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ABSTRACT 

MASON BRADFORD GARDNER: Spectroscopic Analysis of Potential 
Astromolecules Via Quantum Chemical Quartic Force Fields 

 

 Astrochemistry has been substantially aided by computational techniques, particularly 

through the use of Quartic Force Field (QFF) analysis. Several methods have proven useful at 

correlating computed spectroscopic data with experimental observations. The F12-TZ QFF 

correlated well with experimental data for silicon oxide compounds, particularly those 

potentially involved in development from rocky bodies to planetary masses [27]. Compared to 

argon matrix experimental data, the vibrational frequencies for the molecules SiO2, SiO3, Si2O3, 

and Si2O4 become less accurate as the complexity of the molecules increases but should still be 

predictive of infrared characteristics of silicon oxides as they form clusters in space [27]. The 

CcCR QFF was found to be accurate for predicting B0 and C0 rotational constants within 35 

MHz and vibrational frequencies within 5.7 cm-1 for many molecules, including those with 

heavy atoms [21]. When used in conjunction, the F12-TZ and CcCR QFFs produced parallel data 

for predicting the brightest vibrational frequencies in relatively complex molecules containing 

noble gases; rotational constants produced by the CcCR QFFs also present evidence for future 

identification of such molecules. 
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CHAPTER I: QUANTUM CHEMICAL ASTROCHEMISTRY 

A. Introduction 

Astrochemistry represents one of the widest fields of science encompassing a myriad of 

interrelated fields, including planetary geology, interstellar biology, and astronomy, not to 

mention the various subdisciplines of chemistry. Astrochemistry is directly concerned with the 

origin, abundance, and identity of molecules interacting in interstellar bodies, such as planets, 

stars, nebulae, etc. Originally, gas-phase experiments were conducted to compare observations 

between these “ground-based” experiments and spectroscopic data to determine the identity of 

astronomical molecules [1]; these determinations allow for conclusions and further research into 

chemical interactions in space and provide clues to astronomers as to the behavior of matter in 

these objects. Gas-phase experiments are a vital part of providing reliable and conclusive 

evidence about astrochemical data, but computational techniques offer solutions that expand the 

reach of astrochemistry [1]. 

Since the introduction of computational methods in chemistry, the abilities of 

astrochemists have grown substantially. By using quantum chemical theory to computationally 

design molecules and calculate their observables, a parallel option to gas-phase experiments is 

readily available and effective based on accuracy between theoretical calculations and physical 

experiment [1] with examples in Chapters II and III. As spectroscopy is the most dependable form 

of identifying molecules in space and the only available for remote sensing, the computational 

methods in this thesis are used to determine the spectroscopic data that would be observed under 

laboratory observations, specifically vibrational frequencies and rotational constants.
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B. Spectroscopic Data 

Vibrational spectroscopy measures the energy difference between quanta of molecular 

vibrational modes and are typically measured using infrared spectroscopy. Harmonic vibrational 

frequencies represent the energy differences that would be observed from molecules acting as 

perfect springs. However, molecules are anharmonic, and their energy levels vary significantly 

from harmonic modes. Specifically, anharmonic frequencies are usually lower than harmonic 

frequencies because the anharmonic, or Morse, behavior becomes asymptotic as bond length 

increases. Anharmonic vibrational frequencies are observed in spectroscopy, unlike harmonic 

vibrational frequencies. Hence, computational astrochemists must produce anharmonic 

vibrational frequencies for direct comparison to astronomical data [2]. 

Vibrational frequencies also have intensities, or brightness, if they have a change in 

dipole moment due to the vibration; these are infrared active frequencies. The intensity is also an 

observable characteristic of detectable astromolecules because it shows the activity levels of 

anharmonic vibrational modes, not harmonic modes [1] [3]. This is particularly noteworthy for the 

work reported in Chapter IV because of the high intensities exhibited by the noble gas structures.  

Similarly, rotational constants affect the difference in energy between rotational states 

and are most often measured using microwave spectroscopy. These modes are just as unique as 

vibrational frequencies, and analyzing both of these observables makes astrochemical 

identification and analysis much more accurate than using either alone. Molecules have a 

rotational constant for each of the three principle axes—A, B, C. While linear molecules only 

have one rotational constant, noted as B, due to two degenerate and one infinite coordinate along 

the bonding plane. Rotational frequencies also follow a constant pattern based on the angular 

momentum while the step size between vibrational modes decreases with higher modes, an effect 
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of the anharmonic potential. In this way, rotational modes are easier to predict than vibrational 

modes [2]. 

Rotational and vibrational data can be used in conjunction as well. For example, 

vibrational frequencies are observed using infrared radiation, which is hindered by our planet’s 

atmosphere; however, the microwave radiation used to observe rotational spectra are not 

hindered by the atmosphere. Therefore, rotational spectroscopy can be used first to determine 

where to direct the vibrational spectroscopes, improving the accuracy and decreasing the cost 

and errors occurring during vibrational studies. NASA uses this in its Stratospheric Observatory 

for Infrared Astronomy (SOFIA); SOFIA is an infrared spectroscope that is flown high into the 

sky in order to reduce the atmosphere’s inhibition and to point the spectroscope in the direction 

previously determined by rotational spectroscopy [4]. 

C. Quartic Force Fields: F12-TZ and CcCR 

 Quartic force field (QFF) analysis involves a fourth-order Taylor series expansion of a 

molecule’s equilibrium geometry to produce a potential energy surface, represented by the 

equation below. The “𝐹” terms are force constants and “∆” terms are displacements of the bond 

lengths by 0.005 Å and of the angles by 0.005 radians, respectively, within the molecule’s 

optimized geometry: 

V=
1
2#$Fij∆i∆j

ij

%+
1
6#$ Fijk∆i∆j∆k

ijk

% +
1
24#$Fijkl∆i∆j∆k∆l

ijkl

%.					(1) 

This equation generates a potential energy surface of molecular displacements to find the 

minimum displaced geometry [5] [6]. Second-order vibrational perturbation theory (VPT2) uses 

the potential surface and force constants to calculate observable data about specific 

astromolecules, including the vibrational frequencies and rotational constants. QFFs have been 
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established as a reasonable method of determining these observables of molecules while 

maintaining a relatively low computational cost and high level of accuracy [7]. There are several 

available levels of theory to compute the desired spectroscopic data, and each has its own 

tradeoffs between cost and accuracy. The research in this thesis conducts QFFs based on coupled 

cluster theory at the singles, doubles, and perturbative triples (CCSD(T)) level [8] [9]. CCSD(T) 

QFFs follow a common procedure: 

Step 1. Optimize molecular geometry 
Step 2. Generate the displacements that define the QFF 
Step 3. Calculate energies from displacements 
Step 4. Fit potential energy surface 
Step 5. Calculate anharmonic spectroscopic data 
Step 6. Correct for resonances 

Two kinds of QFFs are used in these projects: F12-TZ and CcCR, which are defined by 

their corresponding levels of theory discussed below. Chapter II discusses the use of F12-TZ 

QFFs in the study of silicon oxide compounds while Chapters III and IV discuss the use of CcCR 

QFFs in rotational constants and noble gas molecules, respectively.  

Once a geometry for any designated molecule has been constructed and optimized, the 

computations can proceed. This is the same starting point for any QFF, and the level of theory is 

where the F12-TZ and CcCR QFFs begin diverging in technique [5]. 

Step 1. Optimize molecular geometry 

The F12-TZ QFF relies on the “CCSD(T)-F12b/cc-pVTZ-F12” basis set, which is an F12 

explicit electron correlation function with a triple zeta level basis set [10] [11]. Specifically, the 

geometry optimization uses the CCSD(T)-F12b/cc-pVTZ-F12 basis set [10] [11] in the quantum 

chemistry software package MOLPRO [12] [13], which is how this method gets its abbreviated 

name of “F12-TZ”. 
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In contrast, CcCR QFFs optimize the geometry using canonical CCSD(T) with the aug-

cc-pV5Z and Martin-Taylor (MT) basis sets in MOLPRO, whose complete descriptions are 

available in Table 1 below: 

Table I.1: CcCR Geometry Optimization Basis Sets 
Basis Set Abbreviation 
CCSD(T)/aug-cc-pV5Z 5Z 
CCSD(T)/cc-pVTZ-MT with core electrons MTc 
CCSD(T)/cc-pVTZ-MT without core electrons MT 

 

The Martin-Taylor basis sets are used to correct the impact that core electrons have on the 

geometry optimization [14]. The composite geometry is constructed by combing the 5Z geometry 

with the effect of the core electrons, found by the difference between MTc and MT. 

𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 = 5𝑍 +𝑀𝑇𝑐 −𝑀𝑇.					(2) 

Step 2. Generate the displacements that define the QFF 

Once the bond angles and bond lengths of any designated molecule are optimized, every 

bond length and bond angle are subjected to individual displacements in every directional place, 

by 0.005 Å for the bond lengths and by 0.005 radians for the bond angles. Each molecular 

structure will have a different total number of displacements reflecting the number of atoms and 

bonds. These displacements are collected and converted into Cartesian coordinates for use in 

later programs. 

Step 3. Calculate energies from displacements 

Each displacement increases the molecule’s potential energy, which can be calculated 

using various basis sets. The energy displacements in F12-TZ also use the “CCSD(T)-F12b/cc-

pVTZ-F12” basis set [10] [11]. These energy displacements are calculated in MOLPRO [12] [13]. 
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In the CcCR method, the composite geometry from above is used to generate seven sets 

of energy displacements, including a complete basis set extrapolation (CBS), Martin-Taylor 

basis set (MT) to correct for core electrons, and the Douglas-Kroll Hamiltonian (DK) to correct 

for scalar relativity [14] [15] [16]. The full basis sets are shown in Table 2 below. The CcCR name is 

representative of these energy displacements. The CBS energy is composed of 5Z, QZ, and TZ 

basis sets; the MT basis sets correct for core electrons; the DK basis sets correct for scalar 

relativity. This CCSD(T) computation can be summarized as CCSD(T)/CBS (“C”) with core 

correlation corrections (“cC”) and scalar relativity corrections (“R”), or “CcCR” when 

abbreviated all together [17]. 

