay content
(Coleman & Jenkinson, 2014). Organic matter binds to
clay particles and therefore clay affects the way organic
matter decomposes (Coleman & Jenkinson, 2014). The
lithology class can be used to represent the clay content.
However, the course scale of the lithology map made us
decide to fix HR at 0.32. The clay content of the soil sam-
ples was used as input data for the Coleman and
Jenkinson (2014) relationship (Equation (6)) to estimate
the HR content. The value 0.32 is the average of the
resulting HR contents.

HR=
1

3:09+ 2:7e CLð Þð Þ , ð6Þ

in which CL is the observed clay content (%).

The soil releases nutrients and CO2 through miner-
alization. The mineralization rate (MR) is exponentially
related to the temperature. In the study area, mean
annual temperature and precipitation were correlated
(r = 0.28). The temperature showed the strongest corre-
lation with the observed organic matter content
(r = −0.42) and therefore the MR was estimated using
Equation (7).

MR= c3 + ec4T , ð7Þ

in which c3 and c4 are fixed parameters and T is tempera-
ture (�C).

The Universal Soil Loss Equation (USLE) is a com-
monly used equation to estimate the erosion rate (ER)
(Wischmeier & Smith, 1965; Wischmeier & Smith, 1978).
In this equation, the erosion rate depends on slope, pre-
cipitation and vegetation cover. Except for some rocky
outcrops, the entire area has a permanent vegetation
cover, which made us decide to use a fixed value for vege-
tation cover. Erosion is estimated using slope and rainfall
erosivity (Equation (8)).

ER= c5 � c6 �Sð Þ+ c7 �Rð Þð Þ, ð8Þ

in which c5, c6 and c7 are fixed parameters, S is the slope
(�) and R is the rainfall erosivity (MJ� mm ha−1 h−1 yr−1)
obtained from Panagos et al. (2017).

Step 4. To predict the SOM stocks, the balance
SOMin = SOMout needs to be optimized (Equation (10)).
This results in Equation (9) and finally in Equation (10).

LP �HR= MR�SOMstock +ER� SOMð Þð Þ, ð9Þ

SOMstock =
LP �HR

MR+ ER
BD�SD�10,000

, ð10Þ

in which BD is the soil bulk density (g cm−3), which is
fixed at 1.2 g cm−3 and SD is the soil depth (cm), which is
fixed at the average soil depth of the collected sam-
ples (20 cm).

FIGURE 4 Conceptual

framework of the mechanistic model

that is used for predicting soil

organic matter (SOM) stocks using

digital soil mapping. Start and end

products of the flow diagram are

indicated by the rounded boxes and

processes are indicated by the

squared boxes [Color figure can be

viewed at wileyonlinelibrary.com]
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3.2.2 | Calibration of the mechanistic
model

The model was calibrated using 99 soil samples, because
one sample with an organic matter content of 34% was
assumed to be an outlier. To make every process act
within realistic boundaries, litter production ranged
between 5 and 20 t ha−1 and mineralization rate between
0.01 and 0.05. Optimizing the fixed parameters based on
the objectives (minimizing the RMSE and maximizing
the Lin's concordance correlation coefficient), resulted in
the calibration results listed in Table 4. The mechanistic
model predicted SOM stocks best by having c3 and c7 set
to zero, meaning that no fixed parameter was required to
predict mineralization rate and the erosion rate was
predicted without an estimate of rainfall erosivity. A Lin's
concordance correlation coefficient of 0.24 was found
between SOMpred and SOMobs. The predicted SOM stocks
show much less variation compared to the observed SOM
stocks. This indicates that the explanatory variables can-
not explain all spatial variation. After calibration of the
model, SOM stocks ranged between 175 and 285 t SOM
ha−1. The litter production was estimated at 19.3 t SOM
ha−1, with a standard deviation of 0.17 t SOM ha−1. The
mineralization rate varied between 0.01 and 0.03, and the
erosion rate between 1.3 and 13.2 t ha−1. The modelled
results had a mean error (ME) of −1 t ha−1, an RMSE of
68 t ha−1 and an amount of variance explained (AVE) of
17%. The average SOM stocks balance (SOMin - SOMout)
is negative (−0.17 t SOM ha−1).

Changing the fixed parameters affected the RMSE
(Figure 5a) and the Lin's concordance correlation coeffi-
cient (Figure 5b) of the model unequally and non-system-
atically. Model performance did not respond
symmetrically to lower or higher values of the fixed
parameters. For example, increasing the value of c1 gives
an exponential increase in the RMSE, whereas decreasing
the value of c1 changes the RMSE to a more gradual, lin-
ear relation. The parameters c3 and c7, which were used

for estimating the MR and ER respectively, did not show
any sensitivity because the fixed parameters were esti-
mated to be zero. The model was not sensitive to changes
in c5 and c6 and most sensitive to changes in c1, c2 and c4.
From the sensitivity analysis it can be concluded that the
fixed parameters that were used to estimate LP were most
sensitive. Different parameters did not show minimum
RMSE and maximum correlation coefficient at the value
calibrated by the model, because the model aimed to
optimize two objectives.

