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ABSTRACT 

Air pollution is one of the top-ranking risk factors for death and disability around 

the world, accounting for nearly 4.9 million deaths worldwide (State of Global Air, 

2019). Specifically, fine particulate matter (PM2.5) has been linked to many adverse 

effects on human health, yet there is very little known about what characteristics exactly 

cause these adverse health effects and how they cause them. Samples for this study were 

collected from Pascagoula, MS, a small town located on the Mississippi Gulf Coast that 

is home to many industrial yards, from September 2013 to December 2013. Black carbon 

(BC) analysis was performed on the samples to collect black carbon concentrations. 

PM2.5 was extracted from filters in methanol via sonication. Portions of each sample were 

allocated to be whole particle solution (WPS) samples and soluble fraction samples. 

Oxidative potential was measured for both WPS and soluble fractions using the 

dithiothreitol (DTT) assay. Statistical analyses were used to measure statistical 

significance and find trends within the results. Significant differences were found 

between some sampling dates and monthly averages for PM2.5 concentrations, BC 

concentrations, and oxidative potential. Trends were observed between PM2.5 and BC 

concentrations but not between oxidative potential. Slight trends were also seen between 

months and seasons (fall and winter). The results of this study show that day and month, 

along with many other factors, should be considered when studying PM2.5, leading to a 

better understanding of air quality for future studies. 
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INTRODUCTION  

 

As populations increase, air pollution levels climb to dangerously high levels around the 

world, and new data from the World Health Organization (WHO) shows that 9 out of 10 

people breathe air with high levels of pollutants. It is estimated that nearly 7 million 

people die every year due to exposure to ambient and household air pollutions that 

penetrate the lungs and cardiovascular system (WHO News). The WHO also notes that 

more than 40% of the world’s population still does not have access to clean cooking 

methods in their homes which is the leading source of household air pollution. There are 

many other sources that contribute to air pollution from particulate matter such as 

inefficient energy use, coal-fired power plants, waste burning, and deforestation just to 

name a few. The WHO and Environmental Protection Agency (EPA) acknowledge that 

air pollution contributes to numerous adverse health effects. The EPA has also 

established national ambient air quality standards (NAAQS) for the most common types 

of air pollution which include carbon monoxide, lead, ground-level ozone, particulate 

matter, nitrogen dioxide, and sulfur dioxide (US EPA, Criteria Air Pollutants).  

 

Particulate matter is the term used for air pollution that contains a mixture of solid 

particles and liquid droplets (US EPA, PM Basics). These particles come in various sizes; 

some, for example dust, soot, or smoke, can be seen with the naked eye while others can 

only be seen using an electron microscope. When talking about particulate matter, there
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are two main categories the particles can fall into: PM10 and PM2.5. PM10 consists of 

particles that are inhalable and have an aerodynamic diameter of 10 µm or smaller. 

PM2.5 is a finer inhalable particle with an aerodynamic diameter of 2.5 µm or smaller, 

making the largest PM2.5 particle about 30 times smaller than the diameter of a single 

strand of hair (US EPA). Particulate matter can be directly emitted from certain sources, 

but most particles form in the atmosphere due to complex reactions of chemicals. 

Particulate matter poses a serious threat to human health because a particle with an 

aerodynamic diameter of 10 µm is small enough to travel deep into the lungs and 

possibly reach the bloodstream (US EPA).  

 

Particulate matter is a mixture of coarse and fine size particles that come in a variety of 

morphologies and compositions (Beasley, 2019).  PM2.5 is small enough to move into the 

bloodstream and can be a carrier of heavy metals and organic compounds (Kethireddy et 

al., 2018). Fine particulate matter comes from many sources, such as vehicle emissions, 

coal-burning power plants, industrial emissions, and other anthropogenic and natural 

sources (State of Global Air, 2019). The WHO has established the Air Quality Guideline, 

setting the annual average PM2.5 concentration at 10 µg/m3, which is based on health 

effects from long-term exposure to PM2.5 (Kethireddy et al., 2018). More than 90% of the 

world population lives in areas exceeding the WHO guidelines, and studies have shown 

that exposure to high concentrations of PM2.5 for several years can lead to cardiovascular, 

respiratory, and other diseases (Kethireddy et al., 2018). 
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 The United States Gulf Coast, along with the southeastern US, accounted for more than 

65% of PM2.5 and other air pollutants out of the four regions monitored by a team at the 

