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A B S T R A C T   

The heart is the most metabolically flexible organ with respect to the use of substrates available in different states 
of energy metabolism. Cardiac mitochondria sense substrate availability and ensure the efficiency of oxidative 
phosphorylation and heart function. Mitochondria also play a critical role in cardiac ischemia/reperfusion injury, 
during which they are directly involved in ROS-producing pathophysiological mechanisms. This review explores 
the mechanisms of ROS production within the energy metabolism pathways and focuses on the impact of 
different substrates. We describe the main metabolites accumulating during ischemia in the glucose, fatty acid, 
and Krebs cycle pathways. Hyperglycemia, often present in the acute stress condition of ischemia/reperfusion, 
increases cytosolic ROS concentrations through the activation of NADPH oxidase 2 and increases mitochondrial 
ROS through the metabolic overloading and decreased binding of hexokinase II to mitochondria. Fatty acid- 
linked ROS production is related to the increased fatty acid flux and corresponding accumulation of long- 
chain acylcarnitines. Succinate that accumulates during anoxia/ischemia is suggested to be the main source of 
ROS, and the role of itaconate as an inhibitor of succinate dehydrogenase is emerging. We discuss the strategies 
to modulate and counteract the accumulation of substrates that yield ROS and the therapeutic implications of 
this concept.   

1. Introduction 

The heart intensively produces and consumes energy to maintain 
cardiac functionality and blood circulation. Fatty acids (FAs) and 
glucose are the primary fuels in the healthy adult heart [1]. However, 
extreme concentrations of both, hyperglycemia and dyslipidemia, likely 
contribute to cardiovascular disease and associated morbidity and 
mortality [2]. Energy metabolism in the heart is regulated by humoral 
factors, substrate availability, the AMP/ATP ratio, the redox state, and 
changes in gene expression. Under normal conditions, cardiac mito-
chondria sense substrate availability and ensure the efficiency of 
oxidative phosphorylation [3]. In the case of ischemia/reperfusion (I/R) 
injury, stress conditions alter systemic substrate levels, impact metabolic 
reactions, and lead to the accumulation of metabolic intermediates 
during ischemia. Here, we review the current knowledge of the main 

metabolic pathways and energy metabolites that drive the formation of 
mitochondrial reactive oxygen species (ROS) in reperfusion and exac-
erbate the impact of I/R-induced injury. 

The heart has limited substrate reserves in the form of glycogen and 
triglycerides. The majority of ATP production requires a sufficient sup-
ply of oxygen for mitochondrial oxidative metabolism; therefore the 
heart highly depends on energy substrates from the circulation. In 
comparison to other organs, the heart is known as the most metaboli-
cally flexible when exposed to different energy-related challenges and 
substrate conditions, and it is better suited to oxidize FAs than other 
tissues [4]. FAs are the major substrate for energy production and 
contribute approximately 60–95% of the total oxidative phosphoryla-
tion [5]. However, the heart is capable of gaining energy from any 
available substrate suitable for energy production, including glucose, 
lactate, ketones, pyruvate, and amino acids. This ability ensures adap-
tation to changing conditions and uninterrupted energy production for 
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heart function; however, it requires tight regulation of substrate 
selection. 

During myocardial ischemia, sympathetic overstimulation due to 
excessive concentrations of catecholamines induces systemic changes in 
energy metabolism. Stress-induced hyperglycemia and insulin resis-
tance are often observed during acute myocardial infarction. In addi-
tion, catecholamine-stimulated triglyceride breakdown in adipocytes is 
suggested as a source of elevated FA levels in circulation [6]. In the 
heart, all major metabolic pathways are affected by ischemia (Fig. 1). In 
the ischemic heart, the shift from oxidative phosphorylation to anaer-
obic glycolysis results in significantly increased concentrations of 
glucose-6-phosphate (G6P) and lactate [7]. During cardiac arrest, 
mitochondrial dysfunction and changes in intracellular signalling 
pathways are associated with the downregulation of FA metabolism and 
accumulation of cytosolic long-chain FAs [8]. Limited mitochondrial 
metabolism is mostly caused by the absence of oxygen as an electron 
acceptor. In addition, in ischemic mitochondria, depletion of Krebs cycle 

intermediates and free CoA underlie limited mitochondrial metabolism. 
Thus, altered mitochondrial functionality increases the levels of the 
Krebs cycle intermediate succinate and the FA metabolic intermediates 
acylcarnitines and acyl-coenzymes A (acyl-CoAs). Currently, the accu-
mulation of succinate is considered as a universal metabolic signature of 
ischemia and is suggested to be the main metabolite responsible for 
mitochondrial ROS production during reperfusion [9]. 

Mitochondria are both a target and a source of cellular ROS [10,11], 
producing both superoxide and, after its spontaneous or enzymatic 
dismutation, hydrogen peroxide [12–14]. In general, mitochondrial ROS 
generation decreases when [O2] drops below 10 μM depending on the 
metabolic conditions [15]. Knowing that approximately 10% of mito-
chondria within the healthy heart in vivo already experience such oxy-
gen tension [16], cardiac mitochondrial ROS production is likely 
partially controlled by oxygen. This suggests that ROS production is 
controlled by the interplay among metabolic processes, oxidative 
phosphorylation efficiency and oxygen availability. The lack of oxygen 

Abbreviations 

ACC acetyl-CoA carboxylase 
Acyl-CoA acyl-coenzyme A 
AMPK 5′ AMP-activated protein kinase 
CAD cis-aconitate decarboxylase 
CaMKII Ca2+/calmodulin-dependent kinase II 
CPT1 carnitine palmitoyltransferase 1 
CPT2 carnitine palmitoyltransferase 2 
cytoHKII cytosolic hexokinase II 
FA fatty acids 
G6P glucose-6-phosphate 
GLP-1 glucagon-like peptide-1 
HKI, II hexokinase I or II 
I/R ischemia/reperfusion 
Irg1 Immune-Responsive Gene 1 
LCAD long-chain acyl-CoA dehydrogenase 

LPS lipopolysaccharide 
MCD malonyl-CoA decarboxylase 
mitoHK mitochondrial hexokinase 
NADPH nicotinamide-adenine dinucleotide phosphate 
NOX2 NADPH oxidase 2 
NRF2 nuclear factor erythroid 2–related factor 2 
O-GlcNAcylation O-linked-N-acetylglucosaminylation 
PDH Pyruvate dehydrogenase 
PI3K-Akt phosphoinositide-3 kinase/protein kinase B 
PKCβ β isoform of protein kinase C 
RISK reperfusion injury salvage kinase 
RET reverse electron transport 
ROS reactive oxygen species 
SDH succinate dehydrogenase 
SMIT1 sodium-myoinositol cotransporter-1 
SSO sulfo-N-succinimidyl oleate 
ψm mitochondrial membrane potential  

Fig. 1. Changes in cardiac content of metabolic intermediates during ischemia. Increased concentrations of glucose-6-phosphate, NADH, lactate, acylcarnitines, and 
succinate are observed. Abbreviations: Acyl-CoA = acyl-coenzyme A; cytoHKII = cytosolic hexokinase II; αKG = α-ketoglutarate. 
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and respiratory substrates inhibits pyruvate and FA β-oxidation and 
oxidative phosphorylation. When oxygen is reintroduced rapidly, 
changes in mitochondrial metabolism lead to a collapse of the mem-
brane potential, Ca2+ overloading, swelling of mitochondria, cyto-
chrome c release, disruption of cellular membranes, and finally, cell 
necrosis [17]. In various cardioprotective strategies, including protec-
tion of mitochondrial functionality (mitoprotection) [18], myocardial 
conditioning, and regulation of energy metabolism, the preservation of 
mitochondrial function is central in the reducing the severity of I/R 
injury [19,20]. The optimal mitochondrial bioenergetics based on 
alternative substrate availability and maintained cardiomyocyte redox 
homeostasis should counteract mitochondrial dysfunction and cardiac 
tissue damage in I/R. 

