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Abstract. In this paper, we investigate the stabilization of a one-dimensional thermoelastic
laminated beam with structural damping coupled with a heat equation modeling an expectedly
dissipative effect through heat conduction governed by Gurtin–Pipkin thermal law. Under some
assumptions on the relaxation function g, we establish the well-posedness of the problem by using
Lumer–Phillips theorem. Furthermore, we prove the exponential stability and lack of exponential
stability depending on a stability number by using the perturbed energy method and Gearhart–
Herbst–Prüss–Huang theorem, respectively.

Keywords: laminated beam, Gurtin–Pipkin thermal law, well-posedness, exponential stability, lack
of exponential stability.

1 Introduction

In this paper, we investigate the well-posedness and asymptotic stability of a thermoelastic
laminated beam with structural damping and Gurtin–Pipkin thermal law, i.e., for (x, t) ∈
(0, 1)× (0,+∞),

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0,

kθt −
1

β

∞∫
0

g(s)θxx(t− s) ds+ δ(3w − ψ)tx = 0

(1)
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with the initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), x ∈ [0, 1],

w(x, 0) = w0(x), θ(x, 0) = θ0(x), x ∈ [0, 1],
(21)

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), x ∈ [0, 1],

wt(x, 0) = w1(x), θ(−s)|s>0 = θ0(s), x ∈ [0, 1],

ϕx(0, t) = ψ(0, t) = w(0, t) = θx(0, t) = 0, t ∈ [0,+∞),

ϕ(1, t) = ψx(1, t) = wx(1, t) = θ(1, t) = 0, t ∈ [0,+∞),
(22)

where the functions ϕ(x, t), ψ(x, t), 3w(x, t) − ψ(x, t), θ(x, t), g(s) denote the trans-
verse displacement of the beam, which departs from its equilibrium position, rotation
angle, effective rotation angle, relative temperature, and the memory kernel, respectively;
w(x, t) is proportional to the amount of slip along the interface at time t and longitudinal
spatial variable x; g(s) is the heat conductivity relaxation kernel, whose properties will
be specified later; (1)3 describes the dynamics of the slip; ρ, G, Iρ, D, γ, β are the density
of the beams, shear stiffness, mass moment of inertia, flexural rigidity, adhesive stiffness
of the beams, and adhesive damping parameter, respectively. Moreover, ρ, G, Iρ, D, δ, γ,
α, k, β are positive constant.

Problem (1) is closely related to 1D thermoelastic Timoshenko beam model in the
sense that (1) reduces to the Timoshenko system with Gurtin–Pipkin thermal law [12]
studied by Dell’Oro and Pata [9] if the slip w is assumed to be identically zero. When
there is no thermal effect, problem (1) is called laminated beam. Hansen [13] derived
a model for a two-layered plate in which slip could occur along the interface. Concerned
with the beam analog, with strain-rate damping as in the above described plate model [13,
Eq. (3.16)], the basic evolution equations for the system are given by

ρϕtt + Sx = 0, Iρ(3w − ψ)tt −Mx − S = 0,

Iρwtt −Dwxx + S +
4

3
γw +

4

3
αwt = 0,

where S is the shear force, and M is the bending moment. The constitutive equations are
S = G(ψ − ϕx), M = D(3w − ψ)x. Hansen and Spies [14] derived the mathematical
model for two-layered beams with structural damping due to the interfacial slip, namely,

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) = 0,

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0

(3)

for (x, t) ∈ (0, 1) × (0,+∞). Later on, Wang et al. [29] considered system (3) with the
cantilever boundary conditions and two different wave speeds (

√
G/ρ and

√
D/Iρ), they

pointed out that system (3) can reach the asymptotic stability, but it does not reach the
exponential stability due to the action of the slip w. To achieve the exponential decay
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result, the authors in [29] added an additional boundary control such that the boundary
conditions become

ϕ(0, t) = ξ(0, t) = w(0, t) = 0, wx(1, t) = 0,

3w(1, t)− ξ(1, t)− ϕx(1, t) = u1(t) := k1ϕt(1, t),

ξx(1, t) = u2(t) := −k2ξt(1, t),

where ξ = 3w − ψ, and k1 and k2 are positive constant feedback gains. Furthermore,
Cao et al. [3] proved the exponential stability for system (3) with following boundary
conditions:

