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Chapter

On Moho Determination by the
Vening Meinesz-Moritz Technique
Lars Erik Sjöberg and Majid Abrehdary

Abstract

This chapter describes a theory and application of satellite gravity and altimetry
data for determining Moho constituents (i.e. Moho depth and density contrast)
with support from a seismic Moho model in a least-squares adjustment. It presents
and applies the Vening Meinesz-Moritz gravimetric-isostatic model in recovering
the global Moho features. Internal and external uncertainty estimates are also
determined. Special emphasis is devoted to presenting methods for eliminating the
so-called non-isostatic effects, i.e. the gravimetric signals from the Earth both below
the crust and from partly unknown density variations in the crust and effects due to
delayed Glacial Isostatic Adjustment as well as for capturing Moho features not
related with isostatic balance. The global means of the computed Moho depths
and density contrasts are 23.8�0.05 km and 340.5 � 0.37 kg/m3, respectively.
The two Moho features vary between 7.6 and 70.3 km as well as between 21.0 and
650.0 kg/m3. Validation checks were performed for our modeled crustal depths
using a recently published seismic model, yielding an RMS difference of 4 km.

Keywords: crustal depth, Moho density contrast, Moho depth, Vening
Meinesz-Moritz method

1. Introduction

Traditionally, the structure of the Earth’s interior is divided according to its
chemical and physical properties into crust, mantle, outer core and inner core. The
oceanic crust ranges from 5 to 10 km depth, while the continental crust ranges from
35 to 70 km depth. The layer below the crust is the mantle, which is the thickest
layer of the Earth. It can be divided into the upper (extending down to 660 km from
the Earth’s surface) and lower mantle (down to 2900 km beneath the surface). The
innermost layer of the Earth is the core, which can be decomposed into the outer
and inner core. (A modern decomposition of the Earth’s interior is based on its main
mechanical properties: the lithosphere and asthenosphere, of main interest in global
geodynamics, plate tectonics and motion, but not for this study).

The geoscientist typically uses three sources of information to figure out the
interior of the Earth’s structure:

The first source is understood by direct evidence from rock samples by drilling
projects. In this way, the scientist attempts to drill holes in the Earth’s surface, to a
maximum depth of about 12 km, and explode rocks for inferring the conditions
within the Earth’s interior. The drilling method is severely limited, because it is
difficult to drill a deep hole due to the high pressure and temperature, and it is also a
very time-consuming and expensive technology (see [1]).
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The second source includes the records of seismic waves, which are generated,
for example, by earthquakes, explosions, volcanoes and other natural sources.
Accordingly, specialists can detect information about the Earth’s interior, e.g. depth
to density discontinuities, through detailed analysis of seismic data. Also, by study-
ing the velocity of the wave, it can to some extent be used for estimating the density
of the medium. At this point it deserves to be mentioned that the seismic data are
also expensive to collect and therefore sparse and in-homogeneously distributed
around the Earth (see [2]).

The third set of information in modeling the Earth’s interior is the recent gravity
field models, generated through modern satellite gravity missions such as Chal-
lenging Mini-satellite Payload (CHAMP), Gravity Recovery and Climate Experi-
ment (GRACE) and Gravity field and steady state Ocean Circulation Explorer
(GOCE), which can provide a global and homogeneous coverage of data. An
improvement can also be obtained in the accuracy and spatial resolution of these
models by combining them with airborne and ground-based gravity data as well as
satellite altimetry data over the oceans. Other important sources for studying
Earth’s interior are its magnetic field and meteorites.

1.1 Background of Moho modeling

The primary interface of the Earth’s interior is the boundary between the Earth’s
crust and mantle, which is called the Mohorovičić discontinuity (or Moho). This
discontinuity was first discovered in 1909 by the Croatian seismologist Andrija
Mohorovičić, when analyzing seismograph records of an earthquake in the Kapula
valley, namely P-waves (compressional waves) and S-waves (shear waves). He
noticed that the P-waves, which travel deeper into the Earth, moved faster than
those that travel nearer the surface. Accordingly, he concluded that the Earth is not
homogeneous, and at a specific depth there must be a boundary surface, which
distinguishes two media with different compositions, and by which the seismic
waves propagate with different velocities (see [3]).

Currently the Moho interface can be studied using two main methods: the
gravimetric and seismic ones. These methods cannot provide exactly the same
results, as they are based on different hypotheses, different types, qualities and
spatial distributions of data (see, e.g. [4, 5]).

The seismic methods are the major traditional techniques in modeling the thick-
ness of the Earth’s crust (the Moho depth, MD), where the base of the crust is
defined as the Moho. Another Moho constituent is the Moho Density Contrast
(MDC), which can be estimated from the change of velocity of a seismic wave
passing through the Moho boundary. Models based on seismic data can be locally
very accurate but useless in areas without adequate seismic observations, particu-
larly over large portions of the oceans. In addition, the seismic data acquisition is
costly with lack of global coverage [6].

