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Chapter

Base Excision Repair in 
Sugarcane – A New Outlook
Nathalia Maíra Cabral de Medeiros  

and Katia Castanho Scortecci

Abstract

The base excision repair (BER) pathway has been associated with genome 
integrity maintenance. Owing to its central role, BER is present in all three 
domains of life. The studies in plants, considering BER, have been conducted 
using Arabidopsis and rice models. Therefore, future studies regarding BER are 
required in other organisms, particularly in crops such as sugarcane, to understand 
its mechanism, which may reflect the uniqueness of DNA repair in monocots. Our 
previous results have revealed that sugarcane is an interesting plant for studying 
this pathway considering the polyploidy genome and genome evolution. This  
chapter aimed to characterize the BER pathway in sugarcane by using different 
bioinformatics tools, for example, screening for BER homologs in the sugar-
cane genome to identify its members. Each sequence obtained was subjected to 
structural analysis, and certain differences were identified when Arabidopsis was 
compared to other monocots, including sugarcane. Moreover, ROS1, DEM, and 
DML3 were not identified as a complete sequence in the sugarcane EST database. 
Furthermore, FEN1 is present as two sequences, namely FEN1A and FEN1B, 
both featuring different amino acid sequence and motif presence. Furthermore, 
FEN1 sequence was selected for further characterization considering its evolu-
tionary history, as sequence duplication was observed only in the Poaceae family. 
Considering the importance of this protein for BER pathway, this sequence was 
evaluated using protein models (3D), and a possible conservation was observed 
during protein–protein interaction. Thus, these results help us understand the 
roles of certain BER components in sugarcane, and may reveal the aspects and 
functions of this pathway beyond those already established in the literature.

Keywords: BER, Saccharum spp., DNA repair, Poaceae, 3D-model, phylogenetic

1. Introduction

The base excision repair (BER) pathway is linked to the maintenance of genome 
integrity since BER is an essential genome defense pathway, which acts over a broad 
range of DNA lesions induced by endogenous or exogenous genotoxic agents [1]. 
Owing to its central role, BER is present in all three domains of life [2]. As a com-
plex process, BER initiated by the excision of damaged base, proceeds through a 
sequence of reactions that generate various DNA intermediates and finish with the 
repair of the initial DNA structure. Nevertheless, BER focuses on repair, deals with 
DNA demethylation and erases the epigenetic mark 5-methycytosine (5mC) and 
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converts it to cytosine [3]. Thus, an emerging and crucial role of BER in epigenetic 
regulation is being investigated and characterized [4–7]. Although various studies 
have been conducted in animal and microbial systems, BER knowledge regarding 
plants has been neglected.

Despite these apparent differences in plant research compared to other organ-
isms, knowledge about the BER pathway in plants has gained immense interest in 
recent years. The results obtained so far reveal that plants possess orthologues of 
most BER genes previously found in other organisms [8–10]; however, they also 
retain some plant-specific BER proteins as well as distinct enzyme combinations not 
observed in other kingdoms (review by [8]). Unfortunately, most of these findings 
were based on the model Arabidopsis thaliana, indicating the importance of ampli-
fying studies on other organisms, particularly important crops [11].

Grasses (Poaceae; alternative name Gramineae) are undoubtedly an important 
plant group considering the economic perspective, and provide essential cereals 
such as Eragrostis, Hordeum, Oryza, Secale, Sorghum, Triticum and Zea; stalks such 
as Arundo and Phragmites; cane for food and materials for construction such as 
Bambusa and Phyllostachys and sugar crops such as Saccharum and Sorghum [12]. 
Sugarcane is a crop of noticeable value that can meet the requirements of food, 
feed fiber, and fuel. Moreover, sugarcane production by weight surpasses that of 
food crops such as wheat, rice and maize [13]. Despite its importance, this crop 
has been given less attention in scientific research than other members of Poaceae 
family, such as rice and maize. One reason is the polyploid and heterozygous 
nature of its genome, leading to lesser research compared to the other grass species 
studied [14–16].

Furthermore, research has been conducted using the sugarcane expressed 
sequence tags (ESTs) project (SUCEST), which has identified possible DNA 
repair genes [17, 18]. BER sequences were predicted, although these investiga-
tions were conducted more than 10 years ago [19]. Since then, there have been 
several improvements in bioinformatics tools as well as in sugarcane genome 
sequencing [20–24].