ψ(0, t)− ϕx(0, t) = u1(t) := −k1ϕt(0, t)− ϕ(0, t),
3wx(1, t)− ψx(1, t) = u2(t) := −k2ξt(1, t)− ξ(1, t),

provided k1 6=
√
ρ/G and k2 6=

√
Iρ/D. More importantly, the authors proved that the

dominant part of the system is itself exponentially stable.
Concerning a laminated beam with thermoelastic dissipation effective in the bending

moment, we have

ρϕtt + Sx = 0, Iρ(3w − ψ)tt − M̃x − S = 0,

Iρwtt −Dwxx + S +
4

3
γw +

4

3
αwt = 0,

kθt + qx + δ(3w − ψ)tx = 0,

(4)

where θ is the temperature difference, q denotes the heat flux, S = G(ψ − ϕx), and
M̃ = D(3w − ψ)x − δθ. Derivative of the heat flux term in the formulation of the rate
equation

τqt + κq + θx = 0 (5)

was introduced independently by Cattaneo [4] and Vernotte [28] with a fixed constant
κ > 0 and small τ > 0. Combining (4) and (5), Apalara [1] considered a laminated beam
with structural damping and second sound

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0,

kθt + qx + δ(3w − ψ)tx = 0,

τqt + κq + θx = 0

(6)

for (x, t) ∈ (0, 1) × (0,+∞). The stabilization of system (6) has been analyzed in [1],
where Apalara obtained the well-posedness and uniform stability results depending on
the following stability number:

χτ =

(
1− τkG

ρ

)(
D

Iρ
− G

ρ

)
− τGδ2

ρIρ
.
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Mukiawa et al. [23] studied a thermoelastic laminated beam system without structural
damping, but with a finite memory acting on the bending moment and established a gen-
eral and optimal decay estimate. If we assume Gurtin–Pipkin thermal law [12] of heat
conduction

βq(t) +

∞∫
0

g(s)θx(t− s) ds = 0, (7)

where g is called the memory kernel, we can obtain equation (1)4. The aim of this paper
is to study the well-posedness and asymptotic stability of a thermoelastic laminated beam
with structural damping and Gurtin–Pipkin thermal law, i.e., (1)–(2). In fact, Cattaneo
law (5) can be reduced as a particular instance of (7), which have been proved in [9]. For
other asymptotic behavior results to laminated beams, we refer the reader to [6,14,16,21,
29] and the references therein.

For the case of the beams with Gurtin–Pipkin thermal law [12], a large number of
interesting decay results depending on the stability number have been established. Re-
cently, Dell’Oro and Pata [9] considered Timoshenko system with Gurtin–Pipkin thermal
law, i.e., for (x, t) ∈ (0, L)× (0,+∞),

ρ1ϕtt − κ(ϕx + ψ)x = 0,

ρ2ψtt − bψxx + κ(ϕx + ψ) + δθx = 0,

ρ3θt −
1

β

∞∫
0

g(s)θxx(t− s) ds+ δψtx = 0,

where ρ1, κ, ρ2, b, δ, ρ3, β are positive constants. The authors obtained the exponential
stability depending on the stability number

ξg =

(
ρ1
ρ3κ
− β

g(0)

)(
ρ1
κ
− ρ2

b

)
− β

g(0)

ρ1δ
2

ρ3κb
.

Later on, Dell’Oro [8] considered the thermoelastic Bresse–Gurtin–Pipkin system, i.e.,
for (x, t) ∈ (0, L)× (0,+∞),

ρ1ϕtt − k(ϕx + ψ + lw)x − k0l(wx − lϕ) = 0,

ρ2ψtt − bψxx + k(ϕx + ψ + lw) + δθx = 0,

ρ1wtt − k0(wx − lϕ)x + kl(ϕx + ψ + lw) = 0,

ρ3θt − k1

∞∫
0

g(s)θxx(t− s) ds+ δψtx = 0,

and obtained that the system is exponentially stable if and only if

αg :=

(
ρ1
ρ3k
− 1

g(0)k1

)(
ρ1
k
− ρ2

b

)
− 1

g(0)k1

ρ1δ
2

ρ3bk
= 0 and k = k0.

