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Chapter

Particle Swarm Optimization
Algorithms with Applications to
Wave Scattering Problems
Alkmini Michaloglou and Nikolaos L. Tsitsas

Abstract

Particle Swarm Optimization (PSO) algorithms are widely used in a plethora of
optimization problems. In this chapter, we focus on applications of PSO algorithms
to optimization problems arising in the theory of wave scattering by inhomoge-
neous media. More precisely, we consider scattering problems concerning the exci-
tation of a layered spherical medium by an external dipole. The goal is to optimize
the physical and geometrical parameters of the medium’s internal composition for
varying numbers of layers (spherical shells) so that the core of the medium is
substantially cloaked. For the solution of the associated optimization problem, PSO
algorithms have been specifically applied to effectively search for optimal solutions
corresponding to realizable parameters values. We performed rounds of simulations
for the the basic version of the original PSO algorithm, as well as a newer variant of
the Accelerated PSO (known as “Chaos Enhanced APSO”/ “Chaotic APSO”). Feasi-
ble solutions were found leading to significantly reduced values of the employed
objective function, which is the normalized total scattering cross section of the
layered medium. Remarks regarding the differences and particularities among the
different PSO algorithms as well as the fine-tuning of their parameters are also
pointed out.

Keywords: Swarm Intelligence, optimization, particle swarm optimization (PSO),
accelerated particle swarm optimization (APSO), chaos-enhanced APSO,
chaotic APSO (CAPSO), wave scattering, cloaking

1. Introduction

Particle Swarm Optimization (PSO) is a population-based, stochastic optimiza-
tion algorithm. It is modelled after the intelligent behavior patterns found in
swarms of animals when they manage their biological needs. It was first introduced
in 1995 [1], and since then many enhancements and new versions of the algorithm
have appeared. The model originates from the behavior of flocks (swarms) of birds
when in search of food sources. It was inspired by research carried out by Heppner
and Grenander [2], in order to experiment on a “cornfield model”. Exploiting these
studies, Kennedy and Eberhart developed the PSO algorithm, in which the mem-
bers of the swarm, called particles have some form of memory and common knowl-
edge and are motivated by a common goal; in the mathematical framework this goal
is the global optimum of the objective function of the optimization problem. The
particles’ positions represent the solutions, and depending on the method, they can

1



also have velocity or other characteristics, or even a societal structure. The swarm
acts in alliance, aims to be effective, and there exists enough individuality to achieve
diversity in possible solutions. By design, particle swarm optimization is inseparable
from Swarm Intelligence. The swarm, as defined in literature, is designed to follow
the basic principles of Swarm Intelligence, namely proximity, quality, diverse
response, stability and adaptability.

In this chapter, two PSO algorithms are presented. First, the original PSO, which
utilizes a global best position g ∗ and an individual best position x∗ for the particles,
which are described by both their position and velocity. This is considered to be the
basic PSO algorithm, and the version chosen [3] also utilizes an inertia mechanism
to describe the particles’movement. The second algorithm is an enhancement of the
Accelerated Particle Swarm Optimization (APSO) algorithm, referred to as the
Chaotic APSO (CAPSO) [4]. In this algorithm, the particles update their position in
a single step and are only described by position, not velocity vectors. Additionally,
they only use the global best position g ∗ as an attraction to the optimum. Specified
parameters get updated to fine tune the process, and precisely, the attraction
parameter β updates through the use of chaotic maps.

Both aforementioned algorithms have been applied to wave scattering problems,
and results of numerical implementations alongside with conclusions are provided.
Precisely, we consider the cloaking problem concerning the excitation of a layered
spherical medium with perfect electric conducting (PEC) core by an external
dipole. The main purpose is to determine suitable parameters of the magneto-
dielectric layers covering the PEC core so that the scattered far-field is significantly
reduced for a wide range of observation angles. Obtained optimal designs demon-
strating efficient cloaking performance are presented exhibiting reduced values of
the bistatic scattering cross section for realizable coatings parameters. It is particu-
larly stressed that the CAPSO determines optimal values of the scattering problem’s
variables, which yield highly-efficient cloaking designs by employing ordinary
coatings materials.

