
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

137,000 170M

TOP 1%154

5,600

1

Chapter

How do Web-Active End-User
Programmers Forage?
Sandeep Kaur Kuttal, Abim Sedhain

and Benjamin Riethmeier

Abstract

Web-active end-user programmers spend substantial time and cognitive effort
seeking information while debugging web mashups, which are platforms for
creating web applications by combining data and functionality from two or more
different sources. The debugging on these platforms is challenging as end user
programmers need to forage within the mashup environment to find bugs and on
the web to forage for the solution to those bugs. To understand the foraging behav-
ior of end-user programmers when debugging, we used information forging theory.
Information foraging theory helps understand how users forage for information and
has been successfully used to understand and model user behavior when foraging
through documents, the web, user interfaces, and programming environments.
Through the lens of information foraging theory, we analyzed the data from a
controlled lab study of eight web-active end-user programmers. The programmers
completed two debugging tasks using the Yahoo! Pipes web mashup environment.
On analyzing the data, we identified three types of cues: clear, fuzzy, and elusive.
Clear cues helped participants to find and fix bugs with ease while fuzzy and elusive
cues led to useless foraging. We also identified the strategies used by the partici-
pants when finding and fixing bugs. Our results give us a better understanding of
the programming behavior of web-active end-users and can inform researchers and
professionals how to create better support for the debugging process. Further, this
study methodology can be adapted by researchers to understand other aspects of
programming such as implementing, reusing, and maintaining code.

Keywords: Information Foraging Theory, End-user programming, Debugging,
Visual Programming, Web Mashups

1. Introduction

In modern times, mass communication, mass media, and networking technolo-
gies have enabled access to vast amounts of knowledge that are distributed across
many continents and time-zones, thus allowing web-active end-users to achieve
great feats.

Web-active end-users (also referred to as end-users or end-user programmers)
are people who lack programming experience but are engaged in internet activities
[1]. There is a substantial number of web-active end-users and their number is con-
tinuously growing. The end-users often create applications to complete tasks such
as finding apartments to rent in a certain location, tracking flights, and alerting

Coding Theory - Recent Advances, New Perspectives and Applications

2

drivers regarding traffic jams. One approach to create such applications is utilizing
web mashups programming environments.

Web mashup programming environments allow for creating applications from
distributed heterogeneous web sources and functions. Most of the mashup pro-
gramming environments are visual in nature. Some examples include Yahoo! Pipes
[2], IBM mashup maker [3], xfruit [4], Apatar [5], Deri pipes [6], and JackBe [7].
The visual nature of these programming environments allows application creation
using code abstraction to ease the programming process. However, the abstraction
of code can add complexity of accessing the information, debugging, and compre-
hending large programs within these environments [1, 8, 9].

Further, end-users create mashup applications by seeking information from
the complex ecosystem of the web, which is composed of evolving heterogeneous
formats, services, standards, and languages [8]. Seeking information on the web is
challenging, as the relevant information is scattered across numerous web sources
that end-users must find and manually analyze, an information-seeking problem
that costs both time and cognitive effort.

In this chapter, we observe the behavior of end-users while debugging, one of
the most difficult aspects of programming [10]. Debugging mashup programs
is even more challenging as end-user programmers must locate bugs within the
abstract web mashup environment and then locate solutions on the web to fix bugs.
The lack of debugging support within mashup environments increases the com-
plexity of finding bugs [9]. Further, finding correct solutions to fix bugs is compli-
cated as the web is a huge compilation of heterogeneous resources.

Currently, it is not clear how web-active end-users seek for bugs in their pro-
gram and their solutions on the web. Hence, we used an information seeking theory
called Information Foraging Theory.

Information Foraging Theory (IFT) can expand our understanding of the
information-seeking problems of web-active end-user programmers while debug-
ging. IFT posits that people seek information in the same manner as predators
forage for their prey, where predators are the end-users, and the prey is the bugs
or bug fixes they are searching for. The hunting grounds or ‘patches’ where web-
active end-users search for these bugs or fixes would be their IDE or the websites
they visit and the scents the web-active end-users follow are given by different cues
(e.g., links) found on the web [11–15]. IFT has been applied successfully to diverse
domains such as documents, the web, user interfaces, and programming environ-
ments [15–23].

Past research on web mashups have focused on creating web tools that increase
the ease and effectiveness of creating applications by end-user programmers
[24–28]. While past IFT research on programming environments has investigated
debugging and navigational behavior of professional programmers [19–21]. No
prior research exists to understand the debugging behavior of web-active end-user
programmers. The only research relevant to this chapter is our own [8], where we
created a debugging support for web mashups and investigated the debugging
behavior of end-user programmers using IFT with and without the support. Based
on this prior research, we found IFT to be the most relevant choice to understand
the information-seeking behavior during mashup debugging.

