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Chapter

G-Protein Coupled  
Hormone Receptors of the  
Hypothalamic-Pituitary-Gonadal 
Axis are Targets of Endocrine 
Disrupting Chemicals
Valentine Suteau, Patrice Rodien and Mathilde Munier

Abstract

Endocrine-disrupting chemicals have received significant concern, since they 
ubiquitously persist in the environment and are able to induce adverse effects 
on health, and more particularly on reproductive function. Most of the stud-
ies focused on nuclear hormone receptors as mediators of sex steroid hormones 
signaling. However, there are increasing evidences that peptides hormones of the 
Hypothalamo-Pituitary-Gonadal axis are targets of endocrine-disrupting chemicals 
(as Gonadotropin-Releasing Hormone, Follicle-Stimulating Hormone, Luteinizing 
Hormone…). The majority of these hormones act on G protein-coupled membrane 
receptors. This review summarizes the effects of endocrine-disrupting chemicals on 
homeostasis of peptides hormone of Hypothalamo-Pituitary-Gonadal axis and on 
their G protein-coupled membrane receptors signaling revealed by experimental, 
clinical, and epidemiological studies in human.

Keywords: G-protein coupled hormone receptors, hypothalamic-pituitary-gonadal 
axis, hormones, endocrine-disrupting chemicals

1. Introduction

Public concern of endocrine-disrupting chemicals (EDCs) has been rising since 
the 1990s. EDCs are defined as “an exogenous substance or mixture that alters 
function(s) of the endocrine system and consequently causes adverse health effects 
in an intact organism, or its progeny, or (sub)populations” [1–3]. EDCs are found 
in many products comprising plasticizers, personal care products, pesticides… [1]. 
Humans are constantly exposed to several different EDCs by ingestion, inhalation, 
and dermal contact. Some classes of EDCs have been studied in detail. Here, we 
selected three classes of EDCs based on knowledge of their effects on Hypothalamo-
Pituitary-Gonadal (HPG) axis: bisphenol A (BPA), phthalates and dichlorodiphe-
nyltrichloroethane (DDT). BPA is one of the most massively produced EDC with 
over three million tons manufactured annually [4]. It is used in food packaging, 
toys, resins used in canned, and medical equipment. Because its incomplete 
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polymerization and its release from polycarbonate at high temperature, exposure to 
BPA is important via food containers [5–7]. Phthalates are used as liquid plasticizers 
found in a wide range of products including plastics, coatings, toys, cosmetics, and 
medical tubing. They are classified in two groups: high molecular weight phthalates, 
such as diethylhexyl phthalte (DEHP), and low molecular weight phthalates, such 
as dibutyl phthalates (DBP) [8]. DDT, an organochlorine pesticide, was largely used 
after the Second World War for its insecticidal properties. Although it was banned 
in the 1970s in the Western World, it continues to be used in developing countries. 
DDT is a synthetic mixture of three isoforms: p,p’DDT, o,p’DDT and p,p’DDD. 
EDCs are originally thought to act through nuclear hormone receptors, such as 
estrogen receptor (ER) or androgen receptor (AR) [9]. During the last decade, we, 
and others, were interested in the effect of EDCs on G-protein-coupled hormone 
receptors (GPCRs). These studies have shown that there are chemical compounds 
in the environment capable of binding to GPCRs and disrupting the activity and 
intracellular signaling pathways of receptor. Moreover, EDCs may alter pathways 
involved in hormone biosynthesis and/or receptor signaling regulation. This review 
summarizes the effects of three classes of EDCs on hormones homeostasis and 
GPCRs signaling involved in the HPG axis. Several molecular mechanisms can be 
involved in the EDC effects on the HPG axis. All studies cited here were performed 
in human species.

2. GPCRs implicated in the HPG axis

The GPCRs are the largest family of cell-surface receptors with over 800 
members accounting for 4% of the encoded human genome [10]. About half of 
them have sensory functions, mediating olfaction, taste, light perception, and 
pheromone signaling. The other half (~350–400) are called endo-receptors, i.e. 
receptors that interact with endogenous ligands [11]. These receptors are involved 
in the detection of many extracellular stimuli (from photons or ions to large hor-
mones proteins). Thus, they have important roles in various physiological systems. 
Dysfunction of GPCRs contributes to many human diseases and GPCRs represent 
34% of all Food and Drug Administration-approved drugs [12].

GPCRs are characterized by a common structure with seven transmembrane 
helices with an extracellular N terminus and an intracellular C terminus [13]. The 
N-terminal portion, or transmembrane domain, constitute the ligand binding site 
while the C-terminal portion and the intracellular loops form a coupling domain 
with the intracellular effectors [14].

In the classical GPCR signaling pathway, after ligand binding, activated-GPCR 
binds the intracellular heterotrimeric G proteins, promoting the release of GDP 
from the Gα subunit, exchanged for GTP and the dissociation of the GTP-bound α 
subunit from βγ dimers. The activated G proteins can then transduce and amplify 
GPCR signals via second messengers to produce a variety of cell responses [15]. 
Briefly, Gαs activates adenylyl cyclases to catalyze the conversion of ATP to cAMP. 
Members of the Gαi family primarily inhibit cAMP production. The Gαq/11 fam-
ily converts phosphatidylinositol 4,5-bisphosphate to diacylglycerol and inositol 
1,4,5-trisphosphate to activate Protein Kinase C and increases intracellular Ca2+ 
levels. Approximately 10% of GPCRs can be coupled with different types of Gs 
subunit depending on cell type and context [16]. The second messengers then target 
other enzymes such as cAMP-dependent protein kinase A (PKA), GMP-dependent 
protein kinase G (PKG), Ca2+-dependent protein kinase C (PKC) or calcium-
sensitive enzymes. The Gβγ subunit can also activate a multitude of effectors 
(GRKs, ion channels, PI3K, phospholipases, MAP kinases) to induce a variety of 
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cellular effects [17]. G protein-mediated signaling is discontinued when the Gα 
subunit hydrolyzes GTP to GDP, due to its intrinsic GTPase activity. This then 
leads to the reassociation of Gα with Gβγ to form the inactive heterotrimer [14]. In 
addition to canonical signaling through heterotrimeric G proteins, some of GPCRs 
can use alternative modes of GPCR activation and initiate G protein–independent 
pathway. The main independent pathway involves a coupling with β-arrestin. 
Originally, β-arrestin was identified as an essential factor in the endocytosis and 
arrest of GPCR signaling induced by heterotrimeric G proteins. Today, other 
functions associated with β-arrestins are being studied and coupling to β-arrestins 
is increasingly described as “scaffolding” proteins involved in multiple G protein-
independent signaling pathways. Indeed, in addition to clathrin, β-arrestins are 
able to bind to many proteins involved in different signaling pathways (Src, ERK1/2 
and JNK3 kinases protein phosphatases, ubiquitin ligases…) [18]. The activation of 
β-arrestins signaling pathways can take place at the membrane but also in intracel-
lular after internalization [15]. Indeed, a growing amount of evidence suggests that 
several molecules have not been known to be regulated by G proteins, suggesting 
that β-arrestin-mediated signaling pathways may be functioning in parallel with 
G-protein-mediated pathways enhancing GPCR signaling pathways.

The Hypothalamo-Pituitary-Gonadal axis is active in the midgestational fetus 
and after birth at the minipuberty but is mainly reactivate at onset of puberty. Some 
receptors of the HPG axis belong to the subfamily of GPCR: gonadotropin-releasing 
hormone receptor (GnRHR), GPR54/Kisspeptin receptor, Neurokinin B receptor 
(NK3R), Prokineticin receptor (PROKR2), follicle stimulating hormone receptor 
(FSHR), human chorionic gonadotropin/luteinizing hormone receptor (hCG/LHR) 
and Relaxin Family Peptide Receptor 2 (RXFP2).