University of Arkansas for Medical Sciences (Chalbot et al., 2013). The Gulf Coast sees 

a large amount air pollution since the Gulf of Mexico contains busy ports, heavy marine 

traffic within close proximity to the coast, and a large number of offshore oil and natural 

gas platforms and refineries.  Pascagoula is a city on the Mississippi Gulf coast that 

serves as the location for Chevron Pascagoula Refinery, Chevron Phillips Chemical 

Company, First Chemical Pascagoula Plant, and Huntington Ingalls Shipyard. On a state 

level, Mississippi was ranked 17th out of the top 20 industrially polluted states in 2010 

and has rapidly increasing rates of asthma (Kethireddy et al., 2018). Despite growing 

concerns about the air quality in Pascagoula, data from the Mississippi Department of 

Environmental Quality’s 2019 report indicates that the concentrations of PM2.5 are below 

the MDEQ standards. Even at levels below the national standards, changes in exposure to 

PM2.5 can lead to an increase in cardiovascular and respiratory diseases (Markar et al., 

2017).  

  

Air pollution is ranked as one of the top risk factors for death and disability around the 

world. In fact, it was ranked as the fifth highest mortality risk factor globally in 2017 and 

was associated with roughly 4.9 million deaths (State of Global Air, 

2019). Although research on PM2.5 is rather limited, epidemiological and toxicological 

studies have indicated that PM2.5 is significantly more toxic than larger particulate matter 

(Franklin et al., 2007). Long term exposure to particulate matter has been greatly 

associated with ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest; for 



4 
 

these conditions, a 10 µg/m3 increase in fine particulate matter was linked to 

an 8% to 18% increase in mortality risk (Pope et al., 2004). It has been discovered that 

tropical weather types (dry tropical and moist tropical) are associated with significantly 

higher concentrations of PM2.5 while polar weather types, both dry and moist, have been 

associated with lower concentrations of PM2.5 (Liu et al., 2017). Not only can seasonal 

changes affect particulate matter concentrations, but they can also affect chemical 

composition. Out of 52 components analyzed, only seven contributed greater than 1% to 

the total mass for year-round or seasonal averages (Michelle et al., 2007).  

 

There are many studies that link particulate matter with adverse health effects, but there 

is still a lot of uncertainty concerning exactly which characteristics of particulate matter 

causes these health effects (Michelle et al., 2007). Many studies have shifted towards 

aiming to figure out what components of PM2.5 are directly linked to mortality. Toxic 

characteristics associated with PM2.5 include: metals, organic compounds absorbed onto 

particles or forming particles, biological components, sulfate, nitrate, acidity, and 

surface-absorbed reactive gasses (Michelle et al. 2007). More specifically, iron, nickel, 

zinc, ammonium nitrate, elemental carbon, organic carbon (OC), nitrates, and sulfates 

have been the main chemicals associated with mortality for PM2.5 (Michelle et al., 2007).  

 

Black carbon is a component frequently linked with particulate matter that is known to 

have detrimental effects on human health. Black carbon particles are emitted directly into 

the atmosphere through various sources such as the incomplete combustion of fossil 

fuels, biofuels, and biomass (Canagaranta et al., 2021). In the past ten years, studies have 
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linked BC exposure with higher rates of morbidity and mortality, including lung cancer 

mortality, lower lung function and slower cognitive development in children, increased 

bone loss, and decreases cognitive functions in the elderly (Lequy et al., 2021).  

 

Oxidative stress occurs when there is a disturbance in the production of reactive oxygen 

species (ROS) and antioxidant defenses. As ROS are formed, they must be stabilized 

through electron donations from proteins, lipids, and DNA, leading to degradation and 

damage of these molecules (Kerksick and Zuhl, 2015). It is thought that the main 

mechanism through which particulate matter increases mortality and morbidity is 

increased oxidative stress (Kerksick and Zuhl, 2015). When particulate matter is inhaled, 

the particles induce inflammation in the lungs which then causes an excess of ROS to be 

produced (Sorensen et al., 2003). Because of this proposed mechanism, it has become 

common to measure the capacity of particulate matter to oxidize target molecules, also 

known as oxidative potential, rather than solely collecting information on mass alone for 

particulate matter (Sorensen et al., 2003). There are various assays that can be used to 

measure oxidative potential of PM2.5. The Dithiothreitol (DTT) assay measures oxidative 

potential by measuring the formation of DTT-disulfide which results from the transfer of 

electrons from DTT to ROS (Yang et al., 2013).  

  

This study will investigate differences in PM2.5 between months from Pascagoula, MS by 

looking at black carbon concentrations and oxidative potential across days in September, 

October, November, and December. I hypothesize that PM2.5 collected in September and 

October will have higher black carbon concentrations and oxidative potential compared 
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to PM2.5 from November and December, considering the Mississippi Gulf Coast has a 

tropical climate with short winters. The results of this study will show that the day and 

month a sample is taken should be considered when studying PM2.5, which will help 

inform future studies.   
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MATERIAL AND METHODS 

   

1. Collecting Filters  

All PM2.5 samples and controls were donated by the MDEQ for this research. 