PSO algorithms in computational methodologies and engineering applications
involving electromagnetic waves were initially developed in [5, 6], where
implementations in antenna design were also proposed. A quantum PSO algorithm,
based on Quantum Mechanics rather than the Newtonian rules considered in the
original versions of the algorithm, was developed in [7] and applied for finding a set
of infinitesimal dipoles producing the same near and far fields of a circular dielectric
resonator antenna. A molecular dynamics formulation of the PSO algorithm leading
to a physical theory for the swarm environment was presented in [8] and applied to
problems of synthesis of linear array antennas. Variants of PSO algorithms with
relevant applications in electromagnetic design problems, like microwave absorbers
and base station antenna optimization for mobile communications were analyzed in
[9]. Specifically, concerning the cloaking behavior of layered media, related opti-
mization problems were investigated in [10–16]. Optimization techniques for meta-
devices design are overviewed in [17].

2. Particle Swarm Optimization (PSO)

In this section, the basic principles of Particle Swarm Optimization (PSO) are
presented and an in depth description of the algorithms that have been developed
and applied for the considered cloaking problems is given. After discussing the
theoretical basis of the swarm optimization method and its ties to Swarm Intelli-
gence, the PSO algorithm and the chaotic-enhanced version (CAPSO) of the accel-
erated particle swarm optimization (APSO) algorithm are described.
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2.1 Introduction to PSO

PSO is a population-based stochastic optimization algorithm, modelled after the
behavior of swarms of animals, like flocks of birds, swarms of various types of
insects or ants or school of fish [18]. In literature, it is also categorized as a
metaheuristic algorithm. Usually, the population is referred to as a swarm. These
types of methods are also considered to be and referred to as behaviorally-inspired,
opposed to evolutionary-based methods like genetic algorithms, although some
parallels can be drawn between them, with regards to their inner workings. Another
similar research field is artificial life. The term, as well as the algorithm, was
originally proposed in 1995 [1] and although PSO’s precursor was the study and
simulation of animal behavior (even in the hopes of studying human social behav-
ior), it grew into an optimizer, with a simple, yet well-defined description. By
definition, PSO is indissolubly linked to Swarm Intelligence.

The appeal of swarm optimizers is due to numerous reasons. There exist many
types of biological swarms, so one can safely assume that they constitute a promis-
ing pool of inspiration and resources to draw methods and conclusions from. The
global adaptive behavior of the swarm, and its co-operational behavior and decision
making, is practical but not strictly utilitarian, since a swarm behaves with fluid and
elegant coordination. Additionally, the way a biological swarm acts can be clearly
and directly perceived by humans. Thus, we have a better understanding of the
animals’ purpose, goals, communication and utility unlike other natural phenom-
ena, which can be way more abstract, complicating the creation of a well-structured
model or method.

Since the initial introduction of PSO, several variations of the method have been
introduced. A plethora of algorithms have been and are still being designed with
different parameters and applications in mind, in order to adjust to specific prob-
lems. These numerous variants are widely used and examined, and, thus, PSO has
grown to be a very effective technique. In the following subsection, a more generic
description of the swarm and its behavior is presented, while detailed descriptions
of specific algorithms are given in the sequel.

2.1.1 The Particle Swarm

The term “particle” refers to the points in the n-dimensional space (where n is
the number of variables of the objective function) which represent the biological
entities of the swarm. Let us assume that the representative animal species is birds.
The swarm consists of the entirety of the particles, making up the population. The
particles have neither mass, nor volume and although they could be considered
points in space, the term particle has been chosen as a good compromise, due to its
more active usage in literature [1].

Each particle maintains information about two characteristics; its position x and
velocity u. The position is strictly the most important characteristic, since it repre-
sents the solutions to the objective function of the optimization problem. The
particles also have some common memory of useful information, since they share
information regarding the best position the swarm has achieved (based on the
objective function), referred to as the “global best” g ∗ . In nature, this knowledge
could refer to food, shelter or destination. Depending on the variant or type of PSO
algorithm being used, they can also remember their individual best position x∗ , or a
set of best positions if they follow a different type of structure, or even a best
position that represents their social clan and/or leader.