Table I.2: CcCR Energy Displacements Basis Sets 
Basis Set Abbreviation 
CCSD(T)/aug-cc-pV5Z    5Z 
CCSD(T)/aug-cc-pVQZ QZ 
CCSD(T)/aug-cc-pVTZ TZ 
CCSD(T)/cc-pVTZ-MT with core electrons MTc 
CCSD(T)/cc-pVTZ-MT without core electrons MT 
CCSD(T)/cc-pVTZ-DK with scalar relativity DKr 
CCSD(T)/cc-pVTZ-DK without scalar relativity DK 

 

The energies from these calculations are recombined using Equation 3 below, where	"𝐸" 

represents the energy, "𝑙" represents the angular momentum, and the exponential terms reflect 

the Taylor series expansion. This equation completes the CBS extrapolation, and is the best 

extrapolation scheme currently available [17]. 

𝐸(𝑙) = ?5𝑍 + 𝑄𝑍 A𝑙 +
1
2B

!"

+ 𝑇𝑍 A𝑙 +
1
2B

!#

C + (𝑀𝑇$ −𝑀𝑇) + (𝐷𝐾% − 𝐷𝐾).					(3) 

While these two methods follow a similar QFF methodology to determine spectroscopic 

data for these molecules, F12-TZ QFFs have a smaller computational cost based on the use of 
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explicit correlation and are quicker, while CcCR QFFs have a higher computational cost because 

they account for other molecular properties and include more levels of theory [18] [19] [20] [21]. 

Step 4. Fit potential energy surface 

While the geometry optimization and energy displacements require different basis sets 

for F12-TZ and CcCR, the remaining steps are performed the same way. The single set of F12-

TZ displacement energies are turned into relative energies based on the equilibrium energy, and 

these relative energies are then used to generate a potential energy surface in ANPASS using a 

least-squares procedure. The potential energy surface yields a new equilibrium geometry, and the 

force constants are found by refitting the potential to this geometry in ANPASS. Similarly, the 

components of the CcCR displacement energies are combined using Equation 3, made relative to 

the lowest combined energy, and fed into ANPASS in the same way described above [22]. 

Step 5. Calculate anharmonic spectroscopic data 

The force constants and new equilibrium geometry are then collected for use by INTDER 

[23] and SPECTRO [24]. INTDER converts the internal coordinate force constants to Cartesian 

coordinates for use in SPECTRO [23]. SPECTRO completes the VPT2 and generates the 

observable harmonic and corrected anharmonic spectroscopic data [24] [25]. 

Step 6. Correct for resonances 

This “raw” computed data is then used by SPECTRO again to correct for degenerative 

modes, Coriolis resonances, Fermi resonances, Darling-Dennison resonances, and potential 

Fermi-resonance polyads [26]. The results from this step produce the harmonic and corrected 

anharmonic spectroscopic data desired. 
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D. Applications 

Both F12-TZ and CcCR QFFs can be applied to various astromolecules. As discussed in 

Chapter II, the F12-TZ QFF produces vibrational frequencies of silicon oxide compounds that 

were consistently within 7 cm-1 of argon-matrix experimentally observed frequencies [27]. 

Chapter III discusses the CcCR method, showing that this method accurately produced 

vibrational frequencies to within an average 5.8 cm-1 of experimental values for several small 

molecules known to be present in interstellar media [21]. In addition, CcCR rotational constants 

for the least anharmonic molecules are found to be accurate to within 34 MHz of experiment, 

and this accuracy is within the limit for directly observing these molecules in space [21]. Given 

the successful implementation of these QFFs in Chapters II and III, they are both utilized in 

Chapter IV. Molecules in Chapter IV are currently only theorized to exist as spectroscopic data 

has not yet been obtained for these molecules, but CcCR and F12-TZ produced similar data for 

these specific noble gas molecules, as discussed in Chapter IV. 

Accuracies within 7 cm-1 of vibrational frequencies and 34 MHz of rotational constants 

support the idea that both the F12-TZ QFF and CcCR QFF blend speed and accuracy well for 

effectively predicting and comparing spectroscopic data to observations, while F12-TZ is slightly 

less accurate regarding rotational data [21] [27]. As interest in exotic and yet-to-be-observed 

interstellar molecules increases, many of these molecules will likely be difficult to synthesize for 

gas-phase experimental observation, making computational methods the best means to continue 

to generate highly accurate data for comparison to astronomical observation and exploration. By 

using computational methods in conjunction with physical experiments, the time and cost of 

arduous laboratory methods can be saved [1]. 
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This research also has direct implications on knowledge of the universe. By comparing 

computational data to spectroscopic observations, astrochemists can make determinations about 

many interstellar bodies [1]. In Chapter II, silicon oxide molecules are the focal point because 

they are found in rocky bodies in space and form distinct clusters on the way to becoming larger 

bodies, such as comets and planets [27]. In Chapter III, the accuracy of rotational constants in 

CcCR QFFs for several small molecules are highlighted due to the inherent importance of and 

predictability of rotational constants in spectroscopy, showing that CcCR is effective and 

produces results similar to those of gas-phase experiments [21]. Chapter IV concerns the 

application of F12-TZ and CcCR QFFs to theoretical molecules with noble gas bonding, which 

could have implications on further research into noble gas bonding in new molecules. These 

methods can be used in many other studies, such as determining the age of stars, development of 

planets, and molecular composition of nebulae. Unifying computational astrochemistry with 

experimental spectroscopy can offer deeper insights in the chemistry of interstellar space and 

increase the imaginative potential of new molecules yet to be discovered [1]. 
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CHAPTER II: SILICON OXIDES 

Reprinted from [27] 

Gardner, M. B.; Westbrook, B. R.; Fortenberry, R. C. Spectral Characterization for Small 

Clusters of Silicon and Oxygen: SiO2, SiO3, Si2O3, &; Si2O4. Planetary and Space 

Science 2020, 193, 105076. 
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Keywords: Rovibrational spectroscopy; quantum chemistry; astrochemistry; planet24

formation25

Preprint submitted to Elsevier March 26, 2021



1. Introduction26

Quartz, sand, and silica are all forms for the most abundant material in the Earth’s27

crust and mantle. Crystalline SiO2 gives way to the molten form deeper into the mantle,28

and it mixes with magnesium, iron, and aluminum to form most of the material present29

between the crust and core [1]. Similar processes likely played out all over the early Solar30

System and even beyond since both oxygen and silicon are two of the most abundant31

atoms in the Universe [2, 3, 4]. Consequently, there are few inorganic materials as32

common as silicon dioxide.33

Silicon dioxide boils at nearly 3300 K and becomes isovalent with carbon dioxide in34

its triatomic molecular form. Such would likely be a necessary signature of silicon-based35

metabolism in exobiology. With regards to less exotic applications, silicates are known36

to condense under cold conditions creating rocky material in the first place [5], and these37

small molecules likely aggregate from silicon and oxygen atoms or the SiO monomer38

which has been observed in astrophysical environments since 1971 [6]. At the other end39

of the star’s lifetime, the ablation of rocky materials as a star dies [7] or the stellar40

infall of most solid materials at any stage in a star’s evolution will likely vaporize the41

crystalline or even molten silicates and quartzes creating small silicon oxide molecules42

for which little spectral data are well-known. A similar vaporization process would also43

take place terrestrially in foundries when high temperatures are utilized in large-scale44

industrial processes. Regardless of the circumstance, further spectral analysis of small45

silicon oxide clusters in the gas phase is necessary to produce data for the classification46

of silicon dioxide and its derivatives [8] such that the evolution of silicate materials from47

atoms to solids can be observed geophysically or industrially.48

Argon matrix experiments have provided vibrational frequencies for the antisym-49

metric stretch and bending fundamentals of isolated SiO2 at 1416 cm−1 and 273 cm−1,50

respectively [9, 10, 11, 12]. Five of the six fundamental frequencies of SiO3 have been ten-51

∗Corresponding author
Email address: r410@olemiss.edu (Ryan C. Fortenberry)
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tatively assigned from similar experiments in conjunction with density functional theory52

analysis (DFT) [13], but follow-up work has not conclusively confirmed such attributions.53

Most notably, the a1 O−O stretch could not be attributed experimentally from the DFT54

computations. The larger structures have been observed through photoelectron spec-55

troscopy [14, 8], but the fundamental vibrational frequencies have not been conclusively56

determined in the laboratory. Three modes of Si2O4 have been reported in the literature57

again from argon matrix experiments [15], but there has been no experimental or high-58

level theoretical follow-up in the intervening 30 years. Granted, the gas phase data are59

likely similar to the argon matrix results in each of these studies since the argon should60

interact far less with the silicon and oxygen atoms than they would with hydrogens, for61

instance, but corroboration of some variety for these modes is still lacking. While some62

are better understood than others, the full vibrational spectra and especially gas-phase63

rotational constants for each these molecules are not fully classified.64

Consequently, high-accuracy spectroscopic predictions for the vibrational frequencies65

of these molecules will enhance spectral models of environments where they may be66

found both in the laboratory and in nature. Quartic force fields (QFFs) are fourth-order67

Taylor series approximations to the potential portion of the internuclear Hamiltonian [16].68

These have been shown to produce exceptional accuracy for determining anharmonic69

vibrational frequencies for relatively low computational cost, provided that a sufficient70

electronic structure method can be used to compute this specialized potential energy71

surface [16], most often coupled cluster theory at the singles, doubles, and perturbative72

triples [CCSD(T)][17, 18] level. The most accurate QFFs have produced vibrational73

frequencies to within 1 cm−1 on occasion and most often within 5-10 cm−1. The accuracy74

of the rotational constants vary, but most are within 30 MHz of gas phase experiment75

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31].76

However, the computational cost of this involved CCSD(T) approach including cor-77

rections for core electron correlation and complete basis set extrapolations is prohibitive78

for molecules containing more than five atoms. Recent work has shown that vibrational79

13



frequencies of closed-shell molecules utilizing explicitly correlated CCSD(T)-F12b[32, 33]80

for the QFF energy points are within 7 cm−1 of the more expensive computations and81

cost orders of magnitude less time [34, 35, 36]. Some CCSD(T)-F12b anharmonic vibra-82

tional frequencies are actually closer to experiment than their more costly counterparts83

[35]. This approach has been utilized to predict anharmonic spectral data for MgSiO384

and two isomers of Mg2SiO4 (enstatite and forsterite monomers, respectively) for which85

no previous vibrational or rotational spectroscopic data, theoretical or otherwise, exist86

[37]. Most notably these inorganic oxides produce very large infrared intensities implying87

that relatively small amounts of material could still be observed [38, 39, 37, 40]. Fur-88

thermore, other studies have produced scaling factors for harmonic frequencies of small,89

inorganic oxides that promise to reduce the computational time further for similar species90

in the production of accurate, anharmonic vibrational frequencies [40].91

Regardless, the present work will extend the data for these geophysically- and astrochemically-92

relevant silicon oxides by computing the anharmonic vibrational frequencies and spectro-93

scopic constants for four closed-shell singlet silicon oxide structures: SiO2, SiO3, Si2O3,94

and Si2O4. The D3h structures of both CO3 and SiO3 have proven problematic in the95

past [41]. Here, only the C2v SiO3 structure, akin to its carbon analogue which performed96

well in recent QFF examination [42], is considered. While a four-membered ring isomer97

of Si2O3 is also known [43], we are leaving this structure for future study. The D2h struc-98

ture of Si2O4 has also been previously imposed to explain the results of photoelectron99

experiments [14] and the known vibrational frequencies thereof [15]. The rovibrational100

data provided herein will help to classify the building blocks or end products of silicates101

in regions where the solid form is known to exist [44, 7] especially with the growth in102

telescopic power most notably signified in the upcoming launch of the James Webb Space103

Telescope (JWST).104
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Figure 1: The optimized geometries and atom labels of A) SiO2, B) SiO3, C) Si2O3, and D) Si2O4.

