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Chapter

A Modified Spectral Relaxation
Method for Some Emden-Fowler
Equations
Gerald Tendayi Marewo

Abstract

In this chapter, we present a modified version of the spectral relaxation method
for solving singular initial value problems for some Emden-Fowler equations. This
study was motivated by the several applications that these equations have in Sci-
ence. The first step of the method of solution makes use of linearisation to solve the
model problem on a small subinterval of the problem domain. This subinterval
contains a singularity at the initial instant. The first step is combined with using the
spectral relaxation method to recursively solve the model problem on the rest of the
problem domain. We make use of examples to demonstrate that the method is
reliable, accurate and computationally efficient. The numerical solutions that are
obtained in this chapter are in good agreement with other solutions in the literature.

Keywords: Emden-Fowler equations, Lane-Emden equations, singular initial value
problem, spectral relaxation method, numerical method

1. Introduction

The singular initial value problem

d2y

dx2
þ γ

x

dy

dx
þ r x, yð Þ ¼ s xð Þ, 0< x, γ >0

y 0ð Þ ¼ α,
dy

dx
0ð Þ ¼ 0, α∈

(1)

for the Lane-Emden Eq. (1) models several phenomena such as the thermal
behaviour of a spherical cloud of gas acting under the mutual attraction of its
molecules [1], the temperature variation of a self gravitating star, the kinetics of
combustion [2], thermal explosion in a rectangular slab [3] and the density distri-
bution in isothermal gas spheres [4]. Moreover, Eq. (1) has been used many a time
as a benchmark for new methods.

A particular case of Eq. (1) is the Emden-Fowler equation of the first kind:

d2y

dx2
þ 2

x

dy

dx
þ ym ¼ 0, y 0ð Þ ¼ 1,

dy

dx
0ð Þ ¼ 0,m∈ (2)

As mentioned in [5], Eq. (2) represents the dimensionless form of the governing
equation for the gravitational potential of a Newtonian self-gravitating, spherically
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symmetric, polytropic fluid. The equation provides a useful approximation for
stars.

A more general form for Eq. (2) is the Emden-Fowler equation

d2y

dx2
þ γ

x

dy

dx
þ f xð Þg yð Þ ¼ 0 (3)

which can be written as

py0ð Þ0 þ qy ¼ h x, y, y0ð Þ whereðÞ0 ¼ d

dx
ðÞ, (4)

an equation which was discussed in [6]. An existence result for the solution is
given therein under certain conditions on p xð Þ, q xð Þ and h x, y, y0ð Þ.

Exact solutions are available for particular cases of Eq. (3) [7], but not for the
general case according to the best of our knowledge. This is motivation enough for
seeking approximate solutions. To this end several approximate analytical methods
were used by other researchers to solve Eq. (3). Van Gorder [8] made use of the
Homotopy analysis method (HAM) and its variant, the Optimal homotopy analysis
method, to solve a boundary value problem for the Lane-Emden equation of the
second kind. The two respective analytical solutions that they obtained were in
strong agreement. The Homotopy perturbation method (HPM) is another variant of
the HAM that was used by Chowdhury and Hashim [9] to solve an initial value
problem for Eq. (3). Their analytical solutions were the same as those that were
obtained by Wazwaz [10] using the Adomian decomposition method (ADM).
Chowdhury and Hashim observed that the HPM was less computationally expen-
sive than the ADM. Wazwaz [11] made use of the variational iteration method
(VIM) to solve both initial value problems and boundary value problems for Eq. (3)
and for some inhomogeneous Emden-Fowler equations. The results that they
obtained demonstrated the reliability and effectiveness of the VIM.

Some numerical methods have been used by other researchers to approximate
solutions to Eq. (3). Many of these numerical methods fall in the class of collocation
methods. Examples of these collocation methods include but are not limited to the
Chebyshev wavelet finite difference method (CWFDM) [12], the Haar wavelet
collocation method (HWCM) [13], the Taylor wavelet method (TWM) [14] and the
Radial basis function - differential quadrature method (RDF-DQM) [15]. One dis-
tinct feature of these collocation methods is the choice of collocation points for
discretizing the problem domain. Another distinct feature is the choice of basis
functions that are used either for constructing numerical solutions or for numerical
differentiation. The CWFDM makes use of Chebyshev-Gauss-Lobatto collocation
points and Chebyshev wavelet finite difference basis functions. The HWCM makes
use of the collocation points