2. Role of glucose metabolism in oxidative stress 

Derangements in glucose metabolism, induced by either chronic (e. 
g., diabetes), or acute (e.g., stress) conditions, present during I/R can 
contribute to cardiac oxidative stress through various mechanisms. 
Chronic alterations in glucose metabolism and their impact on cardiac I/ 
R are discussed in separate reviews within this special issue of the 
journal. In the present review, we mainly focus on how acute changes in 
glucose substrate channelling into the cell and glucose cellular meta-
bolism contribute to the level of oxidative stress during an I/R episode. 
We discuss the two main features of glucose metabolism affecting ROS 
during I/R that have become apparent: hyperglycemia and the roles of 
mitochondrial hexokinase and glucose-6-phosphate (G6P). 

2.1. Hyperglycemia increases cardiac ROS 

Stress hyperglycemia is often present during acute cardiac I/R epi-
sodes because of elevated stress hormones such as cortisol and cate-
cholamines, which provoke insulin resistance, impair insulin release and 
stimulate glucagon release from the pancreas (e.g. Refs. [21,22]). Most 
studies have demonstrated that hyperglycemia per se worsens the 

outcomes of a cardiac I/R insult (recently summarized in Ref. [23]). 
Hyperglycemia increases the cytosolic and mitochondrial ROS levels 

in several different cell types through various cellular mechanisms [24]. 
It has been reported that elevated glucose levels can increase the 
mitochondrial superoxide concentration via mitochondrial metabolic 
overloading that triggers an increased mitochondrial membrane po-
tential (ψm) in endothelial cells [25] or increase mitochondrial ROS 
levels by disrupting ATP synthase through increased calpain-1 activity 
in cardiomyocytes [26]. Alternatively, knowing that hyperglycemia in-
creases the cytosolic [Na+] [27], high glucose can also generate mito-
chondrial superoxide through Na+-induced impairment of inner 
mitochondrial membrane fluidity [28]. Finally, high glucose can also 
increase ψm through the detachment of hexokinase II (HKII) from 
mitochondria, a process induced by an increase in cellular G6P levels 
due to high glucose [29]. Normally, mitochondrially bound HKII at 
voltage-dependent anion channels has preferential access to mito-
chondrially produced ATP, thereby facilitating the exchange of ADP and 
ATP through the inner mitochondrial membrane and maintaining ψm at 
a lower level. Dislodging of HKII from mitochondria will therefore raise 
ψm [29]. Hyperglycemia was also shown to increase cytosolic ROS 
through the activation of NADPH oxidase 2 (NOX2). Several pathways, 
which are not mutually exclusive, have been suggested to underlie how 
elevated glucose activates NOX2 (Fig. 2). Glucose transport through 
sodium myoinositol cotransporter-1 (SMIT1) was shown to be required 
for hyperglycemia-induced NOX2 activation [30]. Interestingly, glucose 
brought in through SMIT1 did not facilitate the NOX2 activation, indi-
cating that the extracellular metabolic signal (glucose) transduced into 
an intracellular ionic signal activating NOX2 [31]. Intracellular Na+ and 
Ca2+ are likely candidates because previous research showed that in-
creases in extracellular glucose acutely increased concentrations of these 
ions in cardiomyocytes [27]. 

High glucose-induced ROS production in cardiomyocytes was also 
shown to be dependent on the β isoform of protein kinase C (PKCβ) 
activation, resulting in NOX2 activation [32]. Recent work has sug-
gested that the O-GlcNAcylation of Ca2+/calmodulin-dependent kinase 

Fig. 2. Hyperglycemia increases cytosolic and mito-
chondrial ROS levels during I/R. High glucose- 
induced ROS production in the cardiomyocyte 
cytosol depends on the PKC activation and O-GlcNA-
cylation of CaMKII, resulting in NOX2 activation. 
Increased glucose uptake and glycogen breakdown 
during ischemia increase the content of G6P and 
induce the dislodgement of HKII from mitochondria, 
resulting in the accumulation of succinate and 
enhanced mitochondrial ROS production. Abbrevia-
tions: AcylCoA = acyl-coenzyme A; CaMKII = Ca2+/ 
calmodulin-dependent protein kinase II; cytoHKII =
cytosolic hexokinase II; cytoROS = cytosolic ROS; 
mitoHKII = mitochondria-bound hexokinase II; 
mitoROS = mitochondrial ROS; GLUT = glucose 
transporter; G6P = glucose-6-phosphate; NOX2 =
NADPH oxidase 2; PKC = protein kinase C; SMIT1 =
sodium-myoinositol cotransporter-1.   
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II (CaMKII) mediates the activation of NOX2 upon hyperglycemic 
treatment of cardiomyocytes [33], although previous work in adult rat 
cardiomyocytes was unable to detect changes in overall O-GlcNAc res-
idues [31]. 

2.2. Glucose metabolism reduces ROS through mitochondrial hexokinase 
(mitoHK) 

As soon as glucose enters the cells, it is phosphorylated by hexoki-
nase I or II (HKI, II), thereby trapping ionized glucose within the cell. 
HKI is predominantly localised at the outer membrane of mitochondria, 
whereas HKII is either cytosolic or mitochondrially bound [34]. HKII is 
mainly present in insulin-sensitive tissues (heart, skeletal muscle, adi-
pose tissue), whereby insulin stimulation translocates HKII from the 
cytosol to the mitochondria [35]. Intact mitochondria within tissue al-
ways have HKI/II bound to them, indicating the importance of this 
glycolytic enzyme for mitochondrial homeostasis. Mitochondria-bound 
HK (mitoHK) is a determinant of ROS produced by mitochondria [29]. 
The decreased binding of HK (and creatine kinase) to mitochondria was 
recently proposed to contribute to the oxidative stress associated with 
ageing [36]. HK binding to mitochondria results in mild depolarization 
of the inner mitochondrial potential, and thereby diminishes mito-
chondrial ROS production [29,36]. 