In contrast, while using satellite gravity data, information on the Moho can be
inferred from a uniform and global data set. However, Moho models based on
gravity data are in general characterized by simplified hypotheses to guarantee
the uniqueness of the solution of the inverse gravitational problem (see, e.g. [7]). As
we will show in Section 2.1, gravity data alone cannot separate the MD from the
MDC, but additional information is needed to solve this problem. In any case, due
to the complementary information described above, a combined gravimetric-
seismic method could be fruitful in modeling the Moho.

Much research using seismic surveys for recovering the Moho interface has been
performed in the last decades. For instance, [8, 9] compiled global Moho models
based on seismic data analysis, and [10] estimated the MD using seismic surface
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waves. For global studies the most frequently used crustal models are the CRUST2.0
[11] and CRUST1.0 models [12], compiled with 2° � 2° and 1° � 1° resolutions,
respectively. More recently, [13] developed a global crustal thickness model and
velocity structure from geostatistical analysis of seismic data, and we hereafter call
this model CRUST19.

Over large areas of the world with a sparse coverage of seismic data, in particular
at sea, a gravimetric-isostatic or combined gravimetric/seismic method can be
prosperous. For example, [14] modified the Airy/Heiskanen theory ([15], Section
3.4) by introducing a regional isostatic compensation model based on a thin plate
lithospheric flexure model [16, p. 114]. [17, Section 8] generalized the Vening
Meinesz hypothesis from a regional to global compensation. [7] expressed the
Vening Meinesz-Moritz (VMM) problem as that of solving a non-linear Fredholm
integral equation, and presented some solutions for recovering the MD. The VMM
method was also followed up by some additional theoretical studies, such as
methods for estimating the MDC [6] and for reducing the Bouguer gravity anomaly
for non-isostatic effects [18, 19]. [20] demonstrated that the MD estimated from the
isostatic gravity disturbance based on solving the VMM model has a better agree-
ment with the CRUST2.0 seismic model than those computed by the isostatic
gravity anomaly. Their argument was also theoretically explained by [21]. [22]
estimated the MD and MDC using a combination of the CRUST2.0 and a GOCE
global gravity models. [23] showed that the application of the Bouguer gravity
disturbance and the no-topography correction in the VMM model to determine
the MD provides very similar results, suggesting the preference of the gravity
disturbance to the traditional Bouguer gravity anomaly for gravity inversion. [4, 5]
computed combined Moho constituent model according to the VMM method. [24]
estimated a new MDC model named MDC2018, using the marine gravity field
from satellite altimetry in combination with a seismic-based crustal model and
Earth’s topographic/bathymetric data. Finally, [25] estimated a combined
Moho model for marine areas via satellite altimetric - gravity and seismic crustal
models.

1.2 Gravimetric-isostatic Moho models

Isostasy is an important concept in Earth sciences describing the state of equi-
librium (or mass balance) to which the mantle tends to balance the mass of the
crust in the absence of external disturbing forces. “When a certain area of the crust
reaches the state of isostasy, it is said to be in isostatic equilibrium (or balance), and the
depth at which isostatic equilibrium prevails is called the depth of compensation” [26].

However, the transport of material over the Earth’s surface, such as glaciers,
volcanism, and sedimentation, etc., are factors that disturb isostasy, yielding
so-called non-isostatic effects (NIEs).

Four principle models of isostasy related with the crustal depth and/or density
can briefly be listed as those of (a) Airy/Heiskanen (A/H; [27–29]), (b) Pratt/
Hayford (P/H; [30, 31]), (c) Vening Meinesz (VM; [14]), and (d) the Vening
Meinesz-Moritz (VMM; [7, 17]). Common for the isostatic models is that the

Bouguer gravity anomaly Δgb (or disturbance δgb) is fully compensated by a
compensation attraction below the crust such that the isostatic gravity anomaly and
disturbance vanish:

ΔgI ¼ δgI ¼ 0: (1)

A/H and P/H are local models, implying that the compensation attraction
operates along the vertical of the observation point, implying that the sum of the
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masses of the crust and its compensation along each vertical is assumed to be
constant from place to place.

The A/Hmodel assumes a constant crustal density, and variations in topographic
height is compensated by variations in the depth of the crust. That is, the mass
excess of topography is compensated by the mass deficit of mountain roots in the
upper mantle. In ocean areas anti-roots of mantle material compensates for the light
mass of the ocean.

The P/H model assumes a constant depth of compensation of the solid Earth
topography (including negative topography over oceans), while the density of the
topography varies with topographic height.

