University of Mississippi

eGrove

Honors Theses

Honors College (Sally McDonnell Barksdale Honors College)

Spring 5-1-2021

Design of Load Bearing Wall for Low Rise Building with Partially **Grouted Reinforced Masonry**

Anil Bhatt University of Mississippi

Follow this and additional works at: https://egrove.olemiss.edu/hon_thesis

Part of the Civil Engineering Commons, and the Structural Engineering Commons

Recommended Citation

Bhatt, Anil, "Design of Load Bearing Wall for Low Rise Building with Partially Grouted Reinforced Masonry" (2021). Honors Theses. 1921.

https://egrove.olemiss.edu/hon_thesis/1921

This Undergraduate Thesis is brought to you for free and open access by the Honors College (Sally McDonnell Barksdale Honors College) at eGrove. It has been accepted for inclusion in Honors Theses by an authorized administrator of eGrove. For more information, please contact egrove@olemiss.edu.

DESIGN OF LOAD BEARING WALL FOR LOW RISE BUILDING WITH PARTIALLY GROUTED REINFORCED MASONRY

A Thesis

presented in the partial fulfillment of requirements for the Honors Degree in Civil Engineering from the Sally McDonnell Barksdale Honors College The University of Mississippi

by

Anil Bhatt

April 2021

Approved By:

Advisor: Dr. Christopher L. Mullen

Reader: Dr. Hunain Alkhateb

Reader: Dr. Yacoub M. Najjar

Copyright © Anil Bhatt 2021 All rights reserved

ABSTRACT

The seismic and wind load acting on the 2-storeyed building of dimension 120 ft x 98 ft located in Oxford, MS, were calculated and the seismic load was considered for the design of the 120 ft long and 24 ft high load-bearing wall because it being critical. The maximum loading was computed using different load combinations. The masonry behavior and masonry specifications were considered to select the masonry unit, grout, and mortar for the load-bearing wall. The seismic design requirement for the shear and slender wall was fulfilled for the special reinforced masonry wall. The in-plane and out-of-plane loading scenarios were considered for finding the required reinforcement in the wall to resist the bending moment and the shear. The special reinforced masonry wall was designed using the Strength Design method. The cost of construction of a 24 ft high wall with reinforced concrete and the reinforced masonry was computed. It was found that the construction with reinforced masonry came out much cheaper as compared to the construction with reinforced concrete.

DEDICATION

This thesis is dedicated to all my teachers and advisors who have blessed me with engineering knowledge and wisdom.

I also dedicate this work to my grandparents and parents who first taught me the value of education and hard work.

LIST OF SYMBOLS

A Area (ft^2)

 A_g Gross area (ft²)

 A_n Net area of the wall subtracting any reinforcement (ft²)

 A_{nv} Net shear area of masonry wall (ft²)

 A_o Openings area (ft²)

 A_s Area of steel reinforcement in masonry wall (ft²)

 A_T Tributary Area (ft²)

ACI American Concrete Institute

ASCE American Society of Civil Engineers

b Width of masonry, cross-sectional (ft)

c Coefficient for determining stress block height (ft)

C Compression force (lb)

C_d Deflection amplification factor

C_m Compression force in the masonry (lb)

C_s Seismic response coefficient

CMU Concrete Masonry Unit

d Effective length from the end of masonry to the centroid of the tensile steel (ft)

d_v Total depth of masonry wall (ft)

D Site Class

e Eccentric distance of the force from the centroid of the cross-section (ft)

E_m Modulus of Elasticity of masonry (psi)

E_s Modulus of Elasticity of steel (psi)

f_m Calculated compressive stress in masonry (psi)

f'_c Compressive stress of concrete or mortar (psi)

f 'm Masonry design compressive stress (psi)

f_r Modulus of rupture (psi)

f_y Yield stress in the steel reinforcement for masonry design (psi)

F_a Short Period Site Coefficient

F_v Long Period Site Coefficient

 F_x Horizontal force in the x-axis (lb)

g Acceleration due to gravity (ft/sec²)

G Gust effect factor

GE Ground Elevation (GE)

h Height of wall (ft)

I Importance factor

I_e Seismic Importance factor

I_g Moment of inertia of CMU (ft⁴)

 I_x Moment of inertia with respect to the x-axis (ft⁴)

k Exponent related to the structural period

K_d Wind directionality factor

K_{zt} Topography factor

L Span length of masonry wall (ft)

M Type of masonry mortar

Internal bending moment (lb-ft)

ØM_n Design bending moment (lb-ft)

M_{cr} Cracking moment capacity of a reinforced masonry (lb-ft)

M_s Moment capacity for service loading on a reinforced masonry (lb-ft)

M_u Ultimate moment demand of a reinforced masonry (lb-ft)

MWFRS Main Wind Force Resisting System

n Modular ratio for two materials

N Number of stories in building

NCMA National Concrete Masonry Association

P Axial force (lb)

Pressure (psf)

P_{fD} Dead load from floors (lb)

P_{Lr} Live load from occupancy (lb)

P_a Allowable load in masonry wall (lb)

P_n Nominal capacity (lb)

p_s Design wind pressure (psf)

p_{s30} Simplified design wind pressure at 30ft height (psf)

P_u Ultimate axial load(lb)

P_{uf} Dead load from floors (lb)

P_{uL} Live load from floors (lb)

P_{uw} Dead load from wall (lb)

ØP_n Design axial strength (lb)

r Radius of gyration (ft)

R Response modification factor

s Spacing (ft)

S Section modulus (ft³)

S Type of masonry mortar

S Snow load (lb)

S₁ Peak ground acceleration for period 1.0 sec

S_s Peak ground acceleration for period 0.2 sec

S_{D1} Design spectral acceleration for period 1.0 sec

S_{DS} Design spectral acceleration for period 0.2 sec

S_{M1} Site-modified spectral acceleration value for period 1.0 sec

S_{MS} Site-modified spectral acceleration value for period 0.2 sec

t Thickness of masonry wall (ft)

T Tension (lb)

T Time-period (sec)

TMS The Masonry Society

V Wind Velocity (mph)

V_E Shear force due to earthquake (lb)

V_n Nominal shear force (lb)

 V_{nm} Shear force due to masonry (lb)

V_{ns} Shear force due to steel (lb)

V_u Ultimate shear force (lb)

W Total weight (lb)

γ_m Unit weight of masonry (psi)

 ε_{m} Strain in masonry

 $\varepsilon_{\rm S}$ Strain in reinforcing steel

ρ Reinforcement ratio in masonry design

 $\delta_{\rm u}$ Maximum wall deflection (ft)

 Δ Deflection (ft)

λ Adjustment factor for building height and exposure

 Ω Overstrength (or global safety) factor for ASD

Ø Resistance factor for LRFD

ACKNOWLEDGMENTS

I would like to thank my grandparents, Mr. Bhiviraj Bhatt and Late Mrs. Gomati Devi Bhatt, and my parents for their love and support throughout my life.

I would like to express my huge gratitude and thankfulness to my thesis advisor, Dr. Christopher Mullen, for his guidance and support throughout the process of this project, and for providing me the necessary resources for completing this project. I am equally thankful to Dr. Hunain Alkhateb for her guidance and suggestions throughout the project and for letting me use my senior design project as the background for this thesis. I am thankful to my Civil Engineering Department Chair, Dr. Yacoub Najjar for supporting and encouraging me in many points of my 4 years of studies at this University, and also for agreeing to serve on my committee.

I am very grateful to Sally McDonnell Barksdale Honors College for providing me this opportunity and the necessary accommodations in terms of deadlines throughout the project. Special thanks to graduate student Mr. Hemant Raj Joshi for providing the technical help and resources in this project. Finally, I extend my cheers to those unnamed individuals who helped me directly or indirectly in this accomplishment.