x j ¼ j� 0:5ð Þ=2M, j ¼ 1,⋯, 2M

on the problem domain 0,L½ �, and the method uses integrals of Haar wavelets as
basis functions. The TWM uses roots of shifted Legendre polynomials as collocation
points, and as basis functions the method uses Taylor wavelets which are special
functions that defined in terms of Taylor polynomials. Convergence results for the
Taylor wavelet solution were presented in [14]. The RDF-DQMuses collocation points

x j ¼
2

L
1� cos

j� 1

N � 1

� �� �

, j ¼ 1,⋯,N

2
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on the problem domain 0,L½ � and the method makes use of Radial basis functions.
Unlike making use of collocation methods for solving Eq. (3) Van Gorder and
Vajravelu [1] used the Runge–Kutta-Felhberg 4-5 (RKF45) method to validate the
analytical solutions that they obtained from using the HAM and from using the
traditional power series method. The RKF45 method is an embedded Runge–Kutta-
pair which makes use of an adaptive stepsize to control the method and to ensure
stability properties such as A-stability. See [16] for more details on the RKF45method.

In this chapter we make use of a modified version of the spectral relation method
(SRM) to solve an initial value problem for Eq. (3). We denote our method by MSRM.
The SRM was successfully used to solve fluid flow problems by for example Motsa
[17], Motsa et al. [18], Shateyi et al. [19] and Gangadhar et al. [20] to mention a few. In
[17–20] the SRM was shown to be accurate, computationally efficient and easy to
implement. Moreover, the SRM was applied only after transforming the governing
partial differential differential equations to ordinary differential equations. However,
not so long ago the SRM was modified in such a way that it was directly applicable to
partial differential equations. See for example [21]. The SRM was used to solve other
types of problems such as hyperchaotic systems [22]. It is to the best of our knowledge
that theMSRM has not been used in existing literature.We chose theMSRM because it
is not computationally intensive and it is easy to implement.

In Section 2 we describe the MSRM for the model problem. In Section 3 we make
use of examples to demonstrate the accuracy and computational efficiency of the
MSRM. Section 4 concludes this chapter.

2. The MSRM for the model problem

We seek an approximate solution to

y00 þ γ

x
y0 þ f xð Þg yð Þ ¼ 0, 0< x≤L, y 0ð Þ ¼ α, y0 0ð Þ ¼ 0 (5)

where γ >0,L, α are given constants and f and g are given functions.
We follow the idea behind the solution method by Ramos [23], where the

singularity at x ¼ 0 is isolated in a sufficiently small subinterval Iε ¼ 0, ε½ � of
I ¼ 0,L½ � where ε>0. The point x ¼ ε splits interval I into two subintervals: Iε and
I � Iε ¼ ε,L½ �. A linearisation method is used to solve Eq. (5) restricted to Iε, i.e.,
near the singularity at x ¼ 0. In order to improve the accuracy of the method on the
subinterval I � Iε we form a partition

I � Iε ¼ ∪M
m¼1Imwhere Im ¼ xm�1, xm½ �, x0 ¼ εandxM ¼ L (6)

The method by Ramos proceeds by using the same linearisation method on the
subintervals Im, m ¼ 1,⋯,Mð Þ of I � Iε, i.e. away from the singularity. To this end, at
the interface xm�1 of Im�1 and Im we make use the solution of Eq. (3) restricted to
Im�1 to generate the initial conditions for Eq. (3) restricted to Im. This ensures
continuity of the solution. In this chapter we avoid linearisation on I � Iε by making
use of the SRM on the subintervals of I � Iε. However, as was done in [23] we make
use of linearisation on Iε. This approach results in the MSRM. A detailed description
of the MSRM is given in Sections 2.1 and 2.2.

