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ABSTRACT 
VALERIE ANNE REWA: An Experiment to Test for Rapid Evolution in an Introduced 

Ectomycorrhizal Symbiosis 
(Under the direction of Jason Hoeksema) 

 
 
 

The rapid evolution of introduced ectomycorrhizal-plant partnerships is an under-
explored topic that may have immense impacts on ecosystems around the world. This 
experiment sought to identify and quantify this evolution and its impacts on both fungal 
colonization as well as plant growth. I used a laboratory experiment to analyze these 
factors in native and exotic genotypes of Suillus cothurnatus and Pinus species. Much of 
the data was not able to be collected, but that which was did not support the presence of 
rapid evolution in the mutualistic partnership. Pine species was seen to have a significant 
effect on plant root length, though this did not support either hypothesis. This study 
supports the need for further exploration of this topic and serves as groundwork for future 
experiments.  
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Introduction 

 The introduction of invasive exotic species is becoming more common as humans 

continue migrating and transplanting various organisms to non-native environments. 

Vitousek et al. (1997) found that many countries now have 20% more alien plant species 

than were previously present. The presence of these invaders has been seen to alter the 

biodiversity of their newly established locations, for example by decreasing local plant 

fitness and growth (Vilà et al., 2011). The success of introduced species may be partially 

attributed to rapid evolution, which has been shown to improve fitness in novel 

environments (Hendry, 2016; Thompson, 2013). Rapid evolution has become a widely 

studied phenomenon in the biological world and has impacts in both ecological and 

medical realms (Thompson, 2013). While there is previous research demonstrating the 

rapid evolution of many exotic species, both macro and microscopic, there has not been 

sufficient research pertaining to the rapid evolution of mycorrhizal fungi (Gladieux et al., 

2015). These symbiotic fungi, along with their host plants, are some of the most common 

co-invaders on Earth; for example, many mycorrhizal fungal species were brought to the 

Southern Hemisphere when pines were introduced for the establishment and cultivation 

of tree farms (Vellinga et al., 2009; Richardson & Higgins, 1998). With the 

overwhelming occurrence of these invasions and the underwhelming focus on their 

evolution in the scientific world, my experiment sought to identify signs of rapid local 

evolution in an introduced ectomycorrhizal (EM) fungus, Suillus cothurnatus. I organized 

a reciprocal cross-inoculation experiment using two pine species with which this EM 

fungus co-occurs, one from its native environment in the southeastern United States and 

one from its co-introduced environment of South Africa. These pines were then 
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inoculated with fungal genotypes collected in either the southeastern United States or 

South Africa.  

 Rapid evolution is gaining attention for its ability to show on a shorter timescale 

the changes that have been occurring within the ecological world throughout the history 

of Earth. This convergence of evolutionary and ecological time allows scientists to 

witness the impacts that an evolutionary change in phenotype can have on the 

environment that surrounds the changing population (Hairston et al., 2005; Thompson, 

1998). When considering what constitutes “rapid” evolution, it is important to consider 

the difference in generation time between organisms, as those with shorter generation 

times will often evolve faster, though mutation rates per generation can be similar 

(Hafner et al., 1994). This timescale difference is evident in laboratory experiments; for 

example, the bacterium Escherichia coli has been seen to evolve resistance to antibiotics 

in only 12 days (Baym et al., 2016). Rapid evolution thus adheres to the time frame of 

ecological processes and may be the cause of observed ecological patterns and dynamics 

(Thompson, 1998). The ability of a population to rapidly respond evolutionarily to 

environmental changes may aid the persistence of such high biodiversity on this planet. 

 There have been many different species and traits found to undergo natural 

selection on a rapid timescale, ranging from beak size and shape in birds to changed 

patterns of viral virulence (Grant and Grant, 2008; Nelson and Holmes, 2007; Bhatt et al., 

2011; Thompson, 2013). Rapid evolution also acts on animal behaviors, life history, and 

species interactions – both mutualistic and antagonistic (Thompson, 2013). The rapid 

evolution of microbial populations is also becoming a focus for scientific studies all 

around the world due to their prevalence, as well as their quick growth and small size, 
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making them easy to study in the lab (e.g. Forde et al., 2004). While some examples of 

rapid evolution, such as pesticide resistance, have gotten repeated attention from 

ecologists and evolutionists, there are also areas in which studies are hugely lacking, such 

as antibiotic resistance in the medical field and populations of mutualistic 

ectomycorrhizal fungi (Restif, 2009; Thompson, 2013; Hoeksema et al., 2020). The 

importance of these evolutionary events cannot be overlooked, and the impact of humans 

has only increased the rate at which species must respond to a changing environment 

(Thompson, 2013).  