TABLE OF CONTENTS

ABSTI	RACT	ii
DEDIC	CATION	iii
LIST C	OF SYMBOLS	iv
ACKN	OWLEDGEMENTS	viii
LIST C	OF FIGURES	X
LIST C	OF TABLES	xi
CHAP	TERS	
1. INT	RODUCTION	1
1.1	Project Overview	2
1.2	Masonry Wall	
1.3	Material Selection	5
2. RES	SULTS AND DISCUSSION	
2.1	Loadings in Wall	8
2.	1.1 Wind Load	10
2.	1.2 Seismic Load	11
2.	1.3 Final Loading on Wall	11
2.2	Design of Masonry Wall for Out-of-Plane Loading	12
2.3	Design of Shear Masonry Wall	13
2.4	Reinforcement for Masonry Wall	15
2.5	Cost Analysis	15
3. CON	NCLUSION AND RECOMMENDATION	19
LIST (OF REFERENCES	20
APPEN	NDIX	
A	Excel Worksheet for Material Selection	21
В	Excel Worksheet for Wind Load Calculation	22
С	Excel Worksheet for Seismic Load Calculation	24

	D Loading	Excel Worksheet for Designing the Reinforced Masonry Wall for Out-of-Plance	
	Е	Excel Worksheet for Designing the Reinforced Masonry Wall for In-Plane	
	F Masonr	Excel Worksheet for Final Reinforcement for Partially Grouted Reinforced y Wall Loading Loading	26
	G	Excel Worksheet for Cost Analysis	35
VIT	'Α		36

LIST OF FIGURES

FIGURE	PAGE
Figure 1. Top View of the Building	2
Figure 2. Isometric View of the Building	3
Figure 3. Front View of the Building	3
Figure 4. Concrete Masonry Units (CMUs) (4.a.Standard CMU;4.b.Bond Beam CMU)	6
Figure 5. Reinforcement in Partially Grouted Reinforced Masonry Wall.	7
Figure 6. Wind pressure acting on Masonry Wall at zone A	9
Figure 7. Force acting on masonry wall at various heights due to seismic	11
Figure 8. In-Plane Loading in the reinforced masonry wall	15
Figure 9. Reinforcement Detailing for Partially Grouted Reinforced Masonry Wall (Front v	
Figure 10. Reinforcement Detailing for Partially Grouted Reinforced Masonry Wall (Portion the front view).	

LIST OF TABLES

TABLE	PAGE
Table 1. Dead and Live Loads on Reinforced Masonry Wall on 120 ft span	19
Table 2. Wind Load Acting on Zone A, and Zone B of Building Wall	20
Table 3. The Force Calculation at the various Heights of the Masonry Wall	21
Table 4. Design Axial and Lateral Loading on the Masonry Wall	22
Table 5. Reinforcement for the Out-of-Plane Loading (Slender Wall)	24
Table 6. Reinforced Masonry Shear Walls in various SDCs	25
Table 7. Reinforcement for the In-Plane Loading (Shear Wall)	26
Table 8. Final Reinforcement for the Partially Grouted Reinforced Masonry Wall	27
Table 9. Cost Comparison of the Reinforced Concrete Wall and Partially Grouted Reinformasonry Wall	

CHAPTER 1

INTRODUCTION

The advancements in the civil engineering and construction industry have created many structural designs for the various structural walls with various types of loading in them. The safe and reliable operation of those structural walls is very important for holding the building structure for a long period without failing, upholding public safety. While constructing any load-bearing wall the cost and function come into play. Even though the reinforced concrete wall is capable of holding the maximum loadings, the cost of a reinforced concrete wall is very high. In that scenario where cost is an important factor to consider, a reinforced masonry wall in a building structure seems to be a good alternative. The reinforced masonry wall is very resistant to the tensile and shear stress-producing forces due to its combination of masonry units, reinforcements, grout, and mortar. The reinforcement in the masonry wall provides the required ductility and additional tensile strength to the masonry wall. Thus, reinforced masonry walls in the low-rise building can aid or replace reinforced concrete walls.

1.1 Project Overview

A two-storeyed commercial building of 120 ft x 98 ft footage and 24 ft total height located in Oxford, Mississippi needed to be designed as part of the senior capstone project. In that project, the building was designed with a rigid-frame structural system where cast-in-place (CIP) reinforce concrete (RC) beams and columns are present to resist the moment caused by the dead and live gravity loads in the building. In that system, non-load-bearing 8 inches RC walls are present around the perimeter of the building between the columns, around the elevator shafts, and stairwells. Taking the same project and building as a reference, the system of RC perimeter walls and exterior RC frames of the building is replaced with the load-bearing reinforced masonry walls. This leads to a dual masonry wall-RC frame system. Replacing the RC perimeter walls and frames with reinforced masonry (RM) walls decreases the construction cost and reduces the number of columns and beams used in the building, leading to more open space within the structure, and thus would increase profitability. The RM shear wall system in the building is shown to provide adequate resistance to the lateral forces such as wind and seismic.

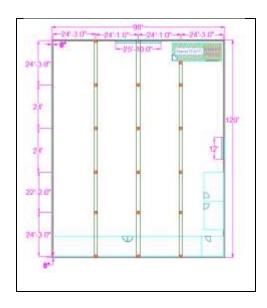


Figure 1: Top View of the Building

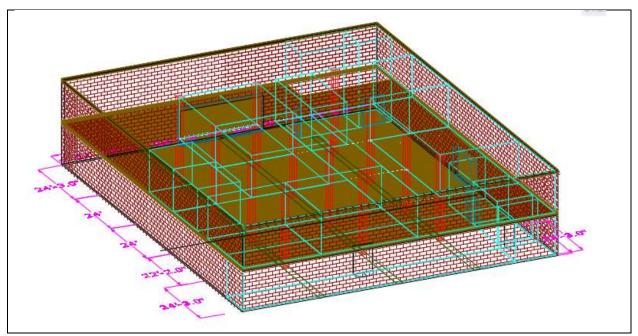


Figure 2: Isometric View of the Building

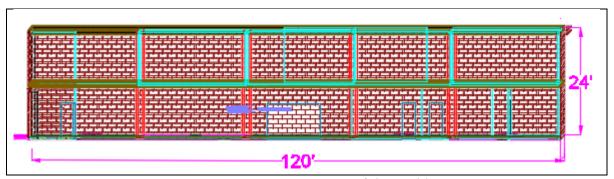


Figure 3: Front View of the Building

1.2 Masonry Wall

The building structures are categorized into three main types: low-rise, mid-rise, and high-rise based on the height from the grade level. The building of 60 feet or less height where the height is no longer than the least horizontal dimension are called low-rise buildings (SEI 7-05).

These are the buildings which are usually 4 or fewer stories in height. These buildings can be constructed with various types of masonry materials.

Masonry walls are the walls built with the masonry units like bricks, blocks, stones, marbles, tiles, granites, and so forth bounded together by a mortar, which can be cement, soil, lime, or any other material. These walls provide strength, durability, and insulation to the building structure. Based on the types of the individual masonry units selected and the functions of the wall, they are mainly classified into 5 types. They are Load Bearing Masonry Wall, Reinforced Masonry Wall, Hollow Masonry Wall, Composite Masonry Wall, and Post-Tensioned Masonry Wall. The reinforced masonry wall is the one that is particularly selected for this project. The reinforced masonry can be both load-bearing and non-load bearing. The load-bearing walls take all the load from the roof and floor level to the ground while the non-load-bearing wall doesn't take any loads from a roof or floor level. Load-bearing walls are used in this project which takes a few of the loads from the roof and the floor level to the ground. Along with the load-bearing walls, the columns in the center also takes the load from the roof and the floor to the ground in this project.

The reinforcement in the wall withstands the tension, compressive, and lateral loads like wind and seismic, and reinforcement help to avoid the cracks during heavy loading and seismic events. The horizontal and vertical reinforcement and spacing are selected based on the loading and structural condition on the wall. The mortar and grout in the masonry wall help to stabilize the reinforcement and provide the stability and strength to the wall. Based on the amount of grout used in the reinforced masonry walls, they can be partially grouted or fully grouted. Partially grouted means only adding the grouts to certain masonry units leaving the voids in the middle while fully grouted means filling the void space between the masonry units with grout, which is a cementitious

binding material. The partially grouted reinforced masonry wall is the one that is designed in this project, being a partially grouted wall more economical than a fully grouted wall.

