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ABSTRACT

HARLEY MORGAN NABORS: Characterizing PM2.5 Air Sample of Northeast Mississippi

(Under the direction of Dr. Courtney Roper)

Ambient air pollution has been associated with adverse health effects throughout the entire

world. Although epidemiologists study air pollution extensively, rural areas are often the least

understood. In 2020, the Mississippi Department of Environmental Quality used less than 10 air

sampling locations across the state leaving a large gap in air quality knowledge. In this study,

fine particulate matter (PM2.5) air samples were collected from three different rural Mississippi

cities–Ackerman, Eupora, and Houston, in the summer of 2020. Following collection onto filters,

elemental black carbon analysis and an oxidative potential assay were both used to characterize

the samples of interest. Varying results of black carbon concentration and DTT consumption

from PM2.5 were observed with significant differences seen between locations and weeks of

sampling. Black carbon concentrations collected at Ackerman, Eupora, and Houston had the

following ranges reported in ng/m3:  0.45-1.05, 0.09-1.13, and 0.00-1.19 respectively. DTT

consumption values from PM2.5 collected at Ackerman, Eupora, and Houston had the following

ranges reported in nM/min/m3:  0.004-0.041, 0.006-0.022, and 0.004-0.012 respectively. A

regression analysis (r2 = 0.144) between black carbon concentration and DTT consumption

showed that black carbon did not fully explain DTT consumption from PM2.5 samples. This work

demonstrated that there is variation in PM2.5 characteristics with location and time in rural

Mississippi. Further studies need to be conducted in order to better understand black carbon

concentration, DTT consumption from PM2.5, as well as other characteristics of PM2.5 within our

region of study.
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Introduction

Today, there is no question that air pollution poses a threat to personal health around the

globe. The World Health Organization (WHO) estimates that ambient or outdoor air pollution

accounts for 4.2 million deaths per year due to progression and exacerbation of adverse health

effects including stroke, heart disease, lung cancer, and acute and chronic respiratory diseases.

Furthermore, around 91% of the world lives in places where air quality is below WHO standards

(World Health Organization, 2020). The threat of air pollution is obviously of great importance

to the entire world.

Ambient air pollution is a catch all term that includes gases, liquids, and solids. Vallero’s

Fundamentals of Air Pollution lists several of the well known gases including carbon dioxide

(CO2), methane (CH4), and nitrous oxide (N2O), also known as greenhouse gases (Vallero, 2014).

These gases are of specific importance to the climate conditions of the entire Earth. Water

soluble gases can react in the atmosphere with water to form liquid air pollution. Gases such as

sulfur dioxide (SO2) and nitrogen dioxide (NO2) are sufficiently soluble to dissolve in water

associated with in-cloud formation of rain droplets which leads to acid rain or fog (Vallero,

2014). Ambient air pollution also includes liquids and solids classified as particulate matter

(PM), these particles are often categorized based on size. Course PM is comprised of particulates

with an aerodynamic diameter less than 10 µm. The “fine” size fraction of ambient PM,

designated as PM2.5, is defined as comprising those particles having aerodynamic diameters

below 2.5 μm. PM2.5 is of significant importance to air quality due to its associated adverse

9
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health effects.While the total mass of PM2.5 has been associated with adverse human health

outcomes, the relationship between these outcomes and specific chemical components has not

been well-resolved (Schlesinger, 2007). Regardless of the knowledge, or lack thereof, of how

PM2.5 affects human health, starting with an understanding that these exposures are harmful is

helpful to researchers.

PM2.5 is particularly interesting due to its ambiguity. Ambient PM2.5 is chemically

nonspecific and consists of various mixtures of components and compounds [trace elements,

elemental carbon (EC), organic carbon (OC), and sulfate] (Zhou Jiang et al., 2011). Further, the

toxicity of each of these chemical components and their mixtures may vary (Zhou Jiang et al.,

2011). Part of the reason for the diverse components found in PM2.5 is the seemingly endless

sources, each with specific variations. A study of the air quality in  New York City (NYC)

reported 69–82% of PM2.5 mass derives from transport. However, more than 93% of sulfate ions

( and 54–65% of nitrate ions ( are likely to have been transported into the NYC𝑆𝑂
4
2−) 𝑁𝑂

3
−)

area based on the concentrations observed at the background site. Coal-fired power plants in the

border area among West Virginia, Ohio and Pennsylvania are related to typical high PM2.5 events

having peak secondary pollutant concentrations in New York City (Qin et al., 2006) Thus, a

broad distribution of PM2.5 sources can be seen across urban and rural regions.