To understand the debugging behavior of end-user programmers we conducted
a controlled lab study of eight students who were not computer science majors.
The study participants completed their tasks using Yahoo! Pipes, a mashup envi-
ronment, as it provided the best debugging support at the time. The participants
completed two debugging tasks using a think-aloud protocol. We investigated
how end-users forage for information within the IDE as well as the web using IFT

3

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

theory. Our analyses discovered new cues and strategies that end-user programmers
pursued while locating the bugs in the mashup environment and foraging the web
for fixing the bugs.

This chapter is organized as follows. Section 2 describes the debugging behavior
of end-user programmers. Section 3 describes Information Foraging Theory, IFT
terminologies from Yahoo! Pipes, and relevant literature. Section 4 describes the
background and related work on web mashups, and Yahoo! Pipes. Section 5 describes
the methodology and results from the lab study. This section discusses the cues
utilized by end-user programmers and their behavior during debugging tasks and
provides recommendations. Section 6 summarizes our findings and suggests how
web mashup environments can improve the debugging process.

2. Debugging and end-user programmers

Debugging is the process of finding and fixing bugs in the code. Programmers
often struggle to debug and hypothesize the “when”, “why” and “how” of the bug
[29–32]. Debugging is even more challenging for end-user programmers as in one
study [33] they spent two-thirds of their time foraging for bugs, while professionals
spent only half of their time.

Professionals and end-users use web resources to complete their programming
tasks. For example, in one study, novice programmers spent about 19% of their
programming time in foraging the web for information such as selecting and using
tutorials, searching with synonyms, finding code snippets, and using the web to
debug [34], while they spent 35% of their time navigating source code [35]. Vessey
[36] investigated both professionals and end-users’ debugging approach and
found that professionals took a breadth-first approach whereas end-users took a
depth-first approach. Our study found that in mashup environments the end user
programmers struggle foraging for solutions to bugs on the web.

A major huddle for programmers during debugging is understanding the error
messages to fix bugs in the code. Naveed and Sarim [37] analyzed how presentation
of error messages affected debugging and programming in IDEs. To fix a bug, first
programmers must understand what the error is and where it is located. Mashup
environments tend to show errors without much explanation or direction for the
end-user to comprehend [9]. End-users struggle to adapt code from tutorials and
web forums [38] while fixing bugs. They often struggle with debugging due to lack
of knowledge and experience in software engineering and interactive programming
environments [39]. Our study confirms that end-user programmers struggle with
the lack of or unclear error messages in IDEs.

Understanding end-user programmers’ behavior while debugging can help to
build better debugging tools that facilitates programming tasks effectively and
efficiently. Phalgune et al. [40] studied oracle mistakes - mistakes users make
about which values are right and which are wrong - that impact the effectiveness of
interactions, testing, and debugging support for end-users. Kuttal et al. [41] added
version support to Yahoo! Pipes and investigated how versioning can help end-user
programmers to create and debug mashups. Servant et al. [42] create support that
allowed panning and zooming of a canvas that contained the snapshots of the code.
Myers and Ko suggested various interaction features for IDE to improve debug-
ging such as full visibility of code and timeline visualization of changing values of
variables at run-time [43]. Our study helps to understand how end-user program-
mers debug from a theory perspective that can inform better debugging support for
mashup environments.

Coding Theory - Recent Advances, New Perspectives and Applications

4

3. Web mashups

Web mashups allow end-users to build applications by integrating data and
functionalities from various web services into a single application. The visual web
mashup programming environments facilitate easy creation of applications by end-
user programmers who have very little knowledge and experience in programming.
Mashup environments provide a full set of functions to the end-users to build new
applications.

End-users often create situational mashups as per their specifications [44]. For
example, a mashup can take data from Instagram and combine it with Google Maps
to display the most recent images and videos of any given location. Users can get the
data from APIs, Information Feeds (e.g., Really Simple Syndication (RSS)), or they
can collect data by scraping various web pages. Mashup application can be executed
within the client’s browser, in a server, or combination of both. The advantage of
rendering the application in a client’s web browser is to give users the opportunity to
interact with it. Mashups are popular because of their dynamic content creation and
ability to build and share applications through publicly hosted repositories [45].

End-users often develop mashup applications using visual black-box oriented
programming environments. Mashup programming environments such as Yahoo!
Pipes [2], IBM mashup maker [3], xfruit [4], Apatar [5], Deri Pipes [6], and JackBe
[7] provide an easy-to-use visual environment to support the mashup development.
Cappiello at el. [46] researched mashup development frameworks oriented towards
end-user development to allow users to compose different resources at different
levels of granularity relying on the user interface (UI) of the application. Ennals and
Gay created MashMaker [24], a tool which allowed end-users to create web mashups
without needing to write much code/script. Other mashup creation tools to facilitate
end user programmers include MapCruncher [25], Marmite [26], Automator [27],
Creo [28], and TreeSheet [47]. Rather than directly studying mashup environments
or creating new mashup tools, we qualitatively observe how end-users debug and
forage for solutions in programs built in these mashups.

Grammel and Storey [9] investigated various mashup development environ-
ments and found lack of debugging support in these environments. Similarly, Stolee
and Elbaum [48] studied how we can improve the refactoring of pipe-like mashups,
i.e., Yahoo! Pipes for end-users. We focus on understanding end-user programmers’
behavior while debugging mashups instead of creating support for mashups.

