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Abstract

Spinal Cord Injury (SCI) is a devastating disease that causes disruption of 
sensorimotor function below the site of injury. Current management is based 
on surgical decompression of the neural tissue and pharmacotherapy; however, 
there is no gold standard treatment readily available for patients in the clinic. This 
indicates that novel therapeutic strategies for the treatment are still needed in the 
clinical setting. There are several alternatives that are currently under investigation 
for the treatment of this disease, with increasing focus in regenerative medicine 
treatments. Mesenchymal stem cells (MSCs) are one of the most promising can-
didates for stem cell therapy in SCI, as they are easily obtained, have high safety 
profiles, and help with neural regeneration in SCI mainly via release of trophic 
factors, neovascularization, and immunomodulation. In this work, authors provide 
an insight of the available MSC for neural regeneration, their therapeutic role, and 
the potential MSC-based therapies for SCI.

Keywords: mesenchymal stem cells, adipose-derived stem cells, spinal cord injury, 
animal model, stem cell therapy

1. Introduction

Traumatic Spinal cord injury (SCI) is a devastating disease that results in severe 
neural disruption and severe disabilities below the site of injury. Patients are unable 
to regenerate neural tissue after injury, leading to a lifelong disability. The patho-
physiology of SCI is complex, consisting of a primary insult to the cord followed by a 
secondary cascade of events characterized mainly by inflammation, ischemia, ionic 
imbalance, excitotoxicity, and apoptosis [1]. This disease comprises a significant por-
tion of health care expenditure in the United States, with an estimated annual cost of 
7.7 billion dollars [2]. According to the National Spinal Cord Injury Statistical Center 
(NSCISC) in 2019, the incidence of SCI was about 54 cases per million people in the 
United States. SCI is caused by motor vehicle collisions in about 50% of cases, but 
other common etiologies include falls (30%), violent crime (11%), and sports-related 
injuries (9%) [2, 3]. SCI induced paraplegia and quadriplegia causes a significant 
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physical and emotional toll on those inflicted, thus, there is a need for optimized 
strategies to better treat these patients. Although there has been significant invest-
ment into development of novel therapeutic strategies to improve outcomes for these 
patients, there remains little with proven benefit besides aggressive supportive care.

2. Spinal cord injury: standard of care

Spinal cord injuries can be subdivided into multiple groups depending on the 
mechanism of injury, anatomic location of the lesion, type and severity of the 
injury. The basis of treatment is surgical decompression of the spinal cord to pre-
vent secondary damage associated with hypoxia and ischemia [4]. Besides surgery, 
there have been numerous neuroprotective drugs that have been assessed in clinical 
trials, including methylprednisolone, thyrotropin-releasing hormone, nimodipine, 
and naloxone [5–7]. However most of these drugs were ineffective, and some were 
associated with wound healing complications and infections that represents a 
limitation in the management of this population of patients.

The current standard of care for these patients consists of aggressive medical 
management. This includes prevention of secondary injury with strict maintenance 
of mean arterial pressure (MAP) [8, 9]. SCI patients are prone to cardiovascular 
instability, neurogenic shock, respiratory insufficiency, particularly when cervical 
levels are involved, which then leads to further secondary injury [10]. Multiple 
studies have shown improved outcome when these patients are managed in the 
intensive care unit (ICU), with strict monitoring of blood pressure parameters [11, 
12]. Studies have shown that augmentation of MAPs to greater than 85 for 7 days 
is associated with improved outcomes as assessed by American Spinal Cord injury 
Association (ASIA) impairment scale.