The GnRH, a neuropeptidic hormone, is secreted by hypothalamic GnRH-
expressing neurons into the portal blood vessels in rhythmic pulses [19]. It binds to 
a membrane receptor, the GnRH receptor, also known as the luteinizing hormone 
releasing hormone receptor (LHRHR), on pituitary gonadotropic cells and stimu-
lates the biosynthesis and secretion of LH and FSH [19]. GnRHR is predominantly 
coupled to the Gq-protein [20]. GnRH/GnRHR pathway constitutes the initial step 
in the HPG axis and controls reproduction in both sexes. GnRH loss-of-function 
mutations are associated to normosmic hypogonadotropic hypogonadism [21]. 
GnRH neurons appear to be directly regulated by Kisspeptin-1 (KISS1), with 
Neurokinin B (NKB) and Prokineticin 2 (PROK2). KISS1 is a peptidic hormone 
mostly expressed in the hypothalamus [22]. It activates GPR54/KISS1R, which 
results in the activation of phospholipase C via Gq [12]. GPR54 has been described 
in brain regions, including hypothalamus, but also in peripheral regions [22]. 
Kisspeptin/GPR54 pathway has a crucial role in the onset of puberty, the regula-
tion of sex hormone mediated secretion of FSH/LH, and in the control of fertility 
[22, 23]. Inactivating and activating mutations in KISS1 or GPR54 genes have 
been associated with hypogonadotropic hypogonadism and precocious puberty, 
 respectively [23].

Gonadal function is under pituitary control via the gonadotropin hormones: 
follicle stimulating hormone (FSH) and luteinizing hormone (LH) [24]. FSH and 
LH are synthesized and secreted by the pituitary gonadotropic cells and work 
together in the reproductive system. The human chorionic gonadotropin (hCG) is 
secreted by the placenta and controls ovarian function during gestation. LH and 
hCG share the same GPCR, the hCG/LHR. The FSH and hCG/LH receptor belong 
to the glycoprotein-hormone receptor family. Activation of the LH and FSH recep-
tor results in the production of intracellular cyclic AMP (cAMP) via Gαs proteins 
[25, 26]. However, FSHR and LHR can also couple to several other effectors such as 
Gαq and β-arrestin [26–28]. FSHR is expressed in Sertoli and granulosa cells in male 
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and female gonads, respectively, and is required for normal spermatogenesis and 
growth and maturation of ovarian follicles, as well as for estrogen production [29]. 
In women, LHR induces luteinization of granulosa cells, progesterone synthesis 
and corpus luteum maintenance during the luteal phase [30]. In men, LH stimulates 
testosterone production by Leydig cells [30].

Steroid hormones (estrogen, progesterone, and testosterone) secreted by the 
gonads, bind, and activate nuclear receptors. However, a membrane associated 
estrogen receptor (GPER) has been identified 15 years ago [31, 32]. Activation of 
GPER induces intracellular calcium mobilization, cAMP production and phos-
phorylation cascade involving ERK1/2, PKA, PI3K [33]. This receptor is implicated 
in many physiological functions: uterine proliferation, metabolism, cardiovascular, 
immune, and neural system.

More recently, the INSL3/RXFP2 system pathway was identified for its role in 
reproduction. Insulin-like peptide-3 (INSL3) belongs to the insulin/relaxin family 
of peptidic hormones [34, 35]. This hormone is mainly produced by testicular 
Leydig cells and the production is dependent on the state of Leydig cell differ-
entiation [34]. INSL3 is considered as a marker for Leydig cells function. Its best 
characterized role is in the control of testicular descent since INSL3 gene inacti-
vation males have bilateral cryptorchidism with testis remaining in abdominal 
position [36, 37].

3. Effects of EDCs on signaling of HPG axis G-protein coupled receptors

Effects of EDCs on the activity of HPG axis GPCR identified in the literature 
search are summarized in Table 1.

3.1 Hypothalamic hormones receptor

Currently, there are no data on the effects of EDCs on the activity of human 
hypothalamic hormone receptors. However, some studies have been conducted with 
animal models. Exposure to phthalates leads to a modulation of GnRHR expression 
(positive or negative depending on the studies) [50, 51], as well as an increase in its 
expression in rat uterus [52].

3.2 Gonadotropin hormones receptor

EDCs, like phthalates, increase the FSHR expression in human granulosa cells 
[38]. DDT has been shown to disturb the FSH induced-cAMP accumulation [39] 
and aromatase activity in human granulosa cells [40]. Recently, we showed that 
DDT behaves as an FSHR positive allosteric modulator [41]. DDT interacts with the 
receptor in the minor binding pocket in the transmembrane domain. DDT acts on 
the early steps of activation of the FSHR and induces an increase in FSH-stimulated 
cAMP production. Moreover, the binding of DDT enhances the FSHR response 
to hCG. The increased response to FSH in the presence of DDT and the gain of 
sensitivity to hCG may therefore by deleterious. In opposite, BPA is a FSHR negative 
allosteric modulator [41].

As for FSHR, EDCs, like BPA, disturbes the expression of hCG/LHR in human 
endometrial stromal cells [42]. In CHO-K1 cells stably transfected with hCG/LHR, 
DDT reduced the cAMP accumulation induced by hCG [39, 41] and hLH (Munier 
et al., Arch Toxicol, in revision). Moreover, DDT decreases the hCG- and hLH-
promoted β-arrestin 2 recruitment (Munier et al., Arch Toxicol, in revision). DDT 
seems to act as a negative allosteric modulator of the hCG/LHR signaling.
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GPCR EDC Study model Main results

FSHR DBP

[10−7 to 10−4 M]

Human granulosa 

cells

DBP increases FSHR 

expression

[38]

DDT

[10−7 to 10−4 M]

CHO-K1 - hFSHR DDT decreases cAMP 

production stimulated 

by FSH

[39]

DDE

[10−7 to 10−4 M]

Human granulosa 

cells from IVF

DDE potentiates the 

FSH induced aromatase 

activity

[40]

DDT

[10−7 to 10−5 M]

CHO-K1 - hFSHR DDT is an FSHR positive 

allosteric modulator

[41]

BPA

[10−5 M]

CHO-K1 - hFSHR BPA decreases cAMP 

production stimulated 

by FSH

[41]

hCG/

LHR

BPA

[10−6 M]

Human endometrial 

stromal cells

BPA decreases hCG/LHR 

expression

[42]

DDT

[10−7 to 10−5 M]

CHO-K1 - hCG/

LHR

DDT decreases cAMP 

production stimulated by 

hCG/LHR

[41]

RXFP2 DEHP

[10−9 to 10−5 M]

HEK293 - hRXFP2 DEHP increases cAMP 

production stimulated by 

INSL3

[43]

DBP

[10−9 to 10−5 M]

DBP increases cAMP 

production stimulated by 

INSL3

BPA

[10−11 to 10−7 M]

HEK293 - hRXFP2 BPA increased cAMP 

production stimulated by 

INSL3

DEHP + DBP + BPA

[10−10 to 10−6 M]

HEK293 - hRXFP2 DEHP+DBP + BPA 

mixture decreases cAMP 

production stimulated by 

INSL3

GPER BPA

[10−6 M]

Human breast 

cancer cells

BPA increases GPER 

expression

[44]

BPA

[10−12 to 10−9 M]

Human testicular 

seminoma cells

BPA promotes cellular 

proliferation via GPER 

activation

[45]

BPA

[10−9 to 10−5 M]

HEK293 - hGPER BPA is a GPER agonist 

and induces the Gs protein 

pathway

[46]

BPA

[10−9 to 10−5 M]

Human breast and 

lung cancer cells; 

cancer-associated 

fibroblasts

BPA induces ERK1/2 

activation and gene 

expression through 

GPER leading to cellular 

proliferation and 

migration

[47, 48]

BPA

[10−7 to 10−4 M]

Human granulosa 

cells

BPA induces apoptosis via 

GPER activation

[49]

o,p’-DDE

[10−7 to 10−6 M]

Human breast 

cancer cells

o,p’-DDE is a GPER 

agonist and induces the Gs 

protein pathway

[32, 46]

Table 1. 
Experimental studies studying the effect of EDC on HPG axis GPCR signaling.
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3.3 Insl3 receptor, RXFP2

Only one study has very recently focused on the effect if EDCs on receptor 
signaling to INSL3: RXFP2. In a cellular model of HEK293 transiently expressing 
human RXFP2, individually, BPA, DEHP and DBP potentiate the cAMP response 
to INSL3 [43]. Because of their ubiquity, BPA, DEHP and DBP are present in many 
human biological fluids, as the amniotic liquid. Furthermore, everyone is chroni-
cally exposed to mixtures of environmental chemical factors resulting in toxicologi-
cal interactions that cannot be predicted by reprotoxicological studies of single 
molecules. The combination of these three molecules, at concentrations found in 
human amniotic fluid, decreases the basal activity of RXFP2 as well as the response 
to INSL3. The structural similarity between FSHR and RXFP2 suggests that small 
hydrophobic molecules, like phthalates and BPA, could use the same binding sites 
as DDT in FSHR. The binding of one or two compounds to this site could lead to a 
stabilization of the active state of the receptor driving an increase of agonist activity 
[53]. In contrast, the binding of three compounds (DEHP+DBP + BPA) likely leads 
to a steric hindrance that may prevent the conformational changes necessary for the 
activation of RXFP2 and probably stabilize an inactive state. This study shows that 
in addition to individual EDC targets, HPG axis GPCRs can also be targeted by EDC 
cocktails.