3.1 Yahoo! Pipes

Now defunct, Yahoo! Pipes was introduced in 2007 and was one of the most pop-
ular mashup creation environments that helped users to “rewrite the web” during its
existence. During its first year of existence, the Yahoo! Pipes platform executed over
5,000,000 pipes per day. As a visual programming environment, Yahoo! Pipes was
well suited for representing the solutions to dataflow-based processing problems.
Yahoo! Pipes “programs” helped in combining simple commands together such
that the output of one acted as the input for the other. The Yahoo! Pipes engine also
facilitated the wiring of modules together and the transfer of data between them.

The Yahoo! Pipes environment was made up of three major components: the
canvas, the library (list of modules), and the debugger (refer Figure 1). Users used
the canvas to create the pipes. The library situated to the left of the canvas, con-
sisted of various modules that were categorized according to functionality. Users
dragged modules from the library and placed them on the canvas, then proceeded to
connect them to other modules as their need. The debugger, located at the bottom,
helped users check the runtime output of the modules.

5

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

The inputs and output of the pipes supported different formats. For input, most
common formats were APIs, HTML, XML, JSON, RDF, and RSS feeds. Similarly,
pipe output formats were RSS, JSON, and KML. The inputs and outputs between
modules were primarily RSS feed items consisting of parameters and descriptions.
Yahoo! Pipes modules provided manipulation actions that could be executed on
these RSS feed parameters. In addition to items, Yahoo! Pipes also allowed datatypes
like URL, location, text, number, and date-time to be defined by users.

Figure 1 shows the interface and components of the Yahoo! Pipes environment.
The pipe displayed in the figure takes Reuter’s Newsfeed (RSS feed) as input using
a Fetch Feed module which is then filtered (using a Filter module) based on users’
input (sports). These results are converted from English to Greek using a Translate
module inside a Loop module. The pipe titles are limited to the first seven results
using the truncate module. In Figure 1, the debugger window displays the runtime
output from the Fetch Feed module.

Yahoo! Pipes allowed the creation and rendering of the pipes on the client side
while the executing and storing of the pipe was done on the Yahoo! Servers. The
data between the client and server was transfer using JSON format. Yahoo! Pipes
allowed end-users to share their pipe (code) as well as reuse other user’s pipes by
cloning.

Stolee et al. [49] analyzed 32,000 mashups from Yahoo! Pipes repositories based
on popularity, configurability, complexity, and diversity. Wang and Wang [50] used
Yahoo! Pipes to build a mobile news aggregator application. We used Yahoo! Pipes
for this study as it had the best debugging support at the time of the research.

4. Information Foraging Theory and Yahoo! Pipes

Information Foraging Theory (IFT) was developed by Pirolli and Card [11]
to understand how people search for information. IFT was inspired by optimal
foraging theory, which is a biological theory explaining how predators hunt for

Figure 1.
Yahoo! Pipes.

Coding Theory - Recent Advances, New Perspectives and Applications

6

their prey in the wild. Optimal foraging theory predicts whether a prey (animal)
will try to maximize the energy it gains or minimize the expense to obtain a fixed
amount of energy [12]. Similarly, while foraging for information, users must realize
their maximum return on information gain at minimum expenditure of their time.
Therefore, users, when possible, will modify their strategies to maximize their rate
of gaining valuable information [13]. Table 1 elaborates the IFT terminologies along
with examples from Yahoo! Pipes.

IFT has helped to improve the understanding of the users’ behaviors and inter-
actions on the web. In the very beginning, research was done for general Internet
users, which led to the foundation of IFT [15, 18, 51]. Research has been done to
observe and study foragers on the web [8, 15, 21, 51]. IFT has been used to improve
the usability of web sites [52] as it has helped to explain and predict why people
click a particular link, text, or button on a website [14]. In this research, we qualita-
tively analyze multiple end-user’s foraging behavior to find solutions for their bugs
on the web.

IFT has also been used to understand software engineering and software devel-
opment [8, 19, 20] along with its collaborative environments [17]. Piorkowski et al.
have explored foraging behavior and the difference in foraging between desktop
and mobile integrated development environment (IDE) [53]. Niu et al. used IFT to
design navigation affordances in IDEs [54]. Similarly, IFT has been used to find out
the optimal team size for open-source projects [55]. IFT can help to understand the
foraging behavior of web-active end-user programmers when engaged in program-
ming activities such as comprehension, reusage of code, implementation, debug-
ging and testing. This research focuses on the debugging behavior of web-active
end-user programmers.