Stems cells have become a hot topic of great interest in various fields such as 
cancer biology, regenerative medicine, and SCI. There are multiple types of stem 
cells, with varying capabilities, including embryonic stem cells, (ESC), tissue-
specific stem cells, mesenchymal stem cells (MSCs), and induced pluripotent stem 
cells. (iPSC). MSCs were first discovered in the bone marrow, but since then have 
been grown from other sources such as adipose tissue, amniotic fluid and umbilical 
cord blood, making them more easily accessible. MSCs are typically defined as plastic 
adhering cell populations that can be directed to differentiate in vitro into cells 
of osteogenic, chondrogenic, adipogenic, myogenic, and various other lineages. 
They are known to have a beneficial effect in SCI, via release of trophic factors for 
neuroprotection, neovascularization, and immunomodulation [13–15]. These cells 
naturally secrete various trophic factors, including nerve growth factor (NGF), 
brain-derived neurotrophic factor (BDNF), and vascular endothelial growth 
factors (VEGF). BDNF is of particular interest since it has been shown to induce 
sprouting of corticospinal tracts in animal models of SCI [16]. MSCs derived from 
adipose tissue present unique advantages over other mesenchymal stem cell types 
as bone marrow, umbilical cord, dental pulp and others. In this chapter we’ll focus 
in how MSCs can help in promoting spinal cord recovery after traumatic injury.

3. Mesenchymal stem cell use in the central nervous system

MSCs have been suggested for the treatment of various diseases. MSCs have also 
been proposed as a potential treatment for diabetes, inflammatory bowel disease, 
Parkinson disease, Alzheimer’s disease, osteoporosis, bone regeneration, wound 
healing, skin aging, different inflammatory skin conditions, and others [17–27].
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Among neurologic diseases, the use of MSCs in hypoxic-ischemic encephalop-
athy, multiple sclerosis, and glioma has been considered. The majority of studies 
investigating MSCs’ impact on the treatment of stroke reported a decrease in the 
size of stroke volume and improvement in behavioral outcomes [28]. In animal 
studies, functional improvement, along with decreased seizures and increased 
long term potentiation, was seen in the hypoxic-ischemic encephalopathy model. 
In animal models of multiple sclerosis, demyelination and infiltrates were reduced 
after the treatment with MSCs. In murine studies, targeting of glioma cells with 
MSCs while loading them with viruses, were effective in impeding the growth of 
the tumor [29].

Different stem cell types have been used to treat SCI (Figure 1). Among them, 
MSCs are preferred due to several reasons:

• The simplicity of the isolation process

• The simplicity of cryoprecipitation

• Preservation of regenerative capacity and viability after cryoprecipitation at 
very low temperatures (−80)

• Minimal chances of cellular reaction induction

• High replication speed with high-quality progenitor cells and high potential of 
multilineage differentiation [30]

• Hypoimmunogenicity [31]

3.1 Bone marrow mesenchymal stem cells (BM-MSCs)

The collection of bone marrow tissue for extraction of MSCs is done by aspira-
tion, which is not only invasive and painful for the patient, but also distressing but 
also carries a risk of infection [32]. Nevertheless, these risks are partially negated 
by the intriguing properties of BM-MSCs for neuronal regeneration. One of this 

Figure 1. 
Mesenchymal stem cells can be isolated from different sources (a), and can be expanded in vitro; when cultured 
they have a high proliferative rate (b). When applied to the SCI, they show homing properties, they are 
attracted by chemotactic signals and migrate towards the injured sire (c). Created with BioRender.com
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properties is their plasticity potential as it allows them to differentiate into a broad 
spectrum other than mesodermal lineage cells as described by Wislet-Gendebien  
et al. [33] in which bone marrow stem cells were cultured with cerebellar granule 
neurons, inducing the expression the genes sox2, sox10, pax6, fzd, erbB2, and erbB4 
in nestin-positive MSCs. Furthermore, with the help of electrophysiological analy-
ses, they could establish that BM-MSCs neuron-like cells were able to fire single-
action potentials and respond to the stimulation of distinct neurotransmitters such 
as GABA, glycine, and glutamate, concluding that nestin-positive bone marrow-
derived MSCs can differentiate in vitro into excitable neuron-like cells.

Numerous authors have described another characteristic of this type of stem 
cell’s source and are the capacity of MSCs to migrate to the injured tissue – a 
mechanism described as ‘homing’ - especially in BM-MSCs [34]. This characteristic 
makes BM-MSCs source very attractive due to the range of alternatives for applying 
treatment with MSCs to patients other than invasive procedures. Andersen et al. 
[35] put in practice the migration ability by injecting with BMSCs subcutaneously 
to an immune-deficient mouse with a bone fracture. Besides observing the homing 
capacity of MSCs, and is mediated by a wide range of growth factors such as PDGF 
and IGF-1.