 As more species are being transported across the globe, rapid evolution is more 

commonly being studied through invasive populations. These populations often undergo 

local adaptation in order to survive in new environments, for example, to avoid new 

predators or to better acquire nutrients (Phillips et al., 2010; Rollins et al., 2015). Rapid 

evolution occurs commonly within newly introduced species because they are often 

subject to novel selective pressures, which differ from the pressures experienced by long-

established native populations (Brown and Marshall, 1981; Mooney and Cleland, 2001; 

Sakai et al., 2001; Whitney and Gabler, 2008). In new environments, introduced species 

often escape competitors from their home range, are not constrained by their own 

population size, and have more opportunity for hybridization (Abbott, 1992; Dlugosch et 

al., 2008). When compared to populations that are already well-adapted to their current 

natural habitat, populations subject to these substantial differences in evolutionary 

pressures are potential hot spots for rapid phenotypic change. Well-studied examples of 

rapid local adaptation of invasive species include the soapberry bug (Jadera hematoloma) 

evolving its beak length less than 50 years after the introduction of new host plants (Carol 
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and Dingle, 1996; Whitney and Gabler, 2008), as well as the appearance of hybridized 

species of duck in response to the introduction of the Mallard duck (Anas platyrhynchos) 

to many parts of the globe (Rhymer and Simberloff, 1996; Whitney and Gabler, 2008). 

Microbial species are also commonly introduced throughout the world and can undergo 

rapid evolution on even shorter time scales due to their quicker generation times 

(Hoeksema and Forde, 2008). This advantage can be seen in invasive pathogenic fungi, 

which have been shown to colonize new hosts as well as increase pathogenicity in newly 

introduced environments (Giraud et al., 2010; Hovmøller et al., 2008). While the impact 

of the rapid evolution of microbial species on human health is being studied constantly, 

there are still many gaps in the knowledge regarding how the globalization of these 

professional adaptors affects the ecological world as a whole. 

 One widespread invasive microbial organism that is often overlooked due to its 

mutualistic rather than pathogenic relationship with plants are mycorrhizal fungi. These 

symbiotic fungi, which are found on the roots of plants, aid their hosts in nutrient uptake 

and are believed to have facilitated the transfer of the first plants from water to land 

(Smith and Read, 2008). Mycorrhizal partnerships involve the exchange of nutrients, 

which are obtained from the soil by the fungus and needed by the plant, for organic 

carbon, which is created by the plant and needed by the fungus (Smith and Read, 2008). 

EM fungi are a specific type of mycorrhiza that consists of a mantle, which encloses the 

plant root tip, and hyphae, which radiate into the substrate as well as between individual 

cells of the root in order to facilitate nutrient exchange (Smith and Read, 2008). Because 

of this close relationship, EM fungi are often brought to novel environments on the roots 

of their hosts (Schwartz et al. 2006), and over 200 different identified EM fungal species 
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have previously been found in non-native ranges (Hayward et al., 2015; Vellinga et al., 

2009). Pines (plant species in the genus Pinus) are obligately dependent on EM fungal 

symbiosis, and thus the two are often introduced to novel environments together 

(Richardson et al., 1994; Walbert, 2010; Hynson et al., 2013; Hoeksema et al., 2020). 

While most native populations of pine are associated with over 100 species of EM fungi, 

invasions cause evident filtering and can reduce EM fungal species richness to fewer than 

20 species (Chu Chou and Grace, 1988; Walbert et al., 2010; Hynson et al., 2013; 

Hoeksema et al., 2020). It has even been found that suilloid EM fungi (fungi in the 

genera Suillus and Rhizopogon) can facilitate the successful invasion of a pine species in 

the absence of any other EM fungal species (Hayward et al., 2015; Policelli et al., 2018). 

Because of the absence of many competitors and the ongoing demand to adapt to the 

novel environment, populations of introduced mycorrhizae are likely very vulnerable to 

the selection pressures of rapid evolution. 