3.4 Membrane sexual steroid hormones receptor

The G protein-coupled receptor (GPER/GPR30) is a membrane estrogen recep-
tor [31]. Gene inactivation of GPER in mice did not induce major modifications 
in reproductive function [54]. However, several studies show that this receptor 
has pro-oncogenic effects in hormone-dependent cancers. Although many EDCs 
exhibit low binding affinities to the nuclear ERs and often require relatively high 
concentrations (>1 μM) to affect genomic pathways, several studies have focused on 
non-genomic signaling mediated by GPER [55].

Various DDT derivatives and BPA bind to GPER with a Kd between 1 to 10 μM 
and are competitors of E2 [46]. The binding affinity of EDCs for GPER is higher 
than for the nuclear receptors. Nevertheless, low concentrations of o,p’DDE and 
BPA increased cAMP production by GPER [32, 45, 46]. BPA and phthalate (MEHP) 
also affect proliferation and migration in human cervical cancer cells [56], in 
human seminoma cells [45], human breast cancer cells and cancer-associated fibro-
blasts that lack nuclear ERs [47, 57] as well as the migration and invasion of lung 
cancer cells [48]. BPA modifies these cellular responses by modulating different 
intracellular signaling pathways (ERK1/2 or Akt phosphorylation, gene expression) 
through GPER activation. In opposite, GPER mediates BPA-induced intracellular 
stress generation (ROS production and calcium accumulation) and apoptosis 
(caspase activation and mitochondrial membrane potential decrease) in human 
granulosa cells [49]. Recently, it has also been shown that BPA increases GPER 
gene expression in breast cancer cell lines [44]. Finally, bisphenols AF and B, two 
substitutes of BPA, exert high estrogenic effects via GPER pathway at nanomolar 
concentrations [58, 59].

4. Effects of EDCs on the synthesis and secretion of HPG axis hormones

Effects of EDCs on the synthesis and secretion of HPG axis hormones identified 
in the literature search are summarized in Table 2.
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Study population EDC exposure Matrix/

biomarker

Main results

192 mother–child pairs 

from e-waste recycling 

town and 70 from 

control area

Free BPA in cord 

blood serum

Kiss gene 

expression in 

placenta

Higher BPA 

concentrations 

showed positive 

correlation with Kiss 

gene expression

[60]

73 girls with central 

precocious puberty and 

31 controls

Seven urinary 

phthalate 

metabolites 

concentrations

Serum 

kisspeptin

Positive correlation 

between kisspeptin- 

and mono-n-butyl 

phthalate

[61]

535 men (18–40 yr) 

living or not in pesticides 

contamined area.

Lipid-adjusted 

DDE and DDT 

concentrations

Serum FSH, 

LH, T, E2

Positive association 

between DDT or DDE 

with T

[62]

749 Swedish (fishermen 

and their pregnant wife)

p,p′-DDE serum 

level

Serum FSH, 

LH, T, E2

Positive association 

between DDE and 

FSH or LH

[63]

97 adult men living in 

nothern Thailand

plasma levels 

of DDT and its 

metabolites

Serum FSH, 

LH, T, E2

Negative association 

of E2 level with 

p,p’-DDE and positive 

association with 

o,p’-DDE

[64]

107 males exposed to 

DDT in Italy

Lipid-adjusted 

p,p’-DDE and 

p,p’-DDT serum 

concentration

Serum FSH, 

LH, T, E2

No association with 

serum hormone levels

[65]

604 adults (men and 

women) in Brazil areas 

exposed to pesticides

Serum 

concentrations 

of 19 pesticides 

including 

p,p’-DDT and 

o,p’-DDT

Serum FSH, 

LH, T, E2

In men, o,p’-DDT level 

was associated with 

lower T, in peri- and 

postmenopausal 

women, p,p’-DDT 

showed inverse 

associations with 

LH; No association 

in premenopausal 

women

[66]

234 mothers and their 

sons

Serum o,p’- and 

p,p’-DDT, 

p,p’-DDE from 

mothers during 

pregnancy or at 

delivery and their 

sons at 9 years.

Serum FSH, 

LH and T in 

sons at 12 years

Prenatal maternal 

DDT and DDE levels 

were associated with 

decreases in LH

[67]

45 girls with early breast 

development, 16 girls 

with early puberty, and 

33 girls with no signs of 

puberty

2,4-DDT and 

4,4’-DDE in 

the serum and 

adipose tissue 

samples.

Serum basal 

and stimulated 

LH and FSH 

level

Basal and stimulated 

LH were higher in girls 

with detectable serum 

DDE levels

[68]

308 young men Urinary BPA 

concentrations

Serum LH, 

T, E2

Higher urinary BPA 

concentrations were 

associated with 

increased serum T, E2, 

and LH

[69]

215 healthy young men 

(18–23 yr)

Urinary BPA 

concentrations

Serum FSH, 

LH, T, E2

Positive association 

between urinary BPA 

and LH levels

[70]
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Study population EDC exposure Matrix/

biomarker

Main results

560 men aged 

18–55 years

Urinary BPA 

concentrations

Serum FSH, 

LH, T

BPA was associated 

with increased serum 

levels of LH and FSH 

in male smokers, 

and with decreased 

serum levels of 

total T in men with 

BMI ≥ 25 kg/m2.

[71]

167 men from an 

infertility clinic

Urinary BPA 

concentrations

Serum FSH, 

LH, T, E2

Positive association 

between urinary BPA 

and serum FSH

[72]

244 mothers-child pairs Serum maternal 

total BPA 

concentration 

during second or 

third trimester

Serum FSH, 

LH, T, E2

No association with 

serum hormone levels

[73]

159 women with 

premature ovarian 

insufficiency and 186 

controls

Urinary 

concentrations 

of BPA

Serum FSH, 

LH

No association with 

serum hormone levels

[74]

106 BPA-exposed 

factories and 250 

unexposed female 

workers

Urinary 

concentrations 

of BPA

Serum FSH, 

LH, E2

Inverse association 

between BPA and FSH 

in unexposed group

[75]

143 healthy, 

premenopausal women

Urinary 

concentrations 

of BPA

Serum FSH, 

LH, E2

No association with 

serum hormone levels

[76]

172 peripubertal boys Urinary 

concentrations 

of BPA

Serum FSH, 

LH, T

No association with 

serum hormone levels

[77]

130 children with 

Attention-Deficit/

Hyperactivity Disorder 

and 68 controls (boys 

and girls)

Urine levels of 

phthalates and 

BPA

Serum FSH, 

LH, T, E2

Among boys with 

ADHD, MBzP and 

MEHP levels were 

positively correlated 

with T; among girls, 

MEP was positively 

correlated with LH 

and T

[78]

136 girls (6–9 yr) with 

early puberty and 136 

controls

Urinary BPA 

concentrations

Serum basal 

and stimulated 

LH and FSH 

level, E2

In early puberty 

group, negative 

correlation between 

BPA and peak FSH 

levels

[79]

479 pregnant women 

and their infants (boys 

and girls)

Urinary 12 

phthalate 

metabolites 

concentrations 

at gestational 

week 28

Serum T, LH, 

FSH during 

mini puberty

No association with 

serum hormone levels

[80]

302 Korean children and 

adolescents

Urinary 

and serum 

concentrations 

of DEHP, MEHP, 

DBP, MBP

Serum FSH, 

LH, T, E2

Positive correlations 

between serum DBP or 

MEHP, and E2 and/or 

LH in children.