1.3 Material Selection

The reinforced masonry wall gets its strength and ductility from the four different components and their composite action. The four main components of the reinforced masonry wall are:

1. Concrete Masonry Units (CMUs)

These are usually hollow rectangular blocks made up of Portland cement, aggregates, and water. They are brittle and have very high compressive strength. They come in various sizes and weights. Standard Specification for Load-Bearing Masonry Units (ASTM C90) provides requirements for materials, dimensions, finish, and appearance of CMUs. The two types of CMUs are selected based on their functions and shapes for this project. They are 8x8x16 Standard CMU and 8x8x16 Bond Beam. Normally standard size concrete block is used in the wall for vertical reinforcement and vertical grouting. However, the bond beam is used in the wall where horizontal and vertical reinforcement is necessary for the wall. The actual dimensions of CMUs are 3/8 inches smaller than the nominal dimensions to allow for mortar joints. The CMUs of compressive strength (f'_m) 2000 psi, unit weight of (γ_m) 125 psi, and modulus of elasticity (E_m) 1,800,000 psi are used in the project. The actual sizes of the CMUs are shown in the figure below:

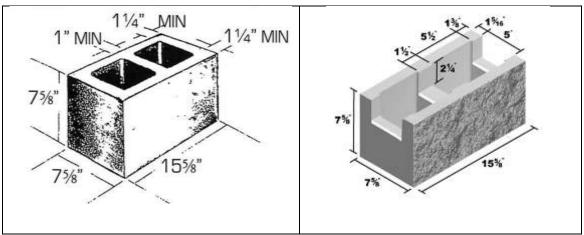


Figure 4: Concrete Masonry Units (CMUs) (4.a.Standard CMU;4.b.Bond Beam CMU)

2. Reinforcement

The reinforcement is provided in the wall in both vertical and horizontal directions, and in joints of the CMUs to provide the necessary ductility to withstand the moment, axial, and lateral loadings. The deformed and plain carbon steel bars of Grade 60 with a yield strength (F_y) of 60,000 psi in the vertical and horizontal direction and ladder-type joint reinforcement in the horizontal direction between the CMUs layers are used in the wall. The deformed bars of sizes ranging from #3 (0.375 in diameter) to #9 (1.128 in diameter) are recommended to use for the strength design of the wall. The typical way of reinforcement in a partially grouted reinforced masonry wall is shown in the figure below:

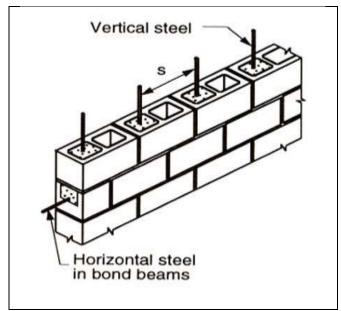


Figure 5: Reinforcement in Partially Grouted Reinforced Masonry Wall

3. Mortar

This is the mix of cementitious materials like Portland cement, fine aggregates (sand), and water. It acts as a bonding material between the individual concrete masonry units and converts individual units into a solid unit. Type M mortar made up of Portland cement with an average compressive strength (f 'c) of 2500 psi and maximum air content as 12% is selected for the wall.

4. Grout

It is the mixture of cementitious material, aggregate, and enough water (to enhance steady flow) placed in the cells or cavities in the wall (at least when steel reinforcement is present). The bonding of grout with steel and the CMUs blocks acts together for resisting the loadings in the wall. Grout for Masonry (ASCE C476) provides requirements for grout in masonry construction. The water content in the grout is adjusted in such a way that the slump is between 8 to 11 inches to increase the workability of the mix. The grout with average compressive strength (f 'c) of 2500 psi is selected for the wall.

CHAPTER 2

RESULTS AND DISCUSSION

2.1 Loading on Masonry Wall

The partially grouted reinforced masonry wall is loaded with the dead and live load from the roof and floor level whereas the lateral loading is because of the wind and the seismic force. As the 120 ft span of the wall is more critical because of the beams and columns running in the same direction, it is considered for designing purpose so that overall designing of the wall located in the outside perimeter of the building will be safe with a higher factor of safety. The dead and live load from the roof and the first floor acting in the wall is calculated by taking the tributary area equals to the area covering half of the length from the center of the wall to the nearest beam running and it is shown in the table below:

Table 1: Dead and Live Loads on Reinforced Masonry Wall on 120 ft span

Dead Load From Roof	Dead Load From 1st Floor	Live Load From Roof	Live Load From 1st Floor
(psf)	(psf)	(psf)	(psf)
157	208.5	20	60
(plf)	(plf)	(plf)	(plf)
1904	2528	243	728

2.1.1 Wind Load

The wind load acting in the 120 ft long span of the partially grouted reinforced masonry wall is determined considering the wind speed of 110 mph [5]. The risk category and surface

roughness category are considered to be R2 and C respectively [5] for determining the wind loading. The Main Wind Force Resisting System (MWFRS) is an assemblage of structural elements to provide support and stability for the overall structure and wind loading from more than one surface and this approach along with Method 6: 2015 IBC Section 1609.6 is used to determine the wind pressure acting in the wall.

Table 2: Wind Load Acting on Zone A, and Zone B of Building Wall

Zone	Wind Load (<i>psf</i>)
A(i.e.Upto 10 ft from the end of the wall)	26
C(i.e. Anywhere in between 10 ft from the end of the wall)	17

The figure below shows the action of the wind pressure at zone A which is up to 10 ft from the end of the wall.

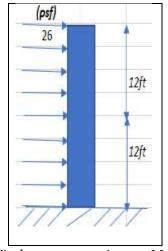


Figure 6: Wind pressure acting on Masonry Wall at zone A

2.1.2 Seismic Load

The seismic load acting in the wall is calculated considering the Risk Category for building as II and site class as D. Using the ASCE/SEI 7-05 for the structural wall, the following formula is used to calculate the out of plane seismic load for the wall.

$$F_p = 0.4 S_{DS} I_E W_p$$

Where, S_{DS} = Numeric seismic design value at 0.2s period

 I_E = Seismic Importance Factor = 1

W_p =Weight of the structural wall in (psf)

The out-of-plane seismic load is found to be 38.9 psf.

The total base shear (V) for the building under seismic load is 107 kips. The force is calculated at various levels of the reinforced masonry wall like as shown in the table below:

Table 3: The Force calculation at the various Heights of the Masonry Wall

Level	Floor Height	h _x	Wx	Wx.h _x ^k	C _{vx}	F _x	V _x / Story	ОТМ
	(ft)	(ft)	(kips)	(kips-ft)		(kips)	(kips)	(kips- ft)
Roof	24	24	389.7	9354.0	0.543	58	0	1397
First Floor	12	12	655.1	7861.1	0.457	49	58	587
Ground Floor	0	0	581.1	0	0	0	107	0
			Σ	17215.1	1	107		

The maximum overturning moment due to loading is 1397 kips-ft which is at the top of the masonry wall i.e. 24 ft.

The figure below shows the action of the forces in the reinforced masonry wall.

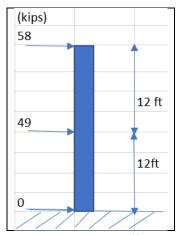


Figure 7: Force acting in masonry wall at various heights due to seismic

2.1.3 Final Loading on Masonry Wall

While comparing the wind and seismic loads acting on the reinforced masonry wall located in Oxford, MS, seismic load comes out to be more critical. So, seismic loading is considered while designing the masonry wall under both in-plane and out of plane loading. It means the wall needs to be designed for 38.9 psf out of plane loading, 107 kips base shear, and 1397 kips-ft overturning moment. The following table shows the loading applied to the reinforced masonry wall for designing with a Strength Design approach:

Table 4: Design Axial and Lateral Loading on the Masonry Wall

Loading		psf	plf	Direction
Types				
	Dead Load (Roof + First Floor)	365.5	4432	Along the Length
Axial	Live Load (Roof + First floor)	80	971	Along the Length
	Weight of Wall	48	576	Along the Length
Lateral	Wind Load	26	3120	Along the Height
Pressure	Seismic Load	38.9	4668	Along the Height

2.2 Design of Masonry Wall for out-of-plane loading

The masonry wall is designed to withstand the out-of-plane loading caused by lateral forces like wind and seismic. The strength design procedure is followed with the fulfillment of TMS 402-16, Building Code Requirements for Masonry Structures, and TMS 602-16, Specification for Masonry Structures. One foot length of the wall is considered for the out-of-plane loading in the wall. The shear and moment acting on the wall due to axial and lateral loading is calculated and based on the shear and moment values the primary reinforcement is determined which comes out to be #9 bars @ 32 inches center to center spacing running vertically throughout the length of 120 ft. Before finalizing the reinforcement for the out-of-plane loading case, the maximum moment strength and the deflection requirement are checked for the preliminary amount of reinforcement. The wall deflection and out-of-plane moment are calculated using the following formulas.

$$M_u = \frac{w_u h^2}{8} + \frac{P_f e}{2} + P_u \delta$$
 2.2.1

$$\delta_{u} = \frac{\left(\frac{w_{u}H^{2}}{8} + \frac{P_{uf}e}{2}\right) - M_{cr}(1 - \frac{I_{cr}}{I_{g}})}{\frac{48EmI_{cr}}{5h^{2}} - (P_{uw} + P_{uf})}$$
2.2.2

Where: $M_u = Maximum$ out of the plane moment

 δ_u = Maximum wall deflection

h = Height on the wall

 $P_{uf} = Loading from floor$

 $P_{uw} = Loading from wall$

 M_{cr} = Cracking moment

 I_{cr} = Cracked moment of inertia

I_g = Uncracked moment of inertia

 E_m = Masonry modulus of elasticity

The two goals of the design are:

1. The out-of-plane moment strength of the masonry wall must be greater than the factored out-of-plane moment demand.

i.e.
$$\emptyset M_n \ge M_u$$

2. The horizontal deflection at the mid-height under service loads must be less than 0.007H.

i.e.
$$\delta_{mid\ height} \leq 0.00H$$

Table 5: Reinforcement for the Out-of-Plane Loading (Slender Wall)

Reinforcement Type	Reinforcing Bars and Spacing
Vertical	#9 bars @ 32 inches c.c spacing

2.3 Design of Shear Masonry Wall

In masonry buildings, shear walls are the main elements of the lateral load resisting system buildings. The code (TMS 402) requires 80% load resistance to be provided by lateral walls if a response modification factor (R) is greater than 1.5. There are four primary causes of shear wall deflection: Shear, Flexure, Sliding, and Rocking. Among those, shear and flexure are the two main reasons for wall deflection in this project. The shear or flexural deformation depends on the aspect ratio: wall height (H) to its length (L). If 0.25 < h/L < 4 then there is the possibility of both shear and flexural deformation. If h/L < 0.25 then the wall will more likely to deform due to shear while if h/L > 4 then it will primarily undergo flexural deformation. In the project h/L ratio is 0.24 which is less than 0.25 so it will deform due to shear. However, the wall is designed against flexural

response to resist the seismic loads and provide adequate ductility in such seismic events. The Strength Design approach is used to design the shear wall in this project.

As the Seismic Design Category (SDC) for this project is D, the only type of masonry shear wall is the special reinforced shear wall according to ASCE 7-10. The table below shows the reinforcement requirement for various types of shear walls.

Table 6: Reinforced Masonry Shear Walls in various SDCs

Seismic Design Category	Ordinary Reinforced Masonry Shear Walls	Intermediate Reinforced Masonry Shear Walls	Special Reinforced Masonry Shear Walls
A	Permitted	Permitted	Permitted
В	Permitted	Permitted	Permitted
С	Permitted	Permitted	Permitted
D	Not permitted	Not permitted	Permitted
E	Not permitted	Not permitted	Permitted
F	Not permitted	Not permitted	Permitted

The vertical reinforcement in the shear wall can resist the moment demand only. The shear corresponding to the nominal flexural strength is calculated. The total shear strength is the sum of shear strength from masonry and the steel reinforcement. The vertical, horizontal, and joint reinforcements are determined based on the following inplane loading acting in the shear wall.

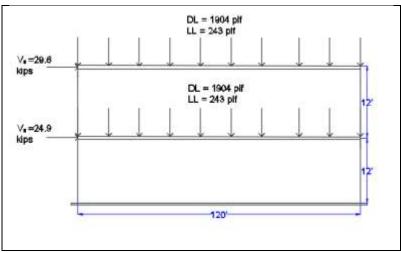


Figure 8: In-Plane Loading in the reinforced masonry wall

The reinforcement obtained in the shear wall from the calculation was verified following TMS 402-08/ACI 530-08/ASCE 5-08 codes for minimum and maximum requirement for the partially grouted special reinforced masonry wall. The following table shows the reinforcement requirement in the shear wall:

Table 7: Reinforcement for the In-Plane Loading (Shear Wall)

Reinforcement Type	Reinforcing Bars and Spacing
Vertical	#6 bars @ 32 inches c.c spacing
Horizontal	#5 bars @ 48 inches c.c spacing

2.4 Reinforcement for Masonry Wall

The ultimate reinforcement requirement from both slender (out-of-plane loading) and shear (inplane loading) wall conditions are considered for the final design so that there will be a higher factor of safety and the lateral and axial loading will not lead to the failure in the structure. The table below shows the final special reinforcement for the partially grouted reinforced masonry wall to uphold all the axial and lateral loading conditions.

Table 8: Final Reinforcement for the Partially Grouted Reinforced Masonry Wall

Reinforcement Type	Reinforcing Bars and Spacing
Vertical Reinforcement	#9 bars @ 32 inches c.c spacing
Horizontal Reinforcement	#5 bars @ 48 inches c.c spacing
Horizontal Reinforcement around the	#5 bars with a development length of 28
openings	inches past the opening
Joint Reinforcement	Ladder-type joint reinforcement

The figures below show the designed special reinforcement in the partially grouted reinforced masonry wall:

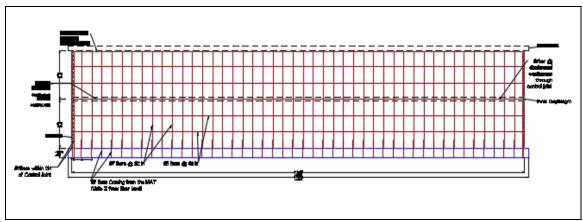


Figure 9: Reinforcement Detailing for Partially Grouted Reinforced Masonry Wall (Front view)

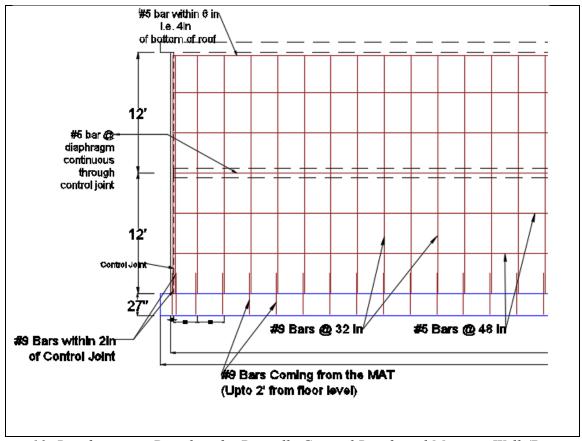


Figure 10: Reinforcement Detailing for Partially Grouted Reinforced Masonry Wall (Portion of the front view)

2.5 Cost Analysis

The construction of the perimeter wall of the building with the reinforced concrete and the partially grouted reinforced masonry is calculated and compared. The reinforced concrete wall is a non-load-bearing wall of thickness 8 inches while a partially grouted reinforced concrete masonry wall is a load-bearing wall which means the masonry wall takes a certain portion of the roof and floor load to the ground. Also, using load-bearing masonry wall replaces the 8 columns of 12 in x 12 inches dimensions and 4 beams of 22 in x 30 in cross-section in the 120 ft span of the building from the construction of the non-load-bearing wall. Considering,

the cost of concrete for 27 cubic feet or 1 cubic yard as \$120, the cost of one concrete masonry block of dimension 8in x 8in x 16 in, as \$2, and the grout is placed at every 32 inches horizontal distance between the center of the bars, the construction cost is calculated. The cost for construction with both types of materials is shown and compared in the table below:

Table 9: Cost Comparision of the Reinforced Concrete Wall and Partially
Grouted Reinforced Masonry Wall

	Reinforced Concrete Wall	Partially				
		Grouted Reinforced Masonry				
		Wall				
	From 8 in Wall: \$29,955	From Blocks: \$23,058				
	From 4 Beams: \$9,778	From Grout: \$7,751				
	From 8 Columns: \$853					
Total (round figure)	\$41,000	\$ 31,000				
Total Saving	\$10,00	0				

The table shows the selection of reinforced masonry load-bearing wall as construction design will reduce the cost by almost \$10,000 as compared to the construction of a non-load bearing reinforced concrete wall of 8 inches.

CHAPTER 3

CONCLUSION AND RECOMMENDATION

The partially grouted special RM load-bearing wall in the outer parameter of the 2 storeyed commercial building located in Oxford, MS is designed for the axial loading due to dead and live gravity loads from the roof and the first floor, and lateral loading from wind and earthquakes. The vertical, horizontal, and joint reinforcement along with the partial grouting is determined based on the minimum requirements and the 2009 International Building Code (2009 IBC), and Building Code Requirements for Masonry Structures (TMS 402-08/ACI 530-08, ASCE 5-08). The cost of construction with 8 inches wide partially grouted reinforced masonry is almost \$10,000 cheaper than that of the RC wall of 8 inches wide.

More detailed analysis and calculations are needed to get the most economical and safest partially grouted reinforced masonry wall. The masonry wall will gain strength if it is grouted fully, filling all the void spaces in the masonry blocks rather than partially grouting it. However, that will be expensive from the costing point of view.