Although characteristics of PM2.5 like size, shape, and mass are of initial importance to

the study of air quality, they are not particularly helpful in determining the toxicity or health

outcomes of an air sample. Other measurements can provide more information on toxicity, such

10
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as oxidative potential (OP). OP has been suggested as an important indicator of health effects

following exposure to PM2.5. OP is a measurement for the ability of a particle to generate reactive

oxygen species (ROS) which can put oxidative stress on the body. Oxidative stress occurs when

the generation of ROS exceeds the available antioxidant defenses. ROS can damage membrane

lipids, proteins, and DNA, which can result in cell death via either necrotic or apoptotic

processes (Boogaard Hanna et al., 2012). Exogenous oxidative stress actually is a major

contributor to cancer in humans. ROS influence cancer evolution by either initiating/stimulating

tumorigenesis and supporting transformation/proliferation of cancer cells or causing cell death

(Hayes et al., 2020). Depending on exposure route, high levels of ROS are associated with lung

cancer and breast cancer (Hayes et al., 2020). Epidemiologists quantify the oxidative potential of

a particle with various methods including the Dithiothreitol (DTT) assay used in this study.

Studies continue to suggest that oxidative stress is particularly harmful to humans, and oxidative

potential can be used as an indicator of human health (Hayes et al., 2020).

Oxidative stress may be useful in predicting adverse health outcomes, but PM2.5 samples

and the oxidative potential associated with them vary greatly based on multiple factors. Spatial

and temporal variation in PM2.5 composition are two factors of specific importance to this study.

A longitudinal study of the United States gathered data on these variables. It concluded that the

PM2.5 mixtures varied strongly by region and by season, and the degree of spatial and temporal

variability differs by component, which has implications for epidemiologic research on PM2.5

characteristics (Bell Michelle L. et al., 2007). The results of this study actually exemplifies well

the variability of PM2.5 chemical composition. Ammonium, elemental carbon, organic carbon

11
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matter, nitrate, silicon, sodium, and sulfate were all studied specifically due to their high

concentration variance (Bell Michelle L. et al., 2007). Seen in this study are characterizations of

PM2.5 including elemental composition as well as organic compound composition. Included in

organic classes of pollution is black carbon. Black carbon is derived largely from the incomplete

combustion of fossil fuels, wood, and biomass, as well as from automobile exhaust (Cooke and

Wilson, 1996). “Black” makes reference to these organic particles’ ability to absorb light more

intensely than elemental carbon (Cooke and Wilson, 1996). Consequently, black carbon

contributes to global climate change making it relevant to humans as a whole. Understanding

that PM2.5 has varying composition, studying multiple sample characteristics from a wide set of

locations and time points is essential.

The characterization of PM2.5 changes drastically across a country, state, and even local

region. Because of this, the air quality knowledge throughout the United States is relatively

staggered and is dependent on individual air quality studies. Using data from the Environmental

Protection Agency (EPA) an air quality study of 187 continental US counties was conducted.

Although they were able to conclude that PM2.5 levels were higher in the eastern United States

and California and lowest in the central regions and Northwest, there exists strong seasonal and

source variability within any given region (Bell Michelle L. et al., 2007). In fact, selected regions

were generalized because of unavailable data. Rural areas thus tend to be less understood due to

lack of available equipment and studies. For example, one of the most rural states of the country

is Mississippi. The entire state had less than 10 particulate matter monitoring locations in 2020

(Mississippi Department of Environmental Quality, 2020). Rural PM2.5 studies like our own

12
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study may allow for a better understanding of the air quality in rural areas throughout the world,

particularly in the mid-South United States.

Our study collected and analyzed air samples from the town of Ackerman, Mississippi in

Choctaw County. This town is considered a rural community (population <2,500) (U.S Health

Resources & Services Administration, 2017). Within the same county, Red Hills Coal Mine

operates approximately ten miles from this study’s sampling site. Red Hills self-reported the

production of 3.0 million tons of coal in 2018 (NACoal | Red Hills Mine). In regards to PM2.5,

very little is known within Choctaw County or in the state of Mississippi. In 2020, the

Mississippi Department of Environmental Quality conducted a PM2.5 study of Mississippi

regions and cities including the greater Memphis region, the Jackson metro area, Hattiesburg, the