BMSCs in a chimeric mice contusion SCI model was more effective in reducing 
the neuropathic pain and motor and thermal sensitivity if BMSCs were injected 
3 days after the injury compared to injections at day 1, 7, or 14 days. This effect 
was mediated through the suppression of p38 MAPK and ERK1/2 activation in 
microglia and macrophages, CREB and PKC-c in dorsal horn neurons in the site of 
the injury and around it, and decreased macrophage infiltration to the epicenter. 
The latter reduces inflammation and restores Blood Spinal Cord Barrier [36]. 
Quertainmont et al. observed improved locomotor skills using open field test in the 
rats treated with BMSCs [37].

3.2 Adipose-derived mesenchymal stem cells (ADSC)

The abundant availability of adipose tissue, its easy accessibility under local 
anesthesia, a less painful procedure for the patients, and no adverse effects on 
animal models treated make this source desirable for the extraction, process, 
and administration to patients [38, 39]. A study conducted by Ohta Y. et al. [40] 
revealed that the secretion of specific growth factors, cytokines, proteases, immu-
nomodulatory factors, and cellular matrix molecules promotes ADSCs’ ability to 
regenerate neural tissue. However, the lack of full functional recovery results and 
the gap of knowledge on the description of the pro-regenerative effects are some 
of the limitations described on the literature on the use of MSCs that needs to be 
addressed in order to improve outcomes on complete functional recovery in in vivo 
models of SCI [41–43].

3.3 Umbilical cord mesenchymal stem cells

Ryu et al. [44] conducted a comparison between four sources of MSCs (Bone 
marrow, adipose-derived, umbilical cord blood, and Wharton’s Jelly) to treat a 
canine model with spinal cord injury. Even though data revealed no significant 
differences in functional recovery among the MSCs groups, they identified essential 
properties such as the promotion of neuronal regeneration and anti-inflammatory 
activity. Umbilical cord stem cells group showed more nerve regeneration, neuro-
protection, and less inflammation with reduced IL-6 and COX-2 levels than other 
MSCs. Moreover, researchers establish improvement in locomotion measured using 
the Olby and modified Tarlov scores eight weeks after the application of MSCs 
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compared with the control group, suggesting that the use of MSCs promotes func-
tional recovery after SCI. Additionally, preclinical studies such as the one carried 
by Chua S. J. et al. [45] have detected cytokines and growth factors known by its 
neuroprotective, angiogenic, and anti-inflammatory effects.

In a compression SCI rat model, both BMSCs and umbilical cord-derived stem 
cells caused similar results and improvement in allodynia, hyperalgesia, and func-
tional recovery. However, UCSCs were more effective in decreasing wind-up levels 
[46]. 13 of 22 patients treated with UC-MSCs were better in daily living activities. 
They had a better motor function, better motor and tactile sensation [47].

3.4 Amniotic fetal mesenchymal stem cells

There are few preclinical studies in animal models that have to use amniotic 
fetal derived stem cells identified in the literature [48]. Nevertheless, the specific 
characteristics of this source of MSCs were observed. For instance, the multipo-
tency, the low risk of immunogenic reaction, the ease of sample processing, and 
the high proliferative capacity, makes amniotic fetal derived stem cells an attractive 
alternative for regenerative medicine [49]. These properties are supported by data 
observed which showed promotion of angiogenesis and support of the surrounding 
tissue surplus the decreased inflammatory response and apoptosis [50–52].

In a rat model of SCI, the impact of two types of MSCs: Human umbilical 
cord blood-derived and Human amniotic epithelial cells were assessed for the 
treatment of SCI-induced thermal hyperalgesia and mechanical allodynia. 
None of them were effective in treating the thermal hyperalgesia. Though both 
improved the mechanical allodynia, human amniotic epithelial stem cells were 
more efficacious [53].

4. Animal models in spinal cord injury

Multiple studies described the administration of MSCs to treat spinal cord injury 
in a variety of animal models such as rodents, primates, sheep, dogs, cats, bovine, 
and even humans. Rodents are the most common animal model used [54], and 
the most appropriate model for spinal cord injury studies [55] since large animals 
and non-human primates are very expensive to care, demand additional managing 
requirements, and have ethical implications to consider when choosing. However, 
the experiments of the latter approximate more to SCIs [56].