2. Computational Details105

Precise optimization of the reference geometry is the first step to computing QFF-106

based anharmonic rovibrational data. The geometry optimization and all subsequent107

energy computations use CCSD(T)-F12b with the cc-pVTZ-F12 [45, 46] basis set (ab-108

breviated as F12-TZ from here on) in MOLPRO2015.1 [47, 48]. The optimized geometry109

is then used to compute the harmonic vibrational frequencies within MOLPRO for com-110

parison to those that result from the QFF. From the reference geometry of each silicon111

oxide molecule, coordinates are constructed to define the QFF with the bond lengths dis-112

placed by 0.005 Å and the bond angles and dihedrals displaced by 0.005 radians. Each113

of the four molecules has its own unique coordinate system since each has a different114

number of bond lengths, angles, and dihedrals giving different numbers of total points115

necessary for the QFF. SiO2 has 57; SiO3 has 413; Si2O3 has 1585; and Si2O4 has 1973116

points. The coordinates for each system are defined below with atom labels in Figure 1.117
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The out-of-plane torsional modes are labeled as OPB. The coordinates for SiO2:118

S1(σg) = 1√
2
[(Si−OA) + (Si−OB)] (1)

S2(σu) = 1√
2
[(Si−OA) − (Si−OB)] (2)

S3(πu) = 6 (OA − Si−OB) (3)

S4(πu) = 6 (OA − Si−OB); (4)

SiO3119

S1(a1) = Si−OA (5)

S2(a1) = 1√
2
[(OB − Si) + (OC − Si)] (6)

S3(a1) = 1√
2
[6 (OB − Si−OA) + 6 (OC − Si−OA)] (7)

S4(b2) = 1√
2
[(OB − Si) − (OC − Si)] (8)

S5(b2) = 1√
2
[6 (OB − Si−OA) − 6 (OC − Si−OA)] (9)

S6(b1) = OPB(OA − Si−OB −OC); (10)

Si2O3120

S1(a1) = Si1 − Si2 (11)

S2(a1) = 1√
2
[(OA − SiA) + (OA − SiB)] (12)

S3(a1) = 1√
2
[(SiA −OB) + (SiB −OC)] (13)

S4(a1) = 1√
2
[6 (OB − SiA −OA) + 6 (OC − SiB −OA)] (14)

S5(b2) = 1√
2
[(OA − SiA) − (OA − SiB)] (15)

S6(b2) = 1√
2
[(SiA −OB) − (SiB −OC)] (16)

S7(b2) = 1√
2
[6 (OB − SiA −OA) − 6 (OC − SiB −OA)] (17)

S8(b1) = 1√
2
[τ(OB − SiA −OA − SiB) − τ(OC − SiB −OA − SiA)] (18)

S9(a2) = 1√
2
[τ(OB − SiA −OA − SiB) + τ(OC − SiB −OA − SiA)]; (19)
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and Si2O4121

S1(ag) = 1√
2
[(OA −OB) + (SiA − SiB)] (20)

S2(ag) = 1√
2
[(OA −OB) − (SiA − SiB)] (21)

S3(ag) = 1√
2
[(SiA −OC) + (SiB −OD)] (22)

S4(b1u) = 1
2 [(OA − SiA) − (OA − SiB) − (OB − SiA) + (OB − SiB)] (23)

S5(b1u) = 1
2 [6 (OC − SiA −OA) − 6 (OC − SiA −OB) − 6 (OD − Si2 −OA) + 6 (OD − SiB −OB)](24)

S6(b2u) = 1
2 [(OA − SiA) + (OA − SiB) − (OB − SiA) − (OB − SiB)] (25)

S7(b2u) = 1
2 [6 (OC − SiA −OA) + 6 (OC − SiA −OB) − 6 (OD − Si2 −OA) − 6 (OD − SiB −OB)](26)

S8(b3g) = 1√
2
[(SiA −OC) − (SiB −OD)] (27)

S9(b3g) = 1
2 [(OA − SiA) − (OA − SiB) + (OB − SiA) − (OB − SiB)] (28)

S10(b3u) = 1√
2
[(OC)z + (OD)z] (29)

S11(b3u) = 1
2 [(OA)z + (OB)z − (SiA)z − (SiB)z] (30)

S12(b2u) = 1√
2
[(OC)z − (OD)z], (31)

where the last of these three has exhibited some questionable results in the low-frequency122

range for the magnesium fluoride dimer [39]. The other coordinate systems have been123

utilized successfully in previous studies on the magnesium hydride monomer, HeHHe+,124

carbon dioxide, CO3, NCNCN−, and C2O3 [39, 49, 42, 50].125

The resulting energies are fit to a least-squares polynomial giving a sum of squared126

residuals on the order of 10−17 a.u.2 for all molecules but Si2O4 which is 10−13 a.u.2127

This fit determines the actual minimum, or equilibrium, geometry. The final set of128

force constants are generated by refitting the points to this new minimum; these are129

given in the supplemental information (SI). The INTDER program [51] transforms these130

force constants into Cartesian coordinates for more general implementation. Then, the131

SPECTRO program [52] computes the harmonic and anharmonic frequencies including132

anharmonic zero-point vibrational energies (ZPVEs) using vibrational perturbation the-133

ory at second-order (VPT2) as well as spectroscopic constants making use of rotational134
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Table 1: The F12-TZ Vibrationally Averaged (0) and Equilibrium (e) Geometrical Parameters (in Å or
Degrees) as Defined from Figure 1.

SiO2 SiO3 Si2O3 Si2O4

r0 (SiA−OA) 1.51249 1.50567 1.50675 1.50045
r0 (SiA−OB) 1.62024 1.67351 1.66525a

6 0(OA−SiA−OB) 148.675 137.445 90.544
r0 (SiA−SiB) 2.21681 2.36644
6 0(OA−SiA−OC) 135.326
re (SiA−OA) 1.51066 1.50395 1.50726 1.50337
re (SiA−OB) 1.61659 1.66903 1.66135a

6 e(OA−SiA−OB) 148.814 137.313 90.673
re (SiA−SiB) 2.21069 2.36327
6 e(OA−SiA−OC) 135.337

aThis is actually re/0 (SiA−OC) because of the different atom labeling in Si2O4 but is placed here for
consistency of bond type.

perturbation theory at second-order [53, 54, 55] and Fermi resonance polyads [56].135

The B3LYP/aug-cc-pVDZ double-harmonic intensities and dipole moments are com-136

puted with Gaussian09 [57, 58, 59, 60, 61]. These have been shown to be in good agree-137

ment with higher-level computations previously [62, 63]. Additionally, the scaling factors138

for the Si-O stretching (0.98242) and bending (0.99261) frequencies determined previ-139

ously [40] are applied to the harmonics computed directly in MOLPRO for comparison140

of their performance in these related but not identical systems.141

3. Results & Discussion142

The geometries for each of the four molecules examined here are given in Table 1143

with labels from Figure 1. Most notably, the SiA−OA bond lengths, those that have the144

oxygen atom in a silaketone moiety (external Si=O group) are largely consistent with a145

bond length on the order of 1.5 Å. SiO2 is the exception to this where the longer bond146

length likely arises from the weakening of the silicon atom’s electron donation due to147

having two Si=O bonds instead of just one, and its magnitude here is in line with that148

computed previously [13]. The SiA−OB/C bonds can be thought of as single bonds from149

a carbon analogue [42] and are notably and consistently longer. The Si−Si bonds are150

longer in Si2O4 than in Si2O3, but the additional oxygen atom in the former naturally151

increases the size of the ring thus making for a longer diagonal distance between silicon152

atoms.153
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Table 2: The F12-TZ Vibrational Frequencies (in cm−1) and Intensities (in km/mol in parentheses) for
SiO2.