For other related results, we refer the reader to [5, 17–20, 26].
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In this paper, we first prove the well-posedness by using Lumer–Phillips theorem.
And then, by using the perturbed energy method, we establish an exponential stability
result depending on the stability number

χg =

(
1− β

g(0)

kG

ρ

)(
D

Iρ
− G

ρ

)
− β

g(0)

Gδ2

ρIρ
.

To overcome the difficulty brought by Gurtin–Pipkin thermal law, we use some appropri-
ated multipliers to construct a Lyapunov functional. For the case χg 6= 0, we prove the
lack of exponential stability by using Gearhart–Herbst–Prüss–Huang theorem.

The remaining part of this paper is organized as follows. In Section 2, we introduce
some hypotheses and present our main results. In Section 3, we prove the well-posedness
for problem (1)–(2). In Section 4, we establish an exponential decay result to prob-
lem (1)–(2). In Section 5, we prove the lack of exponential stability for problem (1)–(2).
Section 6 is devoted to the conclusion and open problem. Throughout this paper, we use
c to denote a generic positive constant.

2 Preliminaries and main results

In this section, we first introduce some notation and present our hypotheses. Then we give
some lemmas, which will be used in the proof of main results.

To deal with the memory, following [7], we introduce a new auxiliary variable η =
ηt(x, s) by (see also [9, 10])

η = ηt(x, s) =

s∫
0

θ(x, t− σ) dσ, (x, t, s) ∈ [0, 1]× [0,∞)× R+,

which satisfies the boundary conditions ηt(1, s) = 0, ηtx(0, s) = 0. Then θ satisfies
ηt + ηs = θ(t), where ηt(x, 0) = 0, t ∈ [0,∞) and η0(x, s) = η0(s) =

∫ s
0
θ0(σ) dσ,

s ∈ R+. Assume g(∞) = 0, a change of variable and a formal integration by parts yield
∞∫
0

g(s)θxx(t− s) ds = −
∞∫
0

g′(s)ηxx(s) ds.

Now, we denote µ(s) = −g′(s), then
∫∞
0
g(s)θxx(t−s) ds =

∫∞
0
µ(s)ηxx(s) ds. Hence

system (1)–(2) can be written as

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3w − ψ)tt −D(3w − ψ)xx −G(ψ − ϕx) + δθx = 0,

Iρwtt −Dwxx +G(ψ − ϕx) +
4

3
γw +

4

3
αwt = 0,

kθt −
1

β

∞∫
0

µ(s)ηxx(s) ds+ δ(3w − ψ)tx = 0,

ηt + ηs = θ

(8)
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for (x, t) ∈ (0, 1)× (0,+∞) with initial and boundary conditions

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), w(x, 0) = w0(x), x ∈ [0, 1],

θ(x, 0) = θ0(x), x ∈ [0, 1],
(91)

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), wt(x, 0) = w1(x), x ∈ [0, 1],

η(x, 0) = 0, η0(x, s) =

s∫
0

θ0(x, σ) dσ, x ∈ [0, 1],

ϕx(0, t) = ψ(0, t) = w(0, t) = θx(0, t) = ηtx(0, s) = 0, t ∈ [0,+∞),
(92)

ϕ(1, t) = ψx(1, t) = wx(1, t) = θ(1, t) = ηt(1, s) = 0, t ∈ [0,+∞).

For the memory kernel g, we assume g ∈ C2(R+) ∩W 1,1(R+) and

(G1) g is a bounded convex summable function on [0,∞);
(G2) g has a total mass

∫∞
0
g(s) ds = 1;

(G3) g′ is an absolutely continuous function on R+ so that

g′(s) 6 0, g′′(s) > 0, g′(0) = lim
s→0

g′(s) ∈ (−∞, 0);

(G4) There exists a positive constant ξ so that, for almost every s > 0,

g′′(s) + ξg′(s) > 0.

Remark 1. In particular, µ is summable on R+ with
∫∞
0
µ(s) ds = g(0). Furthermore,

noting that g(s) has total mass 1, we have
∫∞
0
sµ(s) ds = 1.