More studies are required to unravel the specific features of BER pathway in 
sugarcane, which may reflect the uniqueness of DNA repair in monocots. A new 
screening for BER homologs in the sugarcane genome was developed to gain 
advanced knowledge of BER in this crop. Each sequence was structurally analyzed. 
Thereafter, some of these sequences were selected for further investigating their 
evolutionary history. Tri-dimensional models have also been created to verify 
the conservation of mechanisms and protein–protein interactions in sugarcane 
BER components. The intriguing results displayed in this chapter raise questions 
regarding the roles of certain components of BER in sugarcane, just as in mono-
cots, and they might broaden the aspects and functions of this pathway beyond 
those already established in the scientific literature.

2. Identification of base excision repair’s components in sugarcane

The BER components were identified in sugarcane through homology with the 
bioinformatic tools. In this regard, the SUCEST-FUN database, which assembles 
distinct sugarcane databases such as the Sugarcane Expressed Sequence Tags 
genome project (SUCEST-FUN) (http://sucest.lad.ic.unicamp.br/en/) [25]; 
Sugarcane Gene Index (SGI); SUCAST catalogs and SUCAMET, which include 
expression data (http://sucest-fun.org); GRASSIUS database [26] and records of the 
agronomic, physiological and biochemical characteristics of sugarcane cultivars, 
were used.
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BER 

component

% Identity  

(Sb/At)

Protein name Substrate or function Role in BER SUCEST-FUN ID

DEM, ROS1 
and DMLE

(94.54/54.88, 
51.79, 55.05)*

DEMETER, Repressor of silencing 
1 and DEMETER-like protein 3

5-methylcytosine (5-meC) Involved in the 
initial stage of BER, 

recognizing the 
damaged base.

comp89337_c0_seq1

OGG1 (96.64/59.29) 8-oxoguanine-DNA glycosylase 1 8-oxoguanine (8-oxoG) comp78469_c0_seq3

NTH1 (97.85/ 54.09, 
49.31)**

Endonuclease III homolog 1 oxidized pyrimidine comp79344_c0_seq1

UDG (96/57) Uracil-DNA glycosylase Uracil comp64547_c0_seq4 and 
SCEQFL5048B07.g

MBD4L (88.3/47) Methyl-CpG-binding domain 
protein 4-like protein

G:T mismatches within methylated and 
unmethylated CpG sites.

Uracil or 5-fluorouracil in G:U mismatches.

comp78687_c0_seq2

MUTM  
(1 and 2)****

(94.49/68.64)
(86.83/59.11)

Formamidopyrimidine-DNA 
glycosylase

oxidation products of 8-oxoguanine (8-oxoG) comp85541_c0_seq1;
SCCCLR2C01B12.g

ARP1  
(1 and 3)****

(95.09/59.60)
(97.42/71.79)

DNA-(apurinic or apyrimidinic 
site) endonuclease

Ap site Repair by-products 
(AP site) of BER or 

oxidation.

comp79331_c0_seq10;
comp86134_c0_seq5

FEN1  
(A and B)****

(96/81.69) 
(82.97/73.07)

Flap endonuclease 1 5′ flap Involved with the BER’s 
long-patch.

comp79282_c1_seq1 and 
SCEPRZ1008D03.g; comp85461_
c0_seq2 and comp79282_c1_seq1

Pol λ (95.16/54.70) DNA POLIMERASE LAMBDA Resynthesize missing nucleotides It replaces the 
Polymerase beta acting 
on the BER short-patch.

comp80417_c0_seq9

TDP1 (95/45.7) Tyrosyl-DNA phosphodiesterase 1 Processing of diverse 3′- and 5′-blocking 
groups at DNA ends

Processing of 
intermediate BER 

products

comp89039_c1_seq9 and 
comp89039_c1_seq3

LIG1 (91.67/70.96) DNA ligase 1 Seal 5′-PO4 and 3′-OH polynucleotide ends Involved in the long 
and BER’s short patch.

comp86584_c0_seq5 and 
comp86584_c0_seq7

LIG4 (97.53/73.25) DNA ligase 4 Proposed to be involved 
in BER’s short-patch.

comp85403_c0_seq6
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BER 

component

% Identity  

(Sb/At)

Protein name Substrate or function Role in BER SUCEST-FUN ID

ZDP (94.8/43.2) Polynucleotide 3′-phosphatase 
ZDP

3′-phosphopolynucleotide Processing of 
intermediate BER 

products.

comp78030_c0_seq1

PCNA (100/85.55 and 
86.69) ***

PROLIFERATING CELL 
NUCLEAR ANTIGEN

A scaffold to recruit the proteins involved 
in DNA replication, DNA repair, chromatin 

remodeling, and epigenetics

Involved in the BER’s 
long-patch.