LIST OF REFERENCES

- [1] J.R. Ubejd Mujagic, J. Daniel Dolan, Chukwuma G. Ekwueme, David A. Fanella, Roger A. LaBouble, Structural Design of Low Rise Buildings in Cold-Formed Steel, Reinforced Masonry, and Structural timber. MHID 0-07-176792-4, ISBN: 978-0-07-176792-7.
- [2] W.C Panarese, S.H. Kosmatka, and F.A. Randall Jr, Concrete Masonry Handbook for Architects, Engineers, Builders, 5th Edition.
- [3] Christine Beall, Masonry Design and detailing for Architects, Engineers, and Contractors, 3rd Edition.
- [4] Edwin H. Gaylord Jr, Charles N. Gaylord, James E. Stallmeyer, Structural Engineering Handbook, 4th Edition.
- [5] Structures & Codes Institute, 2015 SKGA, CodeMaster, Wind Design Overview. ISBN 978-1-936039-34-0.
- [6] Structures & Codes Institute, 2015 SKGA, CodeMaster, Seismic Design. ISBN 978-1-936039-29-6.
- [7] Structures & Codes Institute, 2015 SKGA, CodeMaster, Seismic Design Category. ISBN 978-1-936039-27-2.
- [9] 2016 ASCE: Minimum Design Loads and Associated Criteria for Buildings and Other Structures (7-16). American Society of Civil Engineers 2016.
- [10] NCMA TEK, TEK 14-18B, Seismic Design And Detailing Requirements For Masonry Structures. https://ncma.org/resource/seismic-design-and-detailing-requirements-for-masonry-structures/.
- [11] Richard Bennett, Design of Masonry Shear Walls, May 10, 2018. https://masonrysociety.org/wp-content/uploads/2019/03/Design-of-Masonry-Shear-Walls_2018-05-10.pdf.
- [12] ProMatcher | Concrete, Concrete Costs \$ Prices ProMatcher Cost report https://concrete.promatcher.com/cos

APPENDIX

A. Excel Worksheet for Material Selection

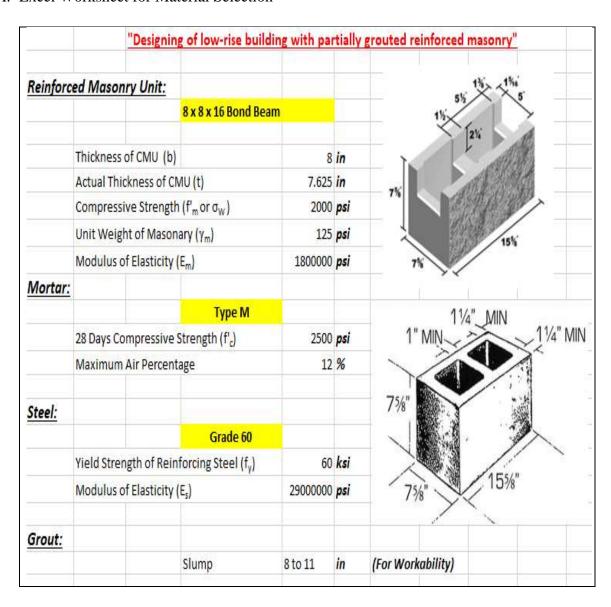


Image A: Materials Selection for Masonry Wall

B. Excel Worksheet for Wind Load Calculation

Vind Loadin	E															
RI	sk Category					32										
Basic Wind Speed (3 Second Gust)				3.1	10 mph	(At 33 ft	above gr	ound in	En	sposure Categ	ery C	and Spe	ed (V) of	ASCE 7-1	(0)	
M	Mean Roof Height (h)				1	24 ft	(For roof	angle < 10	degrees	. 4	h = a) So for Fit					
Fo	r Exposure Catego	nc.				-	1000000	70.	dillorer.			11000	1000			
	Surface Roughness Category Importance Factor (I)					C	(Onen te	rrain with	· seette	-	ed abstruction	e havis	or heigh	ts nene	nally less	than 30 fee
						1					ittered obstructions having heights generally less than that any hazardious materials in it)					
				Townson and the	0 1.3	15	fa ca safera	274		har fact registed		Same				
	gustment Factor for	Britishing He	eight and	Exposure)	A Acc	23						8			001	
	assifications				- 200		115,000	4.7	1			100			Ut .	
As	ea (A _s)					52 Jt"	2880	It.	2			18			18	
0	penings Area (A ₀)				35	54 ft*	(For Main	Doors)								
	0.01Ag		23.52 ft ²													
			4 ft													
	Since, A	>4 ft ² , 50,	Partiall E	nclosed Bu	ilding											
W	Wind Directionality Factor (Kg)				.0.	25	(0.85 g for Buildings, From ASCE 7-10 Tuble 16.6-1)									
To	Topography Factor (K _n)					1	(No abru	(No abrupt changes in the Topography and structure in on Level Ground)								
							(From AS	CE 7-10 Sec	tion 26.	8)						
6	st Effect Factor (G)				0.	85	(For Rigio	Structure	s)							
A	cording to ASCE 7	-10 Section	26.9.2, 1	ow Rise 8	luildings	(Mean ro	of height (h)	< 60 ft) a	re cons	ride	lered Rigid					
75	e building have Fu	ndamenta	frequen	y >= 1HZ	and Fun	damental	Period =< 1	second)								
	rox Resisting System (N				- State of the	- Constitution										
	Assemblage of structur Method 6: 2015 ABC Sec					overall stru	tture and wind	loading from			one surface)		est message			
	nlicable to simple diaph	man amountings for the Col-		and the second second second	1000	c. Fundam	ental Period +0	1:00E.	16	TE I	Not less		ERMINCOL	CORP.	AND RESIDEN	1895.
6.35		W (12.7	M. Sancon Control							Ξ.	Jack St. Co.		7	200.	S	- Am
For Design Wind Pressure (p.) for MWFRS:					0.00						XX	M. N.	(H. 45)	2 2 2	120	
						p. +4 f. p.		(Equation	18-36	•			= -	3 5	2 3 3	=
	Zone	Psao	p,			where:	and the last of the last			-	Feb 100 1		2 3	3 3	1111	12
		(pst)	(psf)	0.22774	100		recurse factor to Nathing Scripts and expre- from Table 1600:6-2.1(4). etance factor or delibered in Socioes 3MR/5					11 21	11 -21	181 - 181	#1 11 At	A6.
	A	19.2	26	> 16 par	OK.							0 0	20 IA	01 de 17 de	1 1 1	44
	В.	-10	-14	- 15 and	rive.	at 9	Simplified drough wind province for at to 200 feet (9144 mass), and life (A. Eman		810 30 1	1 1	8181	2131	21111	111
	C D	12.7	17	> 16 psf	OK	788	6 100 6.Z H.U.	100 4.2 1/11			201 20		m . m	(A) (B)	00 at 40	-
		5.9	8				4.1 Makean pro- rigo wind pre-more 5			_		10 A6	보는하는		(t) (t) (d)	-25
Fora:						dull not	he first than available. If, IC and D off reports	of the provision.	p., 60c						# 5 4	-94
and the second	ercent of least horizon	al dimension		43	s ft	white an	meng Zeno E.F.G.	and Hallequal t	stpd.	-4	Fred St.		E E	3131	51313	144
	0.4h	3111001	-		i ft.							0. 7	8-3-	80.00	2 2 3	1-5-1
-33	24.00			119	- D L.					-		1 1	10. (4)	21 44	7 7 4	41
							- 1		1 = 1 1 1 1		* *	70 = 1	H 1 36 1 5	Andrew 1		
(It o	ieans 26 psf will act at t	the distance of	d 9.6 ft from	the end of t	the							11 22	11 11	0 2	H 1 77 1 16	1.41