Due to the elasticity of the Earth’s crust these local models are not very realistic.
Hence, [14] modified the A/H model by introducing a model with a regional com-
pensation in which mass loads and unloads are balanced by a gentle bending or
flexure of the crust over a regional area. [17] generalized the VM model from a
regional to a global compensation with a spherical sea level approximation. [7] and,
finally, [6] generalized the VMM model to allow for variations both in crustal
density and depth. In this way the VMM can be seen as a generalization of both the
A/H and P/H models with global isostatic compensations by variations of both
mountain root and crustal density.

Below we will present the least-squares theory for determining a combined
VMM-seismic model for both MD and MDC. The theory is finally applied in a new
global model.

2. The VMM theory

2.1 Solution for the product of Moho depth and density contrast DΔρð Þ

In H. Moritz’ original publication [17] the problem is to determine the MD Dð Þ
such that the compensation attraction (AC) fully compensates the Bouguer gravity
anomaly. Here we employ this condition in the last part of Eq. (1), which can be
written (cf. [7, 21])

δgI ¼ δgB þ AC ¼ 0, (2)

where δgB is the Bouguer gravity disturbance (i.e., the free-air gravity distur-
bance after removal of the topographic attraction).

The VMM technique uses both gravimetric and seismic data in a least squares
combination to determine the MD (D) and/or MDC Δρð Þ. The method assumes that
the crust is in isostatic balance, implying that the isostatic gravity anomaly ΔgI

� �

and disturbance δgI
� �

vanish at each point on the Earth’s surface as in Eq. (1) above.
Note that the compensation attraction is a function of both MD and MDC. Approx-
imating the Earth’s surface by a sphere of radius R, one obtains after several
manipulations of Eq. (2) the following equation in D for a constant Δρ:

RGΔρ

ðð

σ

K ψ , sð Þdσ ¼ f , (3)

where G is the gravitational constant, K ψ , sð Þ is an integral kernel function with
arguments ψ ¼geocentric angle between integration and computation points and

s ¼ 1�D=R, and f ¼ � δgb þ AC0

� �

=G. Here AC0 is zero-degree harmonic of the

compensation attraction (which does not affect the Moho undulation). Eq. (3) is a
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non-linear Fredholm integral equation of the first kind, which has the following
first- and second-order solutions:

D1 ¼
1

4π∆p

X

∞

n¼0

2nþ 1

nþ 1

X

n

m¼�n

f nmYnm (4)

where Ynm is a fully-normalized spherical harmonic, f nm is the corresponding
coefficient given by the Bouguer gravity disturbance f, and

D2ð ÞP ¼ D1ð ÞP þ
D2

1

� �

P

R
�

1

32Rπ

ðð

σ

D2
1

� �

Q
� D2

1

� �

P

sin 3ψPQ

" #

dσQ : (5)

Here subscripts P and Q denote computation and integration points, respec-
tively, f nm is the spherical harmonic coefficient of f. Note that the integral contrib-
utes significantly only locally around the computation point. The formula can be
improved by a few steps of iteration:

Dkþ1
P ¼ Dk

P þ
Dk

P

� �2

R
�

1

32Rπ

ðð

σ

Dk
Q

� �2
� Dk

P

� �2

sin 3ψPQ

2

6

4

3

7

5
dσQ ; k ¼ 0, 1, 2, … , (6)

where D0
P ¼ D1 at point P determined by Eq. (4).

As the isostatic balance of the crust is hardly valid for crustal blocks of diameter
smaller than, say, 100 km ([32], p.195), the upper limit of the series in Eq. (4) of
should not exceed n2 =180. Also, as we shall see later, the low-degree harmonics in
D1, say, below n1 =10, are not contributing to the isostatic balance but are due to
mass anomalies in the Earth’s interior below the crust.

The integrals in Eqs. (5) and (6) are local, as the integrand quickly vanishes with
distance away from the computation point. Hence a flat earth approximation may
be relevant (See [6]).

If the MDC varies laterally, the following 2nd-order approximation of Eq. (3)
can be found in the spectral domain (cf. [6]) when introducing the notation
χ ¼ DΔρ

f nm ¼ 4π
nþ 1

2nþ 1
χnm þ

nþ 2

2R
χDð Þnm

� �

(7)

and, after summing up, one obtains:

χ ¼
X

n2

n¼n1

2nþ 1

nþ 1

f n
4π

�
nþ 2

2R
χDð Þn

� �

, (8)

where f n and χDð Þn are the Laplace harmonics

f n
χDð Þn

� 	

¼
X

n

m¼�n

f nm
χDð Þnm

� 	

Ynm: (9)

Using the approximation

χD≈ χ2=ΔρP, (10)
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one obtains from (8) the iterative formula

χkþ1
P ¼

X

n2

n¼n1

2nþ 1

nþ 1

f n
4π

�
X

n

m¼�n

nþ 2

2RΔρP
χ2
� �k

n

" #

, ; k ¼ 0, 1, 2, … (11)

where χ0P is the first-order solution:

χ0 ¼
1

4π

X

n2

n¼n1

2nþ 1

nþ 1
f n: (12)

Alternatively, we may present Eq. (11) by the iterative formula:

χkþ1
P ¼ χ0P þ IkP, ; k ¼ 0, 1, 2, … , (13)

where

IkP ¼
1

RΔρP

ðð

σ

χkP
� �2

� χkQ

� �2

sin 3ψ
dσQ : (14)

Again, this integral is very local, which suggests the use of a flat-Earth approx-
imation. Also, assuming that n2 þ 2ð ÞD0= 2Rð Þ< 1, Eq. (7) leads to the approximate
solution:

χP ≈
1

4π

X

n2

n¼n1

2nþ 1

nþ 1

f n
1þ nþ 2ð ÞD0= 2Rð Þ

: (15)

Note that the solution χP is the product of the MD and MDC. If one of the
parameters is known, the other can be determined by the equation. Hence, gravity
data alone cannot be used to distinguish between the two Moho constituents.
Hence, additional information, e.g., from seismic and/or geological data, is needed
to separate the two. However, as we shall see later, usually such data is not taken for
granted in the VMM technique, but the gravity data used in Eq. (8) is typically
applied to improve a priori Moho constituents in a least-squares procedure.

The solution (8) can be derived from Eq. (1), and from the inversion of a 3-D
Newton integral. See Appendix A.

2.2 A least-squares solution for both the Moho depth and the Moho density
contrast

The Moho component χ, the product of D and Δρ, can be estimated from Eq. (11)
or (12) and applied as an observation together with seismic data for solving both the
MD and the MDC in a least-squares adjustment. Then a linear set of equations
including gravimetric data (l1), and seismic data for MD (l2) and MDC (l3) can be
written for each pixel (P):

ΔρPdDþDPdΔρ ¼ l1 � ε1 (16)

dD ¼ l2 � ε2 (17)

dΔρ ¼ l3 � ε3, (18)
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Where dD and dΔρ are the (unknown) corrections to the initial values DP and

ΔρP, l1 ¼ χ � χP � IkP, where I0P ¼ 0, and εi are the errors of the observations. In
matrix form the adjustment system can be written

AX ¼ L� ε, (19)

where

A ¼

ΔρP DP

1 0

0 1

2

6

4

3

7

5
, X ¼

dD

dΔρ

� �

and L ¼

l1

l2

l3

2

6

4

3

7

5
: (20)

Assuming that the observation errors are random with expectation zero and
covariance matrix Q , the weighted least squares solution of this system becomes:

X̂ ¼ ATQ�1A
� ��1

ATQ�1L: (21)

From this result, the adjusted MD and MDC for point P are obtained by:

D̂ ¼ DP þ dD̂ and Δρ̂ ¼ ΔρP þ dΔρ̂: (22)

As the first equation l1ð Þ is a linearization, it could make sense to iterate the
adjustment procedure by replacing the previous initial values DP and ΔρP in

Eq. (16) by their adjusted values D̂,Δρ̂ and repeat the above computation procedure
until sufficient convergence.

3. Uncertainty estimations

First, the result of the least-squares procedure depends on the quality and weighting
of the gravity and seismic observations. The weights should be selected as proportional
to the inverse standard errors (STEs) of the observations squared. The STEs of seismic
data is, hopefully, provided along with the data files. For the gravity data we derive
the global mean STE in Section 3.1. In Section 3.2 we propagate the data errors to
error estimates in the VMM least-squares results of Moho constituents. Finally, in
Section 3.3 a method for validating the modeled Moho undulations is presented.

3.1 The uncertainty in the gravimetric-isostatic observation equation

Assuming that there are no systematic errors and disregarding 2nd –order terms
in Eq. (8), one obtains the error in χ by simple error propagation from Eq. (12):

εχ ¼
1

4π

X

n2

n¼n1

2nþ 1

nþ 1
df n, (23)

where df n is the error in f n. Then it follows that the global Root Mean Square
Error (RMSE) of χ becomes

RMSE χð Þ ¼
1

4π
E

ðð

σ

ε2χ

� �

dσ

8

<

:

9

=

;

¼
1

4π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n2

n1

2nþ 1

nþ 1

� 	2

dcn

v

u

u

t , (24)
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where Efg denotes the statistical expectation of the term in the bracket, and dcn
are the error degree variances of the gravity disturbances. Using this formula with
harmonics between 10 and 180 of the XGM2019e gravity field model (see [33]), the
RMSE value becomes 1.17 � 104 kg/m2.