2.1 Near the singularity

Let ε∈ 0,Lð Þ be a sufficiently small number. Restrict problem (5) to 0, ε½ � and
re-arrange to get

3
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y00 ¼ � γ

x
y0 þ f xð Þg yð Þ

h i

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

u x, y, y0ð Þ

, 0< x≤ ε, y 0ð Þ ¼ α, y0 0ð Þ ¼ 0 (7)

If we Taylor expand u about ε0 ¼ ε, y 0ð Þ
|ffl{zffl}

y0

, y0 0ð Þ
|ffl{zffl}

y00

0

B
@

1

C
A and neglect higher order

terms we get

u x, y, y0ð Þ ¼ u ε0ð Þ
|fflffl{zfflffl}

u0

þ uy ε0ð Þ
|fflffl{zfflffl}

H0

y� y0
� �

þ uy0 ε0ð Þ
|fflfflffl{zfflfflffl}

G0

y0 � y00
� �

þ ux ε0ð Þ
|fflfflffl{zfflfflffl}

L0

x� εð Þ

where us denotes ∂u
∂s . Consequently, Eq. (7) can be replaced by

y00 ¼ u0 þH0 y� y0
� �

þG0 y0 � y00
� �

þ L0 x� εð Þ, 0≤ x≤ ε, y 0ð Þ ¼ α, y0 0ð Þ ¼ 0,

(8)

where the differential equation now holds at x ¼ 0 because the singularity there

is no longer present. If H0 6¼ 0 and R0 ≔ G0=2ð Þ2 þH0 >0, then problem (8) has
analytical solution [23]

y xð Þ ¼ A0 exp λþ0 x� εð Þ
� �

þ B0 exp λ�0 x� εð Þ
� �

þ C0 x� εð Þ þD0 (9)

for 0≤ x≤ ε, where λ�0 ¼ G0=2�
ffiffiffiffiffiffi
R0

p
,C0 ¼ �L0=H0,

D0 ¼ � G0C0 þ P0ð Þ=H0,P0 ¼ u0 �H0y0 � G0y
0
0,

A0 ¼ exp λþ0 ε
� �

λþ0 � λ�0
y00 � C0 � λ�0 y0 þ C0ε�D0

� �� �
,

B0 ¼ exp λ�0 ε
� �

λþ0 � λ�0
λþ0 y0 þ C0ε�D0

� �
� y00 � C0

� �� �

Thus

y εð Þ ¼ A0 þ B0 þD0
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

α0

and y0 εð Þ ¼ λþ0A0 þ λ�0B0 þ C0
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

α00

(10)

We take α0 and α00 as initial values for problem (7) restricted to ε,L½ � in the next
section.

2.2 Away from the singularity

We seek y xð Þ satisfying

y00 þ γ

x
y0 þ f xð Þg yð Þ ¼ 0, ε≤ x≤L, y εð Þ ¼ α0, y

0 εð Þ ¼ α00 (11)

In this section we begin by describing the SRM for problem (11). In practical
applications it is usually important to obtain a solution to (11) which possesses a
prescibed degree of accuracy. To this end we make use of the SRM on a partition of
the problem domain ε,L½ �. This is our last task in this section.

4
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The first step of the SRM for (11) is to let v ¼ y and w ¼ v0 so that we obtain the
equivalent problem

v0 ¼ w, v εð Þ ¼ α0, (12)

w0 þ γ

x
wþ f xð Þg vð Þ ¼ 0,w εð Þ ¼ α00 (13)

for ε≤ x≤L which upon making use of the change of variable

x ηð Þ ¼ Lþ ε

2
þ L� ε

2
η

becomes

β
dv

dη
¼ w, v �1ð Þ ¼ α0 (14)

β
dw

dη
þ γ

x ηð Þwþ f x ηð Þð Þg vð Þ ¼ 0,w �1ð Þ ¼ α00 (15)

for �1≤ η≤ 1 where β ¼ 2= L� εð Þ: As described in [19] the next step of the SRM
mimicks the Gauss–Seidel method for linear systems and it yields the iteration

β
dvrþ1

dη
¼ wr

|{z}

R 1ð Þ ηð Þ

, vrþ1 ηNð Þ ¼ α0 (16)

β
dwrþ1

dη
þ γ

x
wrþ1 ¼ �f x ηð Þð Þg vrþ1ð Þ

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

R 2ð Þ ηð Þ

,wrþ1 ηNð Þ ¼ α00 (17)

for �1 ¼ ηN ≤ η≤ η0 ¼ 1 where r ¼ 0, 1,⋯ and on �1, 1½ � we formed a grid
consisting of the Chebyshev-Gauss-Lobatto collocation points

ηi ¼ cos
πi

N

� �

, i ¼ 0, 1,⋯,N: (18)