PM2.5 samples were collected onto 47 mm PTFE-coated filters that are commonly 

used in the Federal Reference Monitor program, throughout the United States. 

They were collected every third day from September through December 2013. 

Sample dates include: September 4, 7, 10, 13, 16, 19, 22, and 28, 2013; October 1, 

16, 19, 22, 25, and 28, 2013; November 15, 18, 21, 24, and 27, 2013; and 

December 21, 24, 27, and 30, 2013. Date matched travel, field, and laboratory 

blank filters were included in this research. The MDEQ provided detailed 

information for each sample and control including: sampler runtimes, flowrates, 

meteorological measurements (temperature, humidity), and notes regarding the 

sample collection.   
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Filter ID Date Location PM2.5 conc. 

(µg/m3) 

T3651403 9/4/2013 Pascagoula 7.6 

T3651433 9/7/2013 Pascagoula 19.3 

T3651440 9/10/2013 Pascagoula 15.7 

T3651439 9/13/2013 Pascagoula 13.9 

T3651494 9/16/2013 Pascagoula 15.3 

T3651495 9/19/2013 Pascagoula 7.7 

T3651493 9/22/2013 Pascagoula 7.6 

T3651557 9/28/2013 Pascagoula n/a 

T3651573 10/1/2013 Pascagoula 8.6 

T3651614 10/16/2013 Pascagoula 5.6 

T3651613 10/19/2013 Pascagoula 8.1 

T3651678 10/22/2013 Pascagoula 10.6 

T3651679 10/25/2013 Pascagoula 9 

T3651680 10/28/2013 Pascagoula 9 

T3651783 11/15/2013 Pascagoula 7.5 

T3651784 11/18/2013 Pascagoula 4.8 

T3651793 11/21/2013 Pascagoula 17.2 

T3651786 11/24/2013 Pascagoula 7.4 

T3651841 11/27/2013 Pascagoula 7.2 

T3651934 12/21/2013 Pascagoula 9.9 

T3651988 12/24/2013 Pascagoula 7 

T3651989 12/27/2013 Pascagoula 8.4 

T3651990 12/30/2013 Pascagoula 1.9 

T3651501 9/24/2013 Trip Blank n/a 

T3651858 12/13/2013 Field Blank n/a 

 

   

2. Black Carbon Analysis  

Black carbon was measured for all samples, compared to control filters using the 

Magee OT21 SootScan. This instrument is an optical transmissometer that is able 

to analyze 880 nm and 370 nm wavelengths and specifically designed for black 

carbon analysis of particulate matter collected onto filters. The 880 nm 

wavelength is an IR wavelength that is translated to an amount of black 

carbon that is present on the filter. The 370 nm wavelength is a UV wavelength, 

Table 1. Filter ID, date, location, and PM2.5 concentration (µg/m3) for each sample. 
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and its absorption gives qualitative information about aromatic compounds. This 

information can aid in finding the sources that may have contributed to the black 

carbon. The amount of black carbon is determined by subtracting the 

attenuation value at 880 nm for the sample from a blank filter control.  All filters 

were run in triplicate. Concentrations of black carbon were then determined 

by using precise sampler runtimes and flow rates.   

   

3. Filter Extraction  

Following the non-destructive black carbon analysis, each filter was placed into a 

15 mL conical tube, and 8 mL methanol was added. The tubes were then 

sonicated for one hour at 60 Hz in a waterbath sonicator to remove the PM2.5 from 

the filters. After sonication, the filters were rinsed with 200 µL methanol as they 

were removed from the conical tubes to help release any remaining PM2.5. Once 

this was completed, the tubes with the samples were stored at -20°C until they 

were ready to be concentrated. Identical procedures were performed for all sample 

and control filters.   



10 
 

 

   

 

 

4. Sample Concentration  

The samples and controls in solution were concentrated using a N-EVAP nitrogen 

blow down system. A gentle stream of nitrogen gas was used to concentrate the 

suspensions to 1 mL.   

    

5.  Oxidative Potential Analysis  

a. Prep Samples  

1. Whole Particle Suspension  

Each sample was vortexed for five seconds to ensure the PM2.5 was evenly 

distributed. Once vortexed, 50 𝜇L were removed from the samples and distributed 

to 200 𝜇L snap closure tubes. These tubes were the whole particle suspension for 

the DTT assay.  