Mitochondrial HKII (mitoHK) plays a major role in mitigating car-
diac I/R injury and ROS production. It was shown that 1) cardiac pro-
tection against I/R injury by ischemic preconditioning is, at least partly, 
mediated through the maintenance of HKII at mitochondria during 
ischemia and reperfusion [37–40]; 2) detaching HKII from mitochondria 
increases ROS production during reperfusion and exacerbates cardiac 
I/R injury [41,42]; and 3) glucose metabolism is required for the 
mitoHK induced protection [43]. The essential role of glucose in 
mitoHK-induced protection may also explain why glucose is required for 
ischemic preconditioning to be protective [44,45]. Furthermore, it has 
been shown that the addition of glucose to isolated brain mitochondria 
lowers the generation of hydrogen peroxide, an effect not seen in 
mitoHK-depleted mitochondria [29]. 

Thus, glucose metabolism needs to be active/present to diminish 
oxidative stress during the cardiac reperfusion and to facilitate car-
dioprotection by ischemic preconditioning. Excessive inhibition of 
glucose metabolism, e.g., through elevated FA metabolism within car-
diac cells (the Randle effect), can contribute to the increased production 
of ROS during reperfusion. In addition, increased FA levels may also lead 
to the dissociation of HK from the mitochondria [46], indicating how 
FAs may indirectly contribute to increased mitochondrial ROS 
production. 

Glucose metabolism during ischemia, i.e., glycolysis derived from 
glycogen, is a double-edged sword for cardiac I/R injury and ROS pro-
duction (Fig. 2). If glycogen is not fully depleted, ischemic contracture 
does not develop, and cardiac I/R injury is minor. However, when 
glycogen is fully depleted, the breakdown products of anaerobic 
glycolysis, protons and G6P, contribute to cardiac I/R injury [47]. A 
likely explanation is that a drop in the cytosolic pH along with increased 
G6P accumulation dislodges HKII from mitochondria during ischemia, 
resulting in increased ROS production during reperfusion [39]. The drop 
in cytosolic pH will also translate into mitochondrial acidification 
resulting in decreased mitochondrial calcium loading [48]. However, 
although mitochondrial acidification may be beneficial for the preven-
tion of I/R-induced mitochondrial calcium overloading, current 
research indicates that the effects of mitochondrial acidification are 
mostly neutral for mitochondrial ROS production [49]. In summary, 
loading the preischemic heart with glycogen (for example, by providing 
high levels of insulin), or increasing glycolysis during ischemia, will 
contribute to increased ROS when glycogen becomes fully depleted, due 
to the dislodgement of HKII from mitochondria [20]. Additionally, 
glycogen breakdown may also enhance the production of mitochondrial 
ROS early during reperfusion through its contribution to the ischemic 

accumulation of succinate [50] (Fig. 2). 

3. Role of FA metabolism in oxidative stress 

Both the increase in β-oxidation and the accumulation of FA and 
their metabolites, especially long-chain acyl-CoAs and acylcarnitines, 
are associated with increased ROS production and subsequent oxidative 
stress [51–54]. FA-linked ROS production is associated with mitochon-
drial dysfunction, which includes inhibition of the electron transfer 
system and support of the reverse electron transport (RET); FAs and/or 
their metabolites act as protonophores/uncouplers, and alter mito-
chondrial membrane fluidity (reviewed in Ref. [55]). However, it is 
unclear to what extent mitochondrial β–oxidation or the accumulation 
of FAs and/or their metabolites (acyl-CoAs and/or acylcarnitines) 
impact I/R-associated oxidative stress. 

3.1. FA metabolism in the heart 

Increased plasma concentrations of FAs are associated with increased 
FA flux to the heart, which further shifts cardiac energy metabolism 
towards FA oxidation [56]. Elevated levels of circulating FAs have been 
found in the fasted state [57] as well as during early reperfusion, 
reaching concentrations of approximately 0.8 mM, but not at later time 
points (concentration is maintained in the 0.4–0.6 mM range) [58] if 
measured in appropriately collected samples [59]. Interestingly, despite 
the significant increase in FA concentrations observed in circulation in a 
fasted versus a fed state, no such increase was observed in the cardiac FA 
concentration [60]. The cardiac contents of activated FAs, acyl-CoAs 
and acylcarnitines, however, are increased in the fasted state [60,61]. 
Long-chain FA metabolism is controlled by interactions between carni-
tine palmitoyltransferase 1 (CPT1) and acetyl-CoA carboxylase (ACC) 
via intracellular malonyl-CoA levels (Fig. 3). CPT1 activity is stimulated 
when the malonyl-CoA-synthesizing enzyme ACC is inactivated through 
phosphorylation by 5′ AMP-activated protein kinase (AMPK). At the 
same time, malonyl-CoA decarboxylase (MCD) catalyzes the reverse 
reaction, the conversion of malonyl-CoA to acetyl-CoA. In the fasted 
state, AMPK activity ensures a low concentration of malonyl-CoA, high 
activity of CPT1, and a substantially elevated long-chain acylcarnitine 
production rate. In the fed state, activation of insulin signalling induces 
the dephosphorylation (activation) of ACC and a lower long-chain 
acylcarnitine production rate. These mechanisms are crucial for the 
regulation of long-chain acylcarnitine levels and FA oxidation rates to 
ensure the adaptation of cardiac metabolism to the substrate availability 
and nutritional state. 

During ischemia, due to no or limited blood flow, the myocardial 
triglyceride stores are broken down to provide FAs for further oxidation. 
However, during ischemia, FA metabolism is not coupled with oxidation 
in mitochondria, leading to the accumulation of long-chain acylcarni-
tines in mitochondria [62]. Ischemic stress-induced insulin resistance 
and changes in the AMP/ATP ratio strongly activate AMPK, which 
blocks malonyl-CoA synthesis to facilitate FA metabolism [63]. In turn, 
CPT1 generates tremendous amounts of long-chain acylcarnitines that 
cannot be metabolized by mitochondria due to the lack of oxygen [62]. 
In the mitochondrial matrix, the anaplerosis/depletion of Krebs cycle 
substrates results in a limited availability of free CoA, which is necessary 
for CPT2 and corresponding β-oxidation. Thus, long-chain acylcarnitine 
accumulation is a result of stimulated synthesis and a highly decreased 
CPT2-dependent β-oxidation rate [62]. Additionally, because of the 
relative deficiency of the mitochondrial carnitine content [64], 
long-chain acylcarnitines cannot be transferred from the intermembrane 
space into the mitochondrial matrix via the carnitine-acylcarnitine 
translocase. Collectively, all of these mechanisms contribute to 
long-chain acylcarnitine accumulation on the mitochondrial inner 
membrane and in the intermembrane space. 

Controversy exist regarding whether FA oxidation during early 
reperfusion is increased, decreased, or unaltered (e.g. Refs. [65–69]). In 
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reperfusion, if the plasma levels of FAs are increased as a result of rising 
catecholamines or the use of heparin, higher plasma levels will likely 
increase FA uptake in cardiac cells. Due to AMPK activation and ACC 
inhibition, CPT1 is activated, thus facilitating long-chain acylcarnitine 
synthesis. In turn, long-chain acylcarnitines inhibit pyruvate meta-
bolism [60] and, as a result, FA metabolism prevails over pyr-
uvate/glucose oxidation. Nevertheless, FA metabolites still accumulate 
in mitochondria during reperfusion and continuously stimulate ROS 
production [62,66]. Overall, increased FA-linked ROS production is 
related to the increased FA flux and corresponding accumulation of FAs 
and their metabolites. 