Gulfport-Biloxi area, Pascagoula, and Cleveland (Mississippi Department of Environmental

Quality, 2020). The closest of these areas to Choctaw County is Jackson, MS which is

approximately 100 miles away. The lack of PM2.5 monitoring in Choctaw County by government

agencies demonstrates a clear need for this study’s research goals. Along with sampling in

Choctaw County, two other sampling sites were used in order to have comparative data, Eupora,

MS of Webster County (approximately 20 miles Northwest of the Ackerman sampling site) and

Houston, MS of Chickasaw County (approximately 50 miles Northeast of the Ackerman

sampling site). These locations were chosen due to similar sampling environments but also to

study temporal and spatial variation in PM2.5 characteristics.

13
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This study used various methods to analyze different characteristics of PM2.5 including

black carbon analysis and an oxidative potential analysis using a Dithiothreitol assay. Using these

methods for each sample site, a comparative study was performed applying these methods to

each sampling site. I hypothesized that black carbon and/or oxidative potential from PM2.5

sampling decreases in concentration or intensity with increased distance from the Ackerman

sampling site that is indicative of the Red Hills Coal Mine. Identifying a radiating characteristic

from the Red Hills Coal Mine will suggest that even minor industrial areas, like a small

Mississippi coal mine, emit PM2.5 to surrounding areas locally or even regionally.

14
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Materials and Methods

1. Sample Sites

The following Mississippi cities were used as sample sites: Ackerman (Choctaw

County), Eupora (Webster County), and Houston (Chickasaw County). These sites have

populations of 1,534; 2,317; and 3,498; respectively (Census Profile). Figure 1 (Savage

Interactive Pty Ltd., 2021) below shows the general location of each sample site.

Figure 1: Map of Northeast Mississippi

Choctaw County (Yellow), Webster Counter (Blue), Chickasaw County (Red)

(from bottom to top Ackerman, Eupora, and Houston are represented as stars)

15
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(from left to right columns represent Ackerman, Eupora, Houst

16
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Sampling took place inside of three Nabors Do It Best hardware stores. Each store

is in the center of the surrounding rural communities and is considered a small town

business. The paint counter was the sample site of each location to ensure similar

environments and traffic patterns. Figure 2a-i shows each site in detail.

The approximate retail space, the interior air conditioned environment, for each

sample site location is listed by Nabors Do It Best as follows: Ackerman (5,000 ft2),

Eupora (8,500 ft2), and Houston (15,000 ft2). Stores reported total transactions of 2020 as

46,668; 64,030; and 101,373; respectively (EPICOR, 2020). Sales trends are relatively

proportional to city population. Each store is in the center of the surrounding rural

communities although traffic flow and business volume is limited to families, commuters,

self-employed laborers, and farmers. It should be noted that the Houston store also

contains a fully functional concrete plant. However, it is assumed that the majority of the

particles emitted by the plant are much larger than the PM2.5 of interest and thus will not

be captured in this study. General location, surrounding retail displays, and standard air

conditioning ensured similar internal environments.

2. Obtaining Filters

The Ultrasonic Personal Air Sampler (UPAS) was used for all sampling. This

personal aerosol sampling device is compact, lightweight, and virtually silent when

running. The UPAS was tested for pump and battery performance, flow accuracy, and

size‐selective sampling efficiency. Device performance was also evaluated against an

17
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EPA‐certified reference method for PM2.5 sampling through laboratory tests (Volckens et

al., 2017). Sampling began August 19, 2020 at 5:00 p.m. cst and ended on September 09,

2020. Filters were replaced weekly at approximately 2:00 p.m. and set to restart sampling

at 5:00 p.m. for three weeks total. This study resulted in 3 7-day samples for each

sampling location. Travel blank filters were exposed to the open environment for 10

seconds at each sampling site; these filters were used as controls. Sampler parameters can

be seen below in Table 1.

Instrumentation: Ultrasonic Personal Air Sampler

Program Run Time: 7 days Volumetric Flow Rate: 1 L/min

Filter: 37 mm Average Flow Rate: 0.998 L/min

Table 1: UPAS Parameters

3. SootScan: Black Carbon

Following sample collection, the PM2.5 filter samples and blank filter controls

were analyzed with a SootScan Model OT21 Optical Transmissometer before extraction

to measure the black carbon concentration of each sample. The instrument contains a two

wavelength light source: 880 nm for quantitative measurement of Black Carbon PM and

a 370 nm for qualitative assessment of certain aromatic organic compounds

(“SOOTSCANTM MODEL OT21 OPTICAL TRANSMISSOMETER”). Each 37 mm

filter was analyzed in triplicate using the SootScan with a travel blank 37 mm filter as a

control reference. After attenuation was measured, precise sampler summary logs

18
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allowed for the calculation of  the black carbon concentrations of each filter relative to

total time and volume of air collected during sampling.