Harm. Anharm. Scale
Mode Description Symm. Freq. (QFF) Factor Scaled Exp.a ∆(QFF-Scaled)
1 1.00S2 σu 1439.7 (67) 1420.7 0.98242 1414.4 1416 6.3
2 1.00S1 σg 992.4 (0) 984.2 0.98242 975.0 9.2
3 1.00S3 πu 290.6 (79) 289.0 0.99261 288.5 273 0.5
ZPVE 1361.4 1501.9

aArgon matrix experimental data from [9, 10, 11, 12]

3.1. Anharmonic Frequencies154

The F12-TZ vibrational frequencies for SiO2 are given in Table 2. While the gas phase155

values for this molecule are not known, the argon matrix results correlate exceptionally156

well with the explicit QFF values for the 1420.7 cm−1 and 289.0 cm−1 fundamentals157

compared to the 1416 cm−1 and 273 cm−1 experimental frequencies [12]. Interestingly,158

the scaled 1414.4 cm−1 and 288.5 cm−1 frequencies for the same modes are in slightly159

closer agreement with experiment. Even so, the difference in the explicit QFF anhar-160

monic frequencies and the scaled values are within the accuracy (7 cm−1) of the F12-TZ161

approach implying that either is a valuable choice of method. The infrared inactive sym-162

metric stretch has a larger difference between the two anharmonic frequencies, but no163

experimental data can verify which is more accurate. The F12-TZ QFF produces nearly164

identical values as gas-phase experimental CO2 frequencies (differences of less than 2165

cm−1 in every case) [42], and similar accuracies appear to be present in the silicon ana-166

logue, as well.167

The strong correspondence between theory and argon matrix experiments continues168

with C2v SiO3. As shown in Table 3, the difference between the F12-TZ SiO3 anharmonic169

frequencies and that for the argon matrix experiments[13] is never more than 8 cm−1,170

and ν3 at 857.1 cm−1 is within 2 cm−1 of experiment. Granted, the matrix will shift171

these values relative to the gas phase values that would be observed in astrophysical172

contexts, but, again, these shifts should be small. Furthermore, the B3LYP/aug-cc-pVTZ173

double-harmonic intensities are in at least semi-quantitative agreement with experiment174
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Table 3: The F12-TZ QFF Vibrational Frequencies (in cm−1) and Intensities (in km/mol in parentheses)
for C2v SiO3.

Harm. Anharm. Scale
Mode Description Symm. Freq. (QFF) Factor Scaled Exp.a ∆(QFF-Scaled)
1 0.71S1 + 0.29S2 a1 1391.4 (114) 1371.0 0.98242 1366.9 1363.5 (100) 4.1
2 0.72S2 + 0.27S1 a1 894.2 (5) 885.3 0.98242 878.5 877.1 (12) 6.8
3 1.00S4 b2 868.5 (90) 857.1 0.98242 853.2 855.3 (53) 3.9
4 1.00S3 a1 515.0 (25) 497.0 0.99261 511.2 – -14.2
5 1.00S6 b1 309.7 (82) 305.3 0.99261 307.4 287.8 (96) -2.1
6 1.00S5 b2 299.3 (60) 298.0 0.99261 297.1 292.0 (62) 0.9
ZPVE 2139.1 2129.5

aArgon matrix data from [13].

showing which bands could be considered strong and which could be considered weak.175

Unsurprisingly, the ν1 terminal Si=OA stretch at 1371.0 cm−1 is the brightest vibrational176

mode, and the OPB bend for OA is also bright lining up with experiment.177

The previous SiO3 experiment could not identify the a1 ν4 symmetric bend (equiv-178

alently described as the O−O stretch). This fundamental has an intensity greater than179

the ν2 Si−O symmetric stretch previously characterized in the argon matrix experiments180

[13]. The reason is likely that the previous DFT computations suggested that the fun-181

damental should lie higher in frequency close to 582 cm−1. However, the present work182

strongly suggests that this fundamental is much lower in frequency at 497.0 cm−1. Un-183

fortunately, this region of the IR spectrum is not reported in this previous work negating184

any ex post facto analysis. Regardless, the F12-TZ QFF values confirm the other argon185

matrix fundamental vibrational frequency assignments for C2v SiO3[13] and show that186

the last remaining band is most likely lower in frequency than previously believed.187

Table 4: Si2O3 F12-TZ Harmonic and Fundamental Vibrational Frequencies (in cm−1) and Intensities
(in km/mol in parentheses).

Harm. Anharm. Scale
Mode Description Symm. Freq. (QFF) Factor Scaled ∆(QFF-Scaled)
1 0.86S3+0.08S2+0.07S1 a1 1331.0 (17) 1303.3 0.98242 1307.6 -4.3
2 0.96S6+0.04S5 b2 1274.0(152) 1245.6 0.98242 1251.6 -6.0
3 0.85S2+0.08S4+0.07S3 a1 859.1(122) 836.2 0.98242 844.0 -7.8
4 0.88S5+0.07S7+0.05S6 b2 663.2(52) 637.6 0.98242 651.6 14.0
5 0.74S1+0.18S4+0.07S3 a1 440.7(21) 432.5 0.99261 437.5 -5.0
6 0.93S7+0.08S5 b2 248.7(16) 245.0 0.99261 246.9 -1.9
7 1.00S9 b1 245.7(62) 244.6 0.99261 243.9 0.7
8 0.74S4+0.19S1+0.07S2 a1 189.8(30) 188.2 0.99261 188.4 -0.2
9 1.00S8 a2 153.4(0) 153.7 0.99261 152.3 1.4
ZPVE 2643.3 2679.5
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The F12-TZ QFF fundamental vibrational frequencies for Si2O3 have not been pre-188

viously explored experimentally or theoretically and are given here in Table 4. The189

silaketone stretches (ν1 and ν2) are in the same frequency range as that for SiO3, and190

the antisymmetric ν2 stretch at 1245.6 cm−1 has the greatest intensity of all the fun-191

damentals. This is also true for the related C2O3 and C2N3
− molecules [42, 50]. The192

a1 ν3 stretching of the central OA atom produces the next-brightest fundamental at193

836.2 cm−1. The permanent dipole moment is being extended in this case, giving a194

larger charge separation upon vibration. The remaining frequencies are dimmer but still195

non-negligible, and the five lowest frequency fundamentals are all below 500 cm−1, as is196

common for such heavy atoms like silicon [38, 39, 37].197

Table 5: Si2O4 F12-TZ Harmonic and Fundamental Vibrational Frequencies (in cm−1) and Intensities
(in km/mol in parentheses).

Harm. Anharm. Scale
Mode Description Symm. Freq. (QFF) Factor Scaled Exp.a ∆(QFF-Scaled)
1 0.84S3+0.13S1 ag 1354.4 (0) 1338.2 0.98242 1330.6 7.6
2 0.86S8+0.14S9 b3g 1316.9 (382) 1303.6 0.98242 1293.7 1293.3 9.9
3 0.89S6+0.11S7 b2u 904.8 (259) 911.7 0.98242 888.9 889.2 22.8
4 0.70S1+0.24S2+0.06S3 ag 871.6 (0) 861.3 0.98242 856.3 5.0
5 0.86S9+0.14S8 b3g 804.0 (252) 856.8 0.98242 789.9 786.4 66.9
6 1.00S4 b1u 718.7 (0) 658.1 0.98242 706.1 -48.0
7 0.73S2+017S1+0.10S3 ag 488.0 (0) 485.9 0.98242 479.4 6.5
8 0.94S11+0.06S10 b3u 465.4 (99) 456.1 0.99261 462.0 -5.9
9 1.00S5 b1u 313.3 (0) 281.7 0.99261 311.0 -29.3
10 0.89S7+0.11S6 b2u 295.5† (43) 0.99261 293.3
11 1.00S12 b2u 236.6 (0) 230.5 0.99261 234.9 -4.4
12 0.94S10+0.06S11 b3u 121.5† (26) 0.99261 120.6
ZPVE 3945.4 3796.3

a Argon matrix experimental results from [15].
† Denotes a MOLPRO harmonic frequency

The 12 fundamental vibrational frequencies for D2h Si2O4 are given in Table 5. The198

silaketone stretches are blue-shifted in this molecule compared to Si2O3 and are present199

above 1300 cm−1. The b3g ν2 antisymmetric stretch, again, has the largest intensity of200

all the fundamental frequencies for this molecule. Stretches within the ring (ν3 and ν5)201

are the next-brightest with intensities above 250 km/mol, more than 3.5 times that of202

the antisymmetric stretch in water. Comparison to argon matrix data from [15] gives203

good agreement between the 1293.3 cm−1 value and the F12-TZ QFF ν2 frequency at204
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1303.6 cm−1. This deteriorates slightly for ν3 where experiment places this at 889.2 cm−1205

and the QFF is 911.7 cm−1. The correlation is completely off for ν5 with experiment206

attributing this ring deformation to a band at 786.4 cm−1 and the QFF at 856.8 cm−1.207

Either the band has been misassigned in the experiment, or the computations are off.208

In this case, the latter is most likely correct. The fitting of the points was the worst209

for Si2O4 of the silicon oxides studied. Furthermore, two harmonic vibrational frequen-210

cies computed via the QFF do not align with those computed from within MOLPRO’s211

standard harmonic frequency computation, ω10 and ω12. The OPB coordinate struggles212

to define the proper motion within the constraints of the QFF and VPT2, and this subse-213

quently affects the fitting of the force constants for the other coordinates. The potential214

for the OPB is likely flat reducing the capabilities of VPT2 as defined by the QFF. The215

ν10 and ν12 fundamentals could not even be computed from the QFF data. Hence, the216

F12-TZ QFF VPT2 anharmonic vibrational frequencies for Si2O4 below the silaketone217

stretches should be treated as suggestions.218

However, all is not lost in the prediction of these anharmonic frequencies. The recent219

determination of scaling factors for M−O stretches and bends (where M is a second-row220

atom) can be applied to Si2O4. Doing so actually produces a fundamental frequency for221

ν3 at 888.9 cm−1and ν5 at 789.9 cm−1. Both are within 3.5 cm−1 of the argon matrix222

experiment. Furthermore, the ν2 antisymmetric stretch is 1293.7 cm−1 from the scaled223

values, 9.9 cm−1 below the explicit QFF, and only 0.4 cm−1 below the experimental value.224

Consequently, the scaled harmonics are likely producing more meaningful fundamental225

vibrational frequencies for this molecule than the QFF. The harmonic force field is much226

better behaved and less likely to suffer from noise contamination in these numerical227

derivatives [19, 20], and the amount of absolute anharmonicity is relatively small in the228

first place.229

The scaled harmonic frequencies are also listed for the other three molecules giving230

slightly better correlation with experiment for SiO2 (Table 2) as discussed previously.231

Agreement between experiment and scaled harmonics of SiO3 (Table 3) is comparable232
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with the F12-TZ QFF VPT2 results. Some modes are better with the scaled values233

(ν1) and some with the explicit anharmonicity computed (ν3) implying that either is234

appropriate. Both also demonstrate that ν4 is still lower in frequency than previous235

experiments explored. Since there are no experimental data for Si2O3, comparison be-236

tween the QFF VPT2 results and the scaled harmonics both with F12-TZ is necessary,237

but both are quite comparable with one another (Table 4). All modes agree to within 8238

cm−1 save for the b2 ν4 antisymmetric stretch. The mean absolute error (MAE) between239

the QFF and scaled harmonics for the stretching frequencies is 5.8 cm−1 when removing240