comp82119_c0_seq2 and 
SCCCCL3140F04.g

PARP1 (96.7/60.6) Poly [ADP-ribose] polymerase 1 Uses NAD+ as a substrate, synthesizes and 
transfers ADP-ribose onto aspartic and 

glutamic acid residues of acceptor proteins

Protects the BER 
substrate, present in the 

BER’s long-patch.

comp82301_c0_seq8 and 
SCAGLB1070H02.g

PARP2 (95.5/53.1) Poly [ADP-ribose] polymerase 2 Not essential for DNA 
repair in the BER 

pathway.

comp85410_c0_seq3 and 
SCJFRT1012D11.g

XRCC1 (97.11/48.2) X-RAY REPAIR 
CROSSCOMPLEMENTING 

PROTEIN 1

interacting with APE1 and stimulating its 
AP endonuclease activity, prepares the DNA 
substrate for the DNA polymerase activities.

Involved in the BER’s 
short-patch.

comp81667_c0_seq2, 
SCVPFL4C09E05.g and 

SCEZSD1082B05.g

WRN (93.9/41.5) WERNER SYNDROME ATP
DEPENDENT HELICASE

Helicase enzyme Interacts with several 
BER proteins: FEN1, 

PolB and PARP1

comp74108_c0_seq1, 
SCUTAM2089F01.g and 

SCSFLR2031F05.g

In the column % Identity (Sb/At) corresponds to the amino acid sequence identity of sugarcane protein with Sorgum bicolor and Arabidopsis thaliana homologs are shown.
*Only one sequence was found in Sorghum bicolor with high similarity to sugarcane sequence and Arabidopsis’s DEM, ROS1 and DMLE.
**There are two NTH in Arabidopsis thaliana: NTH1 (Q9SIC4) and NTH2 (B9DFZ0).
***There are two PCNA in Arabidopsis thaliana: PCNA1 (Q9M7Q7) and PCNA2. (Q9ZW35).
****BER components that were identified sequence duplication in sugarcane genome.

Table 1. 
BER components from sugarcane.
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Sugarcane BER components identified were compared with sequences belong-
ing to A. thaliana and Sorghum bicolor (Table 1). Subsequently, these sequences 
were structurally and phylogenetically characterized; hence, their location on the 
pathway was set (Table 1). The following topics will address the particularities that 
were found relevant to BER and its specificities in sugarcane and monocots.

3. BER components—missing and differences

Sugarcane exhibits almost all components of the BER pathway, even though 
ROS1, DEM and DML3 were not identified as complete sequences. These DNA 
glycosylases, which play pivotal roles in epigenetic processes [27], have been well 
characterized [28–31] and were found in SUCEST-FUN as a single sequence without 
functional domains. Nevertheless, this result does not indicate a missing enzyme; 
epigenetic regulation is crucial, particularly in plants, and even more in polyploids 
organisms [32, 33]. Furthermore, the sugarcane database compiles numerous 
fragmented sequences that were not assembled and functionally annotated yet, as 
most data were from the transcriptome [25].

In contrast, differences were observed between the sequences of grasses 
analyzed (sugarcane and S. bicolor) when compared to dicotyledons, A. thaliana 
(Table 2). One of these differences, inconsistent with that observed in A. thaliana, 
was that the sequences of the Poaceae family present a second flap endonuclease 
protein ‘FEN1B’, which differs in size (as they are larger than the canonical Flap 
endonuclease 1 that receives the suffix A) and lacks the interaction sequence 
with PCNA. Notably, the sequences FEN1A and FEN1B are found at different loci 
and chromosomes of S. bicolor. Duplication in genes related to BER proteins was 
observed in AP endonucleases (ScARP1 and ScARP3) and MUMT (ScMUTM1 and 
ScMUTM2), which also reveal structural differences, as observed in FEN1A_CANA 
and FEN1B_CANA [34–36].

DNA ligase IV revealed certain differences regarding the domain disposition 
on the sequence (Table 2). Additionally, the sequences reveal variable identity 
(Table 1), thereby indicating high similarity within the grass plants. Notably, the 
BRCT domain is present in the sequences of A. thaliana and S. bicolor, but not in 
that of sugarcane. BRCT is a domain related to protein–protein interactions and is 
present in numerous proteins involved in DNA repair as well as cell cycle control 
[37–39]. Differences in domain disposition were also perceived in XRCC1, which 
displayed only one BRCT domain in the Poaceae family, whereas two BRCTs were 
found in the A. thaliana sequence. These differences could reflect variations in the 
protein role in DNA metabolism; these domains are essential because they  
comprise the activity and binding site of the enzyme.