3.2 The uncertainties in VMM Moho depth and density contrast

Assuming that all observation errors are stochastic with expectation zero, an
error propagation of the least squares solution in Eq. (21) yields that the covariance

matrix of X̂ becomes

QXX ¼ σ20 ATQ�1A
� ��1

(25)

where σ20 is the variance of unit weight, which can be unbiasedly estimated by

s20 ¼ LTQ�1 L� ΑX̂
� �

: (26)

Note that there is no denominator in Eq. (26), because in the present adjustment
example with 3 observations and 2 unknowns per pixel there is only 1 degree of
freedom.

3.3 Verification of the solutions

First, we will find an estimate of the variance σ2x of the solution x for the MD or

MDC by assuming that we know another solution y with variance σ2y . If both

solutions have vanishing expected errors, the solution becomes

σ2x ¼ σ2y þ E x2 � y2
� �

: (27)

The correlation coefficient between x and y follows from

k ¼ σ2x þ σ2y � E x� yð Þ2
n oh i

= 2σxσy
� �

(28)

One can also plot the t-test parameter of the normalized (and unitless) differ-
ence between x and y:

T ¼
x� y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2x þ σ2y � 2kσxσy
q (29)

to study the expected difference.
To verify Eqs. (27)–(29), one may start from the substitutions that the true value

for x and y is given by

x ¼ x� ex ¼ y� ey, (30)

where ex and ey are random errors with zero-expectations.
In practice, x and y are the Moho quantities at a pixel estimated from two

models, and the expectation operator should be replaced by the (weighted) mean
value over the central and surrounding pixels. Note that the solution in Eq. (27) is
independent on whether x and y are correlated or not. Eq. (29) can be used in an
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approximate t-test to judge whether the estimates x and y from the two models are
statistically equal or not, if they are (weighted) mean values.

4. Corrections to gravimetric data

Nowadays, the Earth’s gravity field has been recognized as an important source
of information about the Earth’s structure. Such data contain both short- and long-
wavelength features, i.e., signals from the topographic and bathymetry geometries
and density heterogeneities in the topography, ice caps, sediment basins and also in
the mantle and core/mantle topography variations.

The long-wavelength contribution to the gravity field, say to spherical harmonic
degree and order 10, may be assumed to be related to the mantle and below located
heterogeneities.

To isolate the gravity data caused only by the geometry and density contrast of
the Moho interface, all aforementioned signal contributors to the gravity data must
be removed by applying the so-called stripping corrections and NIEs [34] and
NIEs (see section 4.2). Another gravity correction corresponds to the gravimetric
effect of filling-up all oceans with masses to a standard density of 2670 kg/m3.
Finally, by removing also normal gravity from the resulting stripped free-air gravity
observation, one obtains the refined Bouguer gravity disturbance. As a result, the
ideal stripped Bouguer gravity disturbance can be explained as caused by a spherical
Earth without solid Earth topography and mass anomalies below the crust.

4.1 Crustal density corrections

In order to compute the stripped refined Bouguer gravity disturbance, i.e. free-
air gravity disturbance corrected for topography, bathymetry, ice thickness and
sediment basins (i.e. stripping corrections), [34] developed and applied a uniform
mathematical formalism of computing the gravity corrections of the density varia-
tions within the Earth’s crust. This operation can be summarized as the correction

δgTBIS ¼ δgt þ δgb þ δgi þ δgs (31)

where δgt is the topographic gravity correction, and δgb, δgi and δgs are the
stripping gravity corrections due to the ocean (bathymetry), ice and sediment
density variations, respectively.

Applying a spherical approximation of the Earth, each gravity correction on the
right-hand side of Eq. (31) can be computed using the following spherical harmonic
series:

δgq Pð Þ ¼
GM

R2

X

nmax

n¼0

nþ 1ð Þ
X

n

m¼�n

cqnmYnm Pð Þ, (32)

with superscript q being one of t, b, i or s, and GM ¼ 3986005� 108 m3 s�2 is the

geocentric gravitational constant. The coefficient c
q
nm of a particular volumetric

mass density (or density contrast) layer q (i.e., topography, bathymetry, glacial ice
and sediments) is defined by:

cqnm ¼
2

2nþ 1ð Þ

1

ρe

ρqLq

� �

nm

R
þ
nþ 2

2

ρqL2
q

� �

nm

R2 þ …

2

4

3

5 (33)
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where ρq is the Earth’s mean mass density, and the coefficients (ρqLi
q) are

evaluated (from discrete data of density ρq and thickness Lq) by applying a
discretization to the following integral convolution

ρqLq

� �

nm
¼

1

4π

ðð

σ

ρqL j
qYnm dσ, j ¼ 1, 2, … , n (34)

4.2 Non-isostatic effects

It is important to remind the reader that in general the crust is not in complete
isostatic equilibrium, and the observed gravity data are not only generated by the
topographic/isostatic masses, but also from those in the deep Earth interior, that
leads to non-isostatic effects (NIEs) (see [18, 19, 35]).