 There is currently a lack of investigation regarding the evolution of introduced 

EM fungi, though the knowledge could help us better understand microbial-plant 

mutualism and their co-introduction and co-invasion. EM fungi have a huge impact on 

nutrient cycling in the ecosystem surrounding them (Chapela et al., 2001), and 

evolutionary change in this impact could generate substantial changes and affect the 

stability of biotic communities (Hoeksema et al., 2020). To address this deficiency, I set 

up an experiment to answer these questions: 

Question 1: Does adaptation of ectomycorrhizal fungi to novel plant hosts affect 

its compatibility with native plant hosts? 
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Hypothesis 1: The compatibility of ectomycorrhizal fungi with their native 

plant hosts will be reduced and result in fewer mycorrhizal colonizations 

on plant roots. 

Question 2: Does adaptation of ectomycorrhizal fungi with novel plant hosts 

affect the growth of native plant hosts when inoculated with the introduced 

genotype? 

Hypothesis 2: Native plant growth will be decreased when inoculated with 

the introduced fungal genotype compared to when inoculated with the 

native fungal genotype. 

The system I used to test my hypotheses was a laboratory experiment studying two Pinus 

species – P. radiata (production forestry genotypes from New Zealand, often used in 

exotic pine plantations, including South Africa) and P. taeda from native populations in 

the southeastern USA – inoculated with the EM fungal species Suillus cothurnatus from 

either its native range or its exotic range in South Africa. I then measured plant height, 

plant root length, and fungal root colonization to quantify the growth of both mutualists 

and to assess whether any evolutionary change was evident. 
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Methods 

Overview of experimental design 

 I tested for rapid evolution of introduced ectomycorrhizal fungi and their pine 

hosts by growing Pinus seeds in mycocosms (Rygiewicz et al., 1988) within a growth 

chamber in the laboratory in order to quantify both mycorrhizal colonization of host plant 

roots and pine seedling performance. The design involved two experimental EM fungal 

groups – five genotypes of native Suillus cothurnatus from Mississippi, USA, and five 

genotypes of introduced Suillus cothurnatus from South Africa. I used these EM fungi to 

inoculate two P. taeda genotypes from the southeast United States and one P. radiata 

genotype from New Zealand. There were three replicates of each combination of 

genotypes, except the P. radiata control, of which there were four replicates. This 

resulted in experimental mycocosms and 10 control mycocosms. I used the following 

abbreviations when labeling each box: 

R – Pinus radiata 

T1 – Pinus taeda genotype one (x5409) 

T2 – Pinus taeda genotype two (x5458) 

MS – Suillus cothurnatus spores collected from Mississippi 

MS1 – S. cothurnatus spore genotype #10 

MS2 – S. cothurnatus spore genotype #12 

MS3 – S. cothurnatus spore genotype #18 

MS4 – S. cothurnatus spore genotype #19 

MS5 – S. cothurnatus spore genotype #29 

SA – Suillus cothurnatus spores collected from South Africa 
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SA1 – S. cothurnatus spore genotype #6 

SA2 – S. cothurnatus spore genotype #9 

SA3 – S. cothurnatus spore genotype #12 

SA4 – S. cothurnatus spore genotype #70 

SA5 – S. cothurnatus spore genotype #75 

Each replicate was then also labeled with a number (1-3) referring to the replicate number 

of that mycocosm. For example, T2SA1.1 refers to the first replicate of Pinus taeda 

genotype two inoculated with Suillus cothurnatus genotype #6 from South Africa. To 

ensure the position of treatments did not affect the outcome of the experiment, 100 box 

positions were labeled in the growth chamber, and each treatment was given a randomly 

generated number corresponding to its labeled placement.   

Preparation of pine seedlings and ectomycorrhizal fungus inoculum 

         The pine “genotypes” used in the experiment were open-pollinated families of 

seeds obtained from tree breeding programs. Pinus radiata seeds, provided by Sheffield’s 

Seeds in New Zealand, represent a typical genotype commonly used in forestry 

production in the Southern Hemisphere and specifically in South Africa. Though Radiata 

pines are native to California and Mexico where Suillus cothurnatus is not naturally 

found, they have been planted together throughout the Southern Hemisphere due to tree 

breeding activity. Pinus taeda seeds (having medium growth rates and medium resistance 

to rust pathogens) were acquired from breeding zones of the Weyerhaeuser Southern Tree 