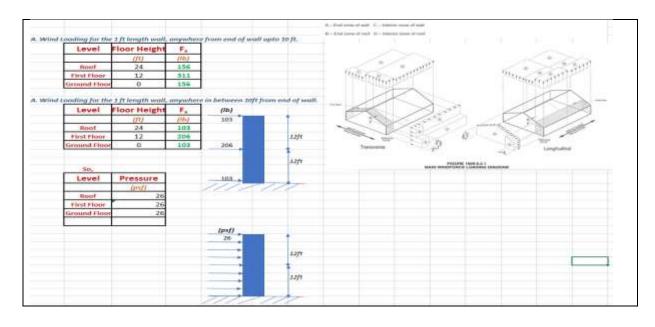


Image B: Wind Load Calculation

C. Excel Worksheet for Seismic Load Calculation

Risk	Category for Buil	ding		ti ti						
	Class			D						
MCE	Peak ground me	otion (period	=0.2s) (S _z)	0.414g	(Based or	ASCE 7-1	6) and ATC H	lazard Calc	ulation)	
MCE	t Peak ground m	otion (period	=1.0s) (S ₁)	0,178g	(Based on ASCE 7-16) and ATC Hazard Calculation)					
Shor	t Period Site Coel	fecient (F _a)		1.457	(ASCE 7-1	6, Table 1	1.4-1) and B	y straightlir	ne interpolation	
					OK, as gr	eater than	1.2 for site	class D)		
Long	Period Site Coeff	ecient (F,)		1.884	(ASCE 7-1	6, Table 1	1.4-2) and B	y straightlin	ne interpolation	
Site	Site-modified spectral acceleration value (S_{MS})			0.608g	(5 MS = F	xS.)				
Site-	modified spectra	acceleration	value (S _{M1})	0.4g	(5 MI = F.	x5 ,)				
Num	eric seismic desi	n value at 0.	2s SA (Sos)	0.405g	(5 ps = (2/	3)x5 Ms)				
Num	eric seismic desi	ın value at 1.	Os SA (S _{D1})	0.267g	(S pr = (2/	3)x5 MI)				
Risk	Category			C	(0.33 g ≤	S DS < 0.5	g)(From ASC	E 7-16, Tab	le ASCE 11.6-1)	
Selsn	nic Importance F	ector (I _e)		1	(From AS	CE 7-16, To	able 1.5-2, Fo	or Risk Cate	gory II)	
Struc	ctural Roof Peak I	leight (h _n)		24	ft					
Num	ber of Stories in	Building (N)		2						
Resp	onse Modificatio	n Factor (R)		2	(From AS	CE 7-16. To	able 12.2-1)			
- W. C. C.	strength Factor (and the first hardware have the state of			the strain profit legs benefity as a	ed a pre-free pro-		(For Ordani	ry reinforced AAC Mi	sonry Shear W
Defle	ction Amplificati	on Factor (C _d	i.	2	(From AS	CE 7-16, To	able 12.2-1)		n Europe (n Egype to planta a le transmisse)	State of the State
The S	Seismic Response	Coeffecient	C ₄)	0.2025	(Cs = S ps	/(R/I .))				
Time	Period (T)			0,22	sec		(T=C, *h,	')		
T _k				12	sec	>T	(So, T <t<sub>L)</t<sub>			
			(Cs) _{Max}	0.93376	>0.2025	(OK)	[Cs = S ps/	(T(R/I .))]		
So, T	he Seismic Respo	nse Coeffecie	nt (Cs)	0.2025						

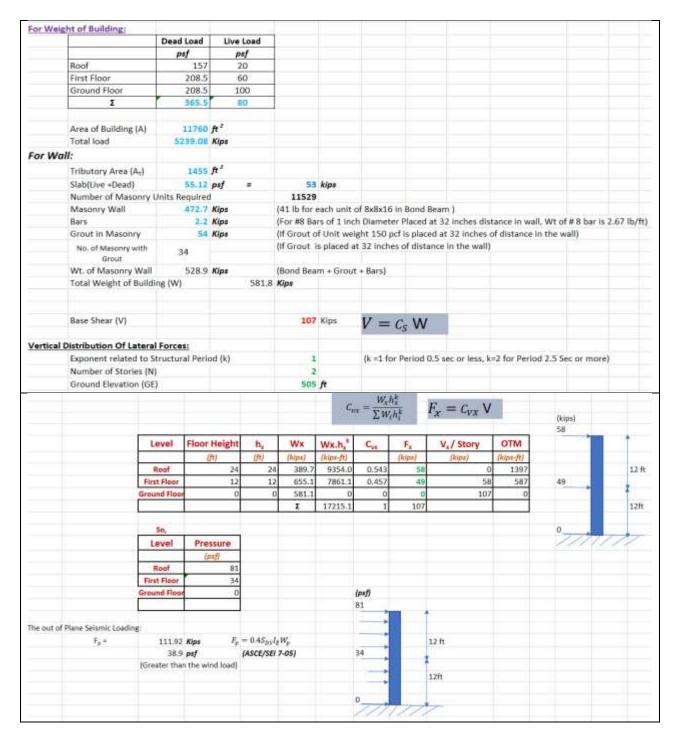
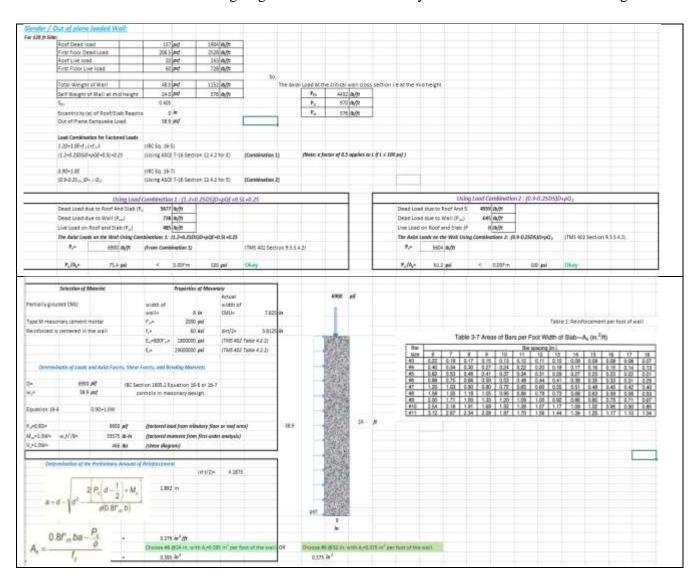
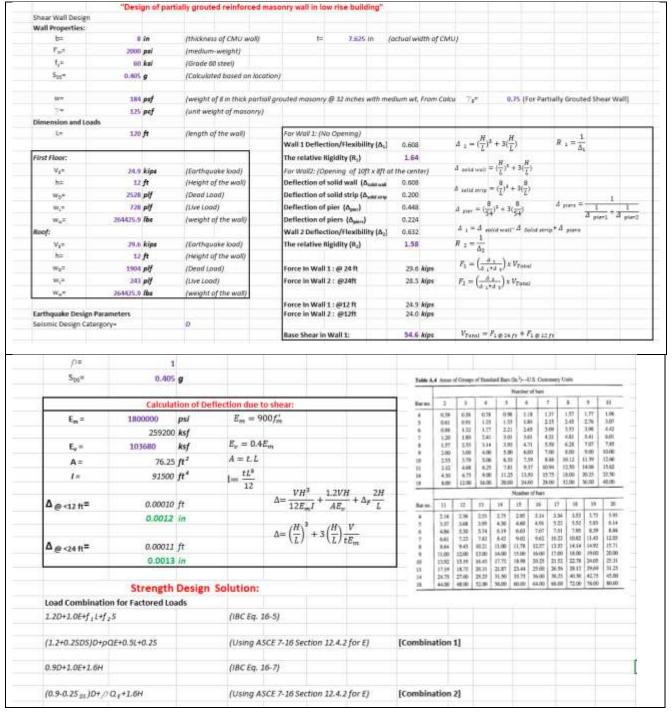



Image C: Wind Load Calculation

D. Excel Worksheet for Designing the Reinforced Masonry Wall for Out-of-Plane Loading



						No. Horassial b	urina Fragarian (Monar)	Speaning Fortisally)	
ASCE-7 Comm	entary Table C	3-1			Too specing		Service account properties'	Amaga constrained property	
Wall weight	13	psf			Hollow Na gov Hollow Na gov		H.O. 108,7 91.0 H.J. 354,0 97.0	41.5 134.0 KT-0 41.5 134.0 KT-0	3.84
Wall propertie	s based on NC	WA TEK 14-1B			Vier's wind includy Hollian In	greated Pull 1	0.0 643.9 (16.0	94.9 ART 0 114.0	3.59 2.43
A _x =	53.7	In 2/ft			Hollow 24 Hollow 17	Face shell	U.O 314.6 98.3 H.1 188.3 90.3 BIO 148.7 90.1	95.5 MT F TOT 5 TT.7 MG S WES 51.7 MG S WES 21.3 MT 2 W S	2.53
la-	360.5	in"/ft			Philips de	Facul short.	12.8 (10.7 86.8 (4.7 6/2.8 87.1 (7.1 6/2.9 86.0	818 NFT TELS NT STATE	240
r=	2.59	in			Holion 72 Holion III Holion III	Face shell:	15.5 500.0 86.0	619 345.8 96.7 619 342.8 96.9	200 270 270 270
Checking the	factored Axia	Stress	i e	0.9				V.10001	
P.,-	3945.9	1b							
P./A _e -	73.5	psi	<	0.05f'	100	psi	Okay!	(TM5 402 Section	on 9.3.5.4.2
M _u = w _u h ² /8 + f	e₀/2+P₀₫₀	10000		**************************************				(TMS 402 Eq. 9-	23)
ő=	(5M _{cr} h ²)/(48E	nI _{st})	ir	M _u <m<sub>cr</m<sub>				(TMS 402 Eq. 9-	25)
ŏ×	(5M _c ,h ²)/(48E	"I _a)+(5(M,-M,)h")/(48E,	nl _c)	17	M,> or =1	vi _c	(TMS 402 Eq. 9-	26)