3.3 | Mechanistic SOM stocks map

Mapping the SOM stocks for the Cantabria region
resulted in values between 136 and 1,039 t SOM ha−1

(Figure 6). The model did not show any spatial depen-
dence between the residuals. The mapped SOM stocks
had at the sampling locations an ME of −2 t SOM ha−1

and an RMSE of 66 t SOM ha−1. The Lin's concordance
correlation coefficient between the observed and
predicted values was 0.47 and the AVE of the map
was 21%.

3.4 | Statistical SOM stocks map

The stepwise regression resulted in the selection of five var-
iables: altitude, slope, annual precipitation coefficient of
variation (CV), mean annual temperature CV and topo-
graphic wetness index (TWI). The model predicted SOM
stocks at the sampling locations between 123 and 282 t
SOM ha−1. Mapping the SOM stocks for the Cantabria
region resulted in values between 1 and 347 t SOM ha−1

(Figure 7), reflecting the wide range in ecological condi-
tions in the area. At the sampling locations, the differ-
ence between the predicted and observed values had an
ME of 1 t SOM ha−1 and an RMSE of 64 t SOM ha−1.
The Lin's concordance correlation coefficient between
the observed and predicted values was 0.42. Also, the
statistical model did not show any spatial dependence
between the residuals. The SOM stocks map of the Can-
tabria region had an ME of −0.4 t SOM ha−1, an RMSE
of 62 t SOM ha−1 and a Lin's concordance correlation
coefficient of 0.49, and the AVE was 31%. The statistical
model served as a comparison with the mechanistic
approach, and therefore we used a straightforward
regression kriging approach. It is expected that predic-
tions can be improved by using a linear mixed model
that uses the empirical best linear unbiased predictor to
estimate random effects (Lark et al., 2006). However, if
the residuals exhibit no spatial autocorrelation, ordinary
least squares regression will provide equivalent results.

TABLE 4 Fixed parameters used to fit the model

Fixed parameters Value

c1 14,618

c2 1923

c3 0

c4 0.0024

c5 0.6728

c6 519.6

c7 0
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3.5 | Evaluation of the SOM stock maps

Table 5 summarizes the statistical evaluation of the
models and the SOM stock maps. The statistical model
performs slightly better compared to the mechanistic
model. The complexity of the system and the limited data
we had to support and to validate the model makes it dif-
ficult to draw conclusions from the model predictions. At
the sampling locations, the correlation coefficient
between the two SOM stock maps was 0.8. The similari-
ties between the two maps became especially visible
when taking a snapshot of the central part of the study
area (Figure 8). The highest organic matter contents were
predicted in mountain ridges and stream valleys. The low
mineralization rate in mountain ridges and SOM

accumulation in stream valleys increase SOM stocks. The
lowest SOM stocks were found at the steepest slopes. This
indicates that erosion processes have influenced SOM
stocks in the study area.

4 | GENERAL DISCUSSION

4.1 | Potential for combining
mechanistic and statistical models

The study illustrated the potential of developing a mecha-
nistic soil model as an alternative for statistical DSM.
Although we do not have a convincing account of a
mechanistic approach, this alternative brings new

FIGURE 5 Sensitivity analysis of the mechanistic model. Deviating model parameters (c1 to c7) individually in steps of 10% from the

calibration point (0%) up to -100% and +100% results in asymmetrical changes of the root mean square error (RMSE) and the Lin's

concordance correlation coefficient

FIGURE 6 Predicted soil organic matter (SOM) stocks of the

mechanistic model [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 7 Predicted soil organic matter (SOM) stocks of the

statistical model [Color figure can be viewed at

wileyonlinelibrary.com]

714 HENDRIKS ET AL.

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


opportunities for DSM. Instead of increasing the com-
plexity of the algorithms of statistical models in order to
improve SOM stock predictions (e.g., Hengl et al., 2017;
Keskin, Grunwald, & Harris, 2019), the potential of com-
bining mechanistic and statistical models should be
explored. For example, one can use the fitted parameters
of the mechanistic approach as input data for the statisti-
cal approach. The mechanistic DSM approach selected
the environmental variables beforehand using pedologi-
cal models, data and knowledge, whereas in a statistical
DSM approach all environmental variables have the
chance of being selected for the model. This resulted in
the selection of different environmental variables

between the mechanistic and statistical models. Combin-
ing mechanistic and statistical models has a key advan-
tage of the ability to build in causal effects based on
pedological processes, which makes the prediction of soil
properties underpinned and less of a black box.