The efficacy of MSCs were also observed in cats with SCI. Improvement in the 
cutaneous trunci (panniculus) reflex, pain sensation, bowel, and bladder function 
were noted. However, no significant change in proprioception and hyperreflexia of 
ataxic hind limbs were observed [57]. In dogs with SCI, treatment with BMSCs also 
caused the same clinical improvement with no significant recovery of low proprio-
ceptive and hyperreflexic ataxic hind limbs [58]

4.1 Stem cell delivery methods in SCI animal models

There are currently 3 different methods to deliver mesenchymal stem cells 
(MSCs) in animal models of spinal cord injury (SCI). These are direct implantation, 
intravenous (IV) infusion, and intrathecal infusion. Direct implantation refers to the 
injection of MSCs directly in the injured area of the spinal cord. IV infusion refers 
to the injection of MSCs in a major vein of the animal model (e.g. the tail vein of a 
mouse or rat). Lastly, intrathecal infusion refers to the injection of MSCs directly 
into the subarachnoid space, in the cerebrospinal fluid. The delivery methods 
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described in the following paragraphs concern mainly Sprague-Dawley rats. For a 
summary of advantages and disadvantages of delivery methods, see Table 1.

Direct implantation of the MSCs is done using a small syringe capable if pre-
cisely injecting cells in the damaged area [59], guaranteeing delivery to the desired 
site [60]. This method has been largely favored due to its high cell viability and 
improved survival [61], observed in higher engraftment rates in both acute and 
chronic SCI [59, 61, 62]. However, some authors have expressed concerns regarding 
the translation of this technique to clinical practice. Agglomeration of cells in the 
injection site, needle damage to the adjacent non-injured spinal cord, and failure of 
cell migration to the central parenchyma are some of the most noteworthy disad-
vantages of this delivery method [59–64]. Additionally, if done in humans, direct 
implantation of MSCs would require the patient to undergo general anesthesia and 
an invasive surgical procedure [61].

Since direct implantation of MSCs in humans might pose substantial risks, IV 
and intrathecal infusion were deemed appropriate less invasive surrogates that 
could potentially be clinically used. Damage to the blood-brain barrier (BBB) in SCI 
(particularly in traumatic SCI) allows infiltration of cells and toxic mediators that 
promote further neurologic damage [65]. It was initially thought that this process 
could improve diffusion of MSCs into the spinal cord. However, cell infusion in the 
first 48 hours of injury has shown conflicting evidence, with some authors reporting 
either the presence or absence of MSCs at the lesion site [65, 66]. Nevertheless, 
when present, the cell’s engraftment rate with IV delivery in the spinal cord was 
very low in comparison to other methods [59].

Delivery 

method

Advantages Disadvantages

Intralesional 

delivery

• Precise positioning of cells at lesion 

site.

• Agglomeration of cells at  

injection site.

• Higher engraftment, translating into 

higher cell viability and increased 

survival.

• Needle damage to adjacent 

spinal cord.

• High opportunity of differentiation • Failure of cell migration to the 

central parenchyma.

• Complicated surgical approach 

in animal models.

• Would require an invasive 

surgical approach in humans.

Intravenous 

delivery

• Promotion of an anti-inflammatory 

environment that prevents BBB 

leakage and progressive damage.

• Low engraftment rates.

• Easy administration. • Lowest limb function recovery 

scores.

• Administration of multiple doses • Limited beneficial effects

Intrathecal 

delivery

• Migration of cells to different regions 

of the spinal cord.

• Cell attachment to other regions 

of the central nervous system.

• Highest limb function recovery 

scores.

• Complicated surgical 

approaches in animal models.