Figure 1. Filter Extraction Method (created with BioRender.com) 
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2.  Soluble and Insoluble Fractions  

 Another 75 𝜇L were removed from the sample and dispensed into a 1.5 mL 

centrifuge tube to be prepped as the soluble fraction. Each of these tubes were 

centrifuged for 5 minutes at 13 g. The soluble fractions were removed from the 

centrifuge tubes and placed in the 200 𝜇L snap closure tubes while the insoluble 

fractions were left in the centrifuge tubes. The remaining samples in the 15 mL 

conical tubes were stored at -20℃ to be used for ICP-MS.   

 

 

 

 

b. DL, 1,4-Dithiothreitol Assay  

All samples were tested for oxidative potential through the DTT assay. The DTT 

assay was performed in a 96-well plate that included a DTT curve, controls, and 

25 samples ran in triplicate.   

Figure 2. Separation of whole particle solution, soluble fractions, 

and insoluble fractions method (created with BioRender.com) 
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A DTT curve was included in the assay to calculate the DTT consumption for 

each sample. The wells for the DTT curve included 100 𝜇L 0.05 M Potassium 

phosphate, monobasic (KH2PO4) (PB), 5 𝜇L methanol, and 5 𝜇L DTT which 

was analyzed at 6 different concentrations (0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 mM). 

There were three controls used in this assay. There was the PB run in triplicate, a 

positive control of 1 μM 1,4-Naphthoquinone, and the 0.0 mM DTT that was 

included in the DTT curve. The PB control wells only received 100 𝜇L PB. The 

0.0 mM DTT wells, on the other hand, contained 100 𝜇L PB, 5 𝜇L methanol, 5 

𝜇L 0.0 mM DTT, and 10 𝜇L 5,5’-Dithiobis (2’-nitrobenzoic acid) (DTNB) by 

the end of the assay (which included all reagents at the same volume but without a 

sample or filter control). Sample dilutions were prepared in dimethyl sulfoxide 

(DMSO), then added to the plate in triplicate. All of the sample wells then 

received 5 𝜇L 0.5 mM DTT.  

The prepared plate was covered with a lid, wrapped in aluminum foil, and shook 

for 2-3 seconds to ensure mixing of all reagents and controls. The plate was then 

incubated at 37℃ for 20 minutes. Once the incubation was complete, the reaction 

was quenched with 10 𝜇L 1 mM DTNB which was dispensed into all wells except 

the control wells. The plate was covered and wrapped with foil again then shook 

for 1 minute. A spectrophotometer was used to record the absorbance of the plate 

at 412 nm.   
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6. Statistical Analysis – Software 

Bar graphs and statistical significance calculations were completed with 

SigmaPlot 14.0 (San Jose, CA). 

One-way analysis of variance (ANOVA) tests were used with significance set at p 

< 0.05 for black carbon and most of the oxidative potential data. A two-way 

ANOVA test was used to compare between the month a sample was taken from 

and if it was whole particle solution or soluble fraction. Significance was also set 

at p < 0.05 for the two-way ANOVA test. Linear regression analysis was 

conducted to correlate DTT consumption and black carbon concentrations and 

generate r2 values and determine if the slopes of the regression lines were 

significantly non-zero (p≤0.05). 

Diagrams of the methods were created using Bio Render. 

 

 

 

  

Figure 3. DTT assay method (created with BioRender.com) 
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RESULTS 

 

1. Black Carbon 

Black carbon concentrations were determined for each sample and compared 

between days in each month (Figure 4). For the month of September (Figure 4A), 

there were significant differences between the following days: 7th vs 22nd and 4th, 

and the 10th vs 4th. Out of the 8 days measured in September, there was variability 

throughout the month with concentrations that ranged from 0.09 to 6.70 µg/m3. 

For October (Figure 4B), there were not significant differences between the 

sampling locations, and concentrations ranged from 1.87 to 3.30 µg/m3. For 

November (Figure 4C), there were not significant differences between the 

sampling dates, and the concentrations ranged from 1.09 to 3.05 µg/m3. For 

December (Figure 4D), there were not significant differences between sampling 

dates, and the concentrations ranged from 0.25 to 2.04 µg/m3. 
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Using the black carbon concentrations determined for each sample, comparisons were 

made between each month for the average black carbon concentration for the entire 

month (Figure 5). There were significant differences between the following months: 

September vs November and September vs December. The month of September featured 

the highest average for black carbon concentration at 4.06 µg/m3. As the year progressed, 

black carbon concentrations dropped each month with December having the lowest 

A B 

D C 

Figure 4. Average black carbon concentrations for each sample compared between 

days in each month. Averages are reported ± standard deviations (sd) for A) black 

carbon concentrations for September, B) black carbon concentrations for October, C) 

black carbon concentrations for November, and D) black carbon concentrations for 

December. Data for A-D were analyzed using one-way ANOVA. Differences with p 

value < 0.05 were considered significant. 
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average concentration of black carbon out of all four months which had an average 

concentration of 1.37 µg/m3. For the most part, the black carbon concentrations are 

consistent with the monthly PM2.5 concentrations (Table 1). September had the highest 

average concentration of PM2.5 at 12.44 µg/m3 while December had the lowest average 

concentration at 6.80 µg/m3.  