According to [19], the biological swarm has three specific qualities. First, cohe-
siveness: the members are not unrelated to each other and all of them are part of the
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same group, thus to an extent, they “stick together”. Second, there is separation, the
members actively try to not collide with each other and move with some respect to
the average distance between them. Last, there is alignment, the whole population
actively tries to move towards the same direction as a group effort. In Biology, this
is the source of food, while in Optimization it is the optimum of the problem. Of
course, since particles are designed to be without mass and volume, separation is
not a physical quality the swarm is forced to have. When converging to a solution,
all particles end at or near to the specific position representing this solution. How-
ever, separation exists as a principle, since particle “collision” does not hinder their
movement in any way, shape or form. Particles are separate entities to each other to
a certain degree since they are created with their individual attributes (e.g. initial
positions, individual best, clan leader and more, depending on the algorithm) and
act accordingly, having a degree of autonomy, while searching in unison with
respect to the swarm.

2.1.2 Basic Principles of Swarm Intelligence

In order to clearly establish the link between PSO and Swarm Intelligence, we
present a comprehensible list of Swarm Intelligence principles, in reference to
Millonas’ categorization [1, 18, 20]. Let us refer to a group of entities that collec-
tively act and behave. This group has Swarm Intelligence if these principles are true.

1.Proximity principle. The members of the group should be able to handle and
do elementary space and time computations. This means that the group can
behaviorally respond to environmental stimuli and changes. Also, they should
be able to do so in order to better conduct their main utilities and functions
which are specific to this group. Such activities vary, depending on the group,
for example a swarm of ants could have a main utility of food foraging.

2.Quality principle. The group should not only react to time and space stimuli,
but also check for quality factors and parameters, e.g. safety.

3.Principle of diverse response. The group should not respond to its
environment in an absolutely ordered manner. There should be safety locks,
and insurance policies for it to survive in case of unpredicted changes and
fluctuations in the environment. Resources should not all rely to a single point
of focus. Therefore, the swarm must be prepared to act and respond with
diverse and alternative solutions.

4.Principle of stability. The group as a whole, should not reform its behavior
patterns into a completely alternate mode every time a change happens, since
such an intense structural and behavioral change wastes too much energy, and
might eliminate the possibility of reaching good results.

5.Principle of adaptability. However, the group should also be able to switch its
behavioral mode, provided this change is a positive one and the group has
ways of knowing so.

One can observe that stability and adaptability are principles that go hand-in-
hand and the best strategy to approach, is to safely explore a viable middle ground.
Some level of randomness or noise should exist in the group, to a degree that diverse
response is allowed to happen. That is the reason why such parameters are usually
very important to the algorithms and can dramatically change their results.
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PSO dictates that the swarm acts in a way which is complicit with the aforemen-
tioned principles. In the original PSO publication, Kennedy and Eberhart do confirm
that the PSO algorithm has been designed to function in this manner. Similar expla-
nations and proofs were provided in literature [1, 18]. As it has been briefly men-
tioned, in PSO, particles maintain their position and velocity, and have the ability to
react to environmental time and space stimuli in order to update them. They do so in
time steps-iterations, thus following the proximity principle. The swarm reacts to the
global best value g ∗ alongside with other quality factors when doing said updates, so
it enforces the quality principle. Said quality factors, do not prevent the diverse
response, because the swarm avoids behaving in an excessively restricted manner. This
is encouraged by diversity and noise existing within the swarm. Lastly, the swarm
bases its behavioral change(s) on a well-defined criterion (which includes the global
best position g ∗ ), thus providing adaptability without jeopardizing the swarm’s
stability. The mode of behavior changes when it is beneficial and cost-effective.

2.2 The PSO algorithm

In this section, we refer to the original PSO algorithm [1], alongside with the
upgrade proposed in 1998 [3] which utilizes an inertia mechanism.

2.2.1 Description

The PSO algorithm follows all the principles and characteristics mentioned so
far. By default, a maximization optimizer is considered due to the way the model
works, but there exist methods to effectively utilize the algorithm in order to find
minima as well.