Improvement Program in central Alabama and Mississippi. To be sure seeds were 

surface-sterilized, they were soaked in a 10% dilution of bleach for two minutes, and then 

rinsed thoroughly using deionized water. They were then soaked in water (at 4ºC) for 48 
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hours. After this time, excess water was removed and a moist paper towel was added to 

the container. The seeds were then cold stratified for 6 weeks (from 9/12/2020 until 

10/25/2020). Mycocosms consisted of two 20x16x3cm chambers with a central divider 

made of mesh and designed to prevent root growth between the two sides while still 

allowing fungal growth. They were constructed using clear plexiglass to allow 

visualization of both root and fungal development. Before planting, each mycocosm was 

wrapped fully in aluminum foil to discourage algae growth. After stratification was 

completed, each seed was planted 1 cm below the surface in autoclaved Jolly Gardener 

Proline C/V Growing Mix (which consists of Canadian Sphagnum Peat Moss, Aged Pine 

Bark, and vermiculite), and mycocosms were placed in the fluorescently lit growth 

chamber providing 16-hour days (with 265 µmol m-2 s-1 of light at plant height) and 8-

hour nights at a constant 22.0°C. Plants were watered every two days. 

 Spore prints of native S. cothurnatus were acquired from locally collected 

mushrooms found under Pinus taeda in Lafayette County, Mississippi, USA. Those from 

introduced S. cothurnatus were provided by Rytas Vilgalys (Duke University) and were 

collected from mushrooms found under Pinus radiata in South Africa. Spore prints were 

scraped using a sterilized scalpel and washed using deionized water to create slurries. 

Spore concentrations in the slurries were counted using a hemocytometer to allow 

dilution to equal concentrations. Because the spore slurry with the lowest concentration 

would yield 3.91x105 spores per inoculation, I calculated the number of microliters of 

each slurry that would contain 3.91x105 spores. Slurries were then stored at 4ºC until 

inoculation one week later. 

 



 10 

Experimental set-up 

         On 17 December 2020, 53 days after seeds were planted, each experimental 

seedling was inoculated with a spore slurry of the S. cothurnatus genotype matching its 

treatment label. Volumes of spore slurry previously calculated to contain 3.91x105 spores 

were pipetted onto the surface of the soil. The plants continued to grow in the growth 

chamber with 16-hour days (with 265 µmol m-2 s-1 of light at plant height) and 8-hour 

nights at a constant 22.0°C. Plants were watered every 2-3 days. Originally, only one 

seed was planted per box, and 100% germination was not achieved. 40 treatments did not 

germinate, and 15 of those were eventually replanted. For this experiment, only 59 

treatments were developed enough to be included in the final data analysis (Table 1). 

Treatment ID Number of 

replicates 

Treatment ID Number of 

replicates 

Treatment ID Number of 

replicates 

Rc 4 T1c 1 T2c 2 

RMS1 2 T1MS1 1 T2MS1 3 

RMS2 1 T1MS2 0 T2MS2 3 

RMS3 3 T1MS3 2 T2MS3 1 

RMS4 2 T1MS4 2 T2MS4 1 

RMS5 2 T1MS5 2 T2MS5 1 

RSA1 2 T1SA1 2 T2SA1 1 

RSA2 0 T1SA2 2 T2SA2 2 

RSA3 1 T1SA3 2 T2SA3 3 

RSA4 1 T1SA4 0 T2SA4 2 

RSA5 2 T1SA5 2 T2SA5 3 

Table 1. Replicates of each treatment included in data analysis.  
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 Data Collection 

         Seven weeks after inoculation, the height of each plant was measured, from the 

soil surface to the top of the apical bud. Fourteen weeks after inoculation, plant height 

was measured for a second time and visible root length was estimated on one side of each 

mycocosm. To quantify visible root growth, each mycocosm was removed from the 

chamber and one side was affixed with a transparent grid. The grid line intercept method 

was used to estimate the length of roots visible within each growth box (Tennant, 1975). 

Furthermore, any presence of mycorrhizal colonization was recorded. To quantify the 

relative growth rate (RGR) of height, I used the equation 𝑅𝐺𝑅 = $%	(())+$%	((,)
(-)+-,)

		with (t2 – 

t1) being equal to 47 days and S1 and S2 representing the initial and final height 

measurements, respectively.  