4. Sample Preparation and Extraction

Each filter sample and control was placed in a 15 mL conical tube and 8 mL of

methanol were added. The filters were sonicated for 1 hour in a water bath at 60 Hz. The

filters were then rinsed with 200 L of methanol to remove any residual particles andµ

placed into petri dishes to be stored. The conical tubes were immediately placed in a

-20 freezer to be stored away from light until further analysis. Travel blank filters◦ 𝐶

underwent the same preparation, extraction, and eventual analyses to serve as control

references.

5. DTT Oxidative Potential Assay

All samples were analyzed for oxidative potential using the DTT assay. DTT is

commonly used as an acellular measure of the oxidative potential of particles. In this

assay, redox-active chemicals in PM2.5 oxidize DTT to its disulfide form and the linear

rate of DTT loss from a calibration curve of standards is used as a measure of the

oxidative capacity of the PM. Redox-active species in PM then donate an electron to

dissolved molecular oxygen, forming superoxide (Charrier and Anastasio, 2012), which

can form other reactive oxygen species such as hydrogen peroxide and, in the presence of

metals, hydroxyl radicals.

19
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This assay was performed in 96-well plates in triplicates for each sample and

control. For each analysis a fresh 5mM stock DTT solution in phosphate buffer (PB) was

prepared. On each plate, DTT calibration curves (0-1mM) were included to calculate total

DTT consumption for each sample. DTT dilutions for the samples were made by adding

360 µL of PB to 100 µL of DTT stock in order to yield a 1 mM solution. The 96-well

plates layout can be seen in Table 2 below.

  1 2 3 4 5 6 7 8 9 10 11 12

A DTT - 0 DTT - 0 DTT - 0 Filter #39 Filter #39 Filter #39 Filter #02 Filter #02 Filter #02 - - -

B DTT - 0.2 DTT - 0.2 DTT - 0.2 Filter #38 Filter #38 Filter #38 Blank #3 Blank #3 Blank #3 - - -

C DTT - 0.4 DTT - 0.4 DTT - 0.4 Filter #37 Filter #37 Filter #37 Blank #32 Blank #32 Blank #32 - - -

D DTT - 0.6 DTT - 0.6 DTT - 0.6 Filter #31 Filter #31 Filter #31 Blank #28 -Blank #28 -Blank #28 - - -

E DTT - 0.8 DTT - 0.8 DTT - 0.8 Filter #30 Filter #30 Filter #30 - - - - - -

F DTT - 1 DTT - 1 DTT - 1 Filter #29 Filter #29 Filter #29 - - - - - -

G PB PB PB Filter #05 Filter #05 Filter #05 - - - - - -

H

Positive

Control

Positive

Control

Positive

Control Filter #04 Filter #04 Filter #04 - - - - - -

Table 2: DTT Assay 96-Well Plate Layout

(Ackerman samples: yellow;  Eupora samples: blue; Houston samples: red)

Three controls were used for this assay – PB run in triplicate, a 0 mM DTT

calibration curve, and 15 µL of 1mM 1,4-Napthoquinone. The 1,4-Napthoquinone acts as

a positive control with a known and expected reactivity. The controls, DTT curve, and

20
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sample wells all received 100 µL 0.05 M PB. 10 µL of methanol were added to each

DTT curve well in order to maintain solvent concentration. 5 µL of each DTT dilution

were added to each DTT curve well in triplicate.

20 µL of sample solution was added in triplicate to the wells. 5 µL of the 0.5 mM

DTT dilution were then added to each sample well. The entire plate was then covered in

foil, shaken for 5 seconds to ensure mixing of the reagents and sample, and then

incubated at 37 ℃ for 20 minutes. While incubation took place, a 1 mM

5,5-dithio-bis-2-nitrobenzoic acid (DTNB) quenching reagent was made by adding 900

µL of PB to 100 µL of DTNB stock concentrate. The reaction was quenched with 10 µL

of DTNB into all but control wells. The plates were then read using a spectrophotometer

to measure absorbance at 412 nm. The amount of DTT consumed from the calibration

curves was used to create a trendline. This trendline was used to calculate the DTT

consumed for all treatments and controls. For example, wells that initially received DTT

to 1mM correspond to 0 mM of DTT consumption, for all DTT is reacted with DTNB.