[81]
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Study population EDC exposure Matrix/

biomarker

Main results

106 males and females 

(11–88 yr)

Urinary phthalate 

metabolites

Serum FSH, 

LH, T, E2

Positive associations 

between MEHP and 

FSH or T, MEOHP and 

FSH, LH or T, negative 

associations between 

MEHHP and LH, FSH 

or T

[82]

88 infertile men Urinary 

and serum 

concentrations 

of 11 phthalate 

metabolites

Serum FSH, 

LH, T

Negative associations 

between FSH and 

MiBP and MCMHP; 

positive association 

between T and 

phthalates metabolites.

[83]

599 infertile men Urinary 

concentrations 

of 8 phthalate 

metabolites

Serum FSH, 

LH, T, E2

Inverse associations 

between T and MiBP, 

FSH and MEHHP, 

positive relationship 

between E2 and MEP, 

%MEHP and FSH 

and LH

[84]

295 adult men Urinary 

concentrations 

of phthalate 

metabolites

Serum FSH, 

LH, T, E2

Negative association 

between MBzP and 

FSH

[85]

881 healthy men Urinary 

concentrations 

of 14 phthalate 

metabolites

Serum FSH, 

LH, T, E2

%MEHP was 

negatively associated 

with T and FSH

[86]

Male with 

cryptorchidism (421), 

hypospadias (109) or 

controls (425)

5cx-MEPP, 

7cx-MMEHP in 

amniotic fluid 

(11–21 weeks)

INSL3, T in 

amniotic fluid

Negative correlations 

between INSL3 and 

cx7-MMeHP and 

5cxMEPP

[87]

1066 Chinese men of 

reproductive age

Urinary 

concentrations 

of 14 phthalate 

metabolites

Serum levels 

of INSL3, FSH, 

LH, T

Negative association 

between INSL3 and 

MEHP; negative 

association between 

MBP and MiBP with T 

and LH

[88]

male partners of 

subfertile (n = 253) and 

fertile (n = 37) couples

11 phthalate 

metabolites in 

urine and semen

Serum levels 

of INSL3, FSH, 

LH, T, E2

Negative association 

between INSL3 and 

some urinary and 

seminal phthalate 

metabolites

[89]

case–control study of 

176 men (fertile and 

infertile)

Urinary 

concentrations 

of 11 phthalate 

metabolites

Serum levels 

of INSL3, FSH, 

LH, T, E2

inverse association 

MMP, MiBP, MEHP, 

MEHP% and T; MBzP 

and MEHP% were 

negatively associated 

with serum INSL3 

level

[90]

102 mother–child pairs Maternal serum 

concentration 

of MEHP 

(23–35 weeks of 

gestation

Cord blood 

INSL3, FSH, 

LH, T, E2 levels

Inverse associations 

between maternal 

MEHP and INSL3 in 

males

[91]
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4.1 Hypothalamus level

4.1.1 Kisspeptin

No data are available on the impact of DDT on Kisspeptin in epidemiological 
studies in humans.

Interestingly, a study led on 262 mother–child pairs from China found a posi-
tive correlation between cord blood levels of BPA and KISS1 mRNA expression in 
placenta tissue [60].

For phthalates, linear regression analysis showed increasing trend for kisspeptin 
secretion with the concentration of urinary phthalates [61].

4.1.2 GnRH

No epidemiological or experimental studies are available on the possible link 
between EDC levels and GnRH concentration in human. This is probably explained 
by the pulsatile nature of its release and the lack of dosage in clinical practice. 
However, many effects of EDC on GnRH were observed in rodents [93].

4.2 Pituitary level

DDT is rapidly metabolized in the body to DDE. Thus, in epidemiological 
studies, DDE is dosed in the blood more often than DDT. In a cohort of men of 
reproductive age, statistically significant positive association was found between 
the serum level of DDE and LH or FSH [63]. However, others studies did not reveal 
any association between DDT and FSH or LH levels in adult men [62, 64, 65]. In 
peri and postmenopausal women, inverse correlation was found between serum 
DDT and LH [66]. Moreover, it has been shown that maternal exposure to DDT or 
DDE, assayed in prenatal serum, induced a reduction of plasma LH in teenage boys, 
not found for FSH [67]. A study also showed that the serum levels of LH (basal level 
and after GnRH stimulation) was significantly higher in girls with detectable serum 
DDE levels than in girls with undetectable DDE [68]. This difference was not found 
for FSH [68].

For BPA, studies found that higher urinary BPA concentration was associated 
with significantly higher concentrations of serum LH in healthy young men, with or 
without association with FSH [69–71]. However, these results were not confirmed in 
others cohorts of fertile men [73]. Conversely, another study found a positive correla-
tion between urinary BPA concentration and FSH level, without change in LH level in 
a cohort of infertile men [72]. In women, no association was found between urinary 
bisphenol A and LH or FSH levels in premenopausal women [74–76]. Moreover, no 

Study population EDC exposure Matrix/

biomarker

Main results

52 boys with 

cryptorchidism and 128 

control boys

Cord blood BPA 

concentration at 

birth

Cord blood 

INSL3 levels

Higher cord blood 

BPA concentrations 

were associated with 

reduced cord blood 

INSL3 levels

[92]

T: testosterone, E2: estradiol.

Table 2. 
Human biomonitoring studies addressing the relationship between EDC and hormones of HPG axis.



11

G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets…
DOI: http://dx.doi.org/10.5772/intechopen.96240

association was found in healthy children for LH and FSH [77, 78]. A modest nega-
tive correlation was found between urinary BPA concentration and peak of GnRH-
stimulated FSH levels in girls with idiopathic central precocious puberty, without 
difference for LH levels [79].

Maternal phthalates exposure (urinary samples collected during second 
trimester) was not associated with serum LH level or FSH in offspring during 
mini-puberty in boys and girls [80]. However, positive correlations were observed 
between different phthalates and serum LH in prepubescent Korean children (for 
serum DBP or MEHP) [81], in girls with attention-deficit/hyperactivity disorder 
(for urinary MEP) [78] and in Chinese population (11–88 years, males and females) 
(for urinary MEHHP levels) [82]. In the same populations, either negative [82, 83] 
or no effects [78, 81] were observed on FSH level. In men, urinary phthalate 
metabolites were positively associated with LH and FSH levels [84] in one study 
while negative association between urinary phthalates concentrations and levels of 
FSH was found in American men (for MBzP) [85] and in Danish men (for MEHP or 
%MiNP) [86] without impact on LH.

Altogether, epidemiological data have linked exposure to EDC and LH and/
or FSH level but evidence were often inconclusive. The inconsistent findings may 
partly be due to differences in the characteristics and sizes of the cohorts and to the 
different EDC exposure levels among studies.

4.3 Gonadal level

4.3.1 Sexual steroid hormones

Many data are already available on the effect of endocrine disruptors on the 
secretion of sex steroids. Recent reviews list all available studies for DDT [93],  
BPA [93, 94] or phthalates [93, 95–97].

4.3.2 INSL3

No data are available on the impact of DDT on INSL3 in humans epidemiological 
studies.

Several studies showed that INSL3 was negatively impacted by putative phthal-
ate metabolites. The Diisononyl phthalate (DiNP) metabolite, cx7-MMeHP, and 
the DEHP metabolite, 5cxMEPP, showed significant negative correlations with 
INSL3 in amniotic fluid for weeks 11–22 [87]. Moreover, serum levels of INSL3 was 
negatively associated with urinary concentration of mono-2-ethylhexyl phthal-
ate (MEHP) and MBzP among large cohorts of chinese men of reproductive age 
[88–90]. In adjusted models, quartiles increases in phthalates metabolites correlated 
with significant decreases in plasma INSL3 levels [88–90]. It has also been shown 
that maternal serum MEHP concentration (from 23–35 weeks of gestation) was 
negatively correlated with INSL3 level in cord blood mainly in boys [91].

There is also an inverse correlation between BPA level and concentration of 
INSL3 [92]. Indeed, in a population of 180 boys born after 34 weeks of gestation 
(52 cryptorchid and 128 control), cord blood levels of free BPA correlated nega-
tively with INSL3 [92]. In this study, cord blood INSL3 level was also significantly 
decreased in the cryptorchid group compared with the control group [92].

Ex vivo studies on human testicular explant were performed, to study more 
precisely the effect of endocrine disruptors on the secretion of INSL3.