Next, we introduce the vector function U = (ϕ, u, 3w − ψ, 3v − u, w, v, θ, η)T
with u = ϕt and v = wt. Then system (8)–(9) can be written as

∂tU = AU,
U(x, 0) = U0(x) = (ϕ0, ϕ1, 3w0 − ψ0, 3w1 − ψ1, w0, w1, θ0, η0)

T,
(10)

where A is a linear operator defined by

AU =



u
−Gρ (ψ − ϕx)x

3v − u
D
Iρ
(3w − ψ)xx + G

Iρ
(ψ − ϕx)− δ

Iρ
θx

v
D
Iρ
wxx − G

Iρ
(ψ−ϕx)− 4γ

3Iρ
w − 4α

3Iρ
v

1
kβ

∞∫
0

µ(s)ηxx(s) ds− δ
k (3v − u)x

−ηs + θ


.
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We consider the following spaces:

H1
∗ (0, 1) =

{
η
∣∣ η ∈ H1(0, 1): η(0) = 0

}
,

H̃1
∗ (0, 1) =

{
η
∣∣ η ∈ H1(0, 1): η(1) = 0

}
,

H2
∗ (0, 1) = H2(0, 1) ∩H1

∗ (0, 1), H̃2
∗ (0, 1) = H2(0, 1) ∩ H̃1

∗ (0, 1)

and the energy space

H = H̃1
∗ (0, 1)× L2(0, 1)×H1

∗ (0, 1)× L2(0, 1)×H1
∗ (0, 1)

× L2(0, 1)× L2(0, 1)×M,

where

M = L2
µ

(
R+, H̃1

∗ (0, 1)
)
=

{
η : R+ → H̃1

∗ (0, 1)
∣∣∣ ∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds <∞

}

equipped with the norm ‖ϕ‖2M =
∫∞
0
µ(s)‖ϕx(s)‖22 ds and inner product 〈ϕ,ψ〉M =∫∞

0
µ(s)

∫ 1

0
ϕx(s)ψx(s) dxd. In particular, 〈−ηs, η〉M = (1/2)

∫∞
0
µ′(s)‖ηx(s)‖22 ds.

Moreover, in light of (G4) on µ, we deduce

ξ

∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds 6 −

∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds. (11)

Besides,H is the Hilbert space equipped with the norm

‖U‖2H = ρ‖u‖22 + Iρ‖3v − u‖22 + 3Iρ‖v‖22 +G
∥∥(ψ − ϕx)∥∥22 +D

∥∥(3w − ψ)x∥∥22
+ 4γ‖w‖22 + 3D‖wx‖22 + k‖θ‖22 +

1

β
‖η‖2M

and the inner product

(U, Ũ)H = ρ

1∫
0

uũdx+ Iρ

1∫
0

(3v − u)(3ṽ − ũ) dx+ 3Iρ

1∫
0

vṽ dx+ k

1∫
0

θθ̃ dx

+G

1∫
0

(ψ − ϕx)(ψ̃ − ϕ̃x) dx+D

1∫
0

(3w − ψ)x(3w̃ − ψ̃)x dx

+ 4γ

1∫
0

ww̃ dx+ 3D

1∫
0

wxw̃x dx+
1

β

∞∫
0

µ(s)

1∫
0

ηxη̃x dxds

forU=(ϕ, u, 3w−ψ, 3v−u, w, v, θ, η)T and Ũ=(ϕ̃, ũ, 3w̃−ψ̃, 3ṽ−ũ, w̃, ṽ, θ̃, η̃)T.
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The domain of A is given by

D(A) =

{
U ∈ H

∣∣∣ ϕ ∈ H̃2
∗ (0, 1), u ∈ H̃1

∗ (0, 1), 3w − ψ ∈ H2
∗ (0, 1),

3v − u ∈ H1
∗ (0, 1), w ∈ H2

∗ (0, 1), v ∈ H1
∗ (0, 1),

θ ∈ H̃1
∗ (0, 1), η ∈ N ,

∞∫
0

µ(s)η(s) ds ∈ H̃2
∗ (0, 1),

ϕx(0, t) = ψx(1, t) = wx(1, t) = θx(0, t) = ηx(0, s) = 0

}
,

where N = {η ∈M | ηs ∈M, η(0) = 0}. Clearly, D(A) is dense inH.
The energy associated with problem (8)–(9) is defined by

E(t) =
1

2

(
ρ

1∫
0

ϕ2
t dx+ Iρ

1∫
0

(3wt − ψt)2 dx+ 4γ

1∫
0

w2 dx

+ 3Iρ

1∫
0

w2
t dx+G

1∫
0

(ψ − ϕx)2 dx+D

1∫
0

(3wx − ψx)2 dx

+ 3D

1∫
0

w2
x dx+ k

1∫
0

θ2 dx+
1

β

∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds

)
. (12)

Now, we give our main results in this paper as follows.