6. Statistical analysis - software

Figure generation and statistical analyses including linear regressions, one-way

analysis of variance (ANOVA), two-way ANOVA were completed with SigmaPlot 14.0

(Systat Software, San Jose, CA). For the one- and two-way ANOVA tests, statistical

significance was set at a p-value ≤0.05. Initial organization of data was conducted in

Excel. Linear regression analysis was conducted to correlate DTT consumption and black

21
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carbon concentrations and generate r2 values and determine if the slopes of the regression

lines were significantly non-zero (p≤0.05).

22
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Results

1. Black Carbon Concentrations

Weekly black carbon concentrations were reported for each sampling location

(Fig. 3). Concentrations at the Ackerman sampling site (Fig. 3A) have significant

differences between weeks with Week 1 and Week 3 being significant from all other

weeks. At the Eupora sampling site (Fig. 3B), significant differences in BC

concentrations were observed for Week 2 from all other weeks. At the Houston sampling

site (Fig. 3C), both Week 1 and Week 3 were significant from all other weeks while Week

2 shows a negligible concentration. BC concentrations collected at Ackerman, Eupora,

and Houston have the following ranges reported in ng/m3:  0.45-1.05, 0.09-1.13, and

0.00-1.19 respectively.

A)

23
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B)

C)

Figure 3 A-C. Weekly BC Concentration of Each Location. Concentrations are
reported ± standard deviation (SD) for samples run in triplicate with ng/m3 for BC
concentration at Ackerman (A), Eupora (B), and Houston (C). Weeks 1-3 begin with the

24
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following dates of sampling: 08/19/2020, 08/26/2020, and 09/02/2020 respectively.
Statistical significance (p ≤ 0.05) from one-way ANOVA is indicated by * for significant
differences from other samples. Data is corrected with field blank sample concentrations.

BC concentrations were reported for each week (Fig. 4). Concentrations at Week

1 have significant differences between locations with Houston being significant from

Ackerman. Week 2 has significant differences between locations with Ackerman and

Eupora being significantly different from other locations. At Week 3 significant

differences are seen with Ackerman and Eupora being significantly different from other

locations. Week 2 shows significantly lower BC concentrations across all locations, while

Week 1 shows the highest BC concentration across all locations. Week 1 of Houston

shows the highest concentration while Week 2 of Houston shows the lowest.

Figure 4. Overall Black Carbon Concentrations. Concentrations are reported ±
standard deviation (SD) for samples run in triplicate with ng/m3 for BC concentration at each
location. Weeks 1-3 begin with the following dates of sampling: 08/19/2020, 08/26/2020, and

25
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09/02/2020 respectively. Statistical significance (p ≤ 0.05) from two-way ANOVA is indicated
by * for significant differences from other samples. Data is corrected with field blank sample
concentrations.

2. DTT Oxidative Potential Assay

DTT consumption values from PM2.5 by weeks were reported for each sampling

location (Fig. 5). DTT consumption at the Ackerman sampling site (Fig. 5A) have

significant differences between weeks with Week 1 and Week 2 being significant from all

other weeks. Ackerman also showed a significant decrease in DTT consumption across

all weeks. At the Eupora sampling site (Fig. 5B), significant differences in DTT

consumption were observed for Week 2 from all other weeks. At the Houston sampling

site (Fig. 5C), no significant differences are observed, but an increasing trend of

consumption is seen across weeks. DTT consumption values from PM2.5 collected at

Ackerman, Eupora, and Houston have the following ranges reported in nM/min/m3:

0.004-0.041, 0.006-0.022, and 0.004-0.012 respectively.

A)

26



27

B)

C)

Figure 5A-B. Weekly DTT Consumption of Each Location. DTT consumption
is reported ± standard deviation (SD) for samples run in triplicate with nM/min/m3 for
DTT consumption at Ackerman (A), Eupora (B), and Houston (C). Weeks 1-3 begin with

27
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the following dates of sampling: 08/19/2020, 08/26/2020, and 09/02/2020 respectively.
Statistical significance (p ≤ 0.05) from one-way ANOVA is indicated by * for significant
differences from other samples. Data is corrected with a DTT calibration curve.