No data are available on the impact of DDT on INSL3 in humans experimental 
studies.
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The exposure of fetal testis (8–12 weeks) to BPA at 10−8 M and 10−5 M for 72 h 
[98], significantly depressed the basal INSL3 production compared with control. 
This treatment also reduced INSL3 mRNA level by more than 20% [99]. However, 
BPA did not modify hCG or hLH-stimulated INSL3 production [98]. Conversely, in 
human adult testes, BPA increased significantly INSL3 production by Leydig cells, 
at a low doses (10−9 M) [100]. Interestingly, its analogs, Bisphenol B and Bisphenol 
S also increased INSL3 production at 10−9 and 10−8 M. Moreover, BADGE, another 
bisphenol, dose dependently increased INSL3 after 48 h of exposure. In contrast, 
BPE dose dependently inhibited INSL3 levels [100].

For phthalates, di-(2-ethylhexyl) phthalate (DEHP) and mono-(2-ethylhexyl) 
phthalate (MEHP) exposition on organo-cultured adult human testis did not affect 
Leydig cell INSL3 concentrations [101].

5. Conclusions

Most epidemiological and experimental studies focus on the effect of EDCs 
on the expression and secretion of hormones, as well as on the activity of nuclear 
steroid receptors. However, a few experimental studies have shown that G protein-
coupled membrane receptors of the HPG axis are targets of EDCs as well. It can 
be pointed out that most of the studies analyzing the effects of EDCs on GPCRs of 
HPG axis have been performed with cell culture systems. In vitro models are valu-
able tools because they are easily manipulated. But the comparison of the effects of 
EDCs in wild-type and GPCRs- inactivated animal models could provide additional 
informations on the mode of action of these compounds.

Mechanisms of GPCR disruption by EDCs include: (1) changes in the expres-
sion; (2) interaction with transmembrane domain receptor; (3) modulation of 
intracellular signaling pathways.

The GPCRs of HPG axis, involved in diverse physiological functions, should be 
considered as possible contributors of the adverse effects of EDCs on reproduction. 
How their modulation by EDCs contributes to these deleterious effects should be an 
important field of investigations in the near future.

Acknowledgements

V.S was supported by funding from La Société Française d’Endocrinologie. 
MM was supported by funding from La Société Française d’Endocrinologie et de 
Diabétologie Pédiatrique and Novo Nordisk.

Conflict of interest

The authors declare no conflict of interest.



13

G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets…
DOI: http://dx.doi.org/10.5772/intechopen.96240

Author details

Valentine Suteau1,2, Patrice Rodien1,2,3 and Mathilde Munier1,2,3*

1 UMR CNRS 6015, INSERM 1083, University of Angers, France

2 Department of Endocrinology, University Hospital, Angers, France

3 Reference Center for Rare Diseases of Thyroid and Hormone Receptors, Angers, 
France

*Address all correspondence to: mathilde.munier@univ-angers.fr

© 2021 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/
by/3.0), which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 



14

Endocrine Disruptors

[1] Diamanti-Kandarakis E, 
Bourguignon J-P, Giudice LC, Hauser R, 
Prins GS, Soto AM, et al. Endocrine-
disrupting chemicals: an Endocrine 
Society scientific statement. Endocr Rev. 
2009 Jun;30(4):293-342.

[2] Zoeller RT, Brown TR, Doan LL, 
Gore AC, Skakkebaek NE, Soto AM, 
et al. Endocrine-Disrupting Chemicals 
and Public Health Protection: A 
Statement of Principles from The 
Endocrine Society. Endocrinology. 2012 
Sep;153(9):4097-4110.

[3] Gore AC, Chappell VA, Fenton SE, 
Flaws JA, Nadal A, Prins GS, et al. 
EDC-2: The Endocrine Society’s Second 
Scientific Statement on Endocrine-
Disrupting Chemicals. Endocr Rev. 2015 
Dec;36(6):E1-150.

[4] Jiang D, Chen W-Q , Zeng X, 
Tang L. Dynamic Stocks and Flows 
Analysis of Bisphenol A (BPA) in China: 
2000-2014. Environ Sci Technol. 2018 
20;52(6):3706-15.

[5] Burstyn I, Martin JW, Beesoon S, 
Bamforth F, Li Q , Yasui Y, et al. 
Maternal exposure to bisphenol-A and 
fetal growth restriction: a case-referent 
study. Int J Environ Res Public Health. 
2013 Dec 11;10(12):7001-7014.

[6] Carwile JL, Luu HT, Bassett LS, 
Driscoll DA, Yuan C, Chang JY, 
et al. Polycarbonate bottle use and 
urinary bisphenol A concentrations. 
Environ Health Perspect. 2009 
Sep;117(9):1368-1372.

[7] Woodruff TJ, Zota AR, Schwartz JM. 
Environmental chemicals in pregnant 
women in the United States: NHANES 
2003-2004. Environ Health Perspect. 
2011 Jun;119(6):878-885.

[8] Radke EG, Braun JM, Meeker JD, 
Cooper GS. Phthalate exposure 
and male reproductive outcomes: 

A systematic review of the human 
epidemiological evidence. Environ Int. 
2018;121(Pt 1):764-793.

[9] Hall JM, Greco CW. Perturbation 
of Nuclear Hormone Receptors by 
Endocrine Disrupting Chemicals: 
Mechanisms and Pathological 
Consequences of Exposure. Cells. 2019 
19;9(1).

[10] Fredriksson R, Lagerström MC, 
Lundin L-G, Schiöth HB. The G-Protein-
Coupled Receptors in the Human 
Genome Form Five Main Families. 
Phylogenetic Analysis, Paralogon 
Groups, and Fingerprints. Mol 
Pharmacol. 2003 Jun 1;63(6):1256-1272.

[11] Rosenbaum DM, Rasmussen SGF, 
Kobilka BK. The structure and function 
of G-protein-coupled receptors. Nature. 
2009 May 21;459(7245):356-363.

[12] Sriram K, Insel PA. G Protein-
Coupled Receptors as Targets for 
Approved Drugs: How Many Targets 
and How Many Drugs? Mol Pharmacol. 
2018 Apr 1;93(4):251-258.

[13] Bockaert J, Philippe Pin J. Molecular 
tinkering of G protein-coupled 
receptors: an evolutionary success. 
EMBO J. 1999 Apr 1;18(7):1723-1729.

[14] Weis WI, Kobilka BK. The 
Molecular Basis of G Protein–Coupled 
Receptor Activation. Annu Rev 
Biochem. 2018 Jun 20;87:897-919.

[15] Wang W, Qiao Y, Li Z. New Insights 
into Modes of GPCR Activation. 
Trends Pharmacol Sci. 2018 Apr 
1;39(4):367-386.

[16] Wong SK-F. G Protein Selectivity 
Is Regulated by Multiple Intracellular 
Regions of GPCRs. Neurosignals. 
2003;12(1):1-12.

[17] Smrcka AV, Fisher I. G-protein βγ 
subunits as multi-functional scaffolds 

References



15

G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets…
DOI: http://dx.doi.org/10.5772/intechopen.96240

and transducers in G-protein-coupled 
receptor signaling. Cell Mol Life Sci. 
2019 Nov 1;76(22):4447-4459.

[18] Peterson YK, Luttrell LM. The 
Diverse Roles of Arrestin Scaffolds in G 
Protein–Coupled Receptor Signaling. 
Pharmacol Rev. 2017 Jul;69(3):256-297.

[19] Kaprara A, Huhtaniemi IT. The 
hypothalamus-pituitary-gonad axis: 
Tales of mice and men. Metabolism. 
2018 Sep 1;86:3-17.

[20] Heitman LH, IJzerman AP. G 
protein-coupled receptors of the 
hypothalamic–pituitary–gonadal 
axis: A case for gnrh, LH, FSH, and 
GPR54 receptor ligands. Med Res Rev. 
2008;28(6):975-1011.

[21] Young J, Xu C, Papadakis GE, 
Acierno JS, Maione L, Hietamäki J, et al. 
Clinical Management of Congenital 
Hypogonadotropic Hypogonadism. 
Endocr Rev. 2019 Apr 1;40(2):669-710.

[22] Trevisan CM, Montagna E, 
de Oliveira R, Christofolini DM, 
Barbosa CP, Crandall KA, et al. 
Kisspeptin/GPR54 System: What Do 
We Know About Its Role in Human 
Reproduction? Cell Physiol Biochem. 
2018;49(4):1259-1276.

[23] Franssen D, Tena-Sempere M. The 
kisspeptin receptor: A key G-protein-
coupled receptor in the control of 
the reproductive axis. Best Pract Res 
Clin Endocrinol Metab. 2018 Apr 
1;32(2):107-123.