ν4 and 8.0 cm−1 when including it. The bends and torsions are much closer with the241

MAE at 1.8 cm−1, but, again, the magnitudes of the frequencies are smaller in the first242

place. Hence, these scaling factors are comparable to the QFF VPT2 fundamental vibra-243

tional frequencies implying that these heuristics could be used as a first-order guess to244

the fundamental vibrational frequencies of Si2O4 and potentially even for larger silicon245

oxide clusters where QFFs or any anharmonic vibrational frequency computations are246

prohibitively large.247

3.2. Rotational and Spectroscopic Constants248

The spectroscopic constants for each of the molecules examined are given in Table 6.249

These include the pure rotational constants, the vibrationally-averaged rotational con-250

stants, the quartic and sextic (Watson S Hamiltonian) distortion constants, and even251

the dipole moments of the two C2v molecules. While these may not be as accurate as252

methods including core electron correlation or other additive factors [35, 36], these rota-253

tional constants should serve as a good starting point for assessing the rotational spectra254

of these molecules. Strangely, a search of the literature did not yield any experimental255

rotational constants for SiO2 which are provided here for this nonpolar molecule. The256

other three molecules are all clearly near-prolate rotors especially for Si2O3.257

The vibrationally-excited rotational constants (numbered in the same order as the258

fundamental vibrational frequencies) for Si2O4 are given for the modes with the least259

questionable vibrational frequencies. While the pure rotational transitions of this molecule260
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Table 6: The F12-TZ QFF Spectroscopic Data for the Four Silicon Oxides.

SiO2 SiO3 Si2O3 Si2O4

A0 (MHz) 22360.3 21364.6 11474.0
B0 (MHz) 6907.7 5489.9 1766.6 1636.1
C0 (MHz) 4400.5 1630.8 1433.1
A1 (MHz) 22333.1 21390.3 11469.1
B1 (MHz) 6872.3 5466.1 1761.6 1632.6
C1 (MHz) 4384.4 1626.6 1430.4
A2 (MHz) 22292.4 21361.1 11465.8
B2 (MHz) 6888.1 5480.1 1762.9 1633.0
C2 (MHz) 4392.0 1627.6 1430.8
A3 (MHz) 22446.5 21282.1 11497.3
B3 (MHz) 6920.3 5469.6 1764.8 1633.3
C3 (MHz) 4391.4 1628.1 1430.4
A4 (MHz) 22001.5 20997.0 11458.5
B4 (MHz) 5518.5 1768.1 1635.0
C4 (MHz) 4392.3 1629.6 1431.8
A5 (MHz) 22310.3 21576.9 11442.8
B5 (MHz) 5493.9 1761.6 1635.2
C5 (MHz) 4409.0 1627.2 1431.5
A6 (MHz) 22408.0 21370.4 11446.5
B6 (MHz) 5504.1 1768.2 1633.6
C6 (MHz) 4400.9 1631.2 1430.7
A7 (MHz) 21368.9
B7 (MHz) 1767.8
C7 (MHz) 1632.6
A8 (MHz) 21507.1
B8 (MHz) 1767.9
C8 (MHz) 1630.7
A9 (MHz) 21279.8
B9 (MHz) 1768.2
C9 (MHz) 1633.4
∆J (Hz) 1.500 941.78 120.62 56.658
∆K (kHz) 133.62 363.47 9.985
∆JK (kHz) 15.616 -4.444 0.389
δJ (Hz) 227.57 18.119 8.426
δK (kHz) 11.708 1.065 0.484
ΦJ (µHz) -8.885 518.99 2.540 2.770
ΦK (Hz) -0.240 9.387 0.022
ΦJK (mHz) 80.382 0.920 0.242
ΦKJ (mHz) -233.60 -127.77 -4.098
φj (µHz) 261.21 4.481 1.058
φjk (mHz) 45.749 0.152 0.152
φk (Hz) 1.292 0.502 0.009
µ (D) – 0.87 0.66 –
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will not be observed since it has no dipole moment, the A2, B2, and C2 values, how-261

ever, will likely be important for rovibrational modeling since ν2 of this molecule has the262

largest infrared intensity computed of the set. Finally, the dipole moments are reported263

at the bottom of Table 6. SiO3 is the most polar, but Si2O3 has a smaller but similar264

magnitude dipole moment. This differs from the carbon analogues where C2O3 is almost265

apolar [42] likely due to the larger electronegativity difference between oxygen and silicon266

as well as the longer Si−O bonds.267

4. Conclusions268

The small silicon oxide clusters SiO2, SiO3, Si2O3, and Si2O4 are shown here to be269

stable species with notably bright mid- to far-IR active fundamental vibrational frequen-270

cies. The antisymmetric silaketone stretch in the silicon dioxide dimer has the largest271

intensity of the set. The range between 1420 cm−1 and 1250 cm−1 (7.0 µm and 8.0272

µm) contains this most intense band and its counterparts from the other three oxides.273

The other infrared bands typically fall below 700 cm−1 (>14.3 µm) with many of the274

silicon oxides analyzed here having one or two bands around 850 cm−1 (∼11.8 µm).275

Each of these regions have notable bumps from astronomical spectra [64], implying that276

small, geochemically-relevant silicon oxides may be present in circumstellar media and277

protoplanetary disks. Upcoming JWST spectra could potentially resolve such peaks.278

Furthermore, the larger molecules have infrared features approaching that of known sil-279

icate dusts. The polar SiO3 and Si2O3 clusters could be observed from the ground280

with radiotelescopes, and the present data will aid in the experimental characterization281

necessary to provide reference data for such observations.282

Additionally, the previously derived scaling factors [40] show promise in treating sim-283

ilar inorganic oxides that are intractable for QFF computations. Comparison to experi-284

mental spectra for SiO2 and SiO3 shows that both the explicit anharmonic computations285

and the scaled harmonics are similarly accurate partly due to the small magnitudes of286

the anharmonicities of the molecules examined. However, these scaled harmonics also do287
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not suffer from coordinate issues observed in Si2O4 making them also potentially useful288

for future exploration of larger mineralogically-relevant inorganic oxides.289

Acknowledgements290

The authors acknowledge funding from the NSF (OIA-1757220), NASA (NNX17AH15G),291

and the University of Mississippi start-up funds.292

References293

[1] White, W. M. Geochemistry, 1st ed.; Wiley: Hoboken, NJ, 2013; Chapter 10: The Big Picture:294

Cosmochemistry.295

[2] Savage, B. D.; Sembach, K. R. Interstellar Abundances from Absorption-Line Observations with296

the Hubble Space Telescope. Annu. Rev. Astron. Astrophys. 1996, 34, 279–329.297

[3] McCall, B. J. Dissociative Recombination of Cold H3
+ and Its Interstellar Implications. Phil. Trans.298

Royal Soc. A 2006, 364, 2953–2963.299

[4] Fortenberry, R. C. The Case for Gas-Phase Astrochemistry without Carbon. Mol. Astrophys. 2020,300

18, 100062.301
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Abstract12

The CcCR quartic force field (QFF) methodology is capable of computing B0 and C013

rotational constants to within 35 MHz (0.14%) of experiment for triatomic and larger14

molecules with at least two heavy atoms. Additionally, the same constants for molecules15

with four or more atoms agree to within 20 MHz (0.12%) of experiment for the current16

test set. This work also supports previous claims that the same QFF methodology can17

produce fundamental vibrational frequencies with a deviation less than 5.7 cm−1 from18

experiment. Consequently, this approach of augmenting complete basis set extrapolated19

energies with treatments of core electron correlation and scalar relativity produces some20

of the most accurate rovibrational spectroscopic data available.21

Keywords: Quantum Chemistry; Quartic Force Fields; Rotational Spectroscopy;22

Vibrational Spectroscopy; Coupled Cluster Theory23

1. Introduction24

Quartic force fields (QFFs) making use of coupled cluster theory, specifically at the25

singles, doubles, and perturbative triples [CCSD(T)] level of theory [1], and other post-26

CCSD(T) effects have been shown to produce exceptionally accurate vibrational frequen-27

cies and rotational constants [2, 3]. These accuracies are reported to be within 1.0 cm−1
28
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on occasion and often within 5.0 cm−1 of gas-phase experiment for vibrational frequen-29

cies, and within 30 or so MHz for the B and C rotational constants [4–15]. While these30

anecdotal values are promising for the composite method employed, a more systematic31

analysis of how the QFF performs for the prediction of these observable spectroscopic32

values is necessary.33

The above-mentioned accurate QFF employs CCSD(T) in a complete basis set (CBS)34

extrapolation scheme [16] utilizing the aug-cc-pVTZ, aug-cc-pVQZ, and aug-cc-pV5Z35

basis sets [17–19, 16, 20]. The difference in the CCSD(T) energy with and without36

the inclusion of core electrons is used to correct the CBS energy for the effects of core37

correlation. These computations most often utilize the Martin-Taylor (MT) core elec-38

tron basis set [21], but the more standard aug-cc-pCVTZ basis set has been shown to39

be just as viable [4, 22, 23]. Additional corrections for scalar relativity are incorpo-40

rated using the Douglas-Kroll (DK) Hamiltonian [24, 25] by taking the difference in the41

CCSD(T)/cc-pVTZ-DK energies including and excluding the relativisitic terms. This42

use of the CCSD(T)/CBS energy (“C”) including corrections for core correlation (“cC”)43

and scalar relativity (“R”) is often called the CcCR QFF [26]. Additional corrections44

for higher-order electron correlation (“E”) and even quantum electrodynamics (“Q”) can45

be added for presumed higher accuracy. For most molecules, save for those with higher46

bond orders, such terms do not improve the accuracy of the computations for molecules47

containing third-row or smaller atoms by more than 1.0 cm−1 in many cases but increase48

the computational cost of the QFF by more than a factor of 2, especially if higher-order49

coupled cluster truncations beyond full triples are included [4, 6, 26, 23].50

Consequently, the CcCR QFF has been touted as a sweetspot for accuracy and com-51

putational cost in the determination of anharmonic vibrational frequencies and rotational52

constants. While errors in vibrational fundamentals have rarely reached above 10 cm−1
53

for the CcCR QFF, some cases have arisen where the rotational constants are in error by54

more than 100 MHz [4, 5]. As such, the present work will analyze a set of small molecules55

for which there are known, highly-accurate experimental data available for comparison56

to computed CcCR QFF rotational constants. Some vibrational frequencies will also57

be characterized as a part of this study, but rotational constants remain the principle58

focus. Other groups have established various means of computing quantum chemical59

rotational constants with much success even aiding in the detection of new molecules60

in space via radiotelescopes [27–34]. However, the present work will focus solely on the61