3.2. FA oxidation and mitochondrial ROS production 

In general, in the heart, mitochondrial β-oxidation is associated with 
higher levels of ROS formation than the oxidation of other energy sub-
strates [51]. The main sites of superoxide and hydrogen peroxide pro-
duction by β-oxidation are acyl-CoA dehydrogenase and the 
electron-transferring flavoprotein complex [51,70,71]. However, when 
β-oxidation is coupled to oxidative phosphorylation (direct ATP pro-
duction), the rate of ROS production is comparable to that of other 
metabolic pathways [52]. Thus, it is more likely that the increase in 
mitochondrial ROS production associated with the increased β-oxida-
tion rate occurs when oxidation is not coupled with energy (ATP) pro-
duction, and the oxidative phosphorylation coupling efficiency is 
somewhat limited [72,73]. In this case, ROS are formed as side/waste 
products of β-oxidation. On the other hand, an increase in ROS is also 
observed when mitochondrial β-oxidation is impaired [74–79]. The in-
hibition of β-oxidation in the case of ischemia is associated with the 
accumulation of FAs and FA metabolites, long-chain acyl-CoAs and 
acylcarnitines [62,80,81], suggesting that ROS production is also linked 
to the accumulation of metabolites. 

Intracellular FAs have a dual effect on mitochondrial ROS production 
[55,82]. It has been shown that FAs promote superoxide generation in 
the forward mode of electron transport by inhibiting the rate of electron 
flow through complexes I and III and between complexes III and IV [53, 
83–85]. On the other hand, FAs can act as uncouplers and strongly 

decrease superoxide production in mitochondria due to their proto-
nophoric action [83]. Long-term FA overloading has been associated 
with the upregulation of uncoupling proteins, ensuring protection 
against excessive ROS production [86]. Thus, it is not clear whether the 
accumulation of FAs can directly promote mitochondrial ROS formation 
and induce oxidative stress. Since FAs are water-insoluble molecules per 
se, in cells, they are bound to proteins. However, high concentrations of 
FAs decrease the capacity of the protein to bind other metabolites. Thus, 
FA-binding proteins could be overwhelmed, and more active metabo-
lites (such as acyl-CoAs and acylcarnitines) remain unbound and induce 
oxidative stress. Such a situation could occur in the fasted state. It has 
been shown that due to higher amounts of FAs and their metabolites in 
the cytosol and to the limited capacity of proteins to bind the excess 
metabolites, heart mitochondria are not protected from their damaging 
action [62]. Moreover, the addition of FAs to the cytosol prepared from 
fed hearts abolished the protection against FA metabolite mitochondrial 
damage [62]. Similar effects were observed after hypoxia, when the 
content of FAs in the tissue was increased [87]. Overall, we can conclude 
that while FAs may not directly promote mitochondrial ROS formation, 
their accumulation reduces the capacity of cellular defence system to 
neutralize/protect against metabolite-induced mitochondrial damage. 

During ischemia, CPT1 activity is increased while carnitine palmi-
toyltransferase 2 (CPT2) activity is decreased, which leads to the accu-
mulation of long-chain acylcarnitines in the mitochondrial 
intermembrane space [62]. In addition, the accumulation of NADH and 
FADH2 in ischemic mitochondria leads to the inhibition of several 
enzyme reactions in β-oxidation [56,88], which results in the accumu-
lation of long-chain acyl-CoAs in the mitochondrial matrix. After 
ischemia, both FA intermediates, acyl-CoAs and acylcarnitines, accu-
mulate and contribute to mitochondrial oxidative stress by different 
mechanisms [54,62] (Fig. 3). First, acyl-CoAs and acylcarnitines accu-
mulate at different sites of mitochondria. Acyl-CoAs accumulate in the 
matrix, while the majority of acylcarnitines accumulate in the inter-
membrane space. Thus, their mechanisms of action at different ROS 
production sites could differ. It has been shown that the addition of 
long-chain acylcarnitines to cardiac mitochondria inhibits oxidative 
phosphorylation, thus inducing mitochondrial membrane 

I

III

IV

II

Fig. 3. Accumulation of fatty acids and their in-
termediates, long-chain acyl-CoAs and acylcarnitines, 
in the ischemic myocardium. During ischemia, the FA 
metabolism in mitochondria is reduced, leading to the 
accumulation of long-chain FA acylcarnitines and 
acyl-CoAs. Ischemic stress-induced insulin resistance 
and activated AMPK block malonyl-CoA synthesis to 
stimulate the production of long-chain acylcarnitines. 
In the mitochondrial matrix, the depletion of Krebs 
cycle substrates results in the reduced activity of CPT2 
and corresponding β-oxidation. Long-chain acylcar-
nitine accumulation results from stimulated synthesis 
by CPT1 and a limited CPT2-dependent β-oxidation 
rate. Long-chain acylcarnitines in cardiac mitochon-
dria inhibit oxidative phosphorylation and thus 
induce mitochondrial membrane hyperpolarization 
and the subsequent stimulation of ROS production. 
Abbreviations: I, II, III, IV = mitochondrial respiratory 
complexes; ACC = acetyl coenzyme A carboxylase; 
AMPK = AMP-activated protein kinase; β-OX =

β-oxidation; CPT1 = carnitine palmitoyltransferase 1; 
CPT2 = carnitine palmitoyltransferase 2; CoA = Co-
enzyme A; H+ = hydrogen ion; FA = fatty acids, 
CD36 = fatty acid translocase; FATP1 = fatty acid 
transport protein 1; LC = long-chain; Ψm = mito-
chondrial membrane potential; P = phosphorylated 
protein.   
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hyperpolarization and subsequently stimulating superoxide and 
hydrogen peroxide production [62]. Moreover, the accumulation of 
acylcarnitines in the intermembrane space could alter the mitochondrial 
membrane fluidity and further promote superoxide formation. In addi-
tion, in contrast to acylcarnitines, long-chain acyl-CoAs induce mito-
chondrial membrane depolarization and cause only small and transient 
(for approximately 2–3 min) ROS production [54]. Furthermore, the 
amounts superoxide and hydrogen peroxide produced via acyl-CoA are 
significantly lower than those produced by acylcarnitines [54]. Second, 
acyl-CoAs are considered to be more damaging FA metabolites [89,90] 
than long-chain acylcarnitines, since long-chain acyl-CoAs are approx-
imately 3 times more toxic to mitochondria [62]. However, the con-
centrations of long-chain acyl-CoAs in ischemic cardiac mitochondria 
are approximately 50 times lower than those of long-chain acylcarni-
tines and do not reach levels that are capable of inducing mitochondrial 
damage [62]. The observed concentrations of long-chain acylcarnitines 
in the ischemic myocardium, on the other hand, are sufficient to pro-
mote ROS production and induce mitochondrial damage [62,81]. Taken 
together, it is likely that the accumulation of long-chain acylcarnitines, 
and not long-chain acyl-CoAs, in ischemic mitochondria, is the main 
player in ROS production. 