Data analysis 

 All analyses were conducted using R software version 4.0.3. For root length and 

RGR of height separately, I used linear mixed models (in the lmer() function of the 

lmerTest package in R) to test the influence of pine species (taeda or radiata), fungal 

origin (MS vs. SA), and their interaction as fixed effects. Pine genotype and fungal 

genotype were included as random effects, to account for the hierarchical data structure 

of genotypes nested within the fixed effects. When significant effects were found, I 

obtained marginal means and standard errors using the emmeans() function of the 

emmeans package in R. Both of my hypotheses predicted significant effects of the pine 

species x fungal origin interaction. 
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Results 

          Fungal growth was only visible in three mycocosms. There were definite 

ectomycorrhizal structures found within the second experimental replication of Pinus 

taeda genotype one inoculated with genotype five of the native Mississippi fungus 

(T1MS5.2). Notable dichotomous splits were observed on multiple root tips, but no 

mycelium had formed. There was also an unknown fungal colonization found in 

mycocosms #89 – Pinus radiata inoculated with S. cothurnatus genotype four from 

Mississippi (RMS4.3) – and #11 – Pinus taeda genotype two inoculated with S. 

cothurnatus genotype four from South Africa. The colonization did appear to be 

associated with roots, but no dichotomously branched root tips were visible, and the 

fungal growth was granular in texture rather than obviously mycelial, which is not 

expected of ectomycorrhizal fungi such as S. cothurnatus. Because only one plant 

showed obvious signs of mycorrhizal colonization, no statistical analysis was conducted 

regarding ectomycorrhizal compatibility. 

         The statistical analysis of the RGR showed no significant effects. Analysis of 

visible root length showed no significant interaction of pine species and fungal origin. 

However, there was a significant main effect of pine species, resulting in Pinus radiata, 

at 99.5 cm ± 16.5 SE, exhibiting ~69% longer roots than Pinus taeda, at 58.8 cm ± 11.8 

SE (Figure 1). 
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Figure 1.  Visible root length of Pinus radiata (n=20) and Pinus taeda (n=38). Data are 

the marginal mean ±SE of all experimental replicates of each pine species. (p = 0.02786) 

 

 

 

 

 

 

 

 

 

 

 



 14 

Discussion 

         This experiment was designed to test for rapid evolution within an introduced 

population of the ectomycorrhizal fungus, Suillus cothurnatus, in an attempt to better 

understand the co-introduction and co-invasion of microbe-plant mutualists. This 

research also served as a test of experimental methods, which can be used in the future to 

promote breakthrough in this field. The methods used in this experiment can be repeated 

and improved in order to uncover the most effective approach to studying relationships 

between introduced ectomycorrhizal fungi and their hosts. 

Fungal colonization 

         The lack of fungal growth during this experiment prevents the discussion of 

Question 1. Without significant EM colonization data for analysis, it is impossible to test 

Hypothesis 1 due to the absence of information regarding an evolutionary change in 

compatibility between Suillus cothurnatus and native versus introduced pines. The lack 

of fungal growth could be attributed to the timeline within which this experiment was 

conducted. Based on previous experience in the Hoeksema lab, visible ectomycorrhizal 

colonization of plant roots can take upwards of three months, and data collection for this 

experiment occurred just over 14 weeks after inoculation. There is a potential the fungus 

was simply not yet well enough established on the plant roots to have grown mycelium 

visible to the naked eye. Another possible explanation for the lack of colonization is the 

use of an inadequate inoculation technique, whether during the wrong period of the plant 

life cycle or with insufficient spore density. Ectomycorrhizal fungi typically will begin to 

colonize pine roots when compatible spores are present in the vicinity of roots at least 

two months after plant germination when roots are just becoming susceptible to fungal 
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partnership. Plants were inoculated 7.5 weeks after seeds were planted, and seeds often 

did not germinate for several weeks, meaning that plants may have not yet been 

compatible at the time of inoculation. Furthermore, some spore prints used to create spore 

slurries were very light and resulted in standardized concentrations yielding only 

3.91x105 spores per inoculation. This number is low compared to other experiments 

utilizing spore inoculum of Suillus or other closely related EM fungi, which often use 

anywhere between 106 to 109 spores per inoculation (Piculell et al., 2008; Lazarevic et al., 

2012; Lamb and Richards, 1974; Van Nuland & Peay, 2020). It has also been shown that 

increasing inoculum spore count by 103 spores can increase ectomycorrhizal colonization 

of plant roots by 62.3% (Lamb and Richards, 1974). After comparing the methods of this 

experiment to those of other studies, it is plausible that the relatively low spore density of 

this inoculum could have reduced or delayed S. cothurnatus colonization of plant roots. 