  

 

 

 

 

a, b 

Figure 5. Average black carbon concentrations for the entire month compared between 

each month. Averages are reported ± standard deviations (sd) for monthly black 

carbon concentrations with the number of sampling days for each month, September 

(n=8), October (n=6), November (n=5), and December (n=4) Data for this figure were 

analyzed using one-way ANOVA. Differences with p value < 0.05 were considered 

significant. Significant differences were indicated by: a = significantly different from 

the November average and b = significantly different from the December average. 
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2. Oxidative Potential 

 

Oxidative potential was determined by calculating the DTT consumption 

(pM/min/m3). A higher DTT consumption corresponds to a higher oxidative 

potential. The average amount of DTT consumed was determined for each WPS 

sample and compared between days in each month (Figure 6). For September 

(Figure 6A), there were significant differences between the following days: 4th vs 

13th, 16th, 19th, 22nd, and 28th. The average amount of DTT consumed for 

September WPS ranged from 0.70 to 3.72 pM/min/m3. For all other months 

(Figure 6B-D), there were no significant differences between dates. For October 

(Figure 6B), there were no significant differences between sampling dates, and 

the average DTT consumed ranged from 0.47 to 1.74 pM/min/m3. For November 

(Figure 6C), the sample dates did not show any significant differences in average 

DTT consumed which ranged from 0.29 to 1.10 pM/min/m3. December also 

showed no significant differences between sample dates (Figure 6D), and it 

featured a range of 0.20 to 1.10 pM/min/m3. 
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The average amount of DTT consumed was determined for each soluble fraction sample 

and compared between days in each month (Figure 7). There were no significant 

differences with the soluble fraction samples between days for each month (Figure 7A-

D). The soluble fraction averages for September (Figure 7A), October (Figure 7B), 

November (Figure 7C), and December (Figure 7D) ranged from: 3.97 to 8.64 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Average DTT consumed for each WPS sample and compared between the 

days in each month. Averages ± sd for DTT consumed per reaction time and 

volume of air are reported for A) September WPS, B) October WPS, C) November 

WPS, and D) December WPS. Data for A-D were analyzed using one-way 

ANOVA. Differences with a p value < 0.05 were considered significant. 

A B 

C D 
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pM/min/m3, 5.70 to 10.51 pM/min/m3, 3.83 to 6.64 pM/min/m3, and 5.30 to 7.97 

pM/min/m3, respectively.  

 

 

The amount of DTT consumed was averaged for each month. These monthly averages 

were used to compare differences between WPS and soluble fractions (Figure 8). For all 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

A B 

C D 

Figure 7. Average DTT consumed for each soluble fraction sample and compared 

between the days in each month.  Averages ± sd for DTT consumed per reaction 

time and volume of air are reported for the soluble fraction in A) September, B) 

October, C) November, and D) December. Data for A-D were analyzed using one-

way ANOVA. Differences with a p value < 0.05 were considered significant. 
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months there is a notable difference in DTT consumption between the WPS samples and 

the soluble fractions. For September, the average DTT concentration increased from 1.53 

to 7.25 pM/min/m3, so for the month of September the DTT concentrations for soluble 

fraction samples were nearly 4.8 times higher than the DTT concentrations for WPS. For 

October, the DTT concentrations were observed to jump from 1.24 to 8.23 pM/min/m3 

when comparing WPS to soluble fraction samples which was a 6.6 times increase. 