CcCR approach.62

In particular, less computationally intensive perturbation theory (PT) approaches63

exist for obtaining highly-accurate rotational constants within 0.05% of gas-phase exper-64

imental values [35, 36]. The level of theory required for accurate vibrational corrections65

to equilibrium rotational constants is also quite low, with even B3LYP [37–39] offering66

reasonable accuracy for well-behaved systems [40]. However, these previous results rely67

on fortuitous characteristics of the systems investigated, primarily molecules composed68

of hydrogen, carbon, nitrogen, and oxygen. CcCR, on the other hand, is a more rigorous69

theoretical technique that is applicable to broader classes of molecules. Additionally,70

the CcCR methodology uses composite energies to make up the force field rather than71

correcting the observables afterwards. Previous work has clearly demonstrated the re-72

liability of CcCR fundamental frequencies [3], but the goal of the present study is to73

analyze its efficacy in the computation of rotational constants. Such constants are of-74

ten produced as a byproduct of a given vibrational study, so a better understanding of75
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their typical accuracy is needed to accompany future CcCR investigations and to further76

contextualize previous ones.77

Variational approaches to the determination of rotational data also exist [41, 42], but78

these are typically much more costly, raising issues as to whether the additional cost79

is worth the accuracy gains [3]. Again, the focus here is on assessing the established80

CcCR/PT approach, not reviewing theoretical rovibrational spectroscopic techniques.81

With this in mind, the selection of molecules has been drawn from the CcCR/PT liter-82

ature rather than from a broader pool of computed spectra. The literature selection is83

further augmented by new work on HCN, HCO+, HNC, HMgNC, HNO, NH3, H2CO,84

and HOCN, which helps to tease out trends in the existing data. To further limit the85

scope of the present work, all of the molecules studied herein are covalently bound. More86

weakly-bound structures lead to very flat potential energy surfaces, which are poorly87

treated by QFFs in general [43, 44], especially those relying upon numerical differentia-88

tion. Thus, the present work will serve to benchmark the performance of the CcCR/PT89

QFF for various classes of small (3-6 atoms), covalent molecules, for which accurate90

gas-phase experimental rotational data are available.91

2. Computational Details92

The computation of CcCR QFFs begins with geometry optimizations of the desired93

molecule via CCSD(T)/aug-cc-pV5Z. The geometry is then corrected for changes re-94

sulting from differences in CCSD(T)/MT optimizations with and without core electrons95

included. These reference geometries are then displaced by 0.005 Å and 0.005 radians96

per each step per each symmetry-internal coordinate. The QFF is of the form:97

V =
1

2

∑
ij

Fij∆i∆j +
1

6

∑
ijk

Fijk∆i∆j∆k +
1

24

∑
ijkl

Fijkl∆i∆j∆k∆l, (1)

where the Fij... terms are the force constants and the ∆i∆j . . . terms are the displaced98

distances for coordinates i, j, and so forth [45, 46]. Then, at each point (∆i∆j . . .), the99

seven energies necessary for the CcCR QFF are computed. These are then fit via a least-100

squares procedure and refit in order to produce zero gradients, the resulting equilibrium101

geometry, and the other force constants (Fij...) for the potential function in Equation 1102

[4, 6].103

The force constants are then transformed into generic Cartesian coordinates for gen-104

eral usage through the INTDER2005 program [47]. The Cartesian force constants are105

utilized in the SPECTRO program [48] to produce the rotational constants and anhar-106

monic vibrational frequencies. Coriolis and Fermi resonances, as well as Fermi resonance107

polyads [49], are then included in the second-order perturbation theory [50–52] treatment108

of the vibrational and rotational Hamiltonians within SPECTRO in order to produce the109

most accurate spectroscopic data possible within a perturbation theory approach.110

Once the CcCR QFF data are determined for the present work, these are compared111

with experimental data taken from the chemical literature. Other, theoretical CcCR ro-112

tational constants and fundamental vibrational frequencies are taken from the literature,113

as well, in order to provide a larger data set. For the present work, most of the molecules114

explored are closed-shell, but some are radicals providing a breadth of molecules. The115

full list is given in Tables 1 and 2. In all cases, the experimental rotational constants116
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and fundamental vibrational frequencies are subtracted from the computed CcCR QFF117

second-order perturbation theory values to yield the reported differences. The absolute118

values of these differences are averaged herein in order to produce the mean absolute119

error or MAE. The percent error is calculated, using120

|Diff.|
Experiment

× 100%, (2)

where |Diff.| is the absolute value of the aforementioned difference. The rotational con-121

stants are also divided into subgroups in order to tease out the behavior of certain types122

of molecules with certain properties or characteristics. In addition to MAEs for these123

groups, the mean absolute percent errors (MA%Es) are reported in Table 3.124

3. Results and Discussion125

The CcCR quartic force field approach provides exceptional accuracy in the prediction126

of vibrationally-averaged rotational constants in most cases. The full set of principle127

rotational constants considered in this work is given in Table 1. The sources of the128

data are listed in Table 2 with eight CcCR molecular datasets original to this work:129

HCN, HCO+, HNC, HMgNC, HNO, NH3, H2CO, and HOCN. Clearly from Table 1,130

many systems have excellent correspondence between CcCR QFF theory and gas-phase131

experiment while some are less accurate. The MAE for the entire set of rotational132

constants is 537.4 MHz (0.20%) as listed in Table 3. Most evidently, the A0 rotational133

constants vary by significantly greater amounts than B0 and C0, both in terms of absolute134

errors and even for the percent errors. Many of the molecules in this set are near-prolate,135

and the larger magnitude of the A constant contributes to this difference. Besides the136

oblate c-C3H3
+, the least prolate molecule, c-C3H2, has the smallest error for the CcCR137

QFF A0 compared to experiment at 64.0 MHz. Such behavior in near-prolate molecules138

is known within the quantum chemistry community [27, 28], and this is borne out in the139

MAE for the A constants alone at 1577.5 MHz (0.31%).140

However, such a large error incorrectly implies that CcCR QFF computations are141

insufficient for predicting spectroscopic constants. Removing the A constants from con-142

sideration certainly improves the average rotational constant and also even lowers the143

percent error. Linear molecules have degenerate B and C constants, and averaging over144

B0 and C0 requires counting the B constant in the linear molecules twice. Such an aver-145

age of B0 and C0 with A0 removed reduces the MAE by an order of magnitude to 92.7146

MHz (0.15%) in line two of Table 3.147

Closer inspection of Table 1 shows that several molecules appear to be outliers with148

absolute errors for B0 and C0 in the range of 100+ MHz. Most of these are hydrides with149

a lone heavy atom: NH2
−, H2O, and NH3. Removing the rotational constant errors for150

these three molecules lowers the MAE by roughly one-third to 34.6 MHz (0.14%).151

The error in the computed versus experimental rotational constants of water has152

been known since the formulation of the CcCR family of composite QFF schema [4], and153

this work shows that such simple systems are often the most difficult to model. The154

reason for this poor behavior in light molecules is multifaceted. First, these molecules155

have larger rotational constants implying that regular percent errors manifest themselves156

with higher magnitude differences from experiment. Second, these molecules have large157
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Table 1: The CcCR Equilibrium & Vibrationally-Averaged and Gas Phase Experimental Rotational
Constants in MHz.

CcCR
Molecule Equil. Vib. Avg. Experiment Difference |Diff.| % Error

HCN B 44580.6 44386.4 44316 70.4 70.4 0.16
HCO+ B 44851.4 44611.1 44594.4 16.7 16.7 0.04
HNC B 45571.5 45405.3 45332 73.3 73.3 0.16
C2H B 44187.6 43702.2 43674.5 27.7 27.7 0.06
C2H− B 41735.7 41568.7 41639.2 −70.5 70.5 0.17
HMgNC B 5436.4 5471.0 5481.4 −10.4 10.4 0.19
NH2

− A 688371.4 689654.6 691045.6 −1391.0 1391.0 0.20
B 392881.0 391702.8 391780.8 −78.0 78.0 0.02
C 250125.8 243476.4 243269.6 206.8 206.8 0.09

H2O A 820382.1 831542.7 835840.3 −4297.6 4297.6 0.51
B 438356.5 436042.4 435351.7 690.7 690.7 0.16
C 285702.2 278664.6 278138.7 525.9 525.9 0.19

HNO A 566875.5 560818.2 553898.6 6919.6 6919.6 1.25
B 42534.6 42430.6 42312.8 117.8 117.8 0.28
C 39566.0 39281.6 39165.1 116.5 116.5 0.30

HSO A 302261.2 300113.4 299483.9 629.5 629.5 0.21
B 20715.7 20597.8 20502.8 95.0 95.0 0.46
C 19387.0 19219.9 19135.7 84.2 84.2 0.44

HSS A 299200.8 297770.1 296974.4 795.7 795.7 0.27
B 8030.6 8009.9 7996.4 13.5 13.5 0.17
C 7820.7 7790.4 7776.7 13.7 13.7 0.18

HPSi A 306054.4 296974.9 297187 −212.1 212.1 0.07
B 8211.2 8169.4 8169 0.4 0.4 0.00
C 7996.6 7939.1 7936.7 2.4 2.4 0.03

SiC2 A 52343.2 52602.5 52473.7 128.8 128.8 0.25
B 13264.2 13145.8 13158.7 −12.8 12.8 0.10
C 10582.5 10444.8 10442.6 2.1 2.1 0.02

NH3 A 299988.5 297539.8 298107 −567.2 567.2 0.19
C 190683.3 186445.2 185751.4 693.8 693.8 0.37

H2CO A 285857.2 282684.0 281963.8 720.2 720.2 0.26
B 39055.5 38898.6 38832.1 66.5 66.5 0.17
C 34361.0 34058.7 34002.5 56.2 56.2 0.17