According to [7], the major part of the long-wavelengths of the geopotential
undulation is caused by density variations in the Earth’s mantle and core/mantle
topography variations. Such NIEs could be the contribution of different factors,
such as crustal thickening/thinning, thermal expansion of mass of the mantle [36],
Glacial Isostatic Adjustment (GIA), plate flexure ([16], p. 114), and effect of other
phenomena. This implies that this contribution to gravity will lead to systematic
errors/NIEs of the computed Moho topography. Hence the NIEs should also be
corrected on the isostatic gravity disturbance.

Assuming that the seismic Moho model CRUST1.0 is known and correct, the
gravity effect of the NIEs can be determined by:

δgNIE ¼
GM

R2

X

nmax

n¼0

nþ 1ð Þ
X

n

m¼�n

cNIE
nm Ynm Pð Þ (35)

where

cNIE
nm ¼ cCRUST1:0

nm � cVMM
nm (36)

Here cNIE
nm , cVMM

nm , cCRUST1:0nm are the spherical harmonic coefficients of the gravity
disturbances of the NIE, VMM and CRUST1.0, respectively.

The isostatic equilibrium equation in Eq. (2) is then rewritten as:

δgI Pð Þ ¼ δgTBISNB Pð Þ þ AC Pð Þ ¼ 0: (37)

Here δgTBISNB is the refined Bouguer gravity disturbance corrected for the gravi-
tational contributions of topography and density variations of the oceans, ice,
sediments and NIEs, i.e. by Eq. (31).

4.3 Glacial isostatic adjustment (GIA)

Delayed GIA (DGIA) expresses the delayed adjustment process of the Earth to
an equilibrium state when former ice sheet loads have vanished. The ongoing
adjustment of the Earth’s body to the redistribution of ice and water masses is
evident in various phenomena, which have been studied to infer the extent and
amount of the former ice masses, to reconstruct the sea level during a glacial cycle
and to constrain rheological properties of the Earth’s interior. Here we aim at
answering the question whether the effect of the gravimetric DGIA correction is
significant for Moho determination in Fennoscandia. Usually, this effect is part of
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and reduced by the general NIE correction, but one may also estimate the DGIA
effect on gravity as a separate correction by the harmonic window:

δgDGIA ¼ γ
X

23

n¼10

nþ 1ð Þ
X

n

m¼�n

AnmYnm, (38)

where γ is normal gravity, Ynm and Anm are spherical harmonics and coefficients
of the gravitational potential (see [37]). Here the limits of the series are based on the
optimum correlation between the present land uplift and the gravity field in the
region.

5. A global VMM solution

The main gravimetric input data to be used in the following VMM Moho model
is the global Earth gravitational field model (e.g. XGM2019e) in the harmonic
window from n1 ¼ 10 to n2 ¼ 180. The gravity disturbance data were corrected for
the gravitational signals of mass density variations due in different layers of the
Earth’s crust (i.e. stripping gravity corrections) and for the gravity contribution
from deeper masses below the crust (i.e. non-isostatic effects). The NIEs were
computed using the seismic crustal model CRUST1.0, and the stripping corrections
for different crustal heterogeneous data utilized the global topographic models
DTM2006 and Earth2014. The preliminary gravimetric Moho solution was com-
bined with the CRUST1.0 model in a least-squares procedure (see Section 2.2). The
adjustment was performed globally for each 1∘ � 1∘-block.

The statistics of the stripping gravity corrections and refined Bouguer
gravity disturbance are presented in Table 1. It shows the largest corrections for
bathymetry and NIE, but also ice cap corrections have some extreme values. The
sum of the corrections varies roughly within �600 mGal with the STD of 178 mGal.

Figure 1 depicts the Bouguer gravity disturbances corrected for the ocean
(bathymetry), ice, sediment variations and the NIEs, respectively. As one can see
from the figure, these features can drastically change the Bouguer gravity distur-
bance from the free-air disturbance over oceans due to the application of the
bathymetric stripping gravity correction. It also changes in central Greenland and
Antarctica due to the applied ice density variation stripping gravity correction

Quantities δg (mGal) Max Mean Min STD

δg 285.85 �0.44 �281.40 23.84

δgt 255.13 �71.06 �647.61 105.98

δgb 721.60 332.91 110.28 165.02

δgI 325.78 21.84 �2.61 56.57

δgS 185.31 45.48 �0.02 32.47

δgNIE 248.70 �134.65 �497.98 69.98

δgTBISN 562.82 128.87 �620.54 178.10

Table 1.
Statistics of global estimates of the gravity disturbances, stripping gravity corrections and NIEs. STD is the
standard deviation of the estimated quantity over the blocks. δg is the gravity disturbance computed by the
XGM2019e coefficients. δgt, δgb, δgI and δgS are the topographic/bathymetric, ice and sediment stripping
gravity corrections derived from the CRUST1.0, respectively. δgNIE is the non-isostatic effect. δgTBISN is the
refined Bouguer gravity disturbance after applying the topographic and stripping gravity corrections due to the
ocean, ice and sediment density variations.
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(Figure 1d). In Figure 1e one can see large stripping corrections in sediment basins,
and the NIEs are also very significant (Figure 1f).