The behavior of the flock was heavily inspired by and based upon Heppner’s [2]
simulation of a bird flock, referred to as a cornfield model or cornfield vector. Heppner
wanted to simulate the way a flock of birds moves while searching for food (namely
“cornfield” in the simulation). The birds’ behavior in real life, hints to the existence
of what we refer to as a common sense or knowledge, meaning that members of the
flock have the ability to share knowledge originating from their peers without
having experienced it themselves. This serves as both a cognitive function and a
means of communication. Very often, we do witness this phenomenon; flocks of
birds can discover a new bird feeder in their area in a matter of few hours, and an
increasing number of them will systematically start visiting it. This behavior was
modelled in the simulation, in which the birds were given two types of memory. For
the flock’s memory of food sources they were given what we previously referred to
as the global best g ∗ and for their individual memory, they kept information of the
best position they have individually visited, their x∗ . There were also extra param-
eters to adjust how effectively each memory spot affects the birds’ movement and
behavior.

Kennedy and Eberhart [1] utilized Heppner’s simulation model, and designed
the PSO algorithm in order to use these advantageous observations. So, in the PSO
algorithm, the model is as follows.

1.When particles locate a good solution to the optimization problem, this
knowledge is transmitted to the whole swarm, meaning that the g ∗ value is
known to each member.

2.All particles do gravitate towards good solutions, but not in an absolute forced
way, because,
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3.all particles maintain their personal memory spot for their own value x∗ , thus
preserving some ability for independent thinking.

The particles move with respect to Newton’s laws of motion, while there exist
parameters to insert some randomness. There exist also learning rates that the
particles adhere to.

In 1998, Shi and Eberhart [3] proposed strategies on how to fine-tune the
parameters of the original PSO algorithm. Particularly, they suggested the use of an
inertia weight mechanism θ applied to the particles’ movement because it was
found in experimentation that the particle velocities built up too fast and the
maximum of the objective function can be skipped. Usually, the inertia decreases in
a linear manner while the iterations of the algorithm run, and it gets updated once
per iteration i. For the inertia, the values θmax ¼ 0:9 and θmin ¼ 0:4 are commonly
used [19].

θi ¼ θmax �
θmax � θmin

imax
i (1)

Therefore, the velocity and position updates are described, respectively, in the
following formulae, with respect to iteration i:

ui ¼ θiui�1 þ c1r1 x
∗ � xi�1½ � þ c2r2 g ∗ � xi�1

� �

(2)

xi ¼ xi�1 þ ui, (3)

where the parameters c1 and c2 are the cognitive (individual) and social (group)
learning rates and are usually assumed to both be 2, so that the particle overflies the
target approximately half of the time. It is interesting to note that if c1 and c2 are
different to each other, then the particles will in time favor one type of best position
(or behavior) over the other. In a way, this would conceptually translate to the
particles choosing to be more selfish than social and vice versa. This could lead to
less optimal solutions than the ones expected. The parameters r1 and r2 are uni-
formly distributed random numbers in the range from 0 to 1.

2.2.2 Algorithm

After describing the model of the algorithm, a concrete and defined algorithm
can be presented for the computational implementation. The algorithm is depicted
in pseudo code form in Figure 1.

Regarding the various parameters, we make the following remarks. Usually a
size of 20 to 30 for N is assumed, but these numbers can vary depending on the
optimization problem. The bigger the swarm, the more evaluations of the objective
function f are made during each iteration, thus due to the computations, the
algorithm becomes more time consuming. From a programmer’s point of view, f
does not necessarily need to be an input, however, it is depicted in this manner for
reasons of clarity.

2.3 The CAPSO algorithm

As we have previously mentioned, in the original version of the PSO algorithm,
both a global (g ∗ ) and an individual best (x∗ ) are used, with the particles’ position
being greatly affected by them. The accelerated particle swarm optimization algo-
rithm (APSO) however, introduced by Yang [21], follows a different approach. The
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chaos-enhanced particle swarm optimization, or chaotic APSO (CAPSO) is a
variation of the APSO algorithm.