If the initial approximations v0 and w0 to v and w, respectively, are prescribed
then Eqs. (16) and (17) generate sequences vrf g∞r¼1 and wrf g∞r¼1 of consecutive
approximations. To this end we assume that vr and wr are known at the end of the

rth iteration. Once Eq. (16) is solved for vrþ1 the right hand side R 2ð Þ of Eq. (17)
becomes known and we solve this equation for wrþ1. Since vrþ1 and wrþ1 are now
known, we proceed in a similar manner to compute vrþ2 and wrþ2, and so on. As
done in [19] we solve Eqs. (16) and (17) by making use of Chebyshev differentia-
tion [24] to obtain

D̂
|{z}

A1

vrþ1 ¼ R 1ð Þ, vrþ1 ηNð Þ ¼ α0, (19)

D̂þ γdiag 1=x η0ð Þ,⋯, 1=x ηNð Þ½ �
� �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

A2

wrþ1 ¼ R 2ð Þ,wrþ1 ηNð Þ ¼ α00 (20)

where D̂ ¼ βD,D is the N �N Chebyshev differentiation matrix,

5
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diag b0,⋯, bN½ � ¼
b0

⋱

bN

0

B
@

1

C
A (21)

is a diagonal matrix, and R ið Þ ¼ R ið Þ η0ð Þ,⋯R ið Þ ηNð Þ
� 	T

with i ¼ 1, 2. Moreover,

vr ¼ vr η0ð Þ,⋯, vr ηNð Þ½ �T,wr ¼ wr η0ð Þ,⋯,wr ηNð Þ½ �T, r ¼ 0, 1,⋯ (22)

and ½ �T denotes matrix transpose.
We prescribe v0 and w0 by requiring that

v0 εð Þ � y0 εð Þ ¼ α0 andw0 εð Þ � y00 εð Þ ¼ α00

Moreover, we assume that

lim
r!∞vr ¼ vand lim

r!∞wr ¼ w

The initial conditions

vrþ1 ηNð Þ ¼ α0 and wrþ1 ηNð Þ ¼ α00

are included in the iterative scheme consisting of Eqs. (19) and (20) as shown
below.

A1

0 ⋯ 0 1

� �
vrþ1 η0ð Þ
⋮

vrþ1 ηN�1ð Þ
vrþ1 ηNð Þ

0

B
B
@

1

C
C
A

¼

R 1ð Þ η0ð Þ
⋮

R 1ð Þ ηN�1ð Þ
α0

0

B
B
B
@

1

C
C
C
A

(23)

A2

0⋯0 1

� �
wrþ1 η0ð Þ

⋮

wrþ1 ηN�1ð Þ
wrþ1 ηNð Þ

0

B
B
@

1

C
C
A

¼

R 2ð Þ η0ð Þ
⋮

R 2ð Þ ηN�1ð Þ
α00

0

B
B
B
@

1

C
C
C
A

(24)

The larger L is the less reliable is the SRM. As a workaround to this problem is we
subdivide interval ε,L½ � into a disjoint union of non-overlapping subintervals as
detailed in Eq. (6). Given the the model problem on I1, we use the SRM to compute
estimate ~y to y on I1. Wemake use of ~y to compute initial values for the problem on I2.
We repeat this procedure for the problem on I2 and continue in a similar manner
until we exhaust ε,L½ �. Shown in Algorithm 2.2 is an outline of the MSRM for
problem (5).

Algorithm 1: Putting the MSRM together.

1.Let 0,L½ � ¼ Iε∪ ε,L½ � where Iε≔ 0, ε½ � for some sufficiently small number ε>0.

2.Replace nonlinear Eq. (5) with linear Eq. (8) on Iε and compute solution yε xð Þ
to Eq. (7) on Iε.

3.Set α0 ¼ yε εð Þ, set α00 ¼ y0ε εð Þ and let ε ¼ x0 < x1 <⋯< xM ¼ L.

6
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4.for m ¼ 1, 2,⋯,M do

5. Define Im ≔ xm�1, xm½ � and make use of the SRM to solve

y00 ¼ u x, y, y0ð Þ, x∈ Im, y xm�1ð Þ ¼ α0, y0 xm�1ð Þ ¼ α00

for the estimate ~y to y on Im.

6. Set α0 ¼ ~y xmð Þ and set α00 ¼ ~y0 xmð Þ.

7.end

2.3 Examples

In this section we make use of some examples to investigate the accuracy and
computational effeciency of the MSRM.