November exhibited DTT concentrations for soluble fraction samples that were 8.3 times 

higher than the DTT concentrations for WPS samples. The DTT concentrations for the 

month of November increased from 0.71 to 5.89 pM/min/m3 when comparing WPS and 

soluble fraction samples. December demonstrated the largest difference in DTT 

consumption between WPS and soluble fraction samples out of all months. The soluble 

fraction DTT concentration for December was 12.7 times higher than the concentration 

for WPS samples which saw an increase from 0.51 to 6.45 pM/min/m3. When comparing 

between months, there is a significant difference in DTT consumption between October 

and November. There is no other significant difference when comparing other months for 

WPS or soluble fractions.  
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A regression analyses were conducted to compare between black carbon concentrations 

and DTT consumption for different fractions of PM2.5 (Figure 9). Based on the slope of 

the trendline, a significant positive trend was also observed between the DTT 

consumption in the WPS and soluble fractions (Figure 9A). The regression analysis for 

WPS and soluble fractions (Figure 9A) had an R2 value of 0.13. The analysis between 

WPS and soluble fraction DTT consumption featured the highest R2 value, meaning this 

graph showed the greatest correlation between the two variables. When considering black 

Figure 8. Monthly average DTT consumed, comparing WPS and soluble fractions. 

Averages ± sd for average DTT consumption for the WPS and soluble fractions of 

PM2.5 by month with samples from September (n=8), October (n=6), November (n=5), 

and December (n=4). Data for this figure were analyzed using two-way ANOVA that 

compared between the month the sample was from and if it was WPS or soluble 

fraction. Differences with a p value < 0.05 were considered significant. 
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carbon concentrations, there was a significant positive trend between black carbon 

concentrations and the DTT consumption in the soluble fraction (Figure 9B), and the 

graph featured an R2 value of 0.01. This trend was not observed when comparing black 

carbon concentrations to DTT consumption of the WPS samples which featured an R2 

value of 0.06 (Figure 9C). The regression analyses for soluble fractions and WPS against 

black carbon concentrations exhibited low R2 values, with the comparison between the 

soluble fractions and black carbon being the lowest. When considering black carbon 

concentrations, there was a significant positive trend between black carbon 

concentrations and the DTT consumption in the soluble fraction (Figure 9B) this trend 

was not observed when comparing black carbon concentrations to DTT consumption of 

the WPS samples (Figure 9C).  
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B C 

Figure 9. Regression analysis to compare between black carbon concentrations and 

DTT consumption for WPS and soluble fraction samples. A) Regression analysis 

comparing DTT consumption for WPS and soluble fractions. B) Regression analysis 

comparing DTT consumption for soluble fractions and black carbon concentrations. 

C) Regression analysis comparing DTT consumption for WPS and black carbon 

concentrations. Significance of the regression analysis was set at p ≤ 0.05. 
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DISCUSSION 

 

1.  Black Carbon 

Black carbon (BC) concentrations varied significantly between dates in the month of 

September. Not only did September have the highest average BC concentration out of all 

four months, but it also had the greatest range of BC concentrations between samples 

dates which contained both the lowest and highest BC concentrations out of all sample 

dates. September 7th showed the highest concentration for BC out of all dates analyzed 

(6.70 µg/m3) while September 22nd showed the lowest BC concentration (0.09 µg/m3). A 

possible explanation for these findings could be that September had the largest number 

and range of sample dates. There were samples collected consistently throughout 

September, giving a total of 8 samples for the entire month. The sampling was not as 

consistent for all of the other months, with 6 samples for October, 5 for November, and 

only 4 for December. Additionally, September had samples throughout the entire month 

while the samples for October, November, and December fell towards the end of the 

months.  

 

When looking at the monthly averages for BC concentrations, there was more of a 

pattern. The monthly BC concentrations mostly decreased throughout the year, with 

September having the highest average and December having the lowest average. The 
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findings from my results support my hypothesis that PM2.5 collected in the earlier months 

would have higher concentrations of black carbon compared to the later months.  

 

There is not much research to support trends of black carbon concentrations, but there are 

many studies investigating the trends of PM2.5 concentrations. In my study, I found that 

PM2.5 concentrations showed similar trends compared to black carbon concentrations. 

Similar to the range for black carbon concentrations, the range for PM2.5 concentrations 

in September was the largest. September 7th, which showed the highest BC concentration, 

also showed the highest PM2.5 concentration out of all sample dates (19.3 µg/m3). 

December 30th showed the lowest PM2.5 concentration out of all sample dates (1.9 

µg/m3). The monthly averages for PM2.5 concentrations also showed trends similar to the 

monthly averages for black carbon concentrations. September had the highest monthly 

average for PM2.5 (12.44 µg/m3). October and November showed monthly averages for 

PM2.5 concentration that were fairly close to each other at 8.48 and 8.82 µg/m3. 

December had the lowest average concentration out of all months at 6.80 µg/m3. The 

results for my study follow trends for PM2.5 concentrations that have been found in past 

studies.  