Figure 1g shows the refined Bouguer gravity disturbance after applying the
above corrections. This disturbance has a span of about � 500 mGal, to be
compared with the approximate span of � 250 mGal of the free-air disturbance.
Notable is the large positive disturbances on the oceans corresponding to the effect
of filling the oceans with topographic masses. The DGIA effect, demonstrated
for Fennoscandia and, depicted in Figure 1h, is very small compared to other
corrections.

In the least-squares procedure of the combined VMM solution the weights of the
two types of data were chosen as follows. The weights of the gravity disturbances
were estimated from their inverse variances by Eq. (23), while the weights for
CRUST1.0 data were those published in [12]. Figures 2 and 3 depict the results
of the MD and density contrast undulations and their estimated standard errors.
Their extreme values for continental and oceanic crusts and mean values are
reported in Table 2.

Figure 1.
(a) The free-air gravity disturbance computed using the XGM2019e coefficients complete to degree 180 of
spherical harmonics, (b) the topographic gravity correction, (c) the bathymetric stripping gravity correction,
(d) the ice density variation stripping gravity correction, (e) the sediments density variation stripping gravity
corrections, (f) non-isostatic effects and (g) refined Bouguer gravity disturbances after applying the above
corrections. (h) the DGIA effect in Fennoscandia. Unit: mGal.
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To validate the STE of the VMM solution for crustal depth, we determined the
global mean of it by Eq. (27) using the seismic model CRUST19. The result is
1.73 km, which is in fair agreement with the 1.20 km given in Table 2. Also, as one
can see from Figure 4 the test parameter in Eq. (29) for validating the VMM
solution of MD from the seismic model CRUST19 is mainly in the range � 1, which
suggest rather close agreements of estimated MDs and their error estimates.

Figure 2.
(a) The MD estimated from combined approach, and (b) its standard error. (unit km).

Figure 3.
(a) The MDC estimated by combined approach, and (b) its standard error. (unit kg/m3).

Quantities Max. Mean Min. STD

MD (km) Global 70.26 23.78 7.55 13.17

Ocean 43.19 14.98 7.55

Land 70.26 40.03 18.37

STE MD (km) Global 8.15 1.20 0.05 0.94

Ocean 7.34 2.06 0.05

Land 8.15 2.49 1.05

MDC (kg/m3) Global 649.99 340.49 20.98 100.90

Ocean 637.36 281.01 20.98

Land 649.99 440.01 69.34

STE MDC (kg/m3) Global 132.26 17.44 0.09 14.17

Ocean 99.98 35.21 0.09

Land 132.26 38.65 19.09

Table 2.
Statistics of global estimates of MD and MDC in the VMM approach for 1° � 1° block data. STD is the
standard deviation. STE is the standard error obtained in the least-squares adjustment. Units for MD and
MDC are km and kg/m3, respectively.
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(Note that E T2
� �

¼ 1, implies that assumed variance components are correct and
the expected MDs of the two models are the same).

6. Discussion and final remarks

The study of the Moho discontinuity has been a crucial topic in inferring the
dynamics of the Earth’s interior for a long time. In general, the Moho can be studied
with profitable results through seismic data. However, due to the sparsity of seismic
data in parts of the world, it has not been well determined. With the advent of
satellite missions, it has been possible to recover the Moho constituents via satellite
gravity observations based on an isostatic model.

So far, various isostatic models have been presented for recovering the Moho
constituents, but it was not clarified which one is most appropriate to employ for
geophysical and geodynamical purposes. The preliminary and simplest isostatic
models proposed are the classical ones with local or regional compensation. How-
ever, those models cannot realistically image the actual Moho undulation. This is
because they assume a uniform crustal density, disregarding the density irregulari-
ties distributed within the crust and sub-crust. Understanding this important role of
Moho recovery has been in the center of the discussions by many geoscientists
during the last decades.

Here we have determined the Moho constituents and their uncertainties based
on the VMM technique using both gravimetric and seismic data on a global scale to
a resolution of 1° � 1°. The combination of the gravimetric and seismic data in one
approach as well as the joint adjustment of MD and density contrast are expected to
significantly improve the total result.

The basic VMM method is based on the hypothesis that the isostatic gravity
disturbance vanish. However, this is the case only if the gravity component is
reduced such that there are no signals from the Earth’s interior below the crust. The
major problem in this reduction is therefore to distinguish and remove those sig-
nals, which we utilize by estimating and removing the NIEs with the help from
CRUST1.0 seismic model.