HOCN A 673758.4 677180.7 674308 2872.7 2872.7 0.43
B 10622.2 10592.4 10577 15.4 15.4 0.15
C 10457.4 10414.3 10398 16.3 16.3 0.16

cis-HOCO A 141896.9 143151.8 142944.9 206.9 206.9 0.14
B 11856.5 11757.3 11739.6 17.7 17.7 0.15
C 10942.1 10846.5 10830 16.5 16.5 0.15

trans-HOCO A 167470.4 168266.3 167768.1 498.2 498.2 0.30
B 11535.7 11448.5 11433.2 15.3 15.3 0.13
C 10792.5 10702.0 10686.7 15.3 15.3 0.14

HOCO+ A 765443.3 784759.5 789951 −5191.5 5191.5 0.66
B 10818.6 10787.1 10773.6 13.5 13.5 0.13
C 10667.2 10623.7 10609.4 14.3 14.3 0.13

NNOH+ A 624453.7 625221.3 625957.716 −736.4 736.4 0.12
B 11357.9 11306.9 11301.5628 5.3 5.3 0.05
C 11155.0 11090.2 11084.28 6.0 6.0 0.05

c-C3H2 A 35377.2 35156.6 35092.6 64.0 64.0 0.18
B 32420.0 32243.1 32212.9 30.2 30.2 0.09
C 16917.1 16767.7 16749.3 18.4 18.4 0.11

c-C3H3
+ A 30956.6 30761.7 30753.9 7.8 7.8 0.03

B 30956.6 30761.7 30753.9 7.8 7.8 0.03
C 15478.3 15342.8 15338.9 3.9 3.9 0.03

Average 63.1 537.4 0.20
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Table 2: The CcCR and Gas Phase Experimental References.

Molecule CcCR Experiment
HCN This Work 53
HCO+ This Work 54–59
HNC This Work 60, 61
C2H 62 63–66
C2H− 5 67, 68
HMgNC This Work 69
NH2

− 5 70
H2O 4 71
HNO This Work 72
HSO 73 74, 31
HSS 73 75
HPSi 76 27
SiC2 11 77, 78
NH3 This Work 79, 80
H2CO This Work 80
HOCN This Work 81, 82
cis-HOCO 83 84
trans-HOCO 26 84
HOCO+ 8 85
NNOH+ 9 86, 87
c-C3H2 15 88
c-C3H3

+ 6 7

Table 3: Average Errors for CcCR vs. Experiment for Various Cases.

Set Units MAE MA%E
A0, B0, & C0 MHz 537.4 0.20
B0 & C0 MHz 92.7 0.15
B0 & C0 w/o H2O, NH2

−, & NH3 MHz 34.6 0.14
B0 & C0 w/o Triatomics & NH3 MHz 18.9 0.12
A0 MHz 1577.5 0.32
νx cm−1 5.7 0.70
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anharmoniciites, as well. This shifts the zero-point structure and, subsequently, the158

rotational constants by more than is typical for treatment from second-order rotational159

perturbation theory. A large anharmonicity is also present in HNO which is known to160

have an extreme anharmonicity for the N−H stretch [89]. Here the B0 and C0 are in161

error from experiment by 117.8 MHz and 116.5 MHz, respectively, marking the largest162

deviations for molecules in this set with at least two heavy atoms. This is also borne out163

in the percent errors for this molecule which are the largest for both sets inclusive and164

exclusive of A. Formaldehyde is roughly the same mass as HNO and also has relatively165

large errors for B0 and C0, but these are roughly half the magnitude and percent error166

of that in HNO. Hence, the anharmonicity and large rotational constants present in167

the three single-heavy-atom hydrides are driving this error beyond that of molecules168

containing multiple heavy atoms.169

Further constraining the data set by removing all of the triatomic species and am-170

monia produces an MAE of only 18.9 MHz (0.12%). The increase in mass and decrease171

in the rotational constant values continue to drive the error down for the comparison172

between theory and experiment. The nine molecules remaining in the present set range173

in shape from linear to oblate. They contain standard p-block elements, in addition174

to Mg, and consist of both open- and closed-shell molecules. Formaldehyde has the175

largest errors of 66.5 MHz and 56.2 MHz while the next largest come from c-C3H2 at176

30.2 MHz and 18.4 MHz. Save for HMgNC, all of the computed rotational constants are177

larger than their experimental counterparts. Consequently, the CcCR VPT2 QFF B0178

and C0 rotational constants can be said to be within 20 MHz or 0.12% of experiment for179

four-atom and larger molecular systems. Such accuracy should be sufficient for compar-180

ison with high-resolution gas-phase experiment and potentially even radioastronomical181

observation.182

Since QFFs have been utilized to compute the rotational constants from CcCR, fun-183

damental vibrational frequencies are also produced in this methodology. Consequently,184

the present work provides a novel means for analyzing the performance of CcCR QFF185

second-order vibrational perturbation theory (VPT2) in predicting fundamental vibra-186

tional frequencies. Fewer molecules of our sample set have gas-phase, experimental vi-187

brational spectral data available, but 12 molecules have at least one high-resolution188

experimentally known, gas-phase fundamental vibrational frequency giving 36 frequen-189

cies for comparison as given in Table 4. For this set, the MAE per fundamental is 5.7190

cm−1. Consequently, the typical error reported previously for the CcCR QFF VPT2191

fundamental vibrational frequencies as mentioned in the introduction is verified for a192

larger set of molecules. Furthermore, of the 36 frequencies contained in this set, only one193

has an error of greater than 15 cm−1 (SiC2 at 21.0 cm−1), and 23 are less than 5 cm−1
194

with errors for seven fundamentals of less than 2 cm−1.195

4. Conclusions196

Quantum chemically-computed rotational constants are accurately represented from197

CcCR QFFs provided that the molecules of interest contain more than two heavy atoms.198

The MAE for the B0 and C0 constants for our set of explored molecules is 34.6 MHz199

(0.14%) when the smallest hydrides are excluded. Larger (≥ 4 atoms) and less anhar-200

monic molecules have an even better MAE at 18.9 MHz (0.12%). The smallest B0 and201

C0 errors from our set are from the relatively massive HPSi molecule (0.4 MHz and 2.4202
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Table 4: The CcCR and Gas Phase Experimental Fundamental Vibrational Frequencies in cm−1.

Molecule CcCR Experiment Difference |Diff.| % Error
HCN ν1 3313.1 3311.47 1.6 1.6 0.05

ν2 719.7 711.97 7.7 7.7 0.45
ν3 2106.2 2096.84 9.3 9.3 1.09

HCO+ ν1 3089.8 3088.73951 1.0 1.0 0.03
ν2 2189.9 2183.94961 6.0 6.0 0.27
ν3 833.4 829.72 3.7 3.7 0.44

HNC ν1 3655.0 3652.65 2.3 2.3 0.06
ν2 2027.7 2023.86 3.8 3.8 0.19
ν3 474.8 462.72 12.1 12.1 2.61

H2O ν1 3659.7 3657.05 2.7 2.7 0.07
ν2 1595.8 1597.75 −1.9 1.9 0.12
ν3 3758.0 3755.93 2.1 2.1 0.06

HNO ν1 2688.8 2684 4.8 4.8 0.18
ν2 1577.1 1565 12.1 12.1 0.77
ν3 1510.8 1501 9.8 9.8 0.65

SiC2 ν1 1750.5 1746.0 4.5 4.5 0.26
ν2 844.7 840.6 4.1 4.1 0.49
ν3 175.4 196.37 −21.0 21.0 0.68

NH3 ν1 3445.5 3444 1.5 1.5 0.04
ν2 3346.0 3337 9.0 9.0 0.27
ν3 1628.7 1627 1.7 1.7 0.10
ν4 974.2 950 24.2 24.2 2.55

H2CO ν1 2832.6 2843 −10.4 10.4 0.37
ν2 2782.5 2782 0.5 0.5 0.02
ν3 1751.1 1746 5.1 5.1 0.29
ν4 1501.8 1500 1.8 1.8 0.12
ν5 1251.0 1249 2.0 2.0 0.16
ν6 1171.5 1167 4.5 4.5 0.39

HOCN ν1 3623.0 3610 13.0 13.0 0.36
ν2 2298.5 2302 −3.5 3.5 0.15
ν3 1231.3 1227 4.3 4.3 0.35
ν4 1087.4 1082 5.4 5.4 0.50
ν6 454.6 460 −5.4 5.4 1.17

HOCO+ ν1 3371.2 3375.37413 −4.2 4.2 0.12
NNOH+ ν1 3332.0 3330.91 1.1 1.1 0.03
c-C3H2 ν4 1278.8 1278.8 0.0 0.0 0.00

ν5 1065.1 1061.5 3.6 3.6 0.34
ν7 888.6 886.4 2.2 2.2 0.25
ν9 772.8 787.4 −14.6 14.6 1.85

c-C3H3
+ ν4 3131.7 3131.1447 0.6 0.6 0.02

Average 2.7 5.7 0.70
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MHz); the next smallest are for c-C3H3
+ at 7.8 MHz and 3.9 MHz implying that the203

CcCR approach is largely agnostic to atom type at this point. The largest of the well-204

behaved set are for formaldehyde at 66.5 MHz and 56.2 MHz, but most are less than 20205

MHz, roughly the MAE. Such accuracies are close to the limits that can be utilized for di-206

rect astronomical observation. While a forest of lines are present in any spectral window207

observed towards interesting astronomical objects, the CcCR QFF theoretical rotational208

spectral progressions will be shifted only slightly when compared to such observations.209

Additionally, the CcCR QFF is benchmarked to predict fundamental vibrational fre-210

quencies to within 5.7 cm−1, further showcasing the accuracy of this method in use for211

the past decade or so. While CCSD(T)-F12/cc-pVTZ-F12 has been shown to mirror the212

accuracies of the CcCR composite QFF in computing vibrational frequencies [90, 91],213

explicitly correlated theory cannot provide the same relative errors for the rotational214

constants. While composite schema for explicitly correlated methods may yet produce215

more accurate rotational constants [92], the canonical-CCSD(T)-based CcCR QFF re-216

mains one of the most accurate approaches for computing rotational constants developed217

thus far.218
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CHAPTER IV: NOBLE GASES IN RELATIVELY COMPLEX MOLECULES 

A. Introduction 

Noble gases have not been found to participate often in molecular bonding, but there are 

some significant bonds that include noble gas atoms. One particularly interesting molecule is 

HeH+ because it is composed of the most abundant elements in the universe even though Helium 

is not commonly involved in molecular interactions on Earth. Thorfin R. Hogness and E. G. 