2.3.1 Accelerated Particle Swarm Optimization

It is noted that the individual best x∗ in PSO, acts as a creator of diversity in the
swarm. That is not necessarily the only purpose of the individual best, but it is a
very prominent one. Thus, this diversity could be recreated by utilizing randomness
to bypass the use of the individual best. There exist some algorithms that belong in
this more “simplistic” philosophy, and try to use only the most necessary parame-
ters and formulae. The accelerated particle swarm optimization algorithm (APSO),
follows this route. APSO has been applied in many optimization problems and is a
solid method with good results. One can safely develop and use APSO, and similar
methods or variants, while keeping in mind that PSO, or even more its standard
versions, is still in general a better option if the optimization problem of interest is
highly nonlinear and multimodal [21].

Ergo, the APSO algorithm only uses the global best g ∗ to generate the velocity
vector u, resulting to using a simpler mathematical formula. For a specific particle,
during the i� th iteration, the velocity is:

Figure 1.
The PSO algorithm pseudo code.
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ui ¼ ui�1 þ α r� 1=2ð Þ þ β g ∗ � xi�1

� �

(4)

where r is a random variable with values from 0 to 1, and the 1/2 is used as a
means of convenience. It is suggested [21], that a normal distribution αri is used,
where r is drawn from N(0,1). Thus, velocity and positions updates are given,
respectively, by

ui ¼ ui�1 þ β g ∗ � xi�1

� �

þ αri�1, (5)

xi ¼ xi�1 þ ui (6)

In [21], the following simplified formula is also suggested for the particle
location update in a single step:

xi ¼ 1� βð Þxi�1 þ βg ∗ þ αri�1, (7)

hence there is no need of utilizing structs or vectors for the velocity, while
separate initializations and updates are also avoided.

The typical parameter values for this accelerated PSO are α∈ 0:1, 0:4½ � and
β∈ 0:1, 0:7½ �. More generally, we must keep in mind that these parameters should
scale with respect to the scales of the problem variables. A further improvement to
APSO [21] is to reduce the randomness as iterations proceed. This means that we
can use a monotonically decreasing function specifically for the parameter α, e.g.

α ¼ α0γ
t, 0< γ < 1ð Þ (8)

or

α ¼ α0e
�γt: (9)

Other non-increasing functions α tð Þ can be used like the example provided in
code in [21].

2.3.2 Chaos-Enhanced APSO

Gandomi et al. proposed a variation of the APSO algorithm, the chaotic APSO
(CAPSO) [4]. According to the study, the attraction parameter β in (Eq. (7)) is
crucially important in determining the speed of the convergence and how the
algorithm behaves, since this parameter characterizes the variations of the global
best attraction. A well tuned β is of great importance. After parametric investiga-
tions, it is suggested that β should be in 0:2, 0:7½ � for most problems solved by
APSO. Additionally, it is noted that the parameter β has no practical reason of
remaining a constant. On the contrary, a varying β can offer an advantage in terms
of convergence speed and algorithm behavior.

The method suggested for tuning the parameter β is chaotic maps. In Mathemat-
ics, chaotic maps are evolutionary functions that exhibit some sort of chaotic
behavior [22]. Chaotic maps often occur in the study of dynamical systems. Also,
they are used to generate fractals. They can change in time in a continuous or
discrete manner, but usually chaotic maps are discrete ones. Therefore, they take
the form of iterated functions. Chaotic maps are normalized, their variations are
always between 0, 1½ �, so they can safely be used for tuning the parameter β.

In the original proposal of CAPSO [4], many chaotic maps were tested in terms
of convergence and effectiveness. The results were listed in detail, and it was noted
that the Sinusoidal map was the best performing one, and the Singer map was the
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second best. Consequently, the Sinusoidal map is the best choice for applications. It
was noted that chaotic maps with a unimode centered around their middle tend to
produce better results, and Sinusoidal and Singer maps fall into this category. They
are as follows:

Sinusoidal Map:

xkþ1 ¼ axk
2 sin πxkð Þ (10)

As an alternative, the following simplified form has also been suggested and
applied [4, 23]:

xkþ1 ¼ sin πxkð Þ (11)

Singer Map:

xkþ1 ¼ μ 7:86xk � 23:31xk
2 þ 28:75xk

3 � 13:302875xk
4

� �

, (12)

where μ∈ 0:9, 1:08½ �.

