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Chapter

A TLM Formulation Based on
Fractional Derivatives for
Dispersive Cole-Cole Media
Mohammed Kanjaa, Otman El Mrabet and Mohsine Khalladi

Abstract

An auxiliary differential equation (ADE) transmission line method (TLM) is
proposed for broadband modeling of electromagnetic (EM) wave propagation in
biological tissues with the Cole-Cole dispersion Model. The fractional derivative
problem is surmounted by assuming a linear behavior of the polarization current
when the time discretization is short enough. The polarization current density is
approached using Lagrange extrapolation polynomial and the fractional derivation
is obtained according to Riemann definition of a fractional α-order derivative.
Reflection coefficients at an air/muscle and air/fat tissues interfaces simulated in a
1-D domain are found to be in good agreement with those obtained from the
analytic model over a broad frequency range, demonstrating the validity of the
proposed approach.

Keywords: computational electromagnetics, numerical methods, transmission line
matrix, biological system modeling, Cole-Cole medium, fractional derivative

1. Introduction

In the last two decades there has been a growing interest in the interaction
between biological tissues and electromagnetic field at microwave frequencies. New
promising applications of this technology in biomedical engineering like microwave
imaging [1, 2], minimal invasive cancer therapies as thermal ablations [3], ultra-
wide band temperature dependent dielectric spectroscopy [4] and EM dosimetry
[5], rely heavily on an accurate mathematical model of the response of these tissues
to an external electromagnetic field. Numerical resolution of the propagation prob-
lem within these tissues requires a robust mathematical model and the previous
incorporation of the dielectric data that at all the working frequencies.

A first model of the time response in a time varying electric field of biological
tissues was formulated by Debye [6] through a time decaying polarization current
j tð Þ ¼ ∂P

∂t resulting from the time variation of the polarization vector P tð Þ, the
permittivity for this model is given in Eq. (1) and the corresponding argand
diagram is depicted in Figure 1.

ε ∗r ωð Þ � εr∞ ¼ εr ωð Þ � εr∞ � jε0r ωð Þ ¼ Δεp

1þ jωτp
(1)
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This model even if it fits the experimental results in liquids it loses its accuracy
when applied over a large band of frequency or in the presence of more than one
type of polar molecule. This non-Debye relaxation is attributed to the existence of
different relaxation processes [7] each with its own relaxation time τ and its ampli-
tude Δε. A more accurate approximation to the behavior of this category of dielec-
trics is given by the sum of the individual relaxation processes leading to a multipole
model, the permittivity is given as the sum of the p terms corresponding to the p
poles each with its own amplitude. In the case of the biological tissue there is a
multiple contribution of each relaxation process resulting in a broadening of the
relaxation zone. Cole-Cole [8] proposed an Argand diagram in which in which εr
the imaginary part of the complex permittivity is plotted as a function of its real
part εr, following the empirical relation:

ε ∗r ωð Þ � εr∞ ¼ εr ωð Þ � εr∞ � jε0r ωð Þ ¼
X

p

p¼1

Δεp

1þ jωτp
� �αp (2)

where εr∞ is the optical relative permittivity, Δεp ¼ εrs � εr∞ is the amplitude of
the p� th pole, εs is the static relative permittivity, ω is the angular frequency , τp is the
relaxation time, αp the parameter that indicates the broadening of the dispersion for
this pole, which in the Cole-Cole model must satisfy 0< αp < 1, in the case of αp ¼ 1
the model is simplified to a Debye dispersion problem and j ¼ ffiffiffiffi�p

1 (Figure 2).
The difficulty in the numerical implementation of such a model arises from the

αp parameter which is a noninteger. The consequence is a fractional order differen-
tiation in the time domain which is more challenging compared to the Debye time
domain solution. To address this problem, authors in [9] used the Letnikov frac-
tional derivative by introducing a Stirling asymptotic formula and a recursive rela-
tion for the polarization vector. The computational demands of the FDTD scheme
were considerably reduced, but nevertheless it required the storage of a large
number of previous values of the polarization vector. In [10], authors used the Z
transform to formulate the frequency dependence between the electric flux density
and the electric field, the fractional derivative was approximated by using a

Figure 1.
Argand diagram for a unique pole Debye model obtained by representing Eq. (1) in the complexe plane.
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polynomial method. Rekanos et al. [11] used the Pade approximation, where the
fractional power term is approximated using a Pade technique. All the latter
approximations were made in the context of the FDTD method.