[24] Cahoreau C, Klett D, 
Combarnous Y. Structure–Function 
Relationships of Glycoprotein 
Hormones and Their Subunits’ 
Ancestors. Front Endocrinol [Internet]. 
2015 Feb 26 [cited 2020 Oct 13];6. 
Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC4341566/

[25] Minegishi T, Igarashi S, 
Nakamura K, Nakamura M, Tano M, 

Shinozaki H, et al. Functional 
expression of the recombinant human 
FSH receptor. J Endocrinol. 1994 
May;141(2):369-375.

[26] Gudermann T, Birnbaumer M, 
Birnbaumer L. Evidence for dual 
coupling of the murine luteinizing 
hormone receptor to adenylyl cyclase 
and phosphoinositide breakdown and 
Ca2+ mobilization. Studies with the 
cloned murine luteinizing hormone 
receptor expressed in L cells. J Biol 
Chem. 1992 May 3;267(7):4479-4488.

[27] Ayoub MA, Landomiel F, Gallay N, 
Jégot G, Poupon A, Crépieux P, 
et al. Assessing Gonadotropin 
Receptor Function by Resonance 
Energy Transfer-Based Assays. Front 
Endocrinol [Internet]. 2015 [cited 
2020 Oct 14];6. Available from: http://
www.ncbi.nlm.nih.gov/pmc/articles/
PMC4550792/

[28] Gloaguen P, Crépieux P, Heitzler D, 
Poupon A, Reiter E. Mapping the 
Follicle-Stimulating Hormone-Induced 
Signaling Networks. Front Endocrinol 
[Internet]. 2011 [cited 2020 Oct 14];2. 
Available from: http://www.ncbi.nlm.
nih.gov/pmc/articles/PMC3364461/

[29] Siegel ET, Kim H-G, Nishimoto HK, 
Layman LC. The Molecular Basis 
of Impaired Follicle-Stimulating 
Hormone Action. Reprod Sci. 2013 
Mar;20(3):211-233.

[30] Casarini L, Lispi M, Longobardi S, 
Milosa F, Marca AL, Tagliasacchi D, 
et al. LH and hCG Action on the Same 
Receptor Results in Quantitatively and 
Qualitatively Different Intracellular 
Signalling. PLOS ONE. 2012 Oct 
5;7(10):e46682.

[31] Revankar CM, Cimino DF, 
Sklar LA, Arterburn JB, Prossnitz ER. 
A transmembrane intracellular 
estrogen receptor mediates rapid 
cell signaling. Science. 2005 Mar 
11;307(5715):1625-1630.



Endocrine Disruptors

16

[32] Thomas P, Pang Y, Filardo EJ, 
Dong J. Identity of an Estrogen 
Membrane Receptor Coupled to a 
G Protein in Human Breast Cancer 
Cells. Endocrinology. 2005 Feb 
1;146(2):624-632.

[33] Prossnitz ER, Maggiolini M. 
Mechanisms of estrogen signaling and 
gene expression via GPR30. Mol Cell 
Endocrinol. 2009 Sep 24;308(1-2):32-38.

[34] Bathgate R a. D, Halls ML, 
Westhuizen ET van der, Callander GE, 
Kocan M, Summers RJ. Relaxin Family 
Peptides and Their Receptors. Physiol 
Rev. 2013 Jan 1;93(1):405-480.

[35] Halls ML, Bathgate RAD, 
Sutton SW, Dschietzig TB, Summers RJ. 
International Union of Basic and 
Clinical Pharmacology. XCV. Recent 
Advances in the Understanding of the 
Pharmacology and Biological Roles 
of Relaxin Family Peptide Receptors 
1-4, the Receptors for Relaxin Family 
Peptides. Pharmacol Rev. 2015 Jan 
4;67(2):389-440.

[36] Nef S, Parada LF. Cryptorchidism in 
mice mutant for Insl3. Nat Genet. 1999 
Jul;22(3):295-299.

[37] Zimmermann S, Steding G, 
Emmen JMA, Brinkmann AO, 
Nayernia K, Holstein AF, et al. 
Targeted Disruption of the Insl3 Gene 
Causes Bilateral Cryptorchidism. Mol 
Endocrinol. 1999 May 1;13(5):681-691.

[38] Ma Y, Zhang J, Zeng R, Qiao X, 
Cheng R, Nie Y, et al. Effects of the 
Dibutyl Phthalate (DBP) on the 
Expression and Activity of Aromatase in 
Human Granulosa Cell Line KGN. Ann 
Clin Lab Sci. 2019 Mar;49(2):175-182.

[39] Rossi M, Dimida A, Dell’anno MT, 
Trincavelli ML, Agretti P, Giorgi F, et al. 
The thyroid disruptor 1,1,1-trichloro-
2,2-bis(p-chlorophenyl)-ethane 
appears to be an uncompetitive 
inverse agonist for the thyrotropin 

receptor. J Pharmacol Exp Ther. 2007 
Jan;320(1):465-474.

[40] Younglai EV. Synergistic effects 
between FSH and 1,1-dichloro-
2,2-bis(P-chlorophenyl)ethylene 
(P,P’-DDE) on human granulosa cell 
aromatase activity. Hum Reprod. 2004 
Mar 25;19(5):1089-1093.

[41] Munier M, Grouleff J, Gourdin L, 
Fauchard M, Chantreau V, Henrion D, 
et al. In Vitro Effects of the Endocrine 
Disruptor p,p’DDT on Human 
Follitropin Receptor. Environ Health 
Perspect. 2016 Feb 19;

[42] Mannelli C, Szóstek AZ, Lukasik K, 
Carotenuto C, Ietta F, Romagnoli R, 
et al. Bisphenol A modulates receptivity 
and secretory function of human 
decidual cells: an in vitro study. Reprod 
Camb Engl. 2015 Aug;150(2):115-125.

[43] Suteau V, Briet C, Lebeault M, 
Gourdin L, Henrion D, Rodien P, et al. 
Human amniotic fluid-based exposure 
levels of phthalates and bisphenol A 
mixture reduce INSL3/RXFP2 signaling. 
Environ Int. 2020 May;138:105585.

[44] Castillo-Sanchez R, Ramirez-
Ricardo J, Martinez-Baeza E, Cortes-
Reynosa P, Candanedo-Gonzales F, 
Gomez R, et al. Bisphenol A induces 
focal adhesions assembly and activation 
of FAK, Src and ERK2 via GPER in 
MDA-MB-231 breast cancer cells. 
Toxicol Vitro Int J Publ Assoc BIBRA. 
2020 Aug;66:104871.

[45] Bouskine A, Nebout M, Brücker-
Davis F, Benahmed M, Fenichel P. 
Low doses of bisphenol A promote 
human seminoma cell proliferation 
by activating PKA and PKG via a 
membrane G-protein-coupled estrogen 
receptor. Environ Health Perspect. 2009 
Jul;117(7):1053-1058.

[46] Thomas P, Dong J. Binding and 
activation of the seven-transmembrane 
estrogen receptor GPR30 by 



17

G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets…
DOI: http://dx.doi.org/10.5772/intechopen.96240

environmental estrogens: a potential 
novel mechanism of endocrine 
disruption. J Steroid Biochem Mol Biol. 
2006 Dec;102(1-5):175-9.

[47] Pupo M, Pisano A, Lappano R, 
Santolla MF, De Francesco EM, 
Abonante S, et al. Bisphenol A 
Induces Gene Expression Changes and 
Proliferative Effects through GPER 
in Breast Cancer Cells and Cancer-
Associated Fibroblasts. Environ Health 
Perspect. 2012 Aug;120(8):1177-1182.

[48] Zhang K-S, Chen H-Q , Chen Y-S, 
Qiu K-F, Zheng X-B, Li G-C, et al. 
Bisphenol A stimulates human lung 
cancer cell migration via upregulation 
of matrix metalloproteinases by 
GPER/EGFR/ERK1/2 signal pathway. 
Biomed Pharmacother. 2014 Oct 
1;68(8):1037-1043.

[49] Huang M, Huang M, Li X, Liu S, 
Fu L, Jiang X, et al. Bisphenol A induces 
apoptosis through GPER-dependent 
activation of the ROS/Ca2+-ASK1-JNK 
pathway in human granulosa cell line 
KGN. Ecotoxicol Environ Saf. 2021 Jan 
15;208:111429.