Theorem 1. LetU0∈H, then problem (10) admits a unique weak solutionU ∈C(R+;H).
Moreover, if U0 ∈ D(A), then U ∈ C(R+;D(A)) ∩ C1(R+;H).

Theorem 2. Assume that χg = 0. Let U0 ∈ H, then there exist positive constants a, b
such that the energy E(t) associated with problem (8)–(9) satisfies

E(t) 6 ae−bt, t > 0. (13)

Theorem 3. Assume that χg 6= 0. Let U0 ∈ H, then problem (8)–(9) is not exponentially
stable.

Based on two propositions from [9, Props. 11, 12], we give the full equivalence
between Cattaneo law and Gurtin–Pipkin thermal law.

Theorem 4. If the laminated beam with structural damping and Cattaneo law is exponen-
tially stable, then so is the laminated beam with structural damping and Gurtin–Pipkin
thermal law, and vice versa.
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3 Well-posedness: proof of Theorem 1

To obtain the well-posedness, we need to prove that A : D(A)→ H is a maximal mono-
tone operator. To achieve this goal, we need to prove that A is dissipative and Id − A is
surjective.

Using the inner product and integration by parts, we can easily obtain

(AU,U)H = −4α
1∫

0

w2
t dx+

1

β

∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds 6 0

for any U ∈ D(A). Hence A is dissipative.
Next, we turn to prove Id − A is surjective, i.e., for any F = (f1, f2, . . . , f8) ∈ H,

there exists V = (v1, v2, . . . , v8) ∈ D(A) satisfying

(Id−A)V = F, (14)

that is,

v1 − v2 = f1, v3 − v4 = f3, v5 − v6 = f5, v8 + ∂sv8 − v7 = f8,

ρv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρf2,

Iρv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρf4,(
Iρ +

4

3
α

)
v6 −G∂xv1 −Gv3 +

(
3G+

4γ

3

)
v5 −D∂xxv5 = Iρf6,

kv7 −
1

β

∞∫
0

µ(s)∂xxv8 ds+ δ∂xv4 = kf7.

(15)

From (15)1 and v8(0) = 0 we have

v2 = v1 − f1, v4 = v3 − f3, v6 = v5 − f5,

v8 =
(
1− e−s

)
v7 +

s∫
0

eτ−sf8(τ) dτ.
(16)

Inserting (16) into (15)2, (15)3, (15)4 and (15)5, we obtain

ρv1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρ(f1 + f2),

(Iρ +G)v3 +G∂xv1 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρ(f3 + f4),(
Iρ + 3G+

4γ

3
+

4α

3

)
v5 −G∂xv1 −Gv3 −D∂xxv5 = Iρ(f5 + f6) +

4

3
αf5,

kv7 −
1

β

∞∫
0

(
1− e−s

)
µ(s)∂xxv7 ds+ δ∂xv3

= kf7 +
1

β

∞∫
0

µ(s)

s∫
0

eτ−s∂xxf8(τ) dτ ds+ δ∂xf3.

(17)
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Multiplying (17) by ṽ1, ṽ3, 3ṽ5, and ṽ7, respectively, and integrating over (0, 1), we can
obtain

1∫
0

ρv1ṽ1 dx−
1∫

0

G∂xxv1ṽ1 dx−
1∫

0

G∂xv3ṽ1 dx+

1∫
0

3G∂xv5ṽ1 dx

=

1∫
0

ρ(f1 + f2)ṽ1 dx,

1∫
0

(Iρ +G)v3ṽ3 dx+

1∫
0

G∂xv1ṽ3 dx−
1∫

0

D∂xxv3ṽ3 dx−
1∫

0

3Gv5ṽ3 dx+

1∫
0

δ∂xv7ṽ3 dx

=

1∫
0

Iρf4ṽ3 dx,

1∫
0

(3Iρ + 9G+ 4γ + 4α)v5ṽ5 dx−
1∫

0

3G∂xv1ṽ5 dx−
1∫

0

3Gv3ṽ5 dx−
1∫

0

3D∂xxv5ṽ5 dx

=

1∫
0

3Iρ(f5 + f6)ṽ5 dx+

1∫
0

4αf5ṽ5 dx,

1∫
0

kv7ṽ7 dx− 1

β

1∫
0

ṽ7

∞∫
0

(
1− e−s

)
µ(s)∂xxv7 dsdx+

1∫
0

δ∂xv3ṽ7 dx

=

1∫
0

δ∂xf3ṽ7 dx+
1

β

1∫
0

ṽ7

∞∫
0

µ(s)

s∫
0

eτ−s∂xxf8(τ) dτ dsdx+

1∫
0

kf7ṽ7 dx.