 

For the most part, higher concentrations of PM2.5 are associated with higher 

concentrations of BC. A study done in New York, showed no significant trends in BC 

concentrations between days of the week despite the idea that they should be lower on the 

weekends due to less traffic (Venkatachari et al., 2006). On the other hand, a past study 

found trends between the time of the year and days of the week for PM2.5 concentrations. 
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This study showed when looking at seasonal differences, PM2.5 concentrations tend to be 

highest during the winter and summer and lowest during spring and fall (Zhao et al., 

2018). The high PM2.5 concentrations in the winter are typically associated with a large 

increase in wood and coal combustion for heating while the high concentrations in the 

summer are associated with high temperatures that often pair with high pressure and low 

winds, causing particulate matter to be trapped in the area (Zhao et al., 2018). The 

Mississippi Gulf Coast is known to have long, hot summers and short, cool winters. 

When looking at past weather trends for September in Pascagoula, MS, it is often very 

hot and humid with low winds which would correlate with weather patterns that lead to 

high concentrations of PM2.5. While it does get colder throughout the year, December still 

experiences moderate temperatures. Because of similar weather reason, the same study 

also looked at specific portions of California to see if there are notable differences in 

PM2.5 concentrations associated with different climates. Researchers found that Southern 

California, which also experiences long summers and short winters, did not have high 

levels of PM2.5 in the winter months (Zhao et al., 2018).  

 

2.  Oxidative Potential 

Oxidative potential was analyzed for both WPS and soluble fractions for each sample 

date, and comparisons were made between samples dates and monthly averages. 

September showed the largest range of variability for DTT consumed between WPS 

samples (0.70 to 3.72 pM/min/m3). The ranges for DTT consumed for October, 

November, and December were considerably smaller than the range for September. This 

could be because of the number of samples that were collected for each month, similar to 
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the results observed with black carbon concentrations. September had the largest number 

of samples collected, so that may have provided more variability that was not seen in the 

rest of the months. There is a past study that was conducted in southern Georgia and 

Alabama and included a couple of similar variables. In this study, researchers analyzed 

PM2.5 concentrations and oxidative potential for samples that were collected from 

September 2012 through September 2013 (Verma et al., 2018). Similar to my results 

regarding PM2.5 concentrations, researchers found significantly higher concentrations of 

PM2.5 for September 2012 and 2013 versus December 2012 which is thought to be the 

case because there tends to be more rainfall in winter (Verma et al., 2018). When 

analyzing oxidative potential for PM2.5, researchers found that DTT activity, which was 

measured twice, once with normalized volume and the other with normalized mass, was 

significantly higher in winter (November 2012- February 2013) than fall (September 

2012- October 2012) (Verma et al., 2018). There are multiple studies that have found a 

peak in oxidative potential during winter months with low concentrations of PM2.5 for 

those months which is credited to the increase in biomass burning emissions for heating 

(Verma et al., 2018; ShuangYu et al., 2019).  

 

When analyzing oxidative potential for the soluble fractions, there were no significant 

differences between sample dates but there was a significant positive trend between the 

DTT consumed by the WPS and soluble fractions across all PM2.5 samples. 

 

The results found in my study do not completely support my hypothesis that oxidative 

potential would be higher in the earlier months compared to the later months. When 
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looking at the results for oxidative potential of the WPS samples, the amount of DTT 

consumed does decrease throughout the months where September had the highest 

average (1.53 pM/min/m3), and December had the lowest (0.51 pM/min/m3). However, 

the average amount of DTT consumed for the soluble fractions was highest for October 

(8.23 pM/min/m3) and lowest for November (5.89 pM/min/m3). It is likely that 

September had the highest oxidative potential for WPS because it had considerably more 

sample dates than the rest of the months. Many studies have also identified that weather 

has a significant impact on oxidative potential of PM2.5. Two studies observed that 

monsoons increase PM2.5 concentrations and oxidative potential because of the 

scavenging of PM2.5 from the atmosphere in China (ShuangYu et al., 2019; Zhang et al., 

2015). This would be important to consider for the MS Gulf Coast, especially since 

hurricane season typically peaks around mid-September which could give abnormal 

results.  