Table 1. 
Advantages and disadvantages of the three main MSC delivery methods.
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The low engraftment rates in the spinal cord with IV delivery methods are 
considered a consequence of the cells’ first pass through the systemic circulation. 
MSCs have been observed in the lungs and liver in the first 24-48 hours of IV 
infusion [66, 67], with progressive increase of cell numbers in the spleen in the 
following days [61, 67]. Cell engraftment in the spleen is associated with increased 
levels of anti-inflammatory cytokines (e.g. IL-10, TIMP-1) [67] in plasma, which 
is believed to decrease BBB permeability by inhibiting monocyte adhesion to the 
vasculature, preventing metalloproteinase release and vascular basement mem-
brane degradation [67]. Therefore, the anti-inflammatory environment promoted 
by cells engrafting outside the spinal cord prevents vascular leakage at the lesion 
site, decreasing hemorrhage, inflammation and further damage [66, 67].

IV infusion of MSCs can be done through the femoral vein or the tail vein. In 
rodents, peripheral circulation is mostly accessed through the tail vein [61, 67, 68] 
due to its simplicity when compared to the approach required to access the femoral 
vein [59, 65, 66]. Additionally, inflammation around the site of injury is higher than 
with intrathecal administration but lower than direct injection [59]. Even though 
cells administered IV have low engraftment rates, animals still score better out-
comes in limb function recovery scores and grip strength [67], develop less scarring 
[59, 68], and have higher vascularization, myelination, and axonal density than 
controls [68].

Intrathecal delivery of MSCs can be done via the intracisternal approach (i.e. 
injection into the fourth ventricle) [61, 69, 70] or by laminectomy with injection of 
cells through the dura [63]. When initially injected, cells occupy the whole sub-
arachnoid space, but progressively decrease their number in this anatomical region 
[63]. In contrast to intralesional delivery of MSCs, intrathecally administered cells 
show a more extensive migration in the neural tissue, extending from the dorsal 
spinal cord to its center [61]. Although the number of viable cells is only second to 
the intralesional delivery method [61], a decrease in engrafted cells to 5% of the 
original cell number has been observed after 6 weeks, with some cells attaching to 
the pia mater [63]. Animals with intrathecally delivered MSCs obtain higher scores 
in limb function recovery scores when compared with intralesional and intravenous 
deliveries [61].

The impact of MSCs on SCI resolution can be explained by the following char-
acteristics: immunomodulatory, anti-inflammatory, neurotrophic/neuroprotective, 
and angiogenetic effects. The direct impact on the regeneration of the neurons is 
mainly exerted by neurotrophic and neuroprotective functions. These functions are 
usually mediated by the secretion of neurotrophic factors.

The spinal cord injury occurs in 2 phases. The first phase occurs immediately 
after the trauma and is mediated by damage to the microvascular elements, cellular 
membrane, and the blood-spinal cord barrier. Damage to these three structures 
evokes series of events that give rise to axonal fragmentation, demyelination, cyst 
formation, and expansion and accumulation of the microglia and macrophages 
in and around the injury site, which leads to the secondary injury. The secondary 
injury is characterized by inflammation, ischemia, disruption of ion channels, free 
radical production, glutamatergic excitotoxicity, necrosis, axonal demyelination, 
and glial scar formation [30, 71].

As previously described, MSCs from different sources have been used to treat 
SCI. They can directly be injected to the injury site or intravenously as they have 
the ability to migrate to the epicenter of the injury, demonstrating their homing 
abilities.

Chen et al. reviewed 12 randomized controlled trials on rats and mice and 
showed that stem cell treatment improved the mechanical reflex threshold. For 
the mice, improvement in thermal withdrawal latency was observed. However, no 
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improvement was seen in rat studies [72]. In a rat spinal cord hemisection model, 
BMSCs were noted to promote astrocyte migration to the injury epicenter. In the 
group treated with a combination of the BDNF with platelet-rich plasma, more 
astrocyte migration, and higher rates of remyelination has been documented. This 
group also showed remyelination and oligodendrocytes with higher activity, while 
only the BMSCs group showed axonal demyelination, vacuole and whirled body 
formation [73].

The human ADSC have been shown to be able to convert to the oligodendrocytes 
and to attract oligodendrocyte precursor cells, which, in turn, mediates remyelin-
ation. Unsurprisingly, the treatment caused an improvement in the motor function 
of the animals with focal demyelination [74]. Differentiation of neurotrophic fac-
tors secreting cells from human ADSC to oligodendrocytes was noted in a damaged 
spinal cord rat model. Neurotrophic factors secreting cells promoted remyelination 
and increased thickness of the myelin and the diameter of the axons [75].