4. BER’s first step - base lesion recognition

BER is initiated by lesion-specific DNA glycosylases. The basic DNA glycosylase 
enzymatic process involves excision of the modified nucleobase from the DNA by 
catalyzing the hydrolysis of the N-glycosidic bond [40]. Regarding sugarcane, some 
of the BER’s glycosylases were identified and characterized, suggesting the mainte-
nance of the enzymes in Saccharum spp. as well as in conservation of the first step of 
BER pathway.

The DNA glycosylase OGG1 was identified in sugarcane and is called OGG1_
CANA. This glycosylase as well as other sequences belonging to the Poaceae and 
the dicotyledonous, exhibit the conserved domain of the superfamily OGG1 [41]. 
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Query Accession Protein domain lenght (aa)

DML3_ARATH (O49498) pfam15628 RRM_DME 1044

cl23768 ENDO3c superfamily

cl21423 Perm-CXXC superfamily

DME_ARATH (Q8LK56) pfam15628 RRM_DME 1987

cl23768 ENDO3c superfamily

pfam15629 Perm-CXXC

cl26620 Glutenin_hmw superfamily

cl34047 TonB superfamily

ROS1_ARATH (Q9SJQ6) pfam15628 RRM_DME 1393

cl23768 ENDO3c superfamily

pfam15629 Perm-CXXC

A0A1Z5R5E2_SORBI pfam15628 RRM_DME 1878

cl23768 ENDO3c superfamily

pfam15629 Perm-CXXC

comp89337_c0_seq1 _ _ 1469

FEN1_ARATH (O65251) PF00867 N-domain 383

PF00752 I-domain

Interaction with PCNA

FEN1A_SORBI (C5YUK3) PF00867 N-domain 380

PF00752 I-domain

Interaction with PCNA

FEN1B_SORBI (C5WU23) PF00867 N-domain 428

PF00752 I-domain

FEN1A_CANA PF00867 N-domain 379

PF00752 I-domain

Interaction with PCNA

FEN1B_CANA PF00867 N-domain 413

PF00752 I-domain

DNLI4_ARATH (Q9LL84) cl36689 dnl1 superfamily 1219

cd17722 BRCT_DNA_ligase_IV_rpt1

cd17717 BRCT_DNA_ligase_IV_rpt2

cl31754 PTZ00121 superfamily

A0A1Z5REU4_SORBI cl36689 dnl1 superfamily 1281

cd17722 BRCT_DNA_ligase_IV_rpt1

cl00038 BRCT superfamily

cl12940 DNA_ligase_IV superfamily

DNLI4_CANA cd07903 Adenylation_DNA_ligase_IV 572

cl08424 OBF_DNA_ligase_family 
superfamily

pfam04675 DNA_ligase_A_N
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This sequence reveals conservation of glutamine and phenylalanine residues 
(Arabidopsis, residues Q324 and F328; sugarcane, Q378 and F382) that are responsible 
for recognition of the damage base [42]. Moreover, site-directed mutagenesis assays 
in human OGG1 revealed that residues K249 and D268 (the sugarcane equivalent D334 
and K315) would also play an essential role in appropriate catalysis of DNA glycosyl-
ase [43, 44]. For MUTM, two sequences were identified in sugarcane: ScMUTM1 
and ScMUTM2. Similar to OGG1_CANA, these sequences also retain essential 
residues for their enzymatic activity [36].

In A. thaliana, a homolog for Endonuclase III was identified and character-
ized, and termed as Arabidopsis thaliana ENDONUCLEASE THREE HOMOLOG 
1(AtNTH1); it presented its enzymatic activity in relation to various substrates, 
thereby revealing its essential role in plant stress response [45]. A second endo-
nuclease III homolog called AtNTH2, which was found together with AtNTH1 and 
AtARP in the A. thaliana chloroplast nucleus, demonstrating the occurrence of BER 
pathway in this organelle [46]. Considering grasses, a sequence that would refer 
to NTH2 remained unidentified. Phylogenetic analyses of this DNA glycosylase 
revealed duplication of sequences for organisms belonging to the group of dicots, 
but not for monocots.