(18)

From (18) we have the following variational formulation:

B
(
(v1, v3, v5, v7)

T, (ṽ1, ṽ3, ṽ5, ṽ7)
T
)
= F

(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)

(19)

for all (ṽ1, ṽ3, ṽ5, ṽ7)T ∈ H̃1
∗ (0, 1)×H1

∗ (0, 1)×H1
∗ (0, 1)× L2(0, 1), where

B
(
(v1, v3, v5, v7)

T, (ṽ1, ṽ3, ṽ5, ṽ7)
T)

=

1∫
0

G(−∂xv1 − v3 + 3v5)(−∂xṽ1 − ṽ3 + 3ṽ5) dx+

1∫
0

ρv1ṽ1 dx+

1∫
0

Iρv3ṽ3 dx

+

1∫
0

(3Iρ + 4γ + 4α)v5ṽ5 dx+

1∫
0

kv7ṽ7 dx+

1∫
0

D∂xv3∂xṽ3 dx+

1∫
0

3D∂xv5∂xṽ5 dx

+

1∫
0

1

β

(
g(0)−

∞∫
0

e−sµ(s) ds

)
∂xv7∂xṽ7 dx+ δ

1∫
0

(∂xv7)ṽ3 dx+ δ

1∫
0

(∂xv3)ṽ7 dx
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and

F
(
(ṽ1, ṽ3, ṽ5, ṽ7)

T
)

=

1∫
0

[
ρ(f1 + f2)ṽ1 + Iρ(f3 + f4)ṽ3 + 3Iρ(f5 + f6)ṽ5

+ 4αf5ṽ5 + δ∂xf3ṽ7 + kf7ṽ7
]
dx

+
1

β

1∫
0

ṽ7

∞∫
0

µ(s)

s∫
0

eτ−s∂xxf8(τ) dτ dsdx.

Now, we introduce the Hilbert space V = H̃1
∗ (0, 1) × H1

∗ (0, 1) × H1
∗ (0, 1) × L2(0, 1)

equipped with the norm

‖(v1, v3, v5, v7)‖2V
= ‖ − ∂xv1 − v3 + 3v5‖22 + ‖v1‖22 + ‖∂xv3‖22 + ‖∂xv5‖22 + ‖∂xv7‖22.

Then B(·, ·) and F (·) are bounded. Furthermore, we obtain that there exists a positive
constant c such that

B
(
(v1, v3, v5, v7)

T, (v1, v3, v5, v7)
T
)
> c
∥∥(v1, v3, v5, v7)∥∥2V .

Hence B(·, ·) is coercive.
As a consequence, by applying Lax–Milgram lemma [24] we can obtain that (18) has

a unique solution (v1, v3, v5, v7)
T ∈ V . Then, substituting v1, v3, v5 into (16)1, we obtain

v2 ∈ H̃1
∗ (0, 1), v4 ∈ H1

∗ (0, 1), v6 ∈ H1
∗ (0, 1).

Using (16)2 and the method in [30, Prop. 2.2], we have

∞∫
0

µ(s)
∥∥∂xv8(s)∥∥22 ds 6 2g(0)‖∂xv7‖22 + 2‖f8‖2M,

which gives us v8 ∈ M. Then from (15)5 we can obtain ∂sv8 = v7 − v8 + f8 ∈ M.
Hence, v8 ∈ N . Next, we turn to prove that

v1 ∈ H̃2
∗ (0, 1), v3 ∈ H2

∗ (0, 1), v5 ∈ H2
∗ (0, 1), v7 ∈ H̃1

∗ (0, 1),

∂xv1(0) = ∂xv3(1) = ∂xv5(1) = ∂xv7(0) = 0.