4. Succinate as an energy substrate and its role in oxidative 
stress in the heart 

Succinate is an intermediate of the Krebs cycle that is produced via 
α-ketoglutarate by α-ketoglutarate dehydrogenase and succinyl-CoA 
synthetase and is oxidized by succinate dehydrogenase (SDH) through 
which electrons from succinate are transferred into the mitochondrial 
electron transfer system, thus stimulating mitochondrial respiration. For 
this reason, SDH is also considered to be complex II of the electron 
transfer system. Complex II (SDH) is different from other electron 
transfer system complexes in that it does not generate protonmotive 
force directly. By transferring electrons from succinate to coenzyme Q in 
the membrane, complex II also supplies hydrogen atoms for the respi-
ratory system and thus makes this metabolic system irreversible. This is 
an important function because it has an impact on RET and the associ-
ated production of ROS [91]. 

4.1. Extramitochondrial sources of succinate 

In addition to being produced intramitochondrially, extra-
mitochondrial succinate can be used as an energy substrate. This was 
demonstrated decades ago using isolated mitochondria, and this 
approach, stimulation of mitochondrial respiration by succinate, is now 
widely used for investigating mitochondrial pathophysiological func-
tions. First, Chappel and Haarhoff [92] demonstrated that isolated 
mitochondria are permeable to succinate, which then stimulates mito-
chondrial respiration [93]. The rate of respiration has been found to be 
controlled by succinate uptake, particularly at low submilimolar con-
centrations [93]. Later, cytosolic succinate was shown to be transferred 
into the mitochondrial matrix by the dicarboxylate carrier [94–96]. 
However, the expression level of this carrier in muscle mitochondria is 
very low [97]. Therefore it is thought that succinate is transported into 
muscle (including the heart) mitochondria via the α-ketoglutarate car-
rier [98,99] or other mitochondrial anion transfer systems such as the 
inner membrane anion channel [100,101]. 

External succinate may come from dietary sources, such as mush-
rooms, seafood, meat, broccoli, rhubarb, sugar beets, and various 
cheeses. Succinic acid and its sodium salt have been found in these foods 
and are considered to contribute to their umami taste [102]; for a review 
see Ref. [103]. Succinate is also used as a food additive to contribute to 
taste and as a preservative. 

It is not clear whether dietary or extramitochondrial succinate is a 
significant contributor to oxidative phosphorylation under physiological 
conditions in the heart. Under normal conditions, the permeability of 

the cardiomyocyte plasma membrane to succinate is rather poor. 
However, it may increase as a result of anoxia which has been shown to 
lead to increased succinate-stimulated oxygen consumption in isolated 
cardiomyocytes [104]. This suggests that succinate is an important en-
ergy substrate under certain conditions, such as heart I/R, when com-
plex I of the mitochondrial electron transfer system is inhibited and 
when succinate accumulates in the tissues and mitochondria. 

4.2. Accumulation of succinate in the heart during ischemia 

In tissues, including the heart, the levels of succinate are low (in the 
range 0.2–1.0 mM) [10,105] but can increase under pathological con-
ditions such as hypoxia/ischemia [106]. In humans, succinate accu-
mulates in skeletal muscle during physical exercise [107], possibly due 
to tissue hypoxia. In vitro perfusion of hypoxic rat hearts with α-keto-
glutarate, malate or fumarate results in up to a fourfold elevation in 
succinate levels in myocardial tissue [108]. It has also been observed 
that as short as a 10 min period of total ischemia in canine hearts can 
significantly increase the levels of succinate in tissues [106]. Succinate 
accumulation during anoxia/ischemia has been suggested to be caused 
by the reversed SDH reaction in relation to the activation of the 
malate-aspartate shuttle rather than to the inhibition of SDH [9]. 
However, this hypothes remains debatable, as only approximately 
2–15% of mitochondrial succinate is suggested to originate via this 
route, and the rest is produced by α-ketoglutarate via canonical Krebs 
cycle reactions [109]. The study by Zhang and colleagues [50] found 
that pre-existing α-ketoglutarate is the main precursor for succinate 
accumulation during heart ischemia. Cytosolic aspartate and glutamine 
contribute to the elevation of mitochondrial α-ketoglutarate resulting in 
succinate accumulation through corresponding transamination re-
actions [50] (Fig. 4A). Glycogen-derived glucose may also play a small 
role in ischemia-induced succinate accumulation, although the mecha-
nism does not involve pyruvate entering the mitochondria, but, again, 
requires the participation of aminotransferases leading to the formation 
of α-ketoglutarate [50]. The formation of succinate via the α-ketoglu-
tarate route may be beneficial during the first few min of ischemia as it 
involves GTP generation by substrate-level phosphorylation of 
succinyl-CoA synthetase, thereby delaying ischemia-induced ATP 
depletion in cardiomyocytes (Fig. 4A). 

4.3. Succinate and ROS production 

In early studies, it was thought that the accumulation of succinate in 
the myocardium during ischemic period may be beneficial for the heart 
as succinate may serve as a respiratory substrate during reoxygenation 
[108]. However, this paradigm has changed as it was shown that during 
reperfusion succinate may be rapidly oxidized by SDH resulting in ROS 
production by complex I of the mitochondrial electron transfer system 
[9]; for reviews see Refs. [110,111]. 

The first observations that succinate may contribute to oxidative 
stress came from studies on the isolated brain and skeletal muscle 
mitochondria showing the production of ROS in the presence of milli-
molar concentrations of succinate [112,113]. Moreover, succinate has 
been shown to enhance the generation of ROS in isolated mitochondria 
respiring on NADH-dependent substrates (glutamate and malate) – 
conditions that better resemble the physiological state [114]. The 
mechanism of ROS production has been suggested to involve RET at the 
level of complex I producing superoxide (Fig. 4B). Under physiological 
conditions and at rest, ROS generation from succinate is minimal, 
possibly due to both the low levels of succinate in mitochondria and SDH 
inhibition by intrinsic oxaloacetate and malate [91]. The detailed 
mechanisms of ROS production in the ischemic heart are reviewed by 
other authors in this issue of the journal. Some investigators question the 
proposed role of succinate-driven ROS production in I/R injury and 
suggest that the opening of the mitochondrial permeability transition 
pore is the primary cause of ROS production later in reperfusion [115]. 
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In addition, a succinate-driven burst of ROS can only occur during the 
first few min of reperfusion [38], whereas I/R-induced ROS are present 
for at least the first 30 min of reperfusion [50]. Thus, although the 
accumulation of succinate in mitochondria under ischemia is a 
well-established fact, its pathophysiological role needs to be further 
investigated. 