Sugarcane NTH1, called NTH1_CANA, belongs to the Helix-hairpin-Helix 
(HHH) superfamily [47]. Furthermore, regarding Escherichia coli’s endonuclease III 
protein, the Helix-Hairpin-Helix domain has iron–sulfur binding sites [4Fe-4S] [48]. 
These sites comprised four conserved cysteines that would act on redox chemistry 
and DNA binding [49], and both motif and sites are conserved in the NTH1_CANA. 
Moreover, conservation of aspartic acid (D) at the active site, which is a residue 
preserved in other DNA glycosylases besides NTH1, such as UNG and MBD4L [50], 
was also evidenced in sugarcane.

Another glycosylase identified was UDG_CANA, which was conserved in the 
domain belonging to the UDG superfamily, more precisely concerning family-1 
[51–53]. Additionally, it conserved aspartic acid (D) as an active site [51]. It is 
known that the human UNG gene encodes two forms of the protein, one directed 
towards the mitochondria (UNG1) and another towards the nucleus (UNG2) 
[54]. The A. thaliana UNG (AtUNG) seems to be homologous to these two types 
of UNGs, being proven to act on mitochondrial DNA [55]. Most grass sequence 
annotations of computational prediction that directed the UNGs to both the nucleus 
and the mitochondria, raised the question whether there is only one UNG for both 
organelles in plants.

Ramiro-Merina et al. [56] demonstrated that A. thaliana encodes a monofunc-
tional DNA glycosylase homologous to mammalian MBD4, known as MBD4-like 
or AtMBD4L. Nota et al. [57] indicated that the activation of AtMBD4L induces the 
expression of a late gene from the BER AtLIG1 pathway and reveals the mechanism 
by which it increases the plant’s tolerance to oxidative stress. In relation to sugar-
cane, one fragment features the same domain and active site as AtMBD4L, implying 
a probable functional protein in Saccharum spp.

Query Accession Protein domain lenght (aa)

XRCC1_ARATH PRU00033 BRCT1 352

PRU00033 BRCT2

C5Z3V7_SORB PS50172 BRCT 346

XRCC1_CANA PS50172 BRCT 346

Table 2. 
BER components with distinct features regarding protein domains in sugarcane.
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5. AP site removal—AP endonuclease role in sugarcane

AP endonuclease is an essential enzyme for BER pathway as this enzyme identi-
fies and process AP (apurinic/apyrimidinic) site [58]. These AP sites may be a result 
of the action of DNA glycosylases or it may be spontaneously generated. Unrepaired 
AP sites can lead to mutations during semiconservative replication, which indi-
cates the importance of the role of AP endonuclease in maintenance of the genetic 
code [59].

In A. thaliana, three AP endonucleases are homologous to APE1 (HUMAN AP 
ENDONUCLEASE 1), namely AtAPE1L, AtAPE2, and AtARP [60]. Each of these 
presents their specifics based on enzymatic activity, regulation, and sub-cellular 
localization. For sugarcane, two sequences were identified, and their three-
dimensional structures were inferred: ScARP1 and ScARP3 [35]. By examining the 
sequences of ScARPs (1 and 3), we can observe the conservation of essential sites 
for the catalysis and binding of metals (enzymatic cofactors) [34].

ScARP1 has greater similarity with AtARP (60%), whereas AtAPE1L and 
AtAPE2 reveal a correspondence below 50%. These values may indicate diversity 
in structure, amino acid composition, and perhaps function. ScARP3 reveals a 
divergence compared with ScARP1. ScARP3 is closer to AtARP, presenting an 
even higher percentage of identity (75%). Maíra et al. [35] demonstrated that the 
sequence ScARP3 would be closer to the group of dicotyledonous plants, whereas 
ScARP1 would be included within the monocots, more precisely together with 
representatives of the Poaceae family.

Medeiros et al. [34] purified ScARP1 and verified the enzymatic activity of 
this sugarcane enzyme against several substrates. This study found the capability 
of ScARP1 to process AP sites; however, other enzymatic activities (exonuclease, 
phosphatase, and 3′-phosphodiesterase) were not confirmed. The AP endonucle-
ase activity complementation assay in extracts of A. thaliana demonstrated that 
ScARP1 was capable of complementing around 40% of the activity of AtARP from 
arp−/− mutant plant extracts [34].

6. Flap endonuclease (FEN1)—BER’s long-patch in sugarcane

FEN1 is a structure-specific nuclease that can remove flap structures and is 
involved in different DNA metabolic pathways, including DNA replication, DNA 
repair, apoptotic DNA degradation, and maintenance of telomere stability [61]. In 
case of BER, FEN1 in complex with proliferating cell nuclear antigen (PCNA) plays 
a pivotal role in the long patch as it removes a short flap structure generated by Pol β 
activity [62].

