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Chapter

Study on Approximate Analytical
Method with Its Application
Arising in Fluid Flow
Twinkle R. Singh

Abstract

This chapter is about the, Variational iteration method (VIM); Adomian
decomposition method and its modification has been applied to solve nonlinear
partial differential equation of imbibition phenomenon in oil recovery process. The
important condition of counter-current imbibition phenomenon as vi ¼ �vn, has
been considered here main aim, here is to determine the saturation of injected fluid
Si x, tð Þ during oil recovery process which is a function of distance ξ and time θ,
therefore saturation Si is chosen as a dependent variable while x andt are chosen as
independent variable. The solution of the phenomenon has been found by VIM,
ADM and Laplace Adomian decomposition method (LADM). The effectiveness of
our method is illustrated by different numerical.

Keywords: Variational Iteration method (VIM), Adomian decomposition method
(ADM), Laplace Adomian decomposition method (LADM), nonlinear partial
differential equations

1. Introduction

First, the variational iteration method was proposed by He [1] in 1998 and was
successfully applied to autonomous ordinary differential equation, to nonlinear
partial differential equations with variable coefficients. In recent times a good deal
of attention has been devoted to the study of the method. The reliability of the
method and the reduction in the size of the computational domain give this method
a wide applicability. The VIM based on the use of restricted variations and correc-
tion functional which has found a wide application for the solution of nonlinear
ordinary and partial differential equations, e.g., [2–10]. This method does not
require the presence of small parameters in the differential equation, and provides
the solution (or an approximation to it) as a sequence of iterates. The method does
not require that the nonlinearities be differentiable with respect to the dependent
variable and its derivatives and whereas the Adomian decomposition method was
before the Nineteen Eighties, it was developed by Adomian [11, 12] for solving
linear or nonlinear ordinary, partial and Delay differential equations. A large type of
issues in mathematics, physics, engineering, biology, chemistry and other sciences
have been solved using the ADM, as reported by many authors [13]. The Adomian
decomposition method (ADM) [11–28] is well set systematic method for practical
solution of linear or nonlinear and deterministic or stochastic operator equations,
including ordinary differential equations (ODEs), partial differential equations
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(PDEs), integral equations, integro-differential equations, etc. The ADM is consid-
ered as a powerful technique, which provides efficient algorithms for analytic
approximate solutions and numeric simulations for real-world applications in the
applied sciences and engineering. It allows us to solve both nonlinear initial value
problems (IVPs) and boundary value problems (BVPs) [17, 29–46] without
unphysical restrictive assumptions such as required by linearization, perturbation,
ad hoc assumptions, guessing the initial term or a set of basic functions, and so
forth. The accuracy of the analytic approximate solutions obtained can be verified
by direct substitution. More advantages of the ADM over the variational iteration
method is mentioned in Wazwaz [22, 28]. A key notion is the Adomian polyno-
mials, which are tailored to the particular nonlinearity to solve nonlinear operator
equations. A key concept of the Adomian decomposition series is that it is
computationally advantageous rearrangement of the Banach-space analog of the
Taylor expansion series about the initial solution component function, which
permits solution by recursion. The selection behind choice of decomposition is
nonunique, which provides a valuable advantage to the analyst, permitting the
freedom to design modified recursion schemes for ease of computation in realistic
systems.

Same way Laplace Adomian’s Decomposition Method (LADM) was first intro-
duced by Khuri [47, 48]. The Laplace Adomian Decomposition Method (LADM) is
formed with combination of the Adomian Decomposition Method (ADM) Adomian
[29, 49] and Laplace transforms. LADM is a promising method and has been applied
in solving various nonlinear systems of differential equations [36, 50–56]. In a
variety of applied sciences, systems of partial differential equations have attracted
much attention e.g. [50, 57–75]. The general ideas and the essentiality of these
systems are of wide applicability. Agadjanov [56] solved Duffing equation with the
help of LDM. Elgazery [51, 76] had applied Laplace decomposition method for the
solution of Falkner-Skan equation.

In the solution procedure of VIM; many repeated computations and computa-
tions of the unneeded forms, which take more time and effort beyond it, so a
modification has been shown to reduce these unneeded forms.

On the other hand, few researchers have been discussed imbibition phenomenon
in homogenous porous media with different point of view for example, researchers
taking different perspectives for this phenomenon; [77, 78] and some others have
analyzed it for homogeneous porous medium.

In this Present investigated model, Imbibition takes place over a small part of a
large oil formatted region taken as a cylindrical piece of homogeneous porous
medium. In this model, we have considered the important condition of counter-
current imbibition phenomenon as vi ¼ �vn, Our purpose is to determine the
saturation of injected fluid Si x, tð Þ during oil recovery process which is a function of
distance ξ and time θ, therefore saturation Si has been chosen as a dependent
variable while x and t are chosen as independent variable.

2. Imbibition phenomenon

It is the process by which a wetting fluid displaces a non-wetting fluid the
initially saturates a porous sample, by capillary forces alone. Suppose a sample is
completely saturated with a non-wetting fluid, and same wetting fluid is introduced
on its surface. There will be spontaneous flow of wetting fluid into the medium,
causing displacement of the non-wetting fluid. This is called imbibition phenome-
non. The rate of imbibition is greater if the wettability of the porous medium, by the
imbibed fluid, is higher.
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The mathematical condition for imbibition phenomenon is given by Scheidegger
[78]); viz,

vn ¼ �vi

Where vi & vn are the seepage velocities of injected & native liquids respectively.
The relation between relative permeability and phase-saturation,

ki ¼ S3i

kn ¼ 1� αSn, α ¼ 1:11

Where ki & kn denotes fictitious relative permeability. Si & Sn denotes satura-
tions of injected and native liquids respectively.

3. Mathematical structure of the model

According to the Darcy’s law, the basic equations of the phenomenon as; [78]

vi ¼ �
ki
δi

� �

K
∂pi
∂x

(1)

vn ¼ �
kn
δn

� �

K
∂pn
∂x

(2)

vi ¼ �vn (3)

pc ¼ pn � pi (4)

φ
∂Si
∂t

� �

þ
∂vi
∂x

¼ 0 (5)

φ
∂Sn
∂t

� �

þ
∂vn
∂x

¼ 0 (6)

Where vi and vn are the seepage velocities, ki and kare the relative permeabilities
δi and δn are the kinematic viscosities (which are constants), pi and pn are pressure
of the injected and native liquid respectively, φ and K are the porosity and the
permeability of the homogeneous porous medium; Si is the saturation of the
injected liquid; pc is the capillary pressure and t is the time. The co-ordinate x is
measured along the axis of the cylindrical medium, the origin being located at the
imbibition face x=0.

Combing equations (1)-(5) and using the relation for capillary pressure as,
pc=βSi [70], we get,

φ
∂Si
∂t

� �

þ
∂

∂x
KD Sið Þβ

∂Si
∂x

� �� �

¼ 0 (7)

Where D(Si) =
kikn

δnkiþδikn
and β being small capillary pressure coefficient.

It is assumed is that an average value of D(Si) =D (Si)
Using the transformation,

ξ ¼
x

L
, θ ¼

Lt

φL2 , 0≤ x≤
LSio
B

: (8)

Eq. (7), becomes;
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∂Si
∂θ

� �

þ βD Sið Þ
∂
2Si

∂ξ2
¼ 0

∂Si
∂θ

¼ �βD Sið Þ ∂Si
2

∂ξ2

∂Si
∂θ

¼ ε
∂Si

2

∂ξ2
Where ε ¼ �βD Sið Þ (9)

By the Hopf-Cole transformation [79, 80] equation (9) reduces to the Burger’s
equation.

S ∗

iθ
þ S ∗

i S
∗

iξ
¼ εS ∗

i ξξ
(10)

With the condition

S ∗

i ξ, 0ð Þ ¼ S ∗

i0
eξ at time θ = 0 and ξ > 0

3.1 Solution of the Burger’s equation by variational iteration method

To add the basic concepts of VIM, considering the below mentioned nonlinear
partial differential equations:

Lu x, tð Þ þ Ru x, tð Þ þNu , tð Þ ¼ g x, tð Þ,

u x, 0ð Þ ¼ ex
(11)

Where L ¼ ∂

∂t

� �

,R is a linear operator which has partial derivatives with respect

to x, Nu(x,t) is a nonlinear term and g(x,t) is an inhomogeneous term.
As per the VIM [6, 7];

Unþ1 x, tð Þ ¼ Un x, tð Þ þ

ð

t

0

λ LUn þ RUn þNUn � g
� 	

dτ (12)

Where λ is called a general Lagrange multiplier [81, 82] which can be identified

optimally via vatiational theory, RUn and NUn are considered as restricted
variations,

i.e. δRUn ¼ 0, δNUn ¼ 0 calculating variation with respect to Un;

λ0 τð Þ ¼ 0

1þ λ τð Þτ¼t ¼ 0
(13)

The Lagrange multiplier, therefore, can be considered as λ=-1.
Now, substituting the multiplier in (12), then

Unþ1 x, tð Þ ¼ Un �

ð

t

0

L Unð Þ þ R Unð Þ þN Unð Þ � gf gdτ (14)

S ∗

iθ
þ S ∗

i S
∗

iξ
¼ εS ∗

i ξξ
(15)

With the constrain

S ∗

i ξ, 0ð Þ ¼ S ∗

i0
eξ at time θ = 0 and ξ > 0
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To solve equation (10) by VIM, substituting in equation (14) by

RUn ¼ �U2
nx

NUn ¼ Un Unð Þxx

& g(x,t) = 0
And can obtain the following variational iteration formula:

S ∗

i nþ1 ¼ S ∗

in
�

ð

θ

0

S ∗

inτ
þ S ∗

in
S ∗

in


 �

ξ
� εS ∗

inξξ

� 

dτ (16)

Using (14), the approximate solutions Un x, tð Þare obtained by substituting;

S ∗

i ξ, 0ð Þ ¼ S ∗

i0
e
ξ

(17)

Approximate solutions are given below;

S ∗

i1
¼ S ∗

i0
eξ � β01 θ; where β01 ¼ S ∗

2

i0
e2ξ � εS ∗

i0
eξ


 �

S ∗

i2
¼ S ∗

i0
eξ � β01 θ þ β11

θ2

2
where β11 ¼ β01S

∗

i0
eξ

Similarly,

S ∗

i3
¼ S ∗

i0
eξ � β12

θ2

2!
þ β22

θ3

3!

And so on… ..
Notes on VIM
From the analysis we can observed is this:

1.VIM can contain a series solution not exactly like ADM.

2.VIM needs many modifications to overcome the wasted time in the repeated
calculations and unneeded terms.

To overcome these problems, following ADM and LADM is suggested.
Now applying ADM to equation (10); we get

S ∗

i ξ, θð Þ ¼ L�1
θ S ∗

i S
∗

iξ
� εS ∗

iξξ

h i

(18)

And recursive relation is:

Si ξ, 0ð Þ ¼ eξ

Then:

S ∗

i1
ξ, θð Þ ¼ β01θ

S ∗

i2
ξ, θð Þ ¼ β012

θ3

3
� εβ12

θ2

2
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S ∗

i3
ξ, θð Þ ¼ β0123

θ4

4
� εβ13

θ3

3

and so on…
Now, applying (LADM) Laplace transform with respect to t on both sides of (10);

S ∗

i x, tð Þ ¼ L�1 1

s
L S ∗

i0
S ∗

i0ξ
� εS ∗

i0ξξ

h i

� �

S ∗

i1
¼ β01 e

ξθ

S ∗

i2
¼ β0

2

1 e2ξ � εβ01 e
ξ


 � θ2

2!

S ∗

i3
¼ β30 � εβ31

� � θ3

3!

And so on…

4. Interpretation

It is concluded that for the non linear partial differential equation of imbibitions
phenomenon in oil recovery process, through graphs, it has been observed that the

Figure 1.
Plot of Saturation S ∗

i ξ, θð Þ versus ξ for VIM Solution.

Figure 2.
Plot of Saturation S ∗

i ξ, θð Þ versus θ for VIM Solution.
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Figure 3.
3-Dimensional VIM Solution.

Figure 4.
Plot of Saturation S ∗

i ξ, θð Þ versus ξ for ADM Solution.

Figure 5.
Plot of Saturation S ∗

i ξ, θð Þ versus ξ for LADM Solution.
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saturation of injected water during imbibition, increases and it is noted that LADM
gives faster accuracy compare to VIM and ADM (Figures 1–7).

5. Conclusions

The VIM, the ADM and the LADM are successfully applied to Burger’s equation.
The results which are obtained by ADM are a powerful mathematical tool to solve
nonlinear partial differential equation. It has been noted that this method is reliable
and requires fewer computations; and scheme LADM gives better and very faster
accuracy in comparison with VIM.
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