Now, if (ṽ3, ṽ5, ṽ7) ≡ (0, 0, 0) ∈ H1
∗ (0, 1)×H1

∗ (0, 1)× L2(0, 1), then (19) reduces to

1∫
0

G(∂xv1 − v3 + 3v5)∂xṽ1 dx =

1∫
0

ρv1ṽ1 dx−
1∫

0

ρ(f1 + f2)ṽ1 dx (20)
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for all ṽ1 ∈ H̃1
∗ (0, 1), which implies

G∂xxv1 = ρv1 −G∂xv3 + 3G∂xv5 − ρ(f1 + f2) ∈ L2(0, 1). (21)

From the regularity theory for the linear elliptic equations, we obtain v1 ∈ H̃2
∗ (0, 1).

Moreover, (20) is also true for any φ ∈ C1([0, 1]) ⊂ H1
∗ (0, 1) (φ(1) = 0). Thus, we get

1∫
0

G∂xv1∂xφdx+

1∫
0

ρv1φdx−
1∫

0

G∂xv3φ dx+

1∫
0

3G∂xv5φdx

=

1∫
0

ρ(f1 + f2)φ dx

for all φ ∈ C1([0, 1]), φ(1) = 0. Using (21) and the integration by parts, we have

∂xv1(0)φ(0) = 0, φ ∈ C1
(
[0, 1]

)
, φ(1) = 0.

Hence, ∂xv1(0) = 0. In the same way, we get

v3 ∈ H2
∗ (0, 1), v5 ∈ H2

∗ (0, 1), v7 ∈ H̃1
∗ (0, 1),

∂xv3(1) = ∂xv5(1) = ∂xv7(0) = 0.

From the classical regularity theory for the linear elliptic equations we know that there
exists a unique solution U ∈ D(A) such that (14) is satisfied. So the operator Id −A is
surjective.

As a consequence, A is a maximal monotone operator. Therefore, we established the
well-posedness result stated in Theorem 1 by using Lumer–Phillips theorem (see [2]).

4 Exponential decay: proof of Theorem 2

In this section, we prove the exponential stability for system (8)–(9) when χg = 0. It will
be achieved by using the perturbed energy method. Before we prove our result, we need
some useful lemmas.

Lemma 1. Let (ϕ,ψ,w, θ) be the solution of problem (8)–(9). Then the energy function
E(t) satisfies

d

dt
E(t) = −4α

1∫
0

w2
t dx+

1

β

∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds 6 0, t > 0. (22)

Proof. Multiplying (8)1 by ϕt, (8)2 by (3w − ψ)t, (8)3 by 3wt, (8)4 by θ and integrat-
ing over (0, 1), using integration by parts and the boundary conditions in (9), we can
obtain (22). This completes the proof.
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Lemma 2. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional F1(t) =

−(k/g(0))
∫∞
0
µ(s)

∫ 1

0
θη(s) dx ds satisfies the estimate

F ′1(t) 6 −
k

2

1∫
0

θ2 dx− c
(
1 +

1

ε1

) ∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds

+ ε1

1∫
0

(3wt − ψt)2 dx (23)

for any ε1 > 0.

Proof. Taking the derivative of F1(t) with respect to t, using (8)4, (8)5 and integrating by
parts, we get

F ′1(t) = −k
1∫

0

θ2 dx+
k

g(0)

∞∫
0

µ(s)

1∫
0

θηs(s) dxds+
1

βg(0)

∥∥∥∥∥
∞∫
0

µ(s)ηx(s) ds

∥∥∥∥∥
2

2

− δ

g(0)

∞∫
0

µ(s)

1∫
0

(3w − ψ)tηx(s) dx ds.

Using integration by parts, Poincaré’s inequality [27, Lemma 2.2], and Young’s inequality
with ε > 0 and ε1 > 0, we infer that

k

g(0)

∞∫
0

µ(s)

1∫
0

θηs(s) dxds

= − k

g(0)

∞∫
0

µ′(s)

1∫
0

θη(s) dxds 6 ε

1∫
0

θ2 dx− c

ε

∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds,

1

βg(0)

∥∥∥∥∥
∞∫
0

µ(s)ηx(s) ds

∥∥∥∥∥
2

2

6 c

∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds,− δ

g(0)

∞∫
0

µ(s)

1∫
0

(3w − ψ)tηx(s) dxds

6 ε1

1∫
0

(3wt − ψt)2 dx+
c

ε1

∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds.