Lunn first synthesized the helium hydride (HeH+) molecule in 1925 [28], from which chemists in 

the 1970s speculated that it could be observed in interstellar bodies, and eventually deduced that 

it was the first molecule formed in the universe [29]. Recently, a spectral line matching that 

expected for HeH+ was observed in planetary nebula NGC 7027 using NASA’s SOFIA telescope 

[29] [30]. This accomplishment shows many areas of astrochemistry being used in conjunction as 

discussed in Chapter I, combining laboratory experiments, computational predictions, and 

directing the vibrational spectroscope SOFIA based on ground-based rotational spectroscopy [28] 

[29] [30]. The unique spectra observed in the HeH+ molecule and the proton-bound HeHHe+ [31] 

implies that larger combinations of these bonds could create additional distinctive spectra in 

interstellar bodies like NGC 7027 [30]. However, synthesizing noble gas molecules on Earth is 

incredibly difficult, evidenced by the lack of experimental data. Computational chemistry ideally 

can fill in some of the gaps on the path toward astronomically observing such rare molecules. 

Helium, Neon, and Argon are chosen to study in this project because they are small 

enough and have few enough electrons to compute using the methods described previously. 

Additionally, they are also known to be among the ten most abundant atoms in the universe [32]. 
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Based on the bonding of HeH+ [30] and brightness of HeHHe+ [31], similar patterns of 

bonding are designed with common characteristics: two hydrogen atoms and two noble gas (Ng) 

atoms. For example, HeHHHe+ represents a dimer of the HeH+ molecule, which has already been 

observed and determined to be of importance to astrochemistry [29] [30]. Additionally, it contains 

the most common molecule in the universe in H2, and the second-most abundant atoms in the 

universe in He [32], making any potential molecule based on these moieties highly likely to exist 

in the universe even if relatively rare compared to their constituents. Two main structural 

isomers are investigated for geometrical optimization: a linear and cyclic combination. These 

two combinations offer multiple molecules of study by combining the three noble gases included 

in this project: He, Ne, Ar. This yielded twelve possible molecules shown in Table 3 below: 

Table IV.1: Noble Gas Molecules of Interest 
Structure Molecular Example Possible Formulas 
Cyclic 
Ng2H2+ 

 

He2H2+ 

Ne2H2+ 
Ar2H2+ 
NeHeH2+ 
ArHeH2+ 
ArNeH2+ 

Linear 
NgHHNg+ 

 

 

HeHHHe+ 
NeHHNe+ 
ArHHAr+ 
NeHHHe+ 
ArHHHe+ 
ArHHNe+ 

Ball-and-stick models are used to represent the large noble gas atoms and small hydrogen 
atoms. All six combinations were studied in both the cyclic and linear structures. 

 

B. Methods 

After narrowing the list of twelve molecules to six linear molecules, the six linear 

structures were analyzed using the complete CcCR method, followed by the F12-TZ method. 
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This decision is made in the hopes of showing consistency between the CBS CcCR extrapolation 

and the explicit correlation of F12-TZ. 

The intensities for each molecule’s infrared active modes are computed using the MP2/6-

31+G level of theory, which optimizes the geometry and computes the intensities of harmonic 

vibrational frequencies [33]. This level of theory was chosen based on the high speed of 

computation because the intensity does not rely heavily on the accuracy of the geometry and 

harmonic frequencies. 

C. Results and Conclusions 

Table IV.2: F12-TZ and CcCR Vibrational Frequencies (cm-1) and Intensities (km mol-1) 

 

The results from these six linear molecules’ F12-TZ and CcCR QFFs are compiled in 

Table 4 above. Immediately of note is that only the first two anharmonic CcCR vibrational 

frequencies for each molecule were reliable enough to include. The other nonincluded 

frequencies were inconsistent and showed signs of being highly influenced by noise than by clear 
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computation, but the reported modes were consistent across both QFFs and justified in including 

in the table. 

 Given that F12-TZ and CcCR are known to produce vibrational frequencies within 7 cm-1 

of experimental data, while CcCR produces better rotational constants to within 34 MHz of 

experimental data [18] [19] [20] [21] [27], Table 4 shows that the F12-TZ Harmonic and CcCR 

Harmonic frequencies are highly similar, often within a few wavenumbers of each other. This 

agreement suggests that the harmonic force constants in each method are similar, and the 

methods likely diverge in the anharmonic treatment in SPECTRO. However, only the first two 

vibrational modes from these molecules were reported. The other three seemed to reflect large 

amounts of noise rather than real data because of significant differences between the F12-TZ and 

CcCR results in addition to non-physical results and questionable behavior. This is likely due to 

the weak bonding present in many of these systems between the noble gas atom, especially 

Neon, and the small Hydrogen atom. This is also a consequence of the QFF only reaching the 

fourth-order expansion; with higher order, the accuracy should increase [5] [6]. 

A positive anharmonicity is observed in ν1 for ArHHAr+. This is of concern given the 

expectation that anharmonic frequencies should be smaller than harmonic frequencies [2], but this 

result could likely be another effect of the previously described weak bonding in the molecule. 

Further study should be used to study these lower frequency modes, especially within the 

vibrational bends of these molecules. 

These results are likely useful because they follow the predicted effect of noble gases on 

known frequencies. Particularly, the anharmonic H-H stretch in the H2+ molecule has been found 

at 2191 cm-1 [34], and the addition of noble gas ligands to this structure causes the frequency to 

drop substantially, as noted across all six molecules’ CcCR anharmonic frequencies. This agrees 



 47 

with quantum chemical theory according to the inverse relationship between mass and 

frequency. However, the magnitude of this change is harder to predict and did not show a 

correlation between ligand mass and change in frequency, likely due to other characteristics like 

bond strength and length. Therefore, these computed frequencies are likely reliable enough to 

begin comparing with astronomical observations. 

Several unique intensities are noticed for these molecules as well. In the three molecules 

of HeHHHe+, NeHHNe+, and ArHHAr+, only two frequencies are infrared active due to the 

internal symmetry exhibited. The same vibrational frequency is the most intense in all six 

molecules, however, the stretch between a noble gas and hydrogen, and this intensity only 

increases as the mass of the noble gas increases. This suggests that spectroscopic observations of 

these molecules will show incredibly bright modes at these corresponding frequencies, which 

can be incredibly useful for molecular identification. The largest intensity across all molecules is 

found to be 2983 (km/mol) for the antisymmetric Ar-H stretch in ArHHAr+, which is over one 

order of magnitude larger than the most intense 54-72 km/mol bending mode of water [35]. This 

ArHHAr+ brightness is uncommonly strong and implies that this stretch in particular will be 

evident if directly observed using infrared spectroscopy. Some molecules may produce 

vibrational frequencies in the similar range of the vibrations discussed above so their unique 

infrared brightness can directly narrow the possible molecules to the ones that occupy both that 

frequency and intensity. 

Table IV.3: CcCR Rotational Constants 
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 Given the fact that CcCR QFFs produce more accurate rotational constants than F12-TZ 

QFFs, only the CcCR rotational constants are included in the table above. The data in this table 

are likely reliable given that all six molecules share the basic linear geometry and differ in the 

ligand masses; therefore, theory suggests that the rotational constants should decrease with 

increased mass, which is consistent from the least massive HeHHHe+ to the most massive 

ArHHAr+ of the six molecules. Performing another type of QFF, possibly B3LYP, could help 

support this data being used for identification of these molecules in space.  

By using further corrections for higher-order electron correlation and quantum 

electrodynamics in CcCR QFFs, perhaps the results could become clearer, but such results are 

unlikely because these changes are most frequently noted in molecules containing atoms beyond 

the third row while increasing the computational cost and time immensely. Therefore, adding 

these corrections was deemed unnecessary and inefficient for the project at hand. Computing a 

global potential energy surface rather than a QFF in this project is one step that should hopefully 

improve these results. 

Upon optimization of the CcCR geometry, the first step in effective QFFs, only the linear 

structures would actually engage in complete bonding. All six cyclic structures failed to optimize 

because one noble gas atom bonded to both hydrogen atoms while the other noble gas atom 

effectively trailed off without bonding. As shown in Figure 1 below, this effectively turns the 

cyclic structure into another linear structure, HNgH+. 

Figure IV.1: Dissociation while Optimizing Cyclic Ng2H2+ Molecules 
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The inability of the proposed cyclic isomers to form an optimized geometry suggests that 

this cyclic structure is more of an intermediate or transition state of the collision between two 

NgH+ molecules than a bonded molecule. While this does not provide useful results for this 

project, further studies could investigate this collision and other dissociations of these molecules. 

For example, the differences between HeHHHe+ and HeHH+ may help determine which parts of 

these molecules are muddying the anharmonic frequencies. The dissociation energies of 

components like HeHH+, HeH+, and He could also show the strength of the molecule’s full bond. 

By determining how the frequencies change upon these dissociations, the interaction of these 

molecules and components may be better observed in highly energetic media, such as nebulae, 

which would lend insight into possible observation of the complete NgHHNg+ molecules. 
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CHAPTER V: CONCLUSION 

 The F12-TZ and CcCR methods have been shown to have applicability in astrochemistry 

through accurate computation of observable characteristics of astromolecules. F12-TZ is reliable 

enough for computing vibrational frequencies while CcCR is even more reliable for computing 

rotational constants of various astromolecules [21] [27]. The accuracy between experimental and 

computational determination of these characteristics show that computational methods are 

reliable and effective for the time and cost associated with them. This fine balance has been 

successful for predicting vibrational and rotational spectra of silicon oxides and various 

interstellar molecules. This accuracy can also be extended to rare noble gas molecules discussed 

previously, which suggests that computational methods can be applied to an endless array of 

molecules that may not have even been imagined yet. Computational astrochemistry has 

implications not only on finding molecules in tremendous interstellar bodies but also on 

expanding the breadth of future molecules that can be imagined and eventually synthesized in 

laboratories. 
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