Example 1 We look for a numerical solution to the problem

y00 þ 1

x
y0 þ 3y5 � y3 ¼ 0, 0< x≤ 10y 0ð Þ ¼ 1, y0 0ð Þ ¼ 0 (25)

which Wazwaz [11] solved using the VIM and obtained the approximate.
analytical solution

y xð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p (26)

When we apply the MSRM on (25) we get the following components for
constructing the numerical solution.

1. Coefficients

u0 ¼ �2,L0 ¼ 0,H0 ¼ �12,G0 ¼ �104 (27)

for problem (8).

2. Initial values

y εð Þ≔ α0 ¼ 9:999999926 � 10�1 and y0 εð Þ≔ α00 ¼ �1:264241093� 10�4 (28)

for problem (11).

3. Entries

R
1ð Þ
i ¼ w ηið Þ and R

2ð Þ
i ¼ � 3v5rþ1 ηið Þ � v3rþ1 ηið Þ

� �
, i ¼ 0,⋯,N

in the vectors on the right hand sides of Eqs. (19) and (20).
The MSRM generates a numerical solution to problem (25) which is plotted

together with the analytical solution (26) in Figure 1(a). Figure 1(a) shows a good
agreement between the numerical and analytical solutions. For a more detailed
comparion of the two solutions see Table 1. Table 1 and Figure 1(b) show that the

absolute error of the numerical solution is no more than 0:5� 10�6. Thus the
numerical solution agrees with the analytical solution in the first 6 decimal places.

7
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This degree of accuracy was achieved by the MSRM upon choosing N ¼ 60,M ¼ 10,
setting the maximum number of iterations as rmax ¼ 20 and imposing the stopping
criterion

max ∥vrþ1 � vr∥∞, ∥wrþ1 �wr∥∞f g≤ ε, r ¼ 0, 1,⋯

for the iterative method, where ε ¼ 10�6 is the tolerance and ∥w∥
∞
¼

max 0≤ i≤N∣wi∣ is the infinity norm. It took only r ¼ 5 iterations for the MSRM to
achive the given degree of accuracy.

Example 2 We consider the initial value problem

y00 þ 5

x
y0 þ 8 ey þ 2ey=2


 �

¼ 0, 0< x≤ 10, y 0ð Þ ¼ y0 0ð Þ ¼ 0 (29)

that was solved by Wazwaz [10] using the ADM to obtain the approximate
analytical solution

y xð Þ ¼ �2 ln 1þ x2
� �

(30)

Figure 1.
(a) Solutions to problem (25). (b) Absolute error of the MSRM solution to (25).

x MSRM Solution (26) Absolute error

1 0:70710678 0:70710678 3:1� 10�9

2 0:44721363 0:44721360 3� 10�8

3 0:31622782 0:31622777 5� 10�8

4 0:24253570 0:24253563 7:1� 10�8

5 0:19611623 0:19611614 9:4� 10�8

6 0:16439911 0:16439899 1:2� 10�7

7 0:14142151 0:14142136 1:5� 10�7

8 0:12403492 0:12403473 1:9� 10�7

9 0:11043175 0:11043153 2:3� 10�7

10 0:09950399 0:09950372 2:7 � 10�7

Table 1.
Comparison of numerical values of y with solution (26).

8
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Applying the MSRM on (29) produces the following building blocks for
constructing the numerical solution.

1. Coefficients

u0 ¼ �24,L0 ¼ 0,H0 ¼ �16,G0 ¼ �5� 104 (31)

for problem (8).

2. Initial values

y εð Þ≔ α0 ¼ �3:846468396� 10�8 and y0 εð Þ≔ α00 ¼ �4:767657761� 10�4 (32)

for problem (11).

3. Elements

R
1ð Þ
i ¼ w ηið Þ and R

2ð Þ
i ¼ �8 evrþ1 ηið Þ þ 2evrþ1 ηið Þ=2


 �

, i ¼ 0,⋯,N

of the vectors on the right hand sides of Eqs. (19) and (20).
A comparison of the MSRM solution to problem (29) with the analytical solution

(30) is shown in Figure 2(a). The graph suggests that the two solutions are exactly
the same. However, a closer look at the two solutions is provided in Table 2 and we
observe that the analytical and numerical solutions are slightly different. A plot of
the absolute error of the MSRM solution over a grid on the problem domain 0, 10½ �
is shown in Figure 2(b). We observe that the absolute error does not exceed

0:5� 10�7. Hence the MSRM solution and the analytical solution agree to within 7
decimal places. For the MSRM to achieve this degree of accuracy we chose

N ¼ 60,M ¼ 10, rmax ¼ 20 and ε ¼ 10�6. We observed that the MSRM stopped at
iteration r ¼ 5 for problem (29).