Regarding plants, it is known that two FEN1 counterparts were identified in rice 
(Oryza sativa, OsFEN1a, OsFEN1b). Functional complementation assays revealed 
that only OsFEN1a would be able to complement the fen1/rad27 mutant in yeast, 
suggesting that these two genes may be functionally distinct [63]. In addition, 
OsFEN1a, expressed in Escherichia coli, presents flap-endonuclease and 5′-exo-
nuclease activity [64]. In A. thaliana, only one FEN1 homolog, namely SAV6, was 
identified [64]. Biochemical characterization of SAV6 protein (also called FEN1) 
revealed that, unlike animal FEN1, the SAV6 protein has flap-endonuclease and gap 
endonuclease activity but does not reveal 5′ exonuclease activity; however, similar 
to human FEN1 (hFEN1), SAV6 is also necessary for maintaining the genome 
integrity and responding to plant DNA damage [65].

As observed in O. sativa, sugarcane has two FEN1 sequences, namely FEN1A_CANA 
and FEN1B_CANA. Considering the structure of the Flap endonuclease, it is known that 
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human FEN1 comprises the N-terminal domain and the intermediate (Domain I) in 
addition to a C-terminal region, which is important for the interaction of FEN1 with other 
proteins, such as PCNA and WRN (Figure 1) [66, 67]. The FEN1A_CANA sequence pre-
serves the domains described previously; however, the FEN1B_CANA and other Poaceae 
similar sequences analyzed do not possess the binding domain for PCNA in its C-terminal 
region, which may affect its mechanism of action in the plant cell.

Considering the protein structure, FEN1 is a nuclease that features two regions: 
the N-terminal region and I-region [68]. The alignment of FEN1 from H. sapiens, 
A. thaliana and S. bicolor as well as FEN1A’s sugarcane ascertained the conserva-
tion of these regions (Figure 1). Notably, the region of interaction with the PCNA 
(Figure 1a) that is in a loop, in that way, more exposed and facilitating its possible 
interaction with PCNA. The sugarcane FEN1A model presents the conservation of 
metal-binding sites (Mg+2 ion; Figures 1b and c). The residues D34, D87, and D182, 
considering the equivalent residues in human FEN1 [69], may be responsible for the 
catalytic activity of the enzyme (Figure 1b and c).

7. PCNA role in plants

Studies on PCNA have revealed that it plays a crucial role in DNA replication as 
well as in DNA repair, cell cycle regulation and apoptosis [70–72]. In A. thaliana, 
two PCNAs, AtPCNA1 and AtPCNA2, are present, which differ from each other in 
eight amino acids, in addition to the fact that AtPCNA2 has an extra residue in the 
protein length [73]. Of these eight different amino acids, four are identical to the 
residues found in Brassica napus and human PCNAs [74].

Figure 1. 
The proposed model for FEN1 of sugarcane. (a) It was represented the alignment obtained using Clustal omega 
for FEN1 sequences of Homo sapiens, Arabidopsis thaliana, Sorghum bicolor and sugarcane. The colors in 
the alignment and in the model, correspond to the N-terminal region (green), internal region (I) (purple) 
and the segment that interacted with PCNA (gray). Metal-binding sites (b) and DNA binding sites (c) are 
highlighted. The black arrows in (b) indicate the probable active site of the enzyme.



Sugarcane

10

Considering the difference between AtPCNAs, Anderson et al. [73] demon-
strated that co-expression of POLH (DNA polymerase eta - Pol η) and AtPCNA2 
(and not AtPCNA1) was necessary to restore normal resistance to UV radiation in 
the yeast RAD30 mutant. The difference was in lysine (K) 201 present in AtPCNA1, 
which would inhibit the ubiquination of lysine 164, thus affecting its connection 
with Pol η and not being able to act on trans-lesion synthesis (TLS) and restore the 
progression of the replication fork. The lysine at position 201 of AtPCNA1 belonged 
to the group comprising amino acids with electrically charged side chains. In the 
case of K, this could be endowed with a positive charge, whereas the corresponding 
one at AtPCNA2 would be an asparagine (N) that belonged to the group of amino 
acids with polar side chains without being loaded. In PCNA_CANA, the corre-
sponding residue in question would be a glutamine that concerns the same group as 
N, which leads to the conclusion that sugarcane PCNA would be closer to AtPCNA2 
than AtPCNA1 and could, as such, act in the TLS.