Researchers have built computational models of user information foraging
behavior when completing tasks [14, 56, 57]. These models have also helped in pre-
dicting the effects of social influences on IFT [58]. The researchers have developed

IFT

Terminologies

Definitions Bug Finding (Examples) Bug Fixing (Examples)

Prey Bugs; solutions Finding bug B2 (url does

not lead to the right web

site) in Fetch Feed module

Finding the correct url

and putting it in the

Fetch Feed module that

contains B2

Information

Patch

Localities in the code,

documents, examples,

web-pages and displays

that may contain the prey

[23]

Yahoo! Pipes Editor,

help documents, help

examples

Web pages

Information

Feature

Words, links, error

messages, or highlighted

objects that suggest scent

relative to prey

API Key Missing error

message “Error fetching

[url]. Response: Not

found (404)” for bug B1

Finding the right API

key from the website

Cues Proximal links to patches “about this module”

link to the example code

related to specific module

“Key” link to the Flickr

page to collect the API

key

Navigate Navigation by users

through patches

To find bug B2 the user

navigated through Yahoo!

Pipes editor to external

web site

To correct bug B2

participant navigated to

various web sites to find

the required url

Table 1.
IFT Terminologies from the Yahoo! Pipes Perspective [2].

7

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

the WUFIS model for the web [6] and the PFIS model for programmers foraging
in IDEs [19, 20]. Ragavan et al. analyzed the novice programmers’ foraging in the
presence of program variants [22] and built a predictive model [59] inspired by the
PFIS model [23, 60]. Our focus is to understand the end-user foraging behavior
before creating such computational models.

5. Understanding debugging behavior using an information foraging
theory perspective

To understand how end-user programmers forage mashup IDEs (Yahoo! Pipes)
for finding bugs and the web for finding solutions for the bugs, we conducted a
controlled lab study.

5.1 Lab study using Yahoo! Pipes

Our study observed eight university students who had no background in com-
puter science but had experience with one web language. The students were from
diverse fields such as engineering, finance, mathematics, and natural sciences.
The participants completed the background questionnaire, a short tutorial on
Yahoo! Pipes, and a pilot task to practice programming with Yahoo! Pipes. Once the
participants felt comfortable with the Yahoo! Pipes environment, they completed
two tasks using the think-aloud method.

The participants were given Yahoo! Pipes programs that were seeded with
bugs. The first task (Yahoo! Pipes Error) was a pipe program that was seeded with
bugs detected by Yahoo! Pipes and displayed a relevant error message. The second
task (Silent Error) was seeded with bugs that were not detected by Yahoo! Pipes
and therefore did not display an error message. Further, both tasks contained two
classes: top level and nested. Top level contained bugs that were easy to comprehend
while the nested class contained sub-pipes with bugs. These sub-pipes needed to
be opened in a separate IDE to be found. The details of the tasks can be found in
Table 2.

Participants’ verbalization and actions were transcribed and analyzed using IFT
theory. When analyzing the transcripts, we found various cues and strategies used
by our participants.

5.2 Types of cues followed by end-user programmers

In finding the bugs and their fixes, participants followed cues. Based on the
strength of the cues, they can be classified as clear, fuzzy, and elusive. Clear cues

Task Class Bugs Details

Yahoo! Pipes Error Top Level B1 API key missing

B2 Website not found

Nested B3 Website not found

Silent Error Top Level B4 Website contents changed

B5 Parameter missing

Nested B6 Parameter missing

Table 2.
Details on seeded bugs in the tasks [2].

Coding Theory - Recent Advances, New Perspectives and Applications

8

helped the forager the most as they were easy to understand and provided a direct
link to the bugs or their fixes. Hence, they were less costly as they helped partici-
pants to spend less time finding and fixing the bugs. Fuzzy cues did not have com-
plete information that could lead to a bug. Hence, these cues either lead or mislead
to a valuable patch containing prey and were somewhat costly in terms of time
spent. Elusive cues were very difficult to locate due to absence of direct links to the
bugs. These cues were the costliest, as participants often wasted their time foraging
for prey in useless patches.

5.3 Debugging behavior of end-user programmers

Participants foraged Yahoo! Pipes IDE to find the bugs and the web to fix the
bugs. Table 3 shows the number of bugs located and fixed by each participant. The
results show that end user programmers struggled to debug their pipe programs.
The key findings were:

5.3.1 Locating and fixing Yahoo! errors was easier than “silent errors”

The Yahoo! Errors B1 and B2 were easily located by the participants (refer
Table 3). Yahoo! errors supported clear cues as these bugs had detailed error
messages from Yahoo! Pipes. As discussed before, the Yahoo! Pipes environment

Participants Yahoo! Pipes Silent Errors

B1 B2 B3 B4 B5 B6

L F L F L F L F L F L F

P1 1 1 — — — — — — 1 — — —

P2 1 1 1 — — — — — — — — —

P3* 1 1 1 1 — — 1 1 1 1 — —

P4 1 1 1 — — — 1 — 1 1 — —

P5 1 1 1 — 1 — 1 — — — — —

P6 1 1 1 — 1 1 1 — 1 — 1 —

P7 1 1 1 — 1 1 1 — — — — —

P8 1 — 1 — — — 1 — — — — —

Total 8 7 7 1 2 1 6 1 4 2 1 0

*represents a participant with prior knowledge of Yahoo! Pipes.

Table 3.
Bugs Finding and Fixed per Control Group Participant [2].

Cues Description Example

Clear

Cues

Cues that were

clear and easy to

understand

‘API Key Missing’ cue helped participants look for modules that it was

associated with.