The TLM method, even if it is flexible and wide band and being a time domain
method, cannot deal with the dispersive aspect of the Cole-Cole medium directly. In
[12] an approach based on a convolution product between the susceptibility and the
electric field and the temporal behavior is deduced by a DFT and a nonrecursive
summation leading to a considerable computational cost and a nonnegligible error
at high frequencies. The causality principle is used to justify the minor dependence
of the recent susceptibility values on previous ones, but the problem of the frac-
tional Differentegration wasn’t addressed.

In this work an ADE-TLM algorithm to model the Cole-Cole dispersion. The
polarization current density is approached using an extrapolation with Lagrange
polynomial method and the fractional derivation is obtained using the Riemann
definition of the α-order derivative. The auxiliary differential equation is used to
establish the update equation of the polarization currents which are included later
in the general structure of the SCN-TLM node.

2. Formulation of the method

In the Cole-Cole model the relationship between the polarization current related
to the pth pole and the electric field is given by:

Jp ωð Þ ¼ ε0Δεp
jω

1þ jωτp
� �αp E ωð Þ (3)

where jωτp
� �αp is the power law function of frequency which in time domain

results in a fractional derivative of order α:

Jp tð Þ þ ταpDαpJp tð Þ ¼ ε0Δεp
∂E tð Þ
∂t

(4)

One could consider an analytic solution for this equation, but due to the frac-
tional derivative this can only be done for particular values of αp, hence a numerical

Figure 2.
Argand diagram for a simple pole Cole-Cole model obtained by representing Eq. (2) in the complexe plane.
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solution is necessary with a previous discretization of the temporal values of the
vectors.

In order to obtain the discretized expression of Jp tð Þ, the polarization current

vector can be approached using a Lagrange interpolation in the time interval
ti < t< t j with cardinal functions:

Li tð Þ ¼
Y

n

j¼1; i 6¼j

t� t j
� �

ti � t j
� � (5)

the interpolated expression of Jp tð Þ is then obtained:

Jp tð Þ ¼
X

n

i¼1

JiLi tð Þ (6)

and by applying (5) in the time interval nΔt< t< nþ 1ð ÞΔt we obtain the cardi-
nal functions:

Ln tð Þ ¼ t� nþ 1ð ÞΔt
nΔt� nþ 1ð ÞΔt Lnþ1 tð Þ ¼ t� nΔt

nþ 1ð ÞΔt� nΔt
(7)

By substituting (7) in (6) the polynomial extrapolation of the polarization cur-
rent density between time steps nΔt and nþ 1ð ÞΔt can be found in a straightforward
manner as follow:

Jp tð Þ ¼ t� nþ 1ð ÞΔt
nΔt� nþ 1ð ÞΔt J

n
p þ

t� nΔt

nþ 1ð ÞΔt� nΔt
Jnþ1
p (8)

which after simplification can be rewritten as:

Jp tð Þ ¼
Jnþ1
p � Jnp
Δt

tþ nþ 1ð ÞJnp � nJnþ1
p (9)

Furthermore, by substituting (8) into (3) we derive the auxiliary differential
equation with a fractional order derivative given by:

Jnþ1
p þ Jnp

2
þ ταp

Jnþ1
p � Jnp
Δt

Dαp tþDαp nþ 1ð ÞJnp � nJnþ1
p

� �

¼ ε0Δεp
∂E

∂t
(10)

The generalization of the derivation operator to arbitrary non-integer orders,
has been subject to intensive research from mathematicians [13, 14] and in electro-
magnetism [15]. One of the definitions in [16] for the fractional derivative, sym-
bolized by the operator Dα

x is given for the power series with fractional exponents

by considering a function h xð Þ defined as a power series h xð Þ ¼
Pn

i¼1Ai x� að Þνþi=n

for ν> � 1 and n a positive integer, so each term x� að Þp could have a noninteger
exponent p ¼ νþ i=n, then according to Reimann [15] a fractional derivative of
order α for this term is given by:

Dα
x x� að Þp ¼ dα x� að Þp

d x� að Þα ¼ Γ pþ 1ð Þ
Γ p� αþ 1ð Þ x� að Þp�α for x> a (11)

where in our case α is a noninteger number [16].
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Hence by applying the fractional derivation operator given in (11) to (10) and
for p ¼ 1 and a ¼ 0 we obtain the update equation for the polarization current:

Jnþ1
p ¼ �

ϕp

ψp

Jnp þ
ζp

ψp

Enþ1 � En
� �

(12)

where the update parameters ψp, ϕp and ζp are:

ψp ¼
1

2
þ τ

αp
p

Δt

Γ 2ð Þ
Γ 2� αp
� � t1�αp � n

τ
αp
p

Γ 1� αp
� � t�αp (13)

ϕp ¼
1

2
� τ

αp
p

Δt

Γ 2ð Þ
Γ 2� αp
� � t1�αp þ nþ 1ð Þ τ

αp
p

Γ 1� αp
� � t�αp (14)

ζp ¼
ε0Δεp

Δt
(15)

To get the update equation of the electric field components we start from the
Maxwell-Ampere equation, and by including the conductivity term:

∇�H ¼ ε0ε∞
∂E

∂t
þ σ0Eþ

X

p

p¼1

Jp (16)

where σ0 is the static ionic conductivity, Eq. (16) formulated at time step nþ 1
2

and by approaching Jnþ
1
2 by the average of its values at time steps n and nþ 1

J
nþ1

2
p ¼

Jnþ1
p þ Jnp

2
(17)

Finally, the updated electric field is given by:

Enþ1
x,y,z ¼ En

x,y,z 1� 2σ0Δt

D

� �

�
X

p

1� ϕp

ψp

� �

Δt

D
Jnpx,y,z þ

2Δt

D
∇�Hð Þnþ1

2
x,y,z (18)

D ¼ 2ε0ε∞ þ
X

p

ζpΔt

ψp

þ σ0Δt (19)

3. The TLM Formalisme

The TLM method is a numerical technique based on the discretization of the
computational domain according to Huygens principle as an alternative to the
Maxwell equations used in the FDTD method [17]. In this method the simulation
domain is discretized in cells where a series of uniform transmission lines, parallel
and series stubs and additional sources are used to take account of the real charac-
teristics of the propagation through the medium as given by Maxwell equations.
Therefore, instead of electric and magnetic field components the electromagnetic
field is represented by voltage and current waves, propagating through the unit cell
circuit referred to as symmetrical condensed node (SCN). The relationship between
the electromagnetic field and the voltage and current waves at the time step nΔt and
at the center of the node are formulated as follows [18].
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As can be seen in Figure 3(b), the SCN consists of interconnected transmission
lines. This structure models a unit cell of the propagation medium as in Figure 3(a).
Each face of the cell corresponds to two ports orthogonal to each other and labeled
from 1 to 12, these stubs model the propagation through free space and have
therefore its characteristic impedance Z0 ¼ ffiffiffiffiffiffiffiffiffiffi

ε0μ0
p

. Three additional open circuit

(13,14,15) stubs must be added to the node to account for the dispersive behavior of
the medium. The SCN nodes are connected to each other to form the simulation
domain given in Figure 4 for a 1-D propagation.

The relationship between the electromagnetic field and the voltage and current
waves at the time step nΔt and at the center of the node are formulated as follows [18]:

En
x,y,z ¼

Vn
x,y,z

Δl
Hn

x,y,z ¼
Inx,y,z
Δl

(20)

In this algorithm as in [11, 19] the dispersive properties of the medium are
accounted for by adding voltage sources sV to each node, these sources constitute
the counterparts of the terms in the FDTD formulation that have no equivalents in
the TLM formalism. Therefore the voltage at the center of the node, as deduced
from the conservation laws [20], becomes:

Vnþ1
x,y,z ¼ Vn

x,y,z þ
1

4þ Yocx,y,z
sV

nþ1
x,y,zþsV

n
x,y,z

� �

þ 4

4þ Yocx,y,z

ΔlΔt

ε0
∇�Hð Þnþ1

2
x,y,z (21)

where Yocx,y,z indicates the normalized admittance of the open circuit stub added
to the node.