Overall DTT consumption was reported for each sampling location (Fig. 6).

Concentrations at Week 1 have significant differences between locations with Ackerman

and Eupora being significant from all other locations. In Week 2, there was a significant

difference between DTT consumed from PM2.5 collected in Ackerman compared to all

other locations. There were no significant differences of DTT consumption observed for

Week 3. Week 1 of Ackerman shows the highest DTT consumption from PM2.5 while

Week 3 of Ackerman shows the lowest DTT consumption.

Figure 6. Overall DTT Consumption. Concentrations are reported ± standard
deviation (SD) for samples run in triplicate with nM/min/m3 for DTT consumption at
each location. Weeks 1-3 begin with the following dates of sampling: 08/19/2020,
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08/26/2020, and 09/02/2020 respectively. Statistical significance (p ≤ 0.05) from
two-way ANOVA is indicated by * for significant differences from other samples. Data is
corrected with a DTT calibration curve.

3. Regression Analysis

A regression analysis was conducted to compare black carbon concentrations and

DTT consumption of all sampling locations (Fig. 7). Based on the slope of the trendline, a

significant positive trend was observed between the black carbon concentration and DTT

consumed.

Figure 7. Regression Analysis of BC Concentration and DTT Consumption.
A simple linear regression analysis was performed for BC concentration (ng/m3) and
DTT consumption (nM/min/m3) for all weeks and locations. A trendline of best fit
following the form y = 14.126x + 0.489 and an r2 value of 0.144 were reported with a
significance set at p<0.05.
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Discussion

1. SootScan: Black Carbon

Results obtained from black carbon analysis showed varying trends. Week 1

showed the highest BC concentrations for all sampling locations. Week 2 showed the

lowest BC concentrations for all locations, although there were no significant differences

of Week 2 from other weeks at Ackerman. Houston had the highest and lowest BC

concentrations of all locations at Week 1 and Week 2 respectively; Week 2 showed a

negligible BC concentration. Eupora showed relatively high BC concentrations at Week 1

and Week 3 with no significant difference observed.

Week 1 showed the following increasing trend across locations of BC

concentration: Ackerman, Eupora, Houston in ascending order. Week 2 showed the

following decreasing trend in BC concentration: Ackerman, Eupora, Houston in

descending order. Week 3 showed the following decreasing trend: Eupora, Ackerman,

Houston in descending order. With these results, we can not accept our hypothesis that

black carbon concentrations decrease with increased distance from the Ackerman

sampling site. Although Week 2 did in fact show a decreasing trend of concentrations,

Week 1 and Week 3 showed different trends that do not fully support our hypothesis.

Further studies need to be conducted in order to better understand BC within our region

of study.
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As previously discussed, black carbon is a byproduct of organic combustion that

can come from many different sources and have varying health effects. In 2011, The

Environmental Health Perspective (EHP) conducted a study to characterize components

of  PM2.5 other than mass that are indicative of inverse human health effects including

BC, black carbon particles (BCP), elemental carbon (EC), and organic carbon (OC)

(Janssen et al., 2011). Combustion-related particles are thought to be more harmful to

human health than PM that is not generated by combustion. In urban areas, road traffic is

a major source of combustion PM where transport related air pollution contributes to an

increased risk of cardiopulmonary problem (Janssen et al., 2011). In more rural areas like

our own region of study, combustion related particles like BC or BCP can be apportioned

often to wood and coal burning, shipping traffic from local farms and industry, and

industrial sources. Mechanical related BC refers to black smoke being indicative of poor

combustion efficiency whereas blue smoke is indicative of mechanical wear. There is

increasing concern that current mass-based PM standards are not well suited for

characterizing health risks of air pollution near sources of combustion particles, such as

motorized traffic on major roads or in wood-smoke dominated communities (Janssen et

al., 2011). The Ackerman sampling site is surely at risk for pollutant exposure including

BC from the Red Hills Coal Mine. Surrounding rural communities that include the

Eupora and Houston sampling sites are also at risk for pollutant exposure from

agricultural activities. The EHP study found that overall health effect estimates from

mortality and comorbidity were higher for BCP than for PM reported alone. In fact, they

determined that 40-70% of roadside PM2.5 mass can be attributed to BCP. The
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single-pollutant effect model of this study showed that daily mortality and hospital

admissions generally were an order of magnitude higher for BCP when compared to PM.