Fuzzy

Cues

Cues that were

difficult to

understand

‘org.xml.sax.SAXParseException’ cue was hard for participants to

understand as they didn’t know what it meant.

Elusive

Cues

Cues that were

difficult to find

This cue was shown when a fault was nested.

9

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

provides little support for debugging i.e., just observing the output in the debugger
window, hence silent errors B4 and B5 were harder for participants to locate and
fix. Hence, end-users’ programming IDE should support clear cues i.e., displaying
and visualizing of the error messages for the programmers.

5.3.2 Locating bugs was easier than fixing bugs

Locating bugs was easier, especially in the presence of clear cues as well as when
participants foraged in the restricted single patch of Yahoo! IDE to locate bugs. But
when participants had to fix the bugs, they spent a tremendous amount of time
foraging through different web pages (multiple patches). Participants used an
enrichment strategy of searching on the web to find the valuable patches. But the
quality of their search results depended upon the relevance of keywords. Hence,
explicitly stating or automating support of the diet constraints (keywords related to
bugs) in the search engines can increase the relevance of the results.

5.3.3 Difficult to locate nested bugs, particularly “silent errors”

The nested bugs were the hardest to locate by the participants as they were
elusive. In the case of bug B3, three participants were able to find them as they were
clear cues with error messages that were returned in the pipe output. To detect the
silent errors, participants had to systematically analyze each module of the pipe
program and check the debugging window. As a result, only one participant was
able to locate the B6 bug. Hence, the IDEs should strengthen the cues by making
prey/bugs more visible to the programmers through clear cues.

5.4 Strategies while finding Bugs

Participants foraged for finding the bugs using Hunting, Enrichment, and
Navigation strategies within Yahoo! Pipes IDE.

5.4.1 Hunting strategy

These strategies reflect how the participants hunted for their prey (bugs). The
participants had salient goals and they chose cues based on their prominence. For
example, they looked for cues in the output of the pipe program. Most participants
pursued the first available cue in the output. This explains why most participants
pursued bug B1 and B4 (Table 3). The participants were mostly unsuccessful in
finding the majority of bugs as participants were persistent and pursued a single
bug until they found a fault (depth-first search). The hunting strategies were
prompted by the environment itself. Hence, designing environments that facilitate
problem solving strategies (such as “sleep on the problem”) and make prey more
visible can facilitate effective hunting strategies by end-user programmers.

5.4.2 Enrichment strategy

To make prey (bugs) more visible as well as to understand the patch, the partici-
pants used various enrichment strategies. They realigned/regrouped the modules
so that the connections between them were more visible. For exploring the cues,
they kept two patches side-by-side. For example, participants placed the editor and
documentation side-by-side for better view of each window. This suggests that IDEs
should allow multi-context views allowing end user programmers to view different
dimensions of code and allow easy manipulation of the environment.

Coding Theory - Recent Advances, New Perspectives and Applications

10

5.4.3 Navigational strategy

The participants carved out regions based on the data flow structure of Yahoo!
Pipes and foraged for cues down each path separately. Whenever they found a weak
scent (perceived value), they backtracked and returned to the previous cue or
patch. Participants often needed to backtrack for small changes, and this suggests
supporting fine-grained backtracking that allows non-linear explorations of past
programming history [8, 41].

5.5 Strategies followed when fixing bugs

While fixing the bug, participants used Enrichment, Navigation and Verification
strategies.

5.5.1 Enrichment strategy

Participants searched for all possible cues that led them to fixes for the bugs and
aggregated them. Most participants used Google to find the solution for bug fixes.
They temporarily collected information to reduce cognitive efforts. For example,
participants copied original URLs into the notepad and then started making
changes to the pipe programs. Hence, supporting to-do lists can help end-user
programmers to complete their tasks systematically [61]. Participants also kept the
documents (web document and IDE) open side-by-side like when they searched
for bugs, necessitating support for multi-contextual views for code and relevant
web pages.

5.5.2 Navigational strategy

The participants skimmed through patches for stronger scents. They used
already visited patches as negative evidence in their foraging pursuits. For example,
participants closed the web pages immediately when they realized they had already
visited them. This prompted the participants to backtrack often to previous cues
or patches as they were no longer foraging in the right directions. This suggests the
need of tools that allow backtracking across multiple patches.

5.5.3 Verification strategy

After fixing the bugs, participants verified it by rerunning the pipe programs
and comparing the output to the given solution (oracle). Verification is a very
important step in software engineering and building automated techniques to sup-
port verification for end-user programmers can help them produce better quality
software applications.

6. Conclusions

Our analysis of the debugging behavior of eight end-user participants using
information foraging theory suggests that clear cues were the most cost-effective
method for finding bugs in mashup environments. Clear cues created stronger per-
ceived value and helped more in the debugging process allowing end-user program-
mers to locate bugs more easily when compared to fuzzy or elusive cues. Fuzzy and
elusive cues resulted in a hindered debugging progress as end-users would end up in
useless patches. In addition, the presence of sub-pipes added additional complexity

11

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

Author details

Sandeep Kaur Kuttal*, Abim Sedhain and Benjamin Riethmeier
University of Tulsa, Tulsa, OK, USA

*Address all correspondence to: sandeep-kuttal@utulsa.edu

to the debugging process as participants were unsure where cues were coming from,
even if they were clear. Our study also examined how the participants followed the
cues to find solutions to the present bugs.