When expressed in terms of incident voltages on the corresponding stubs and
accounting for the voltage sources injected in the stubs (16,17,18) to complete the
model of the Cole-Cole medium:

Vnþ1
x,y,z ¼

2

4þ Yox,y,z
V i

1,3,5 þ Vi
2,4,6 þ V i

9,8,7 þ V i
12,11,10 þ Yoc,x,y,zV

i
13,14,15 þ

1

2s
Vnþ1

16,17,18

	 


(22)

where the subscript i indicates the incident pulses on the indicated stubs.

Figure 3.
Structure of the TLM symmetrical condensed node, (a) unit volume of thedielectric material with dimensions
Δx, Δy,and Δz, (b) equivalent SCN.
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In the TLM formalism the update equation issued from the ADE in the Eq. (12)
becomes:

Jnþ1
px,y,z ¼ �

ϕp

ψp

Jnpx,y,z þ
ζp

ψpΔl
Vnþ1

x,y,z � Vn
x,y,z

� �

(23)

and the electric field update equation is also formulated in the TLM formalism as:

Vnþ1
x,y,z ¼ Vn

x,y,z 1� 2σ0Δt

D

� �

�
X

p

1� ϕp

ψp

� �

ΔtΔl

D
Jnpx,y,z þ

2ΔtΔl

D
∇�Hð Þnþ1

2
x,y,z (24)

The analogy between Eqs. (22) and (24) the expression of the normalized
admittance of the stub added to the SCN node is obtained straightforward:

Yoc ¼ 4
D

2ε0
� 1

� �

(25)

and the update equation for voltage sources at the center of the node:

sV
nþ1
x,y,z ¼ �sV

n
x,y,z �

4σ0Δt

ε0
Vn

x,y,z �
X

p

2 1� ϕp

ψp

� �

ΔtΔl

ε0
Jpx,y,z (26)

that can be simplified to

sV
nþ1
x,y,z ¼ �sV

n
x,y,z þ C1V

n
x,y,z þ

X

p

C2pJpx,y,z (27)

with update constants:

C1 ¼ �4σ0Δt

ε0
(28)

C2p ¼ �
2 1� ϕp

ψp

� �

ΔtΔl

ε0
(29)

Figure 4.
Structure of the 1-D SCN grid used in this work to model the simulation domain.
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A final step to establish the TLM formulation is to express the scattering process
on the capacitive stubs:

Vr
13,14,15

� �n ¼ Vx,y,z

� �n � V i
13,14,15

� �n
(30)

4. Simulation and results

In order to verify the new proposed algorithm, and for the sake of simplicity a
one dimensional problem is simulated, where a Cole-Cole medium (fat or muscle)
occupies the region z≥0, while the rest of space is air, 2 dimensional and 3 dimen-
sional propagation and reflection models can be naturally deducted by ensuring the
connexion between TLM cells in the y axis using ports 1,5,7 and 12, to account for
the propagation along the x axis ports 3,6,10 and 11 must be connected to adjacent
cells as in Figure 5.

The incident wave is a derivative Gaussian pulse given by E
!inc

¼
t�t0ð Þ
τ2

exp �4π t�t0ð Þ2
τ2

� �

êx
�

where t0 ¼ 200Δt and τ ¼ 220Δt polarized in the x direc-

tion, and propagates along the z axis. In the TLM implementation, the considered 1-
D simulation domain (see Figure 6) consists of a grid of 1000 cells interconnected
on the z axis as in Figure 4, 500 of which were used to model the Cole-Cole medium

Figure 5.
2-D ADE-TLM simulation of an incident and reflected pulse on the air/muscle, the tissue is modeled by a 4 pole
Cole-Cole model, the interface is located at the TLM cell z ¼ 100, at time steps 160 (a) and 218 (b).

Figure 6.
2-D ADE-TLM simulation of a reflected and transmitted pulse on the air/muscle , the tissue is modeled by a 4
pole Cole-Cole model, the interface is located at the TLM cell z = 100 , at (a) time step 305, and (b) at time
step 446.
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and the remaining cells were used to model the air. The cell dimension Δl satisfies
the stability condition Δt ¼ Δl=2c, the time step is set as Δt ¼ 0:125ps. The simula-
tion domain is truncated by an unsplit PML layer [21] of 10 cells at the beginning
and the end.