In a rat model of spinal cord contusion, rats treated with bone marrow-derived 
Schwann cells experienced better functional recovery. At the same time, the 
size of the cystic cavity decreased, and axonal regeneration was observed [76]. 
Treatment with bone-derived MSCs stimulated axonal growth in the subtotal 
cervical hemisection rat model. An increase in the length of the axons was 
observed [77]. Bone marrow mesenchymal stem cells decreased the cavity volume 
and increased the spared white matter, the length of the neurites, the number 
of axons, and the neurites in a SCI rat model [78]. Rats with a moderate contu-
sion model of spinal cord injury showed better recovery in 2 behavioral tests 
(Bresnahan Locomotor Rating Scale [79] and exploratory rearing [80]). All rats 
experienced a decrease in the size of the cyst cavity and more axons in the injury 
site either through an increase in spared axons or through axon regeneration [80]. 
In a complete spinal cord transection rat model, human umbilical mesenchymal 
stem cells promoted axonal regeneration, and more neurofilament-positive fibers 
around the epicenter of the corticospinal tract injury was observed. Additionally, 
proximal and dorsal to the injury site, fewer microglia and astrocytes with reactive 
features were found [81].

Some studies suggest that the MSCs do not have the ability to convert to 
neural cells. As an example, Quertainmont et al. could not detect the stem cells 
after grafting. The authors described tissue sparing, vascularization in the injury 
epicenter, but no evidence of axonal regrowth [37].

5.  Use of mesenchymal stem cells in spinal cord injury in the clinical 
setting

The use of MSCs in the clinic has been studied thoroughly; however, results 
among studies are not consistent. For example, 5 patients with complete spinal cord 
injury were treated with autologous bone marrow cells and granulocyte macro-
phage-colony stimulating factor, and 4 of them showed neurologic (sensory or 
motor) improvement [82]. There are controversial evidences for both MSC’s ability 
to cause and treat neuropathic pain. In one study, 9 people with SCI got treated with 
MSCs, and 8 of them experienced a reduction or resolution of the neuropathic pain. 
Improvement in peripheral nerve conduction, motor power, and sensitivity was 
noted. Enhancement of the voluntary muscle contraction was explained with active 
muscle reinnervation [83]. All 14 patients with chronic traumatic complete SCI 
treated with BMSCs felt an improvement in sensitivity to light touch and pinprick. 
The majority also experienced sacral sparing, and improvement in urologic and 
motor function [84].
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Treatment with MSCs of 6 traumatic syringomyelia patients with paraplegia 
reduced the size of the syrinx. Additionally, the neuropathic pain either resolved or 
decreased [85]. In one case report, the patient was treated with MSCs and G-CSF, 
and his motor function, tactile and pain sensation were improved after the treat-
ment. However, the patient still reported neuropathic pain, etiology of which was 
unknown [86].

6. Limitations in mesenchymal stem cell delivery

MSC type, dosage, delivery method, and timing of therapy are current obstacles 
in spinal cord injury cell therapy that limit its translation to clinical practice. Bone 
marrow stromal cells, bone marrow mononuclear cells, and neural stem/progenitor 
cells are just some examples of the cell types currently under study for this pur-
pose, with no clear best candidate yet. Cell dosage needs further research since the 
appropriate therapeutic dose is still unclear. Dosage standardization is required to 
build a homogenized body of literature that allows for an appropriate comparison 
of delivery methods. The most appropriate delivery method is still debated since all 
poses unique benefits. Innovative methods such as subpial delivery and stem cell-
derived nanovesicle are promising new alternatives that will be added to the battery 
of delivery techniques [87, 88].

7. Conclusions

Mesenchymal stem cell therapy has shown promising results in spinal cord 
injury repair. Animal studies and clinical trials performed in human patients using 
mesenchymal stem cells suggested that this therapy can be a promising candidate 
for patients suffering from spinal cord injury. MSCs derived from different sources 
offer potential healing in different spinal cord injury conditions.
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