[50] Chen X, Li L, Li H, Guan H, 
Dong Y, Li X, et al. Prenatal exposure 
to di-n-butyl phthalate disrupts the 
development of adult Leydig cells in 
male rats during puberty. Toxicology. 
2017 Jul 1;386:19-27.

[51] Liu T, Li N, Zhu J, Yu G, 
Guo K, Zhou L, et al. Effects of 
di-(2-ethylhexyl) phthalate on the 
hypothalamus-pituitary-ovarian axis 
in adult female rats. Reprod Toxicol 
Elmsford N. 2014 Jul;46:141-147.

[52] Liu T, Jia Y, Zhou L, Wang Q , 
Sun D, Xu J, et al. Effects of Di- 
(2-ethylhexyl) Phthalate on the 
Hypothalamus-Uterus in Pubertal 
Female Rats. Int J Environ Res Public 
Health. 2016 12;13(11).

[53] Thal DM, Glukhova A, Sexton PM, 
Christopoulos A. Structural insights 

into G-protein-coupled receptor 
allostery. Nature. 2018;559(7712):45-53.

[54] Prossnitz ER, Hathaway HJ. What 
have we learned about GPER function in 
physiology and disease from knockout 
mice? J Steroid Biochem Mol Biol. 2015 
Sep;153:114-126.

[55] Prossnitz ER, Arterburn JB. 
International Union of Basic and 
Clinical Pharmacology. XCVII. 
G Protein–Coupled Estrogen 
Receptor and Its Pharmacologic 
Modulators. Pharmacol Rev. 2015 
Jul;67(3):505-540.

[56] Yang W, Tan W, Zheng J, Zhang B, 
Li H, Li X. MEHP promotes the 
proliferation of cervical cancer via 
GPER mediated activation of Akt. Eur J 
Pharmacol. 2018 Apr 5;824:11-16.

[57] Castillo Sanchez R, Gomez R, 
Perez Salazar E. Bisphenol A Induces 
Migration through a GPER-, FAK-, 
Src-, and ERK2-Dependent Pathway 
in MDA-MB-231 Breast Cancer 
Cells. Chem Res Toxicol. 2016 Mar 
21;29(3):285-295.

[58] Cao L-Y, Ren X-M, Li C-H, Zhang J, 
Qin W-P, Yang Y, et al. Bisphenol 
AF and Bisphenol B Exert Higher 
Estrogenic Effects than Bisphenol A via 
G Protein-Coupled Estrogen Receptor 
Pathway. Environ Sci Technol. 2017 Oct 
3;51(19):11423-11430.

[59] Lei B, Sun S, Zhang X, Feng C, 
Xu J, Wen Y, et al. Bisphenol AF exerts 
estrogenic activity in MCF-7 cells 
through activation of Erk and PI3K/Akt 
signals via GPER signaling pathway. 
Chemosphere. 2019 Apr;220:362-370.

[60] Xu X, Chiung YM, Lu F, Qiu S, 
Ji M, Huo X. Associations of cadmium, 
bisphenol A and polychlorinated 
biphenyl co-exposure in utero with 
placental gene expression and neonatal 
outcomes. Reprod Toxicol. 2015 Apr 
1;52:62-70.



Endocrine Disruptors

18

[61] Chen C-Y, Chou Y-Y, Wu Y-M, Lin 
C-C, Lin S-J, Lee C-C. Phthalates may 
promote female puberty by increasing 
kisspeptin activity. Hum Reprod. 2013 
Oct 1;28(10):2765-2773.

[62] Bornman M, Delport R, Farías P, 
Aneck-Hahn N, Patrick S, Millar RP, 
et al. Alterations in male reproductive 
hormones in relation to environmental 
DDT exposure. Environ Int. 2018 Apr 
1;113:281-289.

[63] Giwercman Aleksander, Rignell-
Hydbom Anna, Toft Gunnar, Rylander 
Lars, Hagmar Lars, Lindh Christian, et al. 
Reproductive Hormone Levels in Men 
Exposed to Persistent Organohalogen 
Pollutants: A Study of Inuit and Three 
European Cohorts. Environ Health 
Perspect. 2006 Sep 1;114(9):1348-1353.

[64] Asawasinsopon R, Prapamontol T, 
Prakobvitayakit O, Vaneesorn Y, 
Mangklabruks A, Hock B. Plasma 
levels of DDT and their association 
with reproductive hormones in adult 
men from northern Thailand. Sci Total 
Environ. 2006 Feb 15;355(1):98-105.

[65] Cocco P, Loviselli A, Fadda D, 
Ibba A, Melis M, Oppo A, et al. Serum 
sex hormones in men occupationally 
exposed to dichloro-diphenyl-trichloro 
ethane (DDT) as young adults. J 
Endocrinol. 2004 Sep 1;182(3):391-397.

[66] Freire C, Koifman RJ, Sarcinelli PN, 
Rosa ACS, Clapauch R, Koifman S. 
Association between serum levels 
of organochlorine pesticides and 
sex hormones in adults living in a 
heavily contaminated area in Brazil. 
Int J Hyg Environ Health. 2014 Mar 
1;217(2):370-378.

[67] Eskenazi B, Rauch SA, Tenerelli R, 
Huen K, Holland NT, Lustig RH, et al. In 
utero and childhood DDT, DDE, PBDE 
and PCBs exposure and sex hormones 
in adolescent boys: The CHAMACOS 
study. Int J Hyg Environ Health. 2017 
Apr 1;220(2, Part B):364-72.

[68] Ozen S, Darcan S, Bayindir P, 
Karasulu E, Simsek DG, Gurler T. 
Effects of pesticides used in agriculture 
on the development of precocious 
puberty. Environ Monit Assess. 2012 Jul 
1;184(7):4223-4232.

[69] Lassen TH, Frederiksen H, 
Jensen TK, Petersen JH, Joensen UN, 
Main KM, et al. Urinary Bisphenol A 
Levels in Young Men: Association with 
Reproductive Hormones and Semen 
Quality. Environ Health Perspect. 2014 
May;122(5):478.

[70] Adoamnei E, Mendiola J, Vela-
Soria F, Fernández MF, Olea N, 
Jørgensen N, et al. Urinary bisphenol 
A concentrations are associated with 
reproductive parameters in young men. 
Environ Res. 2018 Feb 1;161:122-128.

[71] Liang H, Xu W, Chen J, Shi H, Zhu J, 
Liu X, et al. The Association between 
Exposure to Environmental Bisphenol 
A and Gonadotropic Hormone Levels 
among Men. PLOS ONE. 2017 Jan 
13;12(1):e0169217.

[72] Meeker JD, Calafat AM, Hauser R. 
Urinary Bisphenol A Concentrations 
in Relation to Serum Thyroid and 
Reproductive Hormone Levels in Men 
from an Infertility Clinic. Environ Sci 
Technol. 2010 Feb 15;44(4):1458.

[73] Hart RJ, Doherty DA, Keelan JA, 
Minaee NS, Thorstensen EB, 
Dickinson JE, et al. The impact of 
antenatal Bisphenol A exposure on male 
reproductive function at 20-22 years of 
age. Reprod Biomed Online. 2018 Mar 
1;36(3):340-347.

[74] Li C, Cao M, Qi T, Ye X, Ma L, 
Pan W, et al. The association of 
bisphenol A exposure with premature 
ovarian insufficiency: a case–control 
study. Climacteric. 2020 Jul 16;0(0):1-6.

[75] Miao M, Yuan W, Yang F, Liang H, 
Zhou Z, Li R, et al. Associations 
between Bisphenol A Exposure and 



19

G-Protein Coupled Hormone Receptors of the Hypothalamic-Pituitary-Gonadal Axis are Targets…
DOI: http://dx.doi.org/10.5772/intechopen.96240

Reproductive Hormones among Female 
Workers. Int J Environ Res Public 
Health. 2015 Oct;12(10):13240.

[76] Pollack AZ, Mumford SL, Krall JR, 
Carmichael AE, Sjaarda LA, Perkins NJ, 
et al. Exposure to bisphenol A, 
chlorophenols, benzophenones, and 
parabens in relation to reproductive 
hormones in healthy women: A 
chemical mixture approach. Environ 
Int. 2018 Nov;120:137.