2.3.3 The CAPSO Algorithm

Having described the basis of the APSO algorithm, as well as the improvements
added from chaotic maps, the CAPSO algorithm is now presented in pseudo code
form in Figure 2.

The following information is provided for the various paramaters. Usually a size
of 40 for N is considered sufficient, but these numbers can vary depending on the
optimization problem. The parameter α gets updated through a chosen α tð Þ (which

Figure 2.
The CAPSO algorithm pseudo code.
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is a monotonically decreasing function or a non-increasing function in general). For
α, the initial value depends on the scale of the problem variables and on α tð Þ. One
can apply the values proposed for APSO, or alternatively α ¼ 10 can be chosen for
an initial value as a starting point. Testing with different initial values is encour-
aged. The parameter β is updated through a chaotic map, preferably the Sinusoidal
map. In the original paper [4], the maximum iteration number is suggested to be
250. One must keep in mind that depending on the problem, these values might
have to be re-evaluated and re-adjusted.

2.4 Development suggestions

Many suggestions can be made regarding the robustness of algorithms, as well as
the speed, effectiveness and organization of the code. All these highly depend on
the programming language, development technique, programmer expertise, com-
putational load of the optimization problem and numerous more parameters. When
developing these algorithms, we must take into consideration all of the above, and
more, since applications can greatly diversify from one another.

Below, two suggestions are made regarding the PSO and APSO/CAPSO algo-
rithms, which, when applied, improved the testing process on a complicated wave
scattering optimization problem detailed below. However, they are not heavily
dependent on the nature of said optimization problem, and they could be proven to
be helpful regardless.

1.Application of constraints/bounds. A method that reassures that the
variables remain in their allowed bounds is vital. This is very common in
optimization. If a variable crosses a bound, the lower or higher permitted value
can be enforced, with respect to which bound was crossed. This reassures that
the swarm will not go out of bounds if it gets driven to do so by a nearby
invalid optimum. Additionally, it ensures that the final output of the algorithm
is a valid and applicable one, even if it is not the best optimum. For complex
optimization problems, constraint/bound checking can be complicated, if for
example the variables have to follow specific rules, or have specific
characteristics in relation to each other. We can see this technique being
applied in APSO’s code [21].

2.Convergence checking. By default, in most PSO related algorithms, it is
implied that the algorithm stops when it reaches a pre-defined maximum of
iterations. However, many times, the swarm can find a solution faster than
that. Thus, if there is a convergence criterion (representing the degree in
which the population agrees on a solution), it can be applied as an end
condition for the algorithm. For example, a very common convergence
criterion is standard deviation.

3. Particle swarm optimization in wave scattering problems

In this section, PSO optimizations to representative applications of wave scat-
tering theory are presented. Precisely, we investigate the electromagnetic cloaking
of spherically layered media excited by an external source. The optimizations con-
cern the determinations of the physical (material) and geometrical characteristics of
the layered medium so that the scattered far field generated by the layered medium
is significantly reduced.

10

Optimization Algorithms



The scattering geometry is depicted in Figure 3. It consists of a layered spherical
medium V with external radius a1. The interior of V is divided by P� 1 concentric
spherical interfaces r ¼ ap p ¼ 2, … ,Pð Þ into P� 1 homogeneous magneto-
dielectric layers Vp p ¼ 1, … ,P� 1ð Þ, consisting of materials with real relative
dielectric permittivities εp and magnetic permeabilities μp, and surrounding a

perfect electric conducting (PEC) core (layer VP). The exterior V0 of V has
permittivity ε0, permeability μ0, and wavenumber k0. Medium V is excited by an
external magnetic dipole, with position vector r0 on the z-axis and dipole moment
along the direction ŷ.

The exact solution of the considered scattering problem was determined in
[24–26] by means of a combined Sommerfeld and T-matrix methodology in con-
junction with suitable eigenfunctions expansions. Specifically, the electric fields in
each spherical shell are decomposed into primary and secondary components,
which are then expressed as series of the spherical vector wave functions. The
unknown coefficients in the expansions of the secondary fields are determined
analytically by imposing the transmission boundary conditions on the interfaces of
the spherical shells and applying a T-matrix method. It is emphasized that the exact
solution of the scattering problem (here this is obtained in the form of a Mie series)
is crucial for the fast and efficient implementation of the PSO algorithm in the
present setting.