The participants used three main strategies to locate bugs: hunting, navigation,
and enrichment. While hunting they used a depth-first strategy resulting in a
persistent pursuit of a single bug. When navigating the participants would use the
dataflow structure of the program to perceive the value of the bug’s location and
would backtrack through relevant program histories to locate the bug. Finally, when
using the enrichment strategy, participants would organize their environment by
placing their IDE side by side with a web browser or by rearranging the code for
easier foraging.

The presence of relevant error messages made these strategies for finding bugs
more effective; however, when fixing the bugs by foraging the web different strate-
gies were needed in the absence of clear cues. The participants made use of enrich-
ment, navigation, and verification strategies for fixing bugs. They enriched their
patches by finding relevant information through Google, storing URLs of useful
websites, and by having these resources open side by side next to the editor. The
participants navigated the web and used negative evidence to avoid already visited
webpages or unhelpful resources. Then by running the program after implementing
fixes, the participants would verify that their solutions fixed the bugs.

Our results suggest mashup programming environments need to facilitate clear
clues and support hunting, enrichment, navigational, and verification strategies to
facilitate the debugging process for end-user programmers.

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

12

Coding Theory - Recent Advances, New Perspectives and Applications

[1] Zang N, Rosson MB. What’s in a
mashup? And why? Studying the
perceptions of web-active end users. In:
2008 IEEE Symposium on Visual
Languages and Human-Centric
Computing 2008 Sep 15 (pp.
31-38). IEEE.

[2] Yahoo! Pipes. [cited 2015May].
Available from: http://pipes.yahoo.
com/pipes/

[3] IBM Mashup Maker. [cited
2015May]. Available from: http://www.
ibm.com/software/info/mashup-center/

[4] WMaker. [cited 2021Apr8]. Available
from: http://www.xfruits.com/

[5] Apatar - Open Source Data
Integration & ETL - Apatar - Open
Source Data Integration and ETL
[Internet]. Apatar Mashup Data
Integration. [cited 2021Apr8]. Available
from: http://apatar.com/

[6] Deri Pipes. [cited 2015May].
Available from: http://pipes.deri.org/

[7] Jackbe. [cited 2021Apr8]. Available
from: https://jackbe.com/

[8] Kuttal SK, Sarma A, Burnett M,
Rothermel G, Koeppe I, Shepherd B.
How end-user programmers debug
visual web-based programs: An
information foraging theory
perspective. Journal of Computer
Languages. 2019 Aug 1; 53y22-37.

[9] Grammel L, Storey MA. A survey of
mashup development environments. In:
The smart internet 2010 (pp. 137-151).
Springer, Berlin, Heidelberg.

[10] Gould JD. Some psychological
evidence on how people debug
computer programs. International
Journal of Man-Machine Studies. 1975
Mar 1;7(2):151-82.

[11] Pirolli P, Card S. Information
foraging in information access
environments. In: Proceedings of the
SIGCHI conference on Human factors in
computing systems 1995 May 1
(pp. 51-58)

[12] Kie JG. Optimal foraging and risk of
predation: effects on behavior and social
structure in ungulates. Journal of
Mammalogy. 1999 Dec 6;80(4):1114-29.

[13] Pirolli P, Card S. Information
foraging. Psychological review. 1999
Oct;106(4):643.

[14] Chi EH, Pirolli P, Chen K, Pitkow J.
Using information scent to model user
information needs and actions and the
Web. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2001 Mar 1 (pp.
490-497).

[15] Pirolli P., Fu WT. (2003) SNIF-ACT:
A Model of Information Foraging on the
World Wide Web. In: Brusilovsky P.,
Corbett A., de Rosis F. (eds) User
Modeling 2003. UM 2003. Lecture Notes
in Computer Science, vol 2702. Springer,
Berlin, Heidelberg.

[16] Burnett MM. Information Foraging
Theory in Software Maintenance.
OREGON STATE UNIV CORVALLIS;
2012 Sep 30.

[17] Kwan I, Fleming SD, Piorkowski D.
Information Foraging Theory for
Collaborative Software Development.
Corvallis, OR. 2012.

[18] Spool JM, Perfetti C, Brittan D.
Designing for the Scent of Information:
The Essentials Every Designer Needs to
Know About How Users Navigate
Through Large Web Sites. User Interface
Engineering; 2004.

[19] Lawrance J, Bogart C, Burnett M,
Bellamy R, Rector K, Fleming SD. How

References

13

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

programmers debug, revisited: An
information foraging theory
perspective. IEEE Transactions on
Software Engineering. 2010 Dec
23;39(2):197-215.

[20] Lawrance J, Bellamy R, Burnett M.
Scents in programs: Does information
foraging theory apply to program
maintenance?. In: IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC 2007) 2007 Sep
23 (pp. 15-22). IEEE.

[21] Jin X, Niu N, Wagner M. Facilitating
end-user developers by estimating time
cost of foraging a webpage. In2017 IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/HCC)
2017 Oct 11 (pp. 31-35). IEEE

[22] Srinivasa Ragavan S, Kuttal SK,
Hill C, Sarma A, Piorkowski D,
Burnett M. Foraging among an
overabundance of similar variants. In:
Proceedings of the 2016 CHI Conference
on Human Factors in Computing
Systems 2016 May 7 (pp. 3509-3521).

[23] Lawrance J, Bellamy R, Burnett M,
Rector K. Using information scent to
model the dynamic foraging behavior of
programmers in maintenance tasks. In:
Proceedings of the SIGCHI Conference
on Human Factors in Computing
Systems 2008 Apr 6 (pp. 1323-1332).

[24] Ennals R, Gay D. User-friendly
functional programming for web
mashups. In: Proceedings of the 12th
ACM SIGPLAN international
conference on Functional programming
2007 Oct 1 (pp. 223-234).

[25] Elson J, Howell J, Douceur JR.
MapCruncher: integrating the world’s
geographic information. ACM SIGOPS
Operating Systems Review. 2007 Apr
1;41(2):50-9.

[26] Wong J, Hong J. Marmite: end-user
programming for the web. InCHI’06
extended abstracts on Human factors in

computing systems 2006 Apr 21 (pp.
1541-1546).

[27] Automator User Guide for Mac
[Internet]. Apple Support. [cited
2021Apr8]. Available from: https://
support.apple.com/guide/automator/
welcome/mac

[28] Faaborg A, Lieberman H. A goal-
oriented web browser. In: Proceedings
of the SIGCHI conference on Human
Factors in computing systems 2006 Apr
22 (pp. 751-760).

[29] LaToza TD, Myers BA. Developers
ask reachability questions. In:
Proceedings of the 32nd ACM/IEEE
International Conference on Software
Engineering-Volume 1 2010 May 1 (pp.
185-194).

[30] Fitzgerald S, McCauley R, Hanks B,
Murphy L, Simon B, Zander C.
Debugging from the student
perspective. IEEE Transactions on
Education. 2009 Sep 15;53(3):390-6.

[31] Ko AJ, Myers BA. Finding causes of
program output with the Java Whyline.
In: Proceedings of the SIGCHI
Conference on Human Factors in
Computing Systems 2009 Apr 4 (pp.
1569-1578).

[32] Ko AJ, Myers BA. Designing the
whyline: a debugging interface for
asking questions about program
behavior. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2004 Apr 25 (pp.
151-158).

[33] Cao J, Rector K, Park TH,
Fleming SD, Burnett M, Wiedenbeck S.
A debugging perspective on end-user
mashup programming. In2010 IEEE
Symposium on Visual Languages and
Human-Centric Computing 2010 Sep 21
(pp. 149-156). IEEE.

[34] Brandt J, Guo PJ, Lewenstein J,
Dontcheva M, Klemmer SR. Two studies

Coding Theory - Recent Advances, New Perspectives and Applications

14

of opportunistic programming:
interleaving web foraging, learning, and
writing code. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2009 Apr 4 (pp.
1589-1598).

[35] Ko AJ, Myers BA, Coblenz MJ,
Aung HH. An exploratory study of how
developers seek, relate, and collect
relevant information during software
maintenance tasks. IEEE Transactions
on software engineering. 2006 Nov
30;32(12):971-87.

[36] Vessey I. Expertise in debugging
computer programs: A process analysis.
International Journal of Man-Machine
Studies. 1985 Nov 1;23(5):459-94.

[37] Naveed MS, Sarim M. Analyzing the
Effects of Error Messages Presentation
on Debugging and Programming.
Sukkur IBA Journal of Computing and
Mathematical Sciences. 2021 Jan
5;4(2):38-48.

[38] Brandt J, Guo PJ, Lewenstein J,
Dontcheva M, Klemmer SR. Two studies
of opportunistic programming:
interleaving web foraging, learning, and
writing code. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2009 Apr 4 (pp.
1589-1598).

[39] Ruthruff JR, Burnett M. Six
challenges in supporting end-user
debugging. ACM SIGSOFT Software
Engineering Notes. 2005 May
21;30(4):1-6.

[40] Phalgune A, Kissinger C,
Burnett M, Cook C, Beckwith L,
Ruthruff JR. Garbage in, garbage out?
An empirical look at oracle mistakes by
end-user programmers. In: 2005 IEEE
Symposium on Visual Languages and
Human-Centric Computing (VL/
HCC’05) 2005 Sep 20 (pp. 45-52). IEEE.

[41] Kuttal SK, Sarma A, Rothermel G.
On the benefits of providing versioning

support for end users: an empirical
study. ACM Transactions on Computer-
Human Interaction (TOCHI). 2014 Feb
1;21(2):1-43.

[42] Servant F. Supporting bug
investigation using history analysis. In:
2013 28th IEEE/ACM International
Conference on Automated Software
Engineering (ASE) 2013 Nov 11 (pp.
754-757). IEEE.

[43] Myers B, Ko A. Studying
development and debugging to help
create a better programming
environment. In: CHI 2003 Workshop
on Perspectives in End User
Development 2003 Apr (pp. 65-68). FL:
Fort Lauderdale.

[44] Jones MC, Churchill EF.
Conversations in developer
communities: a preliminary analysis of
the yahoo! pipes community. In:
Proceedings of the fourth international
conference on Communities and
technologies 2009 Jun 25 (pp. 195-204).

[45] Huang AF, Huang SB, Lee EY,
Yang SJ. Improving end-user
programming with situational mashups
in web 2.0 environment. In2008 IEEE
International Symposium on Service-
Oriented System Engineering 2008 Dec
18 (pp. 62-67). IEEE.

[46] Cappiello C, Matera M, Picozzi M.
A UI-centric approach for the end-user
development of multidevice mashups.
ACM Transactions on the Web (TWEB).
2015 Jun 16;9(3):1-40.

[47] Leonard TA. Tree-sheets and
structured documents (Doctoral
dissertation, University of
Southampton).

[48] Stolee KT, Elbaum S. Refactoring
pipe-like mashups for end-user
programmers. In: Proceedings of the
33rd International Conference on
Software Engineering 2011 May 21
(pp. 81-90).

15

How do Web-Active End-User Programmers Forage?
DOI: http://dx.doi.org/10.5772/intechopen.97765

[49] Stolee KT, Elbaum S, Sarma A.
Discovering how end-user programmers
and their communities use public
repositories: A study on Yahoo! Pipes.
Information and Software Technology.
2013 Jul 1;55(7):1289-303.

[50] Wang HB, Wang ZH. Building
Mobile News Aggregation Application
with Yahoo Pipes. In: Advanced
Materials Research 2013 (Vol. 756, pp.
1943-1947). Trans Tech
Publications Ltd.

[51] Card SK, Pirolli P, Van Der Wege M,
Morrison JB, Reeder RW, Schraedley PK,
Boshart J. Information scent as a driver
of web behavior graphs: Results of a
protocol analysis method for web
usability. In: Proceedings of the SIGCHI
conference on Human factors in
computing systems 2001 Mar 1 (pp.
498-505).

[52] Chi EH, Rosien A, Supattanasiri G,
Williams A, Royer C, Chow C, Robles E,
Dalal B, Chen J, Cousins S. The
bloodhound project: automating
discovery of web usability issues using
the InfoScentπ simulator. In:
Proceedings of the SIGCHI conference
on Human factors in computing systems
2003 Apr 5 (pp. 505-512).

[53] Piorkowski D, Penney S, Henley AZ,
Pistoia M, Burnett M, Tripp O,
Ferrara P. Foraging goes mobile:
Foraging while debugging on mobile
devices. In2017 IEEE Symposium on
Visual Languages and Human-Centric
Computing (VL/HCC) 2017 Oct 11 (pp.
9-17). IEEE.

[54] Niu N, Mahmoud A, Bradshaw G.
Information foraging as a foundation for
code navigation (NIER track). In:
Proceedings of the 33rd International
Conference on Software Engineering
2011 May 21 (pp. 816-819).

[55] Bhowmik T, Niu N, Wang W,
Cheng JR, Li L, Cao X. Optimal group
size for software change tasks: A social

information foraging perspective. IEEE
transactions on cybernetics. 2015 Apr
22;46(8):1784-95.

[56] Fu WT, Pirolli P. SNIF-ACT: A
cognitive model of user navigation on
the World Wide Web. Human–
Computer Interaction. 2007 Nov
1;22(4):355-412.

[57] Chi EH, Pirolli P, Pitkow J. The scent
of a site: A system for analyzing and
predicting information scent, usage,
and usability of a web site. In:
Proceedings of the SIGCHI conference
on Human factors in computing systems
2000 Apr 1 (pp. 161-168).

[58] Pirolli P. Information foraging
theory: Adaptive interaction with
information. Oxford University Press;
2007 Apr 12.

[59] Ragavan SS, Pandya B,
Piorkowski D, Hill C, Kuttal SK,
Sarma A, Burnett M. PFIS-V: modeling
foraging behavior in the presence of
variants. In: Proceedings of the 2017
CHI Conference on Human Factors in
Computing Systems 2017 May 2 (pp.
6232-6244).

[60] Lawrance J, Burnett M, Bellamy R,
Bogart C, Swart C. Reactive information
foraging for evolving goals. In:
Proceedings of the SIGCHI Conference
on Human Factors in Computing
Systems 2010 Apr 10 (pp. 25-34).

[61] Grigoreanu VI, Burnett MM,
Robertson GG. A strategy-centric
approach to the design of end-user
debugging tools. In: Proceedings of the
SIGCHI Conference on Human Factors
in Computing Systems 2010 Apr 10 (pp.
713-722).