Notably, only some of the succinate that accumulates in the heart 
during ischemia is oxidized under reperfusion. A significant amount of 
succinate has been detected in the circulation of patients after 
myocardial infarction [116]. In the circulatory system, succinate may 
stimulate inflammatory reactions involving ROS production, thus 
further exacerbating reperfusion injury [117]. The detailed mechanism 
by which succinate is released from the myocardium has not yet been 
determined. 

4.4. Itaconate as an endogenous SDH inhibitor 

Itaconic acid (2-methylidenebutanedioic acid; methylene succinic 
acid) is an unsaturated dicarboxylic acid. For a long time, itaconate was 
best known as a widely used reagent in chemical synthesis or as an 
antimicrobial agent. Recent metabolomic analysis has revealed that 
human and mouse macrophages exposed to the bacterial endotoxin 
lipopolysaccharide (LPS) produce high levels of itaconate [118,119]. 
This discovery prompted a new interest in this compound and its 
physiological functions. Itaconate is a diverted derivative from the Krebs 
cycle that is synthesized from cis-aconitate by the enzyme cis-aconitate 
decarboxylase, which is encoded by the lrg1 gene (Immune responsive 
gene 1) [120]. The expression of lrg1 has been observed in macrophages, 
microglial cells, lung tissue, and neurons of the cortex and cerebellum 
(for review see Ref. [121]). The generation of itaconate in macrophages 
can be triggered by various agonists of Toll-like receptors (TLRs), LPS, 
and interferons [120,122]. From mitochondria, itaconate is transported 
into the cytosol most likely by a dicarboxylate carrier, and in 
LPS-stimulated macrophages, the intracellular concentrations of itaco-
nate can reach as high as 8 mM [120]. The release of itaconate from the 
cells is slow and extracellular concentrations usually do not reach the 
millimolar range. However, exogenous itaconate reportedly enter the 
cellular cytoplasm, albeit slowly, thus requiring longer incubation times 
(48–72 h) in vitro [123]. 

Itaconate has been shown to act as a competitive inhibitor of SDH 
leading to accumulation of succinate and limiting the reprogramming of 
proinflammatory macrophages into a more anti-inflammatory pheno-
type [124,125]. Although the detailed mechanism of macrophage 
reprogramming is not yet clear, in addition to SDH inhibition, it may 
involve the activation of nuclear factor erythroid 2–related factor 2 
(NRF2), which regulates the expression of antioxidant genes and leads to 
reduced intracellular ROS and interleukin-1β production [126] (Fig. 5). 
The itaconate-induced accumulation of succinate is not limited to im-
mune cells but has also been observed in pulmonary adenocarcinoma 
cell lines [127]. However, to date, there are no data on itaconate pro-
duction or Irg1 expression in cardiomyocytes. Nevertheless, a protective I III IV

I III IV

Fig. 4. Succinate accumulation and the effects on ischemia (A) and reperfusion 
(B) 
(A) During ischemia when oxidative phosphorylation is blocked due to a lack of 
oxygen and complex I injury, succinate accumulation is driven by α-ketoglu-
tarate. Aspartate and glutamine contribute to α-ketoglutarate production via 
transamination. Reversal of the SDH reaction to produce succinate from 
fumarate is unlikely. Substrate phosphorylation at succinyl-CoA synthetase 
produces GTP. (B) During reperfusion, the accumulated succinate is rapidly 
oxidized by SDH and generates ROS by reverse electron transfer at complex I. 
Abbreviations: I, III, IV = mitochondrial respiratory complexes; Acetyl-CoA =
acetyl-coenzyme A; α-KG = α-ketoglutarate; CoQ = Coenzyme Q; e- = electrons; 
SDH = Succinate dehydrogenase, or respiratory complex II. 

Fig. 5. Mechanisms of ROS suppression by itaconate. Itaconate is produced 
from aconitate by CAD. Itaconate inhibits SDH, thus preventing ROS production 
by mitochondria. Itaconate also is involved in the activation of NRF2, which 
promotes the expression of antioxidants leading to decreased ROS. Abbrevia-
tions: CAD = cis-aconitate decarboxylase; NRF2 = nuclear factor erythroid 
2–related factor 2; SDH = succinate dehydrogenase. 
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effect of dimethylitaconate (a cell-permeable derivative of itaconate) 
against doxorubicin-induced ROS-mediated cardiotoxicity has been re-
ported and involves the increased expression of NRF2-dependent anti-
oxidants and reduced oxidative stress [128]. In a recent study on brain 
I/R injury, the infusion of itaconate into mice before ischemia decreased 
the SDH activity in brain cells and reduced the ROS levels during 
reperfusion [129]. An important observation was that itaconate-induced 
SDH inhibition gradually decreased during reperfusion (due to the 
clearance of itaconate from plasma). This allowed a gradual return of the 
mitochondrial electron transfer system to levels of normal function, thus 
avoiding the burst of ROS early during reperfusion and oxidative 
stress-induced brain injury with neurological outcomes and allowing full 
recovery. Such observations raise the possibility that the application of 
itaconate or its more cell-permeable derivatives (such as 
dimethyl-itaconate and octanoyl-itaconate) might have beneficial ef-
fects against myocardial I/R injury by reducing succinate-induced ROS 
production or limiting the proinflammatory activity of macrophages 
that invade the infarcted myocardium. For the latter, stimulation of 
exogenous itaconate production in macrophages may also be beneficial, 
though this is more difficult to achieve. An important advantage of using 
itaconate as a cardioprotective therapeutic is that this compound is 
endogenously produced at relatively high concentrations, therefore, the 
side effects might be less damaging. Before clinical applications, how-
ever, more preclinical studies on the effects of itaconate in the heart are 
needed. 

5. Interplay among mitochondrial energy substrates in ROS 
production 

Each substrate can contribute to mitochondrial ROS production; 
however, it remains unclear which substrate/metabolic pathway is the 
main source of ROS. In isolated mitochondrial systems under normoxic 
conditions, in the state when respiration is driven by individual sub-
strate metabolism and when ADP is not present (LEAK state or state 2), 
succinate metabolism activates RET and drives higher levels of super-
oxide and hydrogen peroxide production compared to those achieved by 
pyruvate or FA (palmitoylcarnitine) metabolism (Fig. 6). In an oxidative 
phosphorylation-dependent state, when ADP is available and forces 
forward electron transfer, the production of ROS decreases [130,131]. 
Moreover, no difference in the hydrogen peroxide production rates are 
observable among pyruvate-, succinate- and FA-dependent pathways 
(Fig. 6), and the H2O2/O ratio is dramatically decreased [52,132,133], 
indicating that less oxygen is wasted for ROS production. Moreover, 
stimulation of other pathways by the addition of pyruvate and 
long-chain acylcarnitines, thus ensuring the activation of all mitochon-
drial energy pathways, does not change the ROS production rate (Fig. 6) 