Plant Growth 

         After analyzing plant height RGR and root length, there was no significant 

interaction between pine species and fungal origin, nor any significant main effect of 

fungal origin on either response variable. Thus, when considering Question 2, my main 

hypothesis is not supported. I did not see a significant difference in the impact of non-

native fungal genotypes on the RGR or root length of either Pinus species, meaning plant 

growth was not affected by the Suillus variant with which the plant was inoculated. While 

this result could be due to a lack of rapid evolution in introduced ectomycorrhizal fungi, 

it could have also occurred due to some aspect of the lab experiment. For example, plants 

grown in the lab may not develop enough to show significant differences due to their 

fungal partners. If evolutionary advantages or disadvantages caused by introduced 
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mycorrhizal fungi take shape only later in a plant’s life, there would be no evidence of 

this interaction in a lab setting during a relatively short experiment. Additionally, the lab 

is a fabricated and idealized environment, which lacks competitors of the pine plant and 

the fungi. The rapid evolution of fungal-pine mutualism could provide an advantage in a 

competitive environment, but this experiment would not be equipped to reveal such a 

relationship. The laboratory environment also lacks certain microbes, such as bacteria, 

which have been seen to positively affect the development of ectomycorrhizal symbiosis 

(Hoeksema et al., 2010; Piculell et al.; 2008). There is also a possibility the use of potting 

soil rather than field soil affected the outcome of the experiment, as using field soil has 

been seen to stimulate greater genetic variation in outcomes of ectomycorrhizal 

interactions (Piculell et al., 2008). This could be due to plants relying on their microbial 

partners more in demanding environments and less when the environment is rich. Potting 

soil is meant to stimulate plant growth, and could have resulted in more uniform plant 

growth of all experimental treatments, thus obscuring the variations caused by differing 

fungal sources. 

         The significant effect of plant root length revealed in this experiment is consistent 

with the growth patterns of both Pinus radiata and Pinus taeda. Studies of Pinus species 

have shown a vast distribution of growth patterns and growth rate (Grotkopp et al., 2001). 

Specifically, the growth of P. radiata was found to be 35.1% faster than that of P. taeda 

(Grotkopp et al., 2001), which here may have presented itself as a difference in root 

length between the species. My experiment has reaffirmed the distinction between these 

two different species of pine and serves as an example of how plants often differ in the 

growth allocation of roots.  
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Potential Limitations 

         This experiment utilized mycocosms with two compartments of soil and intended 

to keep plants confined to only one side of the growth medium. However, I found some 

pine roots were able to cross the physical barrier between the chambers and grow on both 

sides of the mycocosm. Furthermore, because mycocosms were wrapped entirely in 

aluminum foil, water tended to pool just below the growing medium and resulted in some 

replicates developing roots able to pass through the confines of the mycocosm in order to 

take advantage of the available resource. While this unintended growth did not affect the 

validity of my own experiment, it is worth noting as it has the potential to affect studies 

using this growth technique in the future. It should also be mentioned that the 

temperature under which seedlings were grown for this experiment (22.0°C) was slightly 

higher than best suits pine growth (Guo et al., 2020). In fact, a recent study found that 

increasing Pinus growing temperature from 20.0°C to 25.0°C has the ability to 

significantly lower germination percentage – from 92.67% to less than 5% germination 

(Guo et al., 2020). My experiment was also limited by an external timeline, putting a 

deadline on my data collection regardless of the breadth of obtainable data at the time. 

Ideally, I could have delayed my collection of data to allow for further potential 

mycorrhizal development and treatment interactions, and to cultivate more 

comprehensive records for analysis. 
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Conclusion 

         Though my experiment showed no significant evidence supporting the rapid 

evolution of ectomycorrhizal fungi and plant mutualism, my work still serves a vital role 

in expanding the knowledge of microbe-plant interactions and advancing the broader 

research goals of our laboratory group. Through this research, I reaffirmed the distinctive 

growth patterns of P. radiata and P. taeda root systems and uncovered important 

experimental considerations and concerns that can be applied to investigations performed 

in the future. The time I have spent in this lab will aid those who continue future 

exploration in the field of ectomycorrhizal rapid evolution. 
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