The results of the two-pollutant model showed that the health effects from BCP are more

robust than the health effects of PM mass alone. Our study showed varying

concentrations of BC, but there is need for further study in order to better understand

source apportionments of BC and other related pollutants as well the associated adverse

health effects of our region of study.

Because BC can come from many sources that can vary within any given region,

models that predict indoor BC concentration based on outdoor sources of BC could be of

interest to further studies. A study published in 2019 concluded that outdoor BC

combined with home characteristics can be used to predict indoor BC levels with

reasonable accuracy. The study identified the following home characteristics and

occupant activities that significantly modify the concentration of indoor BC: outdoor BC,

lit candles and electrostatic or high efficiency particulate air filters in heating, ventilation

and air conditioning (HVAC) systems (Isiugo et al., 2019). Although open candles and

high efficient HVAC systems were not present at our sampling locations, each location

has varying outdoor BC sources including industrial and agricultural. Consequently,

indoor predictive models like in the 2019 study could be beneficial. Though direct active

sampling provides specific data of BC, models that predict more general and applicable

BC data could be of interest to further studies in the Northeast Mississippi region.
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2. DTT Oxidative Potential Assay

Results obtained from the DTT oxidative potential assay also showed varying

trends. Week 1 of Ackerman showed the highest DTT consumption from PM2.5 of all

locations and weeks while Week 3 of Ackerman showed the lowest. Week 2 of Ackerman

also had the highest DTT consumption for that specific week. Ackerman showed a

decreasing trend of DTT consumption across weeks with Weeks 1 and 2 being

significantly different from Week 3. Houston showed an increasing trend of DTT

consumption from PM2.5 across weeks. Eupora did not show similar trends, but Week 2

was significantly lower in DTT consumption than all other weeks.

Week 1 showed the following decreasing trend across locations in DTT

consumption from PM2.5: Ackerman, Eupora, Houston in descending order. Week 2 did

not show the same decreasing trend, but Ackerman did have significantly higher DTT

consumption from all other weeks with Eupora and Houston not being significantly

different from each other. Although there were no significant differences observed

between locations, the following decreasing trend of DTT consumption was observed:

Eupora, Houston, Ackerman in decreasing order. With these results, our hypothesis is

partially supported. DTT consumption from PM2.5 decreased with increased distance from

the Ackerman sample site in Weeks 1 and 2 with significant differences seen in each.

However, Week 3 did not show this same trend. For these reasons, our hypothesis is not

fully supported. Further studies need to be conducted in order to better explain DTT

33



34

consumption trends, seasonal and temporal differences, and human health effects of the

oxidative potential seen from the DTT assay from PM2.5 of our region of study.

The DTT assay that was used in this study estimates oxidative potential and is

positively correlated with biomarkers that correspond to oxidative stress and

inflammation biomarkers (Berg et al., 2019). Oxidative stress refers to a state of

biochemical imbalance in which the presence and formation of ROS in the body exceeds

that of antioxidant defenses leading to adverse health effects (Gao et al., 2017). The DTT

assay estimates in vivo ROS generation or response from biochemical interactions. A

leading hypothesis of PM2.5 toxicity is that PM2.5 generates ROS which leads to oxidative

stress and systemic inflammation (Berg et al.,2019). The samples of our study showed

varying degrees of DTT consumption from PM2.5 corresponding to varying OP. The linear

regression analysis (Fig. 7; r2 = 0.144) does not show a strong correlation between BC

concentrations and DTT consumption. BC concentrations do not fully explain the OP

seen from the DTT assay, but other possible components of PM2.5 could be of interest.

The DTT approach at estimating OP is best at characterizing OC, combustion-emitted

species like BC, and redox active transition metals like Cu, Fe, and Mn (Gao et al., 2020).

This shows the need for further studies within the DTT assay to better characterize

possible OP from PM2.5 due to OC and redox active metals.

A study conducted in 2016 sampled approximately 500 PM2.5 filters across the

Southeastern US in urban and rural areas including the Atlanta metro area, Birmingham
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and surrounding regions, East St. Louis, and rural roadside sampling (Fang et al., 2016).