The three-dimensional model of sugarcane’s PCNA is revealed as homotri-
meric architecture in the form of a ring, comprising three identical chains of 
PCNA, as indicated by different colors in the sugarcane PCNA model (Figure 2). 

Figure 2. 
Three-dimensional model and protein sequences of plant and human PCNAs. The 3D models are depicted 
above the alignment presenting conservation of the structure in ring-shaped homotrimeric architectures. The 
model of the putative sugarcane PCNA; the structures highlighted in blue, green and pink are individual chains 
of PCNA that together compose the homotrimeric ring. Below the models, the corresponding alignment of the 
PCNA sequences of Arabidopsis thaliana, Homo sapiens and Saccharum spp., highlighting the secondary 
structures (yellow arrow, beta sheet; blue cylinder, alfa helix) is presented.
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Additionally, this model exhibits sequence and structural similarity with other 
PCNAs, as observed in Figure 2. Compared to A. thaliana and H. sapiens PCNAs, 
sugarcane’s PCNA overlapped its secondary structure. Structure conservation is also 
observed in the PCNA models (Figure 2), which display the same homotrimeric 
ring predicted for the sugarcane model.

PCNA is generally called a sliding clamp, since it was predicted that the double 
strand of DNA would pass through the opening of the PCNA ring and would serve 
as an anchoring platform for several proteins involved in DNA metabolism [75]. 
The attainable preservation of this function was verified in the Saccharum spp. 
model. The 5L7C crystal [76], which is a model of human PCNA, was used for 
comparison with PCNA’s sugarcane. By aligning the crystal with the model (root 
mean square deviation, RMSD = 0.653 Å), it was possible to ascertain the prob-
able conservation of its interaction with the DNA (depicted in pink). Therefore, 
we identified a DNA binding site in the model, which faces the interior of the 
ring orifice, where the double strand of DNA should pass (depicted in blue) 
(Figure 3).

8. Sugarcane protein models—conservation throughout plants

PCNA and FEN1A were proteins identified in sugarcane, which were presumed 
to interact with each other [77]. This is due to PCNA interaction sequence detected 
in the N-terminal segment of FEN1A. To verify the truthfulness of this interaction, 
three-dimensional models were created for PCNA and FEN1A sugarcane proteins. 
These models were assessed for the conservation of secondary structure, active 
sites, and residue interactions with the substrate. Based on this analysis, the role of 
these sugarcane proteins can be established.

PCNA, as previously mentioned, would serve as a scaffold, and moreover, vari-
ous functions can be performed ranging from DNA methylation to base excision 
repair. Thus, using the IUL1 crystal that comprises the human PCNA associated 
with FEN1 [78], the possibility of the sugarcane’s predicted models of these proteins 
that may interact with each other was verified. This result demonstrates that FEN1 
of sugarcane is associated with the homotrimeric ring of PCNA (Figure 4). The 
sequence of interaction with PCNA differs, revealing that this sequence is in the 
interface of PCNA and FEN1 interaction.

Figure 3. 
Models proposed for sugarcane PCNA associated with DNA. The region of the PCNA that interacts with the 
DNA, facing the inside of the ring of the homotrimeric structure, is depicted in pink. The double strand that 
constitutes a helix of predominantly blue color represents the three-dimensional structure of DNA. (a) View of 
the sugarcane PCNA model (in orange) interacting with the DNA (structure in blue and white) seen from the 
side. (b) Frontal view of the model.
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Figure 4. 
Proposed complex of sugarcane PCNA and FEN1. (a) Lateral view of the complex. (b) Frontal view of the 
complex. FEN1 models are in blue, PCNA in green and Mg+2 ions are highlighted in yellow. The sequence of 
FEN1 that interacts with PCNA is highlighted in orange and is indicated with red arrows.

9. BER pathway—evolutionary analysis in the grass outlook

Overall, the phylogenetic analyses revealed differences in the presence or 
absence of duplication of BER pathway components. In few cases, duplication 
was observed in dicotyledons and not in monocotyledons, for example, NTH, 
PCNA and DNA ligase 1. Herein, structural difference was noted (size, presence or 
absence of certain conserved domains), indicating diverse DNA repair mechanisms 
between plants.

Singh et al. [79] compared the plant genomes available at that time, thus aiming 
to compare the genes involved in DNA repair and recombination. They found that 
FEN1, in the genome of monocotyledons (corn, rice, S. bicolor, and Brachypodium 
distachyon) presented two copies and that such copies would not be products of 
intra-genomic duplication. In particular, these copies were subtypes of FEN1, 
FEN1A and FEN1B. Singh et al. [79] also identified one copy of FEN1 in dicots, 
namely A. thaliana, Medicago truncatula, Vitis venifera, and Papaver somniferum; 
however, Glycine max presented two copies of FEN1; in such case, these copies were 
products of intra-genomic duplication.