 

There were some significant differences when comparing oxidative potential of WPS and 

soluble fraction samples between months. All four months showed a significant 

difference between the amount of DTT consumed for WPS and soluble fraction. For all 

four months, oxidative potential increased by factors ranging from 4.8 to 12.7 when 

comparing WPS samples to soluble fractions. Up until recently, most studies that looked 

at oxidative potential of particulate matter focused solely on the water-soluble portion of 

the samples. Now, researchers are beginning to look at the differences in oxidative 

potential between WPS, soluble fractions, and insoluble fractions.  For my study, I only 

considered WPS and soluble fractions to see if the insoluble fraction had a significant 
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contribution to oxidative potential. My results showed an increase in oxidative potential 

when going from WPS to soluble fractions which was unexpected. Past studies have 

consistently found that oxidative potential decreases for the soluble fractions. One 

specific study considered the oxidative potential of total DTT, water-soluble DTT, and 

water-insoluble fraction and found lower oxidative potential for the water-soluble DTT 

assay compared to the total particle DTT assay while the water-insoluble fractions stayed 

fairly consistent with the total particle samples (Fang et al., 2017). There are studies that 

have been focusing specifically on the effect insoluble metals can have on oxidative 

potential. One study measured oxidative potential of PM10 that included different 

insoluble metals in simulated lung fluid using four different assays (Calas et al., 2017). In 

some of the trials, DTT consumption was lower for samples that included the insoluble 

fractions compared to soluble fractions alone (Calas et al., 2018). One specific trial of 

interest consisted on measuring oxidative potential for total particulate matter that mostly 

consisted of organic compounds using the DTT assay and found a strong diminution of 

oxidative potential compared to other samples (Calas et al., 2018). Upon further 

investigation, it is thought that there were compounds in the sample that were able to 

inhibit DTT oxidation, causing low oxidative potential (Calas et al., 2018). Another 

possibility for low DTT consumption for WPS in my study is that there was some 

compound in the insoluble fraction that was stabilizing the ROS that would normally 

results in higher oxidative potential. This idea could have been investigated more 

thoroughly if I had been able to preform elemental analysis on my samples.  
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3.  Comparison of Oxidative Potential and Black Carbon Concentrations 

The last part of my results was the comparison of DTT consumption for WPS and soluble 

fractions to black carbon concentrations. The idea behind my hypothesis was that black 

carbon concentrations and oxidative potential would have a strong, positive correlation, 

but my results did not support this idea. For both cases, there was a notable positive trend 

between DTT consumption and black carbon concentrations; however, both featured low 

R2 values, indicating that there is not much correlation between the two factors. A past 

study in Toronto, Canada also tried to find trends between black carbon concentrations 

and oxidative potential but was unable to (Weichenthal et al., 2019). Researchers found 

significant correlations between PM2.5 concentrations and black carbon concentrations, 

similar to the results from my study, but ultimately found no evidence that trends in PM2.5 

concentrations and black carbon concentrations correspond to seasonal changes in 

oxidative potential (Weichenthal et al., 2019). An additional study on PM2.5 from 

different locations in Europe also came to the same overall conclusion, but they did note 

that, while not statistically significant, there was a slight correlation between oxidative 

potential when using the ascorbate (AA) assay and black carbon concentrations (Gulliver 

et al., 2018). They think this assay may be better suited to use when looking for 

correlations in the future due to AA being more independent of other pollutants (Gulliver 

et al., 2018).  

 

4.  Future Directions 

To improve future studies, it would be important to have more consistent sampling for 

each month. September almost always had the largest data range compared to the other 
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months which was most likely because it had the most samples. It would also be 

beneficial to collect more samples throughout the years. This would allow for more 

correlations and trends to be identified in future studies. It would also be beneficial to run 

the DTT assay on the insoluble fractions of the samples to see if there were any reactive 

species within that portion of the samples. Elemental analysis should also be performed 

on the samples to see what elements compose the particulate matter that was collected 

which would help with further understanding the adverse health effects that PM2.5 causes.  

 

It could also be beneficial to look into other methods for measuring oxidative potential. 

There are various assays that can be used to measure oxidative potential, and each of 

these assays has different sensitivity to ROS generating compounds. Another common 

method for oxidative potential is electron spin resonance (ESR) with 5,5-dimethyl 

pyrroline-N-oxide (DMPO) which involves measuring the ability of the particulate matter 

to produce hydroxyl radicals in the presence of hydrogen peroxide (Yang et al., 2014).  

 

5.  Conclusions 

In summary, the results regarding PM2.5 concentrations and black carbon concentrations 

support my hypothesis and are also supported by the results of other studies in the 

research community. My results regarding oxidative potential do not completely support 

my hypothesis. There are large variations in studies when analyzing oxidative potential of 

particulate matter due to our lack of understanding of the complex mixtures that are 

present in particulate matter. Significantly more research needs to be done in order to get 

a better understanding of PM2.5 composition and concentrations and how short-term and 
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long-term exposure produces adverse health effects. While results may vary, researchers 

still agree that better monitoring and regulations for particulate matter need to be put in 

place. Overall, my study shows that the day and month a filter is collected, along with 

many other factors, should be taken into consideration when studying PM2.5.
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