Example 3 We seek a numerical solution to

y00 þ 2

x
y0 � 6y� 4y ln y ¼ , 0< x≤ 1, y 0ð Þ ¼ 1, y0 0ð Þ ¼ 0, (33)

where

y xð Þ ¼ ex
2

(34)

is the exact solution [25]. We restrict the problem to a relatively small interval
0, 1½ � because the solution (34) grows rapidly.

Figure 2.
(a) Solutions to problem (29). (b) Absolute error of the MSRM solution to (29).
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The MSRM for (34) gives the following components for constructing the
numerical solution.

1. Coefficients

u0 ¼ 6,L0 ¼ 0,H0 ¼ 10 and G0 ¼ �2� 104 (35)

for problem (8).

2. Initial values

α0 ¼ 1:000000017 and α00 ¼ 2:593994191� 10�04 (36)

for problem (11).

3. Right hand sides

R
1ð Þ
i ¼ wr ηið ÞandR 2ð Þ

i ¼ 6vrþ1 ηið Þ þ 4vrþ1 ηið Þ ln vrþ1 ηið Þð Þ, i ¼ 0,⋯,N (37)

for linear systems (19) and (20).

x MSRM Solution (34) Absolute error

1 �1:38629437 �1:38629436 9:9� 10�9

2 �3:21887583 �3:21887582 1:6� 10�9

3 �4:60517018 �4:60517019 1:4� 10�9

4 �5:66642669 �5:66642669 1:4� 10�9

5 �6:51619308 �6:51619308 1:4� 10�10

6 �7:22183583 �7:22183583 2:3� 10�10

7 �7:82404601 �7:82404601 3:4� 10�10

8 �8:34877454 �8:34877454 3:4� 10�10

9 �8:81343849 �8:81343849 1:2� 10�9

10 �9:23024103 �9:23024103 1:9� 10�9

Table 2.
Comparison of numerical values of y with solution (30).

Figure 3.
(a) Solutions to problem (33). (b) Absolute error of MSRM solution to (33).
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Figure 3(a) shows that the numerical solution agrees well with the analytical
solution (34). For a closer look at how the numerical and analytical solutions
compare see Table 3. We observe that the MSRM solution agrees with the analytical
solution (34) on the problem domain 0, 1½ � to within at least 7 decimal places. A plot
of the absolute error at these grid points on 0, 1½ � is shown in Figure 3(b). We
observe that the absolute error in the MSRM increases as me move away from the

singular point x ¼ 0, but the absolute error never exceeds 0:5� 10�7. This degree of

accuracy is achieved with N ¼ 60,M ¼ 10, rmax ¼ 20 and ε ¼ 10�6. Moreover, only
6 iterations were required to achieve this degree of accuracy.

3. Conclusions

In this chapter we presented a modified spectral relaxation method (denoted by
MSRM) for solving singular initial value problems for some Emden-Fowler equations.
Wemade use of some examples of the model problem to demonstrate that the MSRM
is reliable, accurate and computationally efficient. The method provided a reliable
treatment of the singular point. The MSRM solutions were compared with analytical
solutions that were obtained using other methods, i.e., the Variational iteration
method and the Adomian decomposition method. There was agreement between the
solutions that were compared in the first 6 decimal places. A possible way of increas-
ing the degree of accuracy of the MSRM would be to increase the tolerance for the
method. This and other ways for optimizing the method could consistute future
work. In all the examples that were considered, it took at most 6 iterations for the
MSRM to converge. Hence the method exhibited rapid convergence.

x MSRM Solution (34) Absolute error

0:1 1:01005018 1:01005017 1:4� 10�8

0:2 1:04081079 1:04081077 1:4� 10�8

0:3 1:09417430 1:09417428 1:5� 10�8

0:4 1:17351089 1:17351087 1:6� 10�8

0:5 1:28402543 1:28402542 1:8� 10�8

0:6 1:43332943 1:43332941 2� 10�8

0:7 1:63231624 1:63231622 2:2� 10�8

0:8 1:89648091 1:89648088 2:8� 10�8

0:9 2:24790802 2:24790799 3:6� 10�8

1 2:71828187 2:71828183 4:6� 10�8

Table 3.
Comparison of numerical values of y with solution (34).
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