Here we take ε = k/2, then we can get (23) by using above inequalities and (11). This
completes the proof.
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Lemma 3. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional F2(t) =

(kIρ/δ)
∫ 1

0
(3w − ψ)t

∫ x
0
θ(y) dy dx satisfies the estimate

F ′2(t) 6 −
Iρ
2

1∫
0

(3wt − ψt)2 dx+ ε2

1∫
0

(ψ − ϕx)2 dx+ ε2

1∫
0

(3wx − ψx)2 dx

+ c

(
1 +

1

ε2

) 1∫
0

θ2 dx− c
∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds (24)

for any ε2 > 0.

Proof. Taking the derivative of F2(t) with respect to t, using (8)2, (8)4 and integrating by
parts, we get

F ′2(t) = −Iρ

1∫
0

(3wt − ψt)2 dx+
kG

δ

1∫
0

(ψ − ϕx)
x∫

0

θ(y) dy dx

− kD

δ

1∫
0

(3w − ψ)xθ dx+ k

1∫
0

θ2 dx+
Iρ
βδ

∞∫
0

µ(s)

1∫
0

(3w − ψ)tηx(s) dxds.

Using (11), Young’s and Cauchy–Schwarz inequalities with ε2 > 0, we establish esti-
mate (24).

Lemma 4. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional

F3(t) = ρD

1∫
0

ϕt(3w − ψ)x dx− IρG
1∫

0

(3w − ψ)t(ψ − ϕx) dx

+
ρkIρ
δ

(
D

Iρ
− G

ρ

) 1∫
0

θϕt dx−
ρIρ
βδ

(
D

Iρ
− G

ρ

) ∞∫
0

µ(s)

1∫
0

(ψ − ϕx)ηx(s) dxds

satisfies the estimate

F ′3(t) 6 −
G2

2

1∫
0

(ψ − ϕx)2 dx+ c

1∫
0

[
(3wt − ψt)2 + w2

t

]
dx

− c
∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds. (25)
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Proof. By (8)1, (8)2, (8)4 and integrating by parts, we get

F ′3(t) = −G2

1∫
0

(ψ − ϕx)2 dx− IρG
1∫

0

(3w − ψ)tψt dx

− ρIρ
βδ

(
D

Iρ
− G

ρ

) ∞∫
0

µ(s)

1∫
0

ψtηx(s) dx ds

− ρIρ
βδ

(
D

Iρ
− G

ρ

) ∞∫
0

µ′(s)

1∫
0

(ψ − ϕx)ηx(s) dxds

− ρIρ
δ

g(0)

β
χg

1∫
0

θx(ψ − ϕx) dx.

Similarly as in [1, Lemma 2.4], using χg = 0, Young’s and Cauchy–Schwarz inequalities,
and the fact that ψt = −(3wt − ψt) + 3wt, we get (25).

Lemma 5. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional F4(t) =

−ρ
∫ 1

0
ϕϕt dx satisfies the estimate

F ′4(t) 6 −ρ
1∫

0

ϕ2
t dx+ ε4

1∫
0

(3wx − ψx)2dx+ ε4

1∫
0

w2
xdx

+ c

(
1 +

1

ε4

) 1∫
0

(ψ − ϕx)2 dx (26)

for any ε4 > 0.

Proof. By differentiating F4(t) with respect to t, using (8)1 and integrating by parts, we
obtain

F ′4(t) = −ρ
1∫

0

ϕ2
tdx+G

1∫
0

(ψ − ϕx)2 dx−G
1∫

0

ψ(ψ − ϕx) dx.

Using Young’s and Poincaré’s inequalities, we obtain

F ′4(t) 6 −ρ
1∫

0

ϕ2
t d + c

(
1 +

1

ε4

) 1∫
0

(ψ − ϕx)2 dx+ ε4

1∫
0

ψ2
x dx
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for ε4 > 0. Note that

1∫
0

ψ2
xdx =

1∫
0

(ψx − 3wx + 3wx)
2dx 6 2

1∫
0

(3wx − ψx)2dx+ 18

1∫
0

w2
xdx.

Then estimate (26) is obtained.

Lemma 6. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional F5(t) =