By applying the above-described methodology, we obtain the following
expression of the total scattering cross section

Figure 3.
Geometrical configuration of the considered spherically-layered medium excited by an external dipole.
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σt r0ð Þ ¼
1

4π

ð

S2
σ θ,ϕ; r0ð Þds r̂ð Þ

¼
2π

k20

X

∞

n¼1

2nþ 1ð Þ γnj j2 þ δnj j2
h i

,

(13)

where S2 denotes the unit sphere in 
3, and σ θ,ϕ; r0ð Þ is the bistatic (differen-

tial) scattering cross section given by

σ θ,ϕ; r0ð Þ ¼
4π

k20
Sθ θ; r0ð Þj j2 cos 2ϕþ Sϕ θ; r0Þð j2 sin 2ϕ

�

�

i

,
h

(14)

while functions Sθ θ; r0ð Þ and Sϕ θ; r0ð Þ are defined by

Sθ θ; r0ð Þ ¼
X

∞

n¼1

�1ð Þn 2nþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ 1ð Þ
p δn

P1
n cos θð Þ

sin θ
� γn

∂P1
n cos θð Þ

∂θ

� 	

, (15)

Sϕ θ; r0ð Þ ¼
X

∞

n¼1

�1ð Þn 2nþ 1ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n nþ 1ð Þ
p γn

P1
n cos θð Þ

sin θ
� δn

∂P1
n cos θð Þ

∂θ

� 	

, (16)

with P1
n the first-order Legendre function of degree n, and

γn ¼
hn k0r0ð Þ

h0 k0r0ð Þ
inαn, δn ¼

ĥ0n k0r0ð Þ

ĥ0 k0r0ð Þ
in�1βn, (17)

where hn is the spherical Hankel function of order n, and ĥn zð Þ ¼ zhn zð Þ. The
coefficients αn and βn are defined in [24].

The objective function we consider in the optimization schemes is the normal-

ized total scattering cross section σt r0ð Þ= πa2PEC
� �

, where aPEC is the radius of the PEC
sphere to be cloaked when covered by suitable coating magneto-dielectric layers.
Achieving small values of this objective function provides efficient designs in terms
of significant reductions in the scattered far-field. In [27], the backscattering cross
section σ θ, 0; r0ð Þ was used as the objective function. The latter can yield efficient
designs only in traditional monostatic scenarios, while the present consideration of
the total scattering cross section as the objective function shows the actual scattered
far-field’s characteristics for all observation angles.

For the numerical solution of the scattering problem, we used the code devel-
oped in [24], which is valid for an arbitrary number P of layers. The above-
described PSO algorithms were implemented in MATLAB®. The swarms were
MATLAB structs or arrays for which we followed the steps of Algorithms 1 or 2
presented above. The components of the position vector consisted of the optimiza-
tion variables ap of the radii, εp of the dielectric permittivities, and μp of the

magnetic permeabilities of the first P� 1 dielectric layers. The radius aP of the PEC
core was chosen constant at k0aP ¼ k0aPEC ¼ 2π (one free-space wavelength). In
this way, for a medium with P layers, the number of optimization variables for the
particles position is 3 P� 1ð Þ.

The conducted experiments focused on small values of P in order to obtain
designs with a relatively small number of coating layers, which also facilitate the
fabrication procedure. For the variations of the variables of the optimization prob-

lem, different ranges were considered. Particularly, the differences k0 apþ1 � ap
� �

between two consecutive layers radii were considered in π
10 , π
� �

or π
10 ,

π
2

� �

, while the

values of the permittivities εp and permeabilities μp in [0.5,10], [0.4,5] or [0.5,5].
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The external magnetic dipole was taken at r0 ¼ 5aPEC. The two above-described
particle swarm optimization algorithms were developed to minimize the normal-
ized total scattering cross section for a spherical medium with P ¼3 or 4 total
number of layers. The actual reductions in the far-field with respect to the angles of
observation are demonstrated in Figures 4 and 5, depicting the normalized bistatic

scattering cross sections σ θ,ϕ; r0ð Þ= πa2PEC
� �

versus the angle θ in the xOz and yOz

planes, respectively. In these figures, the corresponding cross section curves for a
bare (containing no coating layers) PEC sphere are also shown, for comparison
purposes.