Two rural sampling sites of this study in Yorkville, IL and Centerville, AL reported a

summer monthly DTT consumption from PM2.5 of approximately 0.28 nmol/min/m3 and

0.32 nmol/min/m3 respectively with the winter months generally showing higher DTT

activity (Fang et al., 2016). This study concluded that biomass burning and other organic

combustion was related to much of the OP from the DTT assay observed. Although

Ackerman of Week 1 showed significantly higher DTT consumption other samples at

0.04 nM/min/m3, weeks and locations generally fell within the following range:

0.020-0.005 nM/min/m3. One can see that our values of DTT consumption are much

lower than that observed in the 2016 study. This could be due to varying PM2.5 source

apportionment that produce different results from the DTT assay. Further research should

be done to better understand sources of PM2.5 within the Southern US and their

relationship to OP from the DTT assay.

Alternative methods of OP estimation could also be used to better understand

PM2.5 including the ascorbate (AA), urate (UA), and reduced glutathione (GDH) assays.

These assays indirectly measure OP by mimicking antioxidant consumption from their

respective reagents (Gao et al., 2020). Although these methods yield similar indirect results

of OP, comparing them could be beneficial. Electron spin resonance (ESR) spectrometry

can alternatively be used to measure direct and distinct ROS species. This method could

be used in further studies to specifically characterize OP from PM2.5 samples. Regardless
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of methods, further studies need to be conducted in order to better understand the

relationship between PM2.5 and OP within our region of study.

3. Continued Research

There are little to no studies that characterize Mississippi PM2.5 like our own, thus

comparisons of studies are limited. The Journal of Exposure Science and Environmental

Epidemiology (JESEE) published a study that used satellite-retrieved aerosol optical

depth technology in order to predict the spatial and temporal patterns of PM2.5 exposures

of the Southeastern US (Lee et al., 2016). This novel approach addresses errors in ground

monitoring stations and land-use regression models. Region 1 of this study mainly

consisted of the states of Tennessee, Mississippi excluding much of the western region,

Alabama, and Georgia. There were 61 monitoring stations (0.0003 monitor/km2) in this

region. This study reported PM2.5 concentration (µg/m3) predictions with r2 = 0.77 (Lee et

al., 2016). This study provides valuable insight into the distribution of PM2.5 within the

Northeast Mississippi region of interest, but it does not characterize any specific PM2.5

samples like our own study. For this reason we can not compare the data obtained from

JESEE to that of our own.

The Mississippi Department of Environmental Quality (MDEQ) publishes an

annual report in which ozone, PM, sulfur dioxide, and nitrogen oxides are monitored

across the state. In 2020, nineteen sampling locations were used, but only eight of these

locations monitored PM (Annual-Report-Fiscal-Year-2020). Although the MDEQ study’s
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Grenada county sampling site is approximately 50 miles from our own Choctaw county

sampling site (Ackerman), the report only lists standards of PM2.5 exposure and does not

characterize PM2.5 samples beyond concentration. Consequently, we are again unable to

compare the MDEQ report to our own data.

As seen in the results of our study, BC concentrations and DTT consumption from

PM2.5 vary significantly based on temporal and spatial factors. More studies can be

conducted in order to better understand these relationships. Increasing the number of

sampling sites could produce results that help to account for spatial differences. Finally,

further research needs to be conducted in order to account for seasonal variability. Our

study actively sampled PM2.5 during the summer months of August and September. PM2.5

sampling in the winter months could help to explain the variability of PM2.5

characteristics.

Although the active sampling sites were similar in location with each being in the

center of the surrounding rural communities with traffic flow and business limited to

families, commuters, self-employed laborers, and farmers, each location varies in PM2.5

sources and characteristics as seen above with BC and OP from the DTT assay. We have

identified exterior sources of PM2.5 including wood and coal burning, road traffic,

industry including farming, etc. (Janssen et al., 2011). However, further research needs to

be done to identify and characterize PM2.5 apportionment from indoor sources of regions

and locations like our own study.
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Conclusion

Our study collected PM2.5 air samples from three different rural Mississippi

cities–Ackerman, Eupora, and Houston, in the summer of 2020. Following collection onto filters,

elemental black carbon analysis and an oxidative potential assay were both used to characterize

the samples of interest. Varying results of black carbon concentration and DTT consumption

from PM2.5 were observed with significant differences seen between locations and weeks of

sampling. A regression analysis (r2 = 0.144) between black carbon concentration and DTT

consumption showed that black carbon did not fully explain DTT consumption from PM2.5 but

there was a significant positive trend between this component of PM and oxidative potential.

This work demonstrated that there is variation in PM2.5 characteristics with location and time in

rural Mississippi. Further studies need to be conducted in order to better understand black carbon

concentration, DTT consumption from PM2.5, as well as other characteristics of PM2.5 within our

region of study.
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