Assume,	e _u =	0	in								
f,=	153 psi (1 gro	outed cell/4 c	ells) + 51	osi (3 ungro	uted cells/	4 cells)	76.5	psi	(TMS 402	Table 9.1.9.2)	
	(Note: Linear	rinterpolatio	n for 1/6 c	ells grouted)						
$M_{cr} = (f_r + P/A_g)($	$I_g/(t/2)) =$	14182	in-lb		(TMS 402	Section 9.	3.5.4.4)				
$C=(A_sf_y+P_u)/(0.$	64f' _m b)=	2.7	in		(TMS 402	Eq. 9-31)					
$I_{cr}=E_s/E_m(A_s+(P_s))$	ut _{sp} /f _y 2d))(d-c)	² +bc ³ /3=	61.7	in ⁴	(TMS 402	Eq. 9-30, t	sp/2d=1 for	centered rei	n <mark>for</mark> cement)	
Solving for M								$M_{o} = \frac{W}{M_{o}}$	$\frac{(u^{h^2} + P_{uf})^2}{8} + \frac{e}{2}$	$\int_{-\infty}^{u} if M_{u} < M_{cr}$	
M _u =	43248	in-lb	>	Mcr	14182	in-lb	Okay		$1 - \frac{5P_uh^2}{48E_mI_n}$		
Deter	mination of N	ominal and De	sign Streng	ith				W	uh² . p e	, 5M _{cr} P _o h ² (1 1)	
$a = (A_s f_y + P_u)/a$	φ)/(0.80f° _m b)) =	2.19	in				M _u =	8 + 7 1/1 2	$\frac{2}{1} + \frac{5M_{cr}P_{u}h^{2}}{48E_{m}} \left(\frac{1}{I_{n}} - \frac{1}{I_{cr}}\right)$ $1 - \frac{5P_{u}h^{2}}{48E_{d}}$	if $M_u \ge M_{cr}$
$M_n = (P_u/\phi + A)$	sf _y)*(d-a/2) =	=1	76261.7	lb-in						$1 - \frac{5P_{u}n^{c}}{48E_{m}I_{cr}}$	
Design flexur	al strength =	φM _n =	68635.5	lb-in	>	Mu	43248	lb-in	Okay		
Deflection:											
δ=	0.6	in	<	0.007H	1.008	in	(Okay)	$\delta_s \leq$	0.007h	(Deflection at Mid Height)	
			So, USE	#9 Bars @ 3	2 in C.C S	pacing	OR	So, USE #8	Bars @ 24	in C.C Spacing	
							#9 Bars @				

Image D: Design of Reinforced Masonry Wall for out-of-plane loading

E. Excel Worksheet for Designing the Reinforced Masonry Wall for In-Plane Loading

	First Floo	r Design				
Loads at the base of t	he walls:					
P _D =	1060.7	kips				
P _L =	87.3	kips				
P _{Lr} =	29.1	kips				
Q _E =V _E =	54.6	kips				
Using the load combi	nations and L	oads:				
M _u =	1011	kip-ft	1010535 lb-ft			
P _u =	1229	Kips	Combination: Pu =	= D + 0.75L +	- 0.525 <i>Q_E</i>	
P _u =	1402	kips	[Combination 1]			
P _u =	869	kips	[Combination 2]			
			nt (For Strength o	lesign, Dis	tributed Rei	nforcement case
Select Initial reinford						
#8	@	48	in			
So, Number of Bars (r	n)	29.8	bars			
Area of #8 Bars		0.76				
	1	23.56				
Total Area of steel (A	s)	23.36				
C _t =		in	(Assume the centroid	_		
d=	1436	in	(The depth of equiva	lent rectangul	ar stress block)	
		in	(Total Length)			
d _v =	1440					
d _v = ε _m ε _v	0.0025 0.00207		(For CMU) (For Grade 60 steel)			

c _t =	4	in	(Assun	ne the centro	id of tension	n steel)					
d=	1296	in	(The de	pth of equiv	alent rectar	ngular stress t	olock, for dist	ributed	f reinforcen	nent)	
d _v =	1440	in	Approxi	mate $d = 0.9d$	v		ε_{mu} .				
C ^{pal} =	709.0	in				$c_{bal} =$	$=\frac{\varepsilon_{mu}}{\varepsilon_{mu}+\varepsilon_{y}}d$				
a=	51.63	in					-mu · -y		a = d -	$d^2 - \frac{2\{P_0\}}{2}$	$\frac{(d-d_v/2)+M}{\phi(0.8f_m't_{xp})}$
c =	64.53	in	<	C _{bal}	709.0	in	Okay			1	$\phi(v.sf_mt_{sp})$
			(So Ter	sion Control	lled)		199			0.86' t	a – Р. /ф
A _{s, required in}	12.26	in ²					$A_{s,reqd}^* = \frac{A_{s,t}}{0.6}$	regd	A _{s,reqd}	=	$\frac{f_{sp}a - P_u/\phi}{f_v}$
A*s, required=	0.16	in²/ft					0.6	σα _ν	(E39860A00		/y
Choose	44	#6	bars	A _s =	19.36	in ²					
	Spacing (s)	32.5	in		(>19.2in ²	with 0.16 in ² ,	(ft)	(Use	at least 32i	n spacing	for # 6 Bars)
Choose	32	#7	bars	A _s =	19.2	In ²					
	Spacing (s)	44.8	in	100.00	(>19.2in ²	with 0.16in ² /	(ft)	(Use	at least 40	in spacing	for # 7 Bars)
Choose	96	#4	bars	A _s =	19.2	in²					
	Spacing (s)	14.9	in		(>19.2in ²	with 0.16in ² /	(ft)	(Use	at least 8 II	n spacing	for #4 Bars)
Choose	62	#5	bars	A _t =	19.22	in²					
	Spacing (s)	23.1	in		(>19.2in ²	with 0.16in ² /	(ft)	(Use	at least 16	in spacing	g for #5 Bars)
Choose	25	#8	bars	A _c =	19.75	in ²					
	Spacing (s)	57.3	in	100.74 (0)	(>19.2n2 v	vith 0.16 in ² /	(ft)	(Use	at least 56	in spacing	(for #8Bars)

		Desig	gn Strengtl	n Deter	minatio	n			
Ø=	0.9								
C-1	Γ=P _n		(Fro	m Free	Body Die	agram	1)		
P _u =	869	lbs	(Fro	m Com	bination	2)			
$P_n = P_u / \emptyset =$	965.2	lbs					P_u		
a=	115.95	in	A_s	= +	$\frac{8f'_m t}{f_y}$		Ø		
c=	144.93	in							
C=	1414565.2	lbs							
T=	1413600	lbs							
M _n =	1.75E+09	lb-in							
	145892713	lb-ft							
Design Stre	ength ØMn=	*	31303 kips	-ft	>	Mu	1011		Okay
P _u =	1402	lhs	/Fr0	m Com	hination	. 1\			
P _n =P _u /Ø=	1558	•	(F10	m com	bination	11)			
a=		in							
c=	119	•							
C=	1163002								
T=	1161600	•							
M _n =	1451009911	lb-in							
	120917493	•							
Design Stre	ength ØMn=	Ť	08826 kips	-ft	>	Mu	1011		Okay
							Ī		
	Nominal Axia	l Strengt	th Calculati	on [TM	S 402 Se	ction	9.3.4.1.1]		
Ø=	0.9								
r=	2.59 in		(Partially	groute	d wall @	32 in,	From Table 3	a)	
H/r=	55.6 in	/in	<		99	-	(Use TMS Equ	uation 9	9-15 for P _n
Nominal Axial Ca	pacity:						r	. 21	
P _n =	12764953 lb	5	$P_{\rm m}=0$	8[0.8f'	$(A_n - A_n)$	$+f_{v}$	$\begin{bmatrix} 1 - \left(\frac{H}{140n} \right) \end{bmatrix}$.) [
Design axial stren	······		"	7 111	n 3	, y	1401	7	
Ø P _n =	11488.5 ki	ps							
			4.400			11/00	(Design axial	Okay	
Maximum P _u value	from above=		1402	<		11488	(Design axiai	Okay	