Significant reductions in the far-field contributions with respect to the bare PEC
sphere are observed for large ranges of the observation angles. Particularly, the
CAPSO algorithm determines optimal variables corresponding to notably smaller
objective function’s values for a wide range of observation angles than the classic
PSO algorithm. Moreover, the improved performance of the CAPSO algorithm is
exhibited by the fact that the attained solutions yield reduced scattered far-field’s
values for all angles in the yOz plane and for nearly all angles in the xOz plane (apart
from a resonance region of the bare PEC cross sections curves around θ ¼ 140o).
Another interesting conclusion is that the optimal solutions for P ¼ 3 (two covering
layers) generate smaller–in general–far field’s values for a wider angular range than
the optimal solutions for P ¼ 4 (three covering layers).

Figure 4.
Normalized bistatic cross section in the xOz plane versus the angle θ for P ¼ 3 (left panel) and P ¼ 4 (right
panel) optimized layers with parameters computed by the classic PSO and the CAPSO algorithms.

Figure 5.
As in Figure 4, but for the normalized bistatic cross section in the yOz plane.
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Besides, the effectiveness of the cloaking performance of the layered medium
with respect to variations of the dipole’s distance from the external boundary r ¼ a1
of the medium as well as the sensitivity of the results versus inevitable fabrications
imperfections are also important to be examined. Some preliminary numerical
results to this direction were presented in [28] by applying the classic PSO algo-
rithm. Extensions to spherical antennas [29] and inhomogeneous media [30] can
also be considered by modifying and extending the algorithms presented in this
work.

4. Conclusions

Since its introduction to the scientific community, particle swarm optimization
(PSO) has gone through many enhancements and variants, and has been applied to
numerous diverse problems. The particles that compose the swarm’s population act
in a manner that follows the basic principles of Swarm Intelligence, as presented in
literature. The algorithms utilize the intelligent swarm in order to discover the
optima of objective functions. In this chapter, two algorithms were described. The
PSO algorithm (1998 version), and the CAPSO algorithm which is a variant of the
APSO algorithm. In the PSO, particles move with respect to Newton’s laws of
motion, and they are described by both position and velocity. Particles’ position and
velocity updates are affected by the global best g ∗ at the time and the individual
best x∗ . The algorithm includes their learning rates, adjusted in a manner that
ensures equal weights to social and individual learning. An inertia mechanism is
added to prevent the particles from moving too quickly, thus missing the discovery
of optimal solutions. In contrast, the CAPSO algorithm particles do not keep mem-
ory of an individual best. They follow a more simplistic approach and update their
position in a single step, affected only by the global best at the time. However, there
are two parameters, α and β to fine-tune the swarms movement and insert neces-
sary randomness. In CAPSO, the very crucial attraction parameter β, updates
through chaotic maps. Specifically, in this work, the Sinusoidal map and the Singer
map were considered and applied. It is noted that these maps have a unimode
centered around their middle, and have provided the best results in relative
research and testing. Both of the discussed algorithms were also provided in
pseudocode format.

The PSO and CAPSO algorithms were developed and tested for cloaking prob-
lems concerning the covering of a perfectly conducting core by a number of coating
layers with optimal parameters so that the total scattered field is significantly
reduced. The resulting scattering performance of the medium was examined and it
was demonstrated that both PSO and CAPSO algorithms are effective in achieving
the goal of the scattered field reduction. Particularly, the CAPSO was shown to be
successful in determining optimal solutions yielding enhanced cloaking behavior for
a notably large range of the observation angles.

It is noted that the developed algorithms do not utilize a population topology
mechanism since the global best is well known to all particles. Thus, in future
research, alternative variants of these algorithms could be explored, for example the
SPSO 2011 [31] or the Adaptive Clan PSO [32].
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Abbreviations

PSO Particle Swarm Optimization
APSO Accelerated Particle Swarm Optimization
CAPSO Chaotic Accelerated Particle Swarm Optimization
PEC Perfect Electric Conducting
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