4.2 | Potential for different soil
properties and extrapolation

Cause–effect relationships of the complex soil character-
istics need to be well known before a mechanistic model
for DSM can be developed. The approach faces

TABLE 5 Statistical analysis of the

mechanistic soil organic matter (SOM)

stocks model and map

Mechanistic SOM stocks Statistical SOM stocks

Model Map Model Map

SOM stocks (t SOM/ha) 175–285 136–1,039 123–282 1–347

MEa −1 −2 1 −0.4

RMSEb 68 66 64 62

Lin's concordance CCc 0.24 0.47 0.42 0.49

AVEd 0.17 0.21 0.26 0.31

aMean error.
bRoot mean square error.
cCorrelation coefficient.
dAmount of variance explained.

FIGURE 8 Taking a snapshot (red rectangular area) illustrating differences/similarities between the mechanistic soil organic matter

(SOM) stocks map (a) and the statistical SOM stocks map (b) [Color figure can be viewed at wileyonlinelibrary.com]
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limitations for soil properties with less well-understood
cause–effect relationships (e.g., cation exchange capacity
(CEC) and soil pH). In those cases, statistical models are
probably still the best. Another reason for developing
mechanistic models was the potential of extrapolation.
There is evidence that the extrapolation of a mechanistic
model to areas with similar characteristics and processes
has more potential than the extrapolation of a statistical
model, because the mechanistic model depends on
cause–effect relationships, whereas the statistical model
depends on associations. Several studies that used a sta-
tistical model for DSM explored the potential of extrapo-
lation (Afshar, Ayoubi, & Jafari, 2018; Grinand,
Arrouays, Laroche, & Martin, 2008; Wolski et al., 2017).
However, the soil property predictions in these extrapo-
lated areas were poor. Statistical models tend to exagger-
ate the error associated with the interpolation (Robinson
& Metternicht, 2006). This can result in strong differences
in accuracy between the interpolation and extrapolation
areas (e.g., Grinand et al., 2008).

4.3 | Potential for other areas

Mechanistic DSM was applied to a nature area,
because the area was assumed to be in a state of equi-
librium between SOMin and SOMout. It is possible to
incorporate a factor that accounts for systematic deple-
tion or addition of SOM, but the potential to apply the
approach to a non-balanced system is limited. The pro-
cesses that are included in the mechanistic model need
to be evaluated before the model is applied to a differ-
ent nature area. This is because (a) processes can dif-
fer, (b) the relationships between the environmental
variables and the process can differ, and (c) the avail-
ability of environmental variables can differ. The
potential of applying mechanistic DSM to a non-bal-
anced system, such as an agricultural landscape,
should be explored.

4.4 | Model performance

The observed SOM stocks showed a wider range com-
pared to the predicted SOM stocks. This means that the
variation in SOM stocks could not be covered completely
by the selected environmental variables. Lack of fit can
have different causes: (a) the resolution of some environ-
mental variables was not detailed enough to detect the
causes of spatial variation in SOM stocks, (b) the spatial
variation needs to be explained by different environmen-
tal variables (for example, the effect soil biota have on
SOM stocks could not be included in this study), (c) the

number of observations was not sufficient to find rela-
tions between the observed and explanatory variables, or
(d) the sampling protocol did not detect all variation,
because different processes operate at different spatial
scales.

The model relies on several fixed parameters, which
can result in equifinality (i.e., the same outcome could
be produced by several different combinations of param-
eter values). We tried to reduce the potential of equi-
finality by making every process act between realistic
boundaries. Another disadvantage of the model is that
the optimal sampling protocol for the calibration of the
mechanistic model opposes the second step in DSM,
namely the analysis of spatial autocorrelation between
the residuals. Taking multiple randomly chosen soil
samples within a stratum could have solved the issue,
but increases the chance of missing some of the spatial
soil variation.

5 | CONCLUSIONS

The study illustrated that mechanistic soil models can
be used for DSM, which means that DSM no longer
needs to rely on statistical models only. The model
could be developed because the predicted soil property
(SOM stocks) has well-known cause–effect relation-
ships, the study area could be assumed to be in a state
of equilibrium, and spatially exhaustive environmental
variables were available at fine resolution. It is difficult
to draw conclusions from the comparison because of
the complexity of the system and the limited data we
had to support and to validate the model. The conclu-
sion we can draw from the comparison is that the two
maps were highly correlated with each other. Mecha-
nistic models for DSM are an interesting alternative
for mapping soil characteristics that are difficult to
predict by statistical models and for extrapolation pur-
poses. The potential of combining mechanistic and sta-
tistical models for DSM should be explored, because
both models have advantages and disadvantages that
can complement each other.
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