			Nomina	l Shear Stre	ength:			
Ø=	0.8							
$M_u/V_ud_v=$	0.15	≤ 0.25		So,	α=	1.5		
Nominal Maso	nry Shear Strength	:						
Numbers of bar	31							
Net Area (A _{nv}) =	4871	in²	(Net are	ea except ho	ollow spa	ace of bond be	am)	
V _{nm} =	839.8	kips	$V_{nm} = 4$	$-1.75\left(\frac{M_{31}}{V_{cd}}\right)$	$A_{nv}\sqrt{f_m'}$ +	- 0.25P _u	$V_{ns} = 0.5 \left(\frac{A_v}{s}\right) f_3$	$_{v}d_{v}$
A _v =	0.19	in²/ft		Critalia				
V _{ns} =	128.25	kips					V = (V - 1)	V)
V _n =	968.1	kips		(V _u) =		1	$V_n = (V_{nm} +$	$V_{ns})\gamma_g$
ØV _n =	774.5	kips	>	54.6	kips	Okay		м
Maximum Nom	inal Shear Limit:			V _n =		$V_n \le$	$(6A_{nv}\sqrt{f'_m})\gamma_g$	For V, d
$\left(6A_{nv}\sqrt{f_m'}\right) =$	980	kips	>=	968.1	kips	Okay		
			Maximum :	Spacing requ	irement:			
Maximum Spac	ing (S _{max})		Maximum :			e-third length,	one-third he	eight, 48
Maximum Spac	ing (S _{max})		18 inches	• minin	num{ one	e-third length,	one-third he	eight, 48
	ing (S _{max})	4	18 inches	minin Strength De Except V _n nee greater than 2	num{ one		one-third he	eight, 48
		nits (Wall):	Shear S	minin Strength De Except V _n nee	esign: ed not be	es	one-third he	eight, 48
With No Reinford	ement Just CMU ur 109.1	nits (Wall):	Shear S	minin Strength De Except V _n nee greater than 2 shear)	esign: ed not be	es	one-third he	eight, 48
With No Reinford	ement Just CMU ur 109.1 0.0	nits (Wall):	Shear S	minin Strength De Except V _n nee greater than 2 shear)	esign: ed not be	es	one-third he	eight, 48
With No Reinfor Vn = Area of Bar	ement Just CMU ur 109.1 0.0	nits (Wall): kips in² in²	Shear S	minin Strength De Except V _n nee greater than 2 shear)	esign: ed not be	es	one-third he	eight, 48
With No Reinford Vn = Area of Bar Av =	109.1 0.0 0.8	nits (Wall): kips in² in²	Shear S	minin Strength De Except V _n nee greater than 2 shear)	esign: ed not be	es		eight, 48
With No Reinford Vn = Area of Bar Av = Ø =	109.1 0.0 0.8	nits (Wall): kips in² in² ≤ 0.25	Shear S	• minin Strength De Except V _n nee greater than 2 shear) α, or φV _n = φ2.	esign: ed not be 2.5V _w . (doubl) 5V _u = 2.0V _u	es		eight, 48
With No Reinford Vn = Area of Bar Av = Ø = Mu/Vudv=	109.1 0.0 0 0.8	nits (Wall): kips in² in² ≤ 0.25	Shear S $V_n = 2.5V_1$	• minin Strength De Except V_n nee greater than v_n shear) v_n , or $\phi V_n = \phi 2$.	num{ one esign: ed not be $2.5V_u$. (double $5V_u = 2.0V_u$	es		eight, 48
With No Reinford Vn = Area of Bar Av = Ø = M _u /V _u d _v = Numbers of bar	109.1 0.0 0.8 0.08	nits (Wall): kips in² in² ≤ 0.25	Shear S $V_n = 2.5V_i$ (Net are	• minin Strength De Except V_n nee greater than a shear) V_n , or $\phi V_n = \phi 2$. So,	num{ one esign: ed not be $2.5V_{u}$. (double) $5V_{u} = 2.0V_{u}$ $\alpha =$	1.5 ace of bond be		eight, 48
With No Reinford Vn = Area of Bar Av = 0 = M _u /V _u d _v = Numbers of bar Net Area (A _{nv}) =	109.1 0.0 0.8 0.08	nits (Wall): kips in² ≤ 0.25 in²	Shear S $V_n = 2.5V_i$ (Net are	• minin Strength De Except V_n nee greater than v_n shear) v_n , or $\phi V_n = \phi 2$.	num{ one esign: ed not be $2.5V_{u}$. (double) $5V_{u} = 2.0V_{u}$ $\alpha =$	1.5 ace of bond be		eight, 48
With No Reinford Vn = Area of Bar Av = Ø = Mu/Vudv= Numbers of bar Net Area (Anv) = Masonry Shear: Vnm=	0.00 0.08 0.08 0.08 0.08 0.08 0.08 0.08	nits (Wall): kips in² ≤ 0.25 in²	Shear S $V_n = 2.5V_i$ (Net are	• minin Strength De Except V_n nee greater than 2 shear) V_n , or $\phi V_n = \phi 2$. So,	num{ one esign: ed not be $2.5V_{u}$. (double) $5V_{u} = 2.0V_{u}$ $\alpha =$ of low spanning and $A_{nv}\sqrt{f_{m}^{\prime}}$	1.5 ace of bond be		eight, 48
With No Reinford Vn = Area of Bar Av = 0 = M _u /V _u d _v = Numbers of bar Net Area (A _{nv}) = Masonry Shear	0.00 0.08 0.08 0.08 0.08 0.08 0.08 0.08	nits (Wall): kips in² ≤ 0.25 in² kips	Shear S $V_n = 2.5V_t$ (Net are $V_{nm} = \begin{bmatrix} V_{nm} = 1 \end{bmatrix}$	• minin Strength De Except V_n nee greater than a shear) V_n , or $\phi V_n = \phi 2$. So,	num{ one esign: ed not be $2.5V_{u}$. (double) $5V_{u} = 2.0V_{u}$ $\alpha =$ of low span $A_{nv}\sqrt{f_{m}}$	1.5 ace of bond be		eight, 48

Vertical Reinforce	ement :	#6 bars @	32	in	Spacing
	0.00180	>	0.0007		Okay
Horizontal reinfor	cement:	Use Minimu	m	$\rho \ge 0.0007$ in ϵ	
		0.00070		$-\rho_r + \rho_h \ge 0.00$	2
		1.5372	in ²		
	Select,	#5 bars			
	Layers Required	5	Layers		
	Spacing Required	57.6	inches		
	USE	48	inches	spacing	
	So, Use	#5 bars @	48	in	
	Total reinforcem	ent check:			
	0.00250	>	0.002		Okay

Image E: Design of Reinforced Masonry Wall for in-plane loading

F. Excel Worksheet for Final Reinforcement for Partially Grouted Reinforced Masonry Wall

Vertical R	einforcement :	#9 bars @	32	in	Spacing
		Starts from 4 i	n from the end	of the wall	
Horizonta	l Reinforcement	#5 bars @	48	in	Spacing
Horizonta	l Reinforcement	around the	Opening:		
			#5 bars		
	Development length P	ast Opening	28	in	Dev. Length
Base Conc	rete in Foundatio	n			
Earthquak	e Band at lintel Le	evel, Roof le	vel , Plinth	level	

Image F: Final Reinforcement for Partially grouted Reinforced Masonry Wall

G. Excel Worksheet for Cost Analysis

Cost Calcu	lation of Re	inforced Cor	crete Wall			
Concrete	Cost:	\$113 and \$	126 per cubic	yard (27 cı	ıbic	feet)
Total Are	a of Wall (Δ)	10110	ft ²		
Cost of W		\$	29955	, -		
Extra Col	lumn Cost	\$	853			
Extra Bea	ams Cost:	\$	9778			
Т	otal Cost:	\$	40586			
Cost Calcu	lation of Pa	rtially Grout	ed Reinforced	Masonry	Wall	
Take Ave	rage:	\$	2	per block	(In	Home Depo)
Number of	Blocks		11529			
Cost of B	locks	\$	23058			
Cost of G	rout	\$	7751			
7	Total Cost:	\$	30809			
Saving	\$	9777	(Exact figure)			
	\$	10000	(Round Figure)			

Image G: Cost Analysis between construction with Reinforced Concrete and Reinforced Masonry

VITA

Anil Bhatt, born and raised in Nepal, came to the University of Mississippi to pursue a Bachelor of Science in Civil Engineering. He completed his high school at St. Xavier's College, Nepal. During his bachelor's study, he is involved in the Sally McDonnell Barksdale Honors College, Americal Society of Civil Engineers chapter at the University of Mississippi, and many other student organizations. He is involved in the summer and part-time internship with Precision Engineering Corporation (PEC) as a Construction Material Testing Technician since his junior year at the college. After graduating from the University of Mississippi, he is planning to work full time as a Structural Engineer.