[77] Mustieles V, Ocón-Hernandez O, 
Mínguez-Alarcón L, Dávila-Arias C, 
Pérez-Lobato R, Calvente I, et al. 
Bisphenol A and reproductive hormones 
and cortisol in peripubertal boys: 
The INMA-Granada cohort. Sci Total 
Environ. 2018 Mar 15;618:1046-1053.

[78] Tsai C-S, Chou W-J, Lee S-Y, Lee 
M-J, Chou M-C, Wang L-J. Phthalates, 
Para-Hydroxybenzoic Acids, 
Bisphenol-A, and Gonadal Hormones’ 
Effects on Susceptibility to Attention-
Deficit/Hyperactivity Disorder. Toxics. 
2020 Sep;8(3):57.

[79] Chen Y, Wang Y, Ding G, Tian Y, 
Zhou Z, Wang X, et al. Association 
between bisphenol a exposure and 
idiopathic central precocious puberty 
(ICPP) among school-aged girls in 
Shanghai, China. Environ Int. 2018 Jun 
1;115:410-416.

[80] Muerköster A-P, Frederiksen H, 
Juul A, Andersson A-M, Jensen RC, 
Glintborg D, et al. Maternal phthalate 
exposure associated with decreased 
testosterone/LH ratio in male offspring 
during mini-puberty. Odense Child 
Cohort. Environ Int. 2020 Nov 
1;144:106025.

[81] Hyun Kim D, Min Choi S, Soo 
Lim D, Roh T, Jun Kwack S, Yoon S, 
et al. Risk assessment of endocrine 
disrupting phthalates and hormonal 
alterations in children and adolescents. 
J Toxicol Environ Health A. 
2018;81(21):1150-1164.

[82] Zhang J, Yin W, Li P, Hu C, Wang L, 
Li T, et al. Interaction between diet- 
and exercise-lifestyle and phthalates 
exposure on sex hormone levels. J 
Hazard Mater. 2019 May 5;369:290-298.

[83] Wang B, Qin X, Xiao N, Yao Y, 
Duan Y, Cui X, et al. Phthalate exposure 
and semen quality in infertile male 
population from Tianjin, China: 
Associations and potential mediation 
by reproductive hormones. Sci Total 
Environ. 2020 Nov 20;744:140673.

[84] Al-Saleh I, Coskun S, Al-Doush I, 
Al-Rajudi T, Abduljabbar M, 
Al-Rouqi R, et al. The relationships 
between urinary phthalate metabolites, 
reproductive hormones and semen 
parameters in men attending in vitro 
fertilization clinic. Sci Total Environ. 
2019 Mar 25;658:982-995.

[85] Duty SM, Calafat AM, Silva MJ, 
Ryan L, Hauser R. Phthalate exposure 
and reproductive hormones in 
adult men. Hum Reprod. 2005 Mar 
1;20(3):604-610.

[86] Joensen UN, Frederiksen H, 
Jensen MB, Lauritsen MP, Olesen IA, 
Lassen TH, et al. Phthalate Excretion 
Pattern and Testicular Function: A 
Study of 881 Healthy Danish Men. 
Environ Health Perspect. 2012 
Oct;120(10):1397-1403.

[87] Anand-Ivell R, Cohen A, Nørgaard-
Pedersen B, Jönsson BAG, Bonde 
J-P, Hougaard DM, et al. Amniotic 
Fluid INSL3 Measured During the 
Critical Time Window in Human 
Pregnancy Relates to Cryptorchidism, 
Hypospadias, and Phthalate Load: A 
Large Case–Control Study. Front Physiol 
[Internet]. 2018 Apr 24 [cited 2020 Oct 
6];9. Available from: https://www.ncbi.
nlm.nih.gov/pmc/articles/PMC5928321/

[88] Pan Y, Jing J, Dong F, Yao Q , 
Zhang W, Zhang H, et al. Association 
between phthalate metabolites and 
biomarkers of reproductive function in 



Endocrine Disruptors

20

1066 Chinese men of reproductive age. J 
Hazard Mater. 2015 Dec 30;300:729-736.

[89] Chang W-H, Wu M-H, Pan H-A, 
Guo P-L, Lee C-C. Semen quality and 
insulin-like factor 3: Associations 
with urinary and seminal levels of 
phthalate metabolites in adult males. 
Chemosphere. 2017 Apr;173:594-602.

[90] Chang W-H, Li S-S, Wu M-H, 
Pan H-A, Lee C-C. Phthalates might 
interfere with testicular function by 
reducing testosterone and insulin-like 
factor 3 levels. Hum Reprod. 2015 Nov 
1;30(11):2658-2670.

[91] Araki A, Mitsui T, Miyashita C, 
Nakajima T, Naito H, Ito S, et al. 
Association between Maternal Exposure 
to di(2-ethylhexyl) Phthalate and 
Reproductive Hormone Levels in 
Fetal Blood: The Hokkaido Study on 
Environment and Children’s Health. 
PLOS ONE. 2014 Oct 8;9(10):e109039.

[92] Chevalier N, Brucker-Davis F, 
Lahlou N, Coquillard P, Pugeat M, 
Pacini P, et al. A negative correlation 
between insulin-like peptide 3 and 
bisphenol A in human cord blood 
suggests an effect of endocrine 
disruptors on testicular descent during 
fetal development. Hum Reprod. 2015 
Jan 2;30(2):447-453.

[93] Graceli JB, Dettogni RS, Merlo E, 
Niño O, da Costa CS, Zanol JF, et al. 
The impact of endocrine-disrupting 
chemical exposure in the mammalian 
hypothalamic-pituitary axis. Mol Cell 
Endocrinol. 2020 Aug 22;518:110997.

[94] Mustieles V, D’Cruz SC, Couderq S, 
Rodríguez-Carrillo A, Fini J-B, Hofer T, 
et al. Bisphenol A and its analogues: A 
comprehensive review to identify and 
prioritize effect biomarkers for human 
biomonitoring. Environ Int. 2020 Nov 
1;144:105811.

[95] Pallotti F, Pelloni M, Gianfrilli D, 
Lenzi A, Lombardo F, Paoli D. 
Mechanisms of Testicular Disruption 

from Exposure to Bisphenol A and 
Phtalates. J Clin Med [Internet]. 
2020 Feb 8 [cited 2020 Nov 12];9(2). 
Available from: https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC7074154/

[96] Radke EG, Glenn BS, Braun JM, 
Cooper GS. Phthalate exposure and 
female reproductive and developmental 
outcomes: a systematic review of the 
human epidemiological evidence. 
Environ Int. 2019 Sep 1;130:104580.

[97] Radke EG, Braun JM, Meeker JD, 
Cooper GS. Phthalate exposure 
and male reproductive outcomes: 
A systematic review of the human 
epidemiological evidence. Environ Int. 
2018 Dec 1;121:764-793.

[98] Maamar MB, Lesné L, Desdoits-
Lethimonier C, Coiffec I, Lassurguère J, 
Lavoué V, et al. An Investigation of 
the Endocrine-Disruptive Effects of 
Bisphenol A in Human and Rat Fetal 
Testes. PLoS ONE [Internet]. 2015 Feb 
23 [cited 2017 Jul 10];10(2). Available 
from: http://www.ncbi.nlm.nih.gov/
pmc/articles/PMC4338204/

[99] N’Tumba-Byn T, Moison D, 
Lacroix M, Lecureuil C, Lesage L, 
Prud’homme SM, et al. Differential 
Effects of Bisphenol A and 
Diethylstilbestrol on Human, Rat and 
Mouse Fetal Leydig Cell Function. PLoS 
ONE [Internet]. 2012 Dec 17 [cited 2017 
Jul 10];7(12). Available from: http://
www.ncbi.nlm.nih.gov/pmc/articles/
PMC3524173/

[100] Desdoits-Lethimonier C, Lesné L, 
Gaudriault P, Zalko D, Antignac JP, 
Deceuninck Y, et al. Parallel assessment 
of the effects of bisphenol A and 
several of its analogs on the adult 
human testis. Hum Reprod. 2017 Jul 
1;32(7):1465-1473.

[101] Desdoits-Lethimonier C, Albert O, 
Le Bizec B, Perdu E, Zalko D, Courant F, 
et al. Human testis steroidogenesis is 
inhibited by phthalates. Hum Reprod. 
2012 May 1;27(5):1451-1459.