A new analysis regarding FEN1 in plants, particularly sugarcane, was conducted. 
It was discovered that FEN1B was only found within Poales, specifically Panicoideae 
(Figure 5). Important crops such as Oryza sativa, Zea mays and S. bicolor display 
FEN1B as well as FEN1A. Evolutionary analyses revealed that FEN1A and FEN1B 
had distinct assembly. Moreover, the flap endonucleases (FEN1A and FEN1B) 
of the same species were not located at the same branch in the phylogenetic tree. 
Nonetheless, FEN1 was duplicated in some eudicot groups, as in Noccaea caerulescens 
and Nicotiana tabacum; however, these sequences have all the regions required for a 
functional FEN1.

Although the absence of region may compromise the enzymatic activity of 
FEN1B, the other residues, domains and active sites were conserved. These findings 
raise questions regarding the maintenance of FEN1B in the genome of these organ-
isms, its functions and its role in BER.

Maíra et al. [35] proposed that a whole genome duplication event (WGD) 
would be related to the duplication observed in the AP endonuclease sequence in 
the grasses group; however, further studies indicate that duplications are present 
in other plant groups in addition to Poaceae. The BER’s duplication genes do not 
cover all the components of this pathway; on the contrary, a few sequences—ARP, 
MUTM and FEN1—could be set as duplications. Issues regarding the maintenance 
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of these sequences in plant genomes, particularly sugarcane, need to be responded 
to essentially comprehend the evolutionary aspect of the BER pathway in 
monocots.

Notably, the fate of the vast majority of duplicate genes resulting from segmental 
duplication includes the nonfunctionalization of a member of the pair [80, 81], 
which should occur within a few million years in the absence of any intrinsic 
advantage of duplicate copying [81, 82]. Specifically, plant genomes, on average, 
reveal 65% of their annotated genes that are duplicated [83]. Most of these copies 
are derived from ancient WGD events in the terrestrial plant lineage [83]. Li et al. 
[84] investigated the fate of duplicate genes from 40 different species of flowering 
plants; of these, all species experienced at least one or more WGD events throughout 
their evolutionary history. The loss of genes was observed immediately after genome 
duplication, so that the genes quickly returned to the state of a single copy [84]; 
however, some of these genes have preserved their state of multiple copies. Such 
genes belong to families of genes involved in the response to biotic and abiotic stress, 
and are therefore important for the adaptation of the plant to the environment. 
Thus, it is possible to correlate the duplication and retention of these copies with an 
adaptive advantage such that genes can confer to the plant, allowing it to act more 
efficiently in response to environmental variations. DNA repair genes are linked 
to this hypothesis, since they are necessary to maintain the stability of the genome 
and preserve genetic information. In addition to the fact that several of these genes, 
already described in this chapter, act in other processes of adaptive importance such 
as response to oxidative stress.

10. Conclusions

In sugarcane as well as in other plants, except for the plant models, few studies 
have focused on the characterization and structural analysis of individual components 
of metabolic pathways. Moreover, it should be considered that the traditional breed-
ing strategy lags behind the demand for commercial needs due to insufficient knowl-
edge on characteristics related to stress tolerance, inefficient selection techniques and 
low genetic variation and fertility. The evident deficiency of biotechnology will be 

Figure 5. 
FEN1 evolutionary analysis by maximum likelihood method. The evolutionary history was inferred using the 
maximum likelihood method and JTT matrix-based model conducted in MEGA X. the percentage of trees in 
which the associated taxa clustered together is presented next to the branches. (a) Phylogenetic tree comprising 
plant FEN1 sequences; green color represents the Poales group and blue color represents the eudicotyledons 
group. (b) Phylogenetic tree focus on Poales group, in which FEN1A and FEN1B clusters are displayed on 
distinct branches. The FEN1A and FEN1B domains are displayed next to their respective clusters.
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supplemented with studies aimed at the biochemical and functional characterization 
of important pathways and their components, such as the DNA repair pathway, for 
instance, the BER pathway. Therefore, it is necessary to emphasize the importance 
of this chapter in other plant species apart from sugarcane, provide supplementary 
information, and raise questions on the components of the BER pathway and its 
evolutionary issue regarding monocots and dicots.
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