The second step is to combine the gravimetric data, propagated in the VMM
technique to a linear equation (with MD and MDC as the unknowns), with a seismic
model, CRUST1.0. This is performed by a weighted least-squares adjustment, block
by block, which has the advantage that the standard error of the unknowns can also
be estimated block-wise. The weights of the gravity disturbances were based on the
error estimates by Eq. (23), while the weights for CRUST1.0 data were those
published in [12].

Figure 4.
Validation of the VMM MD solution by Eq. (29) and CRUST19 model. (the scale is unitless).
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Our estimated results can be summarized as follows. The global means of MD
and MDC are 23.8 � 0.05 km and 340.5 � 0.37 kg/m3, respectively, ranging
between 7.6–70.3 km and 21.0–650.0 kg/m3. The MD results were validated by the
recent CRUST19 seismic model, showing that the differences between the models
vary within the extremes �23.4 and 32.9 km, with a global average of 0.91 km and
an RMS fit of 4 km. The normalized differences were generally within the limits �1,
which should be regarded as acceptable.
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Appendix A

Let us assume that the compensation attraction in Eq. (2) is generated by a
density contrast Δρ between the constant reference depth D0 and the actual depth
D. Assuming that the density contrast may change only laterally, it follows from the
Newton integral in 3D, that the compensation potential becomes:

Vcð ÞP ¼ G

ðð

σ

Δρ

ð

R�D0

R�D

r2dr

lP
dσ ¼ G

ðð

σ

Δρ

ð

R

R�D

r2dr

lP
dσ þ G

ðð

σ

Δρ

ð

R�D0

R

r2dr

lP
dσ, (A.1)

where the last integral term is a constant, global mean value. Disregarding this
term (which does not contribute to the Moho undulation) the integral can be
written in the spectral domain after integration with respect to r and setting rP ¼ R
(sea level radius):

Vcð ÞP ¼ GR2
X

∞

n¼0

1

nþ 3

ðð

σ

Δρ

nþ 3
1� 1�

D

R

� 	nþ3
" #

Pn cosψð Þdσ (A.2)

Considering the addition theorem of fully normalized spherical harmonics
(Heiskanen and Moritz 1967, p. 33):

Pn cosψPQ

� �

¼
1

2nþ 1

X

n

m¼�n

Ynm Pð ÞYnm Qð Þ,

one obtains

δTP ¼ GR2
X

∞

n¼0

1

2nþ 1ð Þ nþ 3ð Þ

X

n

m¼�n

Ynm Pð Þ

ðð

σ

Δρ 1� 1�
D

R

� 	nþ3
" #

Ynmdσ: (A.3)

As D is small vs. R, one may expand the last bracket in this equation a la
Taylor as

1

nþ 3
1� 1�

D

R

� 	nþ3
" #

¼
D

R
�
nþ 2

2

D

R

� 	2

þ
nþ 2ð Þ nþ 1ð Þ

6

D

R

� 	3

þ …, (A.4)
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and by inserting this series in Eq. (A.3) one obtains after integration

Vcð ÞP ¼ 4πGR
X

∞

n¼0

1

2nþ 1
�

X

n

m¼�n

DΔρð Þnm �
nþ 2

2R
D2

Δρ
� �

nm
þ

nþ 2ð Þ nþ 1ð Þ

6R2 D3
Δρ

� �

nm
� …

� �

Ynm Pð Þ

(A.5)

where ðÞnm are spherical harmonic coefficients. As the compensation potential
coefficients are related to those of the compensation attraction Ac by

Vcð Þnm ¼
R

nþ 1
Acð Þnm, (A.6)

one obtains the spectral equation from (A.5):

R

nþ 1
Acð Þnm ¼

4πGR

2nþ 1
DΔρð Þnm �

nþ 2

2R
D2

Δρ
� �

nm
þ

nþ 2ð Þ nþ 1ð Þ

6R2 D3
Δρ

� �

nm
� …

� �

(A.7)

By comparing the spectra of both sides and summing up all harmonics and
considering Eq. (2),

DΔρ ¼
1

4π

X

∞

n¼0

2nþ 1

nþ 1

X

n

m¼�n

f nmYnm þ Δ, (A.8)

where fnm = �δ gBnm/G and

Δ ¼
X

∞

n¼0

X

∞

m¼�n

nþ 2

2R
D2

Δρ
� �

nm
�

nþ 2ð Þ nþ 1ð Þ

6R2 D3
Δρ

� �

nm
þ ::

� �

Ynm (A.9)

accounts for higher order terms in the series.
In practical application for Moho feature determination the lower limit for the

summation is found to be about 10 (as the lower harmonics are related with deep
Earth gravity anomalies) and the upper limit should not exceed about 180.
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