[15,83]. 
Despite the fact that the highest levels of ROS formation could be due 

to succinate accumulation resulting in RET, several aspects should be 
considered when analyzing the main ROS-driving metabolic pathway 
during ischemia-reperfusion damage in the heart. First, it has been 
shown that in the heart, ROS production increases after 2–3 min of 
reperfusion [134]. The accumulation of FA metabolites, namely, 
long-chain acylcarnitines, still occurs in the heart at least 30 min after 
reperfusion [62], while it has been shown that succinate is washed out 
from the heart during the first 3–5 min of reperfusion [9,50]. Thus, the 
dynamics of substrate influx and efflux during reperfusion should be 
taken into account. Second, complex I is inhibited/damaged after I/R 
injury [135], and inhibition of complex I limits the ROS production 
driven by succinate (Fig. 6). Since the I/R-induced inhibition of complex 
I depends on the duration of ischemia [136], in the case of prolonged 
ischemia (≥30 min), ROS formation during reperfusion will be only 
partially related to RET via complex I. Third, during ischemia, the 
simultaneous accumulation of several substrates/intermediates occurs 
[9,62]. Thus, ROS production during reperfusion is simultaneously 
driven by several metabolic pathways, e.g., FA and succinate meta-
bolism. Since FA metabolism decreases the mitochondrial generation of 
ROS during RET driven by succinate accumulation (Fig. 6) [83], it is 
unlikely that ROS production during reperfusion is mainly driven by 
succinate accumulation-induced RET. Last, at the end of ischemia, 
lactate, long-chain acylcarnitines and succinate simultaneously accu-
mulate [9,62,137]. Therefore, there is no single metabolic pathway 
driving ROS formation during reperfusion in the heart, and the avail-
ability of each substrate together with their metabolic interplay de-
termines the ROS production rate. It was also confirmed in isolated 
mitochondria that there is no difference in the ROS production rate [15, 
83], regardless of the substrate chosen to initiate electron transfer, in an 
oxidative phosphorylation-dependent state when all metabolic path-
ways are activated, i.e., all main energy substrates are present (Fig. 6). 
Overall, the assumption that succinate accumulation and the resulting 
RET are the main sources of ROS during reperfusion is still under debate. 
At the same time, it is clear that the contribution of long-chain acyl-
carnitines to ROS generation and the role of FA oxidation in oxidative 
stress in cardiac I/Ri damage are important and merit further 
investigation. 

6. Targeting substrate energy metabolism pathways and cardiac 
ROS 

A myriad of events in the pathogenesis of I/R injury are suggested to 
be druggable targets for the prevention or treatment of I/R-induced 
cardiac damage [138]. Current therapeutic approaches affecting the 

Fig. 6. Comparison of specific substrate-linked ROS 
production under different conditions/pathway 
interplay scenarios. Succinate-induced reverse elec-
tron transfer (RET) via complex I (CI) results in a 
massive increase in the ROS production rate, which 
decreases on the addition of ADP and on the activa-
tion of other pathways (addition of pyruvate and long- 
chain acylcarnitines, LCAC). In the presence of rote-
none, succinate-induced ROS production is driven by 
forward electron transfer via complex III, and the rate 
of ROS production is comparable to that achieved via 
the fatty acid (LCAC) and pyruvate metabolism-linked 
pathways. Further, in the presence of ADP, in an 
oxidative phosphorylation-dependent state (addition 
of ADP), the ROS production rate does not differ be-
tween the substrate-dependent pathways. Moreover, 
the activation of other energetic pathways does not 
induce significant changes in the ROS production rate.   
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intracellular redox status integrate numerous considerations, such as the 
prevention of metabolic intermediate accumulation during ischemia, 
decrease in ROS production during reperfusion, scavenging of free 
radicals during reperfusion, induction of antioxidative defence systems, 
mitochondrial protection against ROS damage (e.g., by inhibiting 
mitochondrial permeability transition pore opening or applying 
mitochondria-targeted antioxidants) and blocking of proapoptotic 
pathways (Fig. 7). 

The synergistic inhibition of multiple deleterious pathways using a 
combination of agents represents an attractive strategy. Various events 
appear at different time points during ischemia and reperfusion, and it 
could be assumed that targeting later events would offer a longer time 
window for a pharmacological agent to reach the target in the heart and 
mitochondria. However, the benefit of targeting early events could 
prevent various irreversible changes in cardiac mitochondria. In clinical 
settings, patients hospitalized for acute myocardial infarction have 
already developed ischemia and pre-ischemic treatments are not 
applicable. 

The cardiac accumulation of metabolic intermediates starts at the 
beginning of ischemia. Some of the metabolites might already be at 
increased levels even before ischemia and are thus associated with a 
higher risk of cardiac damage. The modulation of energy metabolism to 
prevent the accumulation of harmful intermediates can be achieved 
intrinsically by affecting the target cells or extrinsically by altering the 
systemic metabolic status (Table 1). Hyperglycemia and hyperlipidemia 
are well-known conditions of systemic insulin resistance that are linked 
to the inability of insulin signalling to reduce lipid flux and inhibit FA 
metabolism. In insulin-resistant individuals, higher baseline levels of 
cardiac FA metabolites are an additional risk factor leading to a higher 
risk of cardiac damage [139,140]. Improvement of insulin sensitivity by 
insulin sensitizers such as glucagon-like peptide-1 (GLP-1) receptor ag-
onists (long- and short-acting Table 1) reduces the risk of cardiac 
damage in experimental and clinical settings [141–143]. In contrast, 
reductions in the concentrations of circulating glucose and FAs might 
not be beneficial for cardiac survival during I/R [144]. Additionally, 
reperfusion injury salvage kinase (RISK) is a pathway known to activate 
prosurvival protein kinases that protect against I/R injury [145]. One of 

the two RISK cascades activated during conditioning is the 
phosphoinositide-3 kinase/protein kinase B (PI3K-Akt) pathway. In the 
context of the metabolic status, the protective effects of PI3K-Akt 
pathway activators can also be attributed to the lower mitochondrial 
content of long-chain acylcarnitines and acyl-CoA. It must be noted that 
the fed state is characterized by activated insulin signalling, lower levels 
of FA metabolic intermediates, and a cardioprotective phenotype [5]. 

The mechanism by which the manipulation of FA metabolism im-
proves cardiac function in the postischemic heart is incompletely un-
derstood. Whether the effects depend on the decreased levels of long- 
chain intermediates or the enhancement of glucose oxidation is still 
being investigated. Manipulation of myocardial FA metabolism is 
beneficial to the prevention of myocardial ischemia, particularly during 
situations of controlled ischemia and reperfusion (Table 1). In experi-
mental studies, inhibition of FA metabolism always results in decreases 
in the concentrations of harmful metabolic intermediates such as long- 
chain acylcarnitines [146]. Thus, it is hard to discriminate whether 
the effect of metabolic modulators, e.g., trimetazidine, 
sulfo-N-succinimidyl oleate (SSO), and methyl-GBB are more attribut-
able to facilitated glucose metabolism or to the reduction in FA meta-
bolism [146–148]. Since acylcarnitine accumulation plays an important 
role in ROS production [54,62], a substantial benefit can be ascribed to 
the lowered acylcarnitine content. Given the important role of FAs as 
energy substrates for cardiac functioning, it would be reasonable to 
reduce the concentrations of FA intermediates while maintaining ATP 
production from FAs. Currently, multiple targets are suggested to affect 
FA metabolism and the accumulation of FA intermediates before 
ischemia, while the possibilities for the reduction of acylcarnitines in 
reperfusion should be addressed in future studies. 

Stimulation of FA metabolism in mitochondria as the main energy 
source of the heart has been considered for the treatment of mitochon-
drial dysfunction and related cardiac dysfunction in heart failure. A 
similar mechanism of action would be beneficial during the treatment of 
the heart shortly after ischemia to reduce the acylcarnitine mitochon-
drial content at reperfusion. A recent study indicated that treatment 
with empagliflozin protects mitochondria from dietary lipid overload- 
induced damage and helps to maintain FA metabolism [149]. Accord-
ingly, the benefit of sustained FA oxidation might be extended to lower 
levels of ROS production during reperfusion [150]. Different regulatory 
mechanisms for mitochondrial FA oxidation are mediated by sirtuins via 
the acetylation/deacetylation of mitochondrial proteins [151]. The 
mitochondrial enzyme long-chain acyl-CoA dehydrogenase (LCAD) is 
hyperacetylated in the absence of Sirtuin 3 (SIRT3) and results in 
increased levels of long-chain acylcarnitines [152]. Similarly, SIRT5 
ablation results in impaired β-oxidation and the accumulation of me-
dium- and long-chain acylcarnitines in the liver and muscles of Sirt5 KO 
mice [153]. Mice lacking sirtuins exhibit hallmarks of FA oxidation 
disorders, including reduced ATP levels and intolerance to cold expo-
sure. Thus, treatment with sirtuin activators might be beneficial during 
reperfusion. Overall, the stimulation of mitochondrial FA metabolism 
could be a critical mechanism for the restoration of cardiac function in 
reperfusion. 

The accumulation of succinate and RET-mediated ROS production 
have emerged as drug targets for the treatment of myocardial infarction. 
The Krebs cycle intermediate malate and the succinate competitor 
malonate are known SDH (complex II) inhibitors [154,155] and thus 
have demonstrated cardioprotective properties in experimental settings 
of myocardial infarction. Malonate effects were demonstrated in an 
isolated mouse heart model if administered before ischemia [9] or at the 
onset of reperfusion [156]. Intracoronary administration of malonate in 
a swine model of transient coronary occlusion prevented excessive ROS 
production and limited the infarct size [157]. The difficulties of malo-
nate treatment are related to its systemic toxicity and relatively low 
bioavailability which requires high doses [157]. Dimethyl malonate, 
which is more membrane permeable, also showed less ischemic succi-
nate accumulation and subsequently lower ROS production [9,110, 

p

Fig. 7. Treatment strategies for the amelioration of cardiac damage by ROS.  

M. Dambrova et al.                                                                                                                                                                                                                             



Free Radical Biology and Medicine 165 (2021) 24–37

33

158]. Diazoxide is another SDH inhibitor that mitigates ROS generation 
by RET [159,160]. However, diazoxide is also an ATP-sensitive potas-
sium channel (KATP channel) opener [161,162], and likely also exerts 
cardioprotective effects independent of SDH or RET inhibition. Since 
SDH is localized in the mitochondrial matrix, the effectiveness of the 
compounds is highly dependent on their timely delivery to cardiac 
mitochondria. Considering that a major portion of succinate is metab-
olized or eliminated from the heart within 3–5 min of reperfusion 
beginning [9,50], it would be a challenge to manage compound delivery 
in a clinical setting in such a short time frame. Importantly, succinate 
plays a pivotal role in oxidative metabolism in the mitochondria, and 
inhibition of this pathway might compromise cardiac recovery at later 
stages of reperfusion. Therefore, potential pharmacological inhibitors of 
SDH must be reversible, ensuring dissociation of the inhibitor from the 
enzyme. 

7. Conclusions 

The studies summarized in this review clearly indicate that the 
mechanisms of cardiac ROS formation in reperfusion are multifactorial 
and are driven by the ischemia-induced accumulation of energy sub-
strates. Under hyperglycemic conditions, NOX2 activation, an increased 
ψm and decreased mitoHKII activity result in ROS production. In the FA 
metabolism pathway, the accumulation of long-chain acylcarnitines in 
ischemic mitochondria is the main player in ROS production. Succinate 
accumulation during ischemia may exert some beneficial effects, but 
during reperfusion, it leads to ROS production and exacerbates I/R 
injury. Therapies that target energy metabolism pathways by regulating 
substrate concentrations, prevent ROS production, and protect the heart 
from I/R injury. These results emphasize the importance of strategies to 
modulate and counteract substrate accumulation for the attenuation of 
ROS production in cardiac I/R injury. 
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Table 1 
Effect of cardiometabolic drugs on ROS generation during I/R injury.  

Drug/compound Mechanism/target Cardioprotective effect Effect on ROS Ref. 

Liraglutide 
Exenatide 

GLP1 receptor agonists 
PI3K-Akt pathway 

↓ infarct size ↓ ROS [163–166] 

Trimetazidine shifting FA oxidation to glucose oxidation during 
reperfusion; 

↓ infarct size ↓ oxidative stress [147] 

Methyl-GBB ↓Long-chain acylcarnitines ↓ infarct size; improved cardiac 
functions; 

↓ long-chain acylcarnitines, 
↓ ROS? 

[62,146] 

SSO CD36 inhibitor 
↓ FA oxidation rate; 
↑ glycolytic rate, 
↑PDH activity 

Prevent cardiac dysfunction ROS? [148] 

Carvedilol adrenergic 
receptor blocker; 
modulator of cardiac AMPK 
signaling pathway 

↓ infarct size improved cardiac 
functions; 
↑ glucose uptake& oxidation, 
↓ FA oxidation during I/R 

↓ ROS production upon complex I 
injury 

[167,168] 

Dapagliflozin 
Empaglifozin 

SGLT2 inhibitors, 
↑ FA oxidation 

↓ infarct size mitoprotection ↓ROS [149,150,169, 
170] 

Itaconate ↓SDH activity, 
↓ succinate 

↓ cerebral I/R injury, heart? ↓ ROS [129] 

Malonate Dimethyl- 
malonate 

↓SDH activity ↓ infarct size ↓ ROS [156,157,171] 

Diazoxide ATP-sensitive K (KATP) channel opener; 
↓SDH activity 

↓ I/R injury ↓ROS? [159,160] 

Abbreviations: AMPK = AMP-activated protein kinase; CD36 = fatty acid translocase; FA = fatty acid; GLP1 = glucagon-like peptide-1; Methyl-GBB = methyl- 
γ-butyrobetaine; PI3K-Akt = phosphoinositide-3 kinase/protein kinase B; PDH = pyruvate dehydrogenase; SGLT2 = sodium-glucose co-transporter-2; SSO = Sulfo-N- 
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