The fourth order Cole-Cole parameters for fat tissue as well as for muscle tissue
are listed in Table 1 [9]. The values of the electric field are recorded at a point P
located at the center of the SCN node 10 cells before the air-medium interface.
Figure 7(a) shows the incident impulse at iteration 399 propagating in the air and
Figure 7(b) at iteration 927 depicts the reflected and transmitted impulse on the
air/muscle interface.

Tissue ε
∞

σ0 Δε1 τ1

(ps)

α1 Δε2 τ2

(ps)

α2 Δε3 τ3

(μs)

α3 Δε4 τ4

(ps)

Δε4

Muscle 2.5 0.035 9 7.96 0.8 35 15.92 0.9 3.3E4 159.15 0.95 1.0E7 15.915 0.99

Fat 4 0.2 50 7.23 0.9 7000 353.68 0.9 1.2E6 318.31 0.9 2.5E7 2.274 1

Table 1.
Cole-Cole constants for tissues of muscle and fat.

Figure 7.
Propagation of an incident derivative Gaussian pulse through Cole-Cole medium model of human muscle (a) at
iteration 399 (incident pulse) (b) at iteration 677 (reflected and transmitted pulse).

Figure 8.
Reflection coefficient (dB) at normal incidence on an air/muscle interface.
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In Figures 8 and 9, the simulation results for both cases (fat and muscle) are
compared to the theoretical reflection at the air/Cole-Cole medium interface which
can be obtained by using the following equation [22]:

∣R∣ ¼ ∣1� ffiffiffi

ε
p

r∣

∣1þ ffiffiffi

ε
p

r∣
(31)

A good agreement over the whole frequency band is observed. The slight discrep-
ancy between the numerical and theoretical results can be ascribed to the approxi-
mation made to the polarization current value when performing the Lagrange
extrapolation on each iteration. The propagation and reflection through a 2-D TLM

Figure 9.
Reflection coefficient (dB) at normal incidence on an air/fat interface.

Figure 10.
2-D ADE-TLM simulation of a reflected and transmitted pulse on the air/muscle, the tissue is modeled by a 4
pole Cole-Cole model, the interface is located at the TLM cell z ¼ 100, at time steps are 305 and 446.
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gridmodeling the incidence on an air/muscle interface is presented in Figures 5 and 10
at different time steps, the interface is located at z ¼ 100 in a 10 by 200 cells grid,
Figure 5(a) shows the Gaussian wave before the arrival on the interface while
Figure 10(a) and (b) depicts it after reflection and transmission. A more precise
simulation that targeted the Dielectric properties of pathological thyroid tissue types
including adenoma, thyroiditis and the properties of the healthy thyroid based on the
results of the experimental study presented in a previous published work in [2], and
for the healthy thyroid tissue [23], in both works experimental results are used to
extract the 2 poles Cole-Cole model parameters. Based upon this parameters we
conducted a simulation for the 4 tissue types, the results of this simulation are
presented in Figure 11(a) and (b) for the air/adenoma and the air/normal thyroidian
interface respectively, Figure 12(a) and (b) depicts the reflection coefficient on an air/
thyroyditis affected thyroidian tissue and an air/tumor respectively also in this case a
perfect agreement over the working frequency is observed.

5. Conclusion

Numerical methods are an essential part of the modeling process, new propaga-
tion media with anomalous relaxation properties impose innovative modeling
methods. An effective ADE-TLM formulation way to model electromagnetic wave
propagation in biological tissues using Cole-Cole dispersion model. The fractional-

Figure 11.
Reflection coefficient (dB) at normal incidence on an air/adenoma (a), air/Normal tyroidian tissue
interface (b).

Figure 12.
Reflection coefficient (dB) at normal incidence on an air.
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order derivative in the Cole-Cole model is tackled by using a polynomial extrapola-
tion of the polarization current. This approximation reduces considerably both the
numerical cost of the simulation and its complexity since only two previous values
of the J field are needed at each iteration. a Reimann derivation on the obtained
polynomial extrapolation of the polarization current is then performed to solve the
fractional order derivative. The presented results indicate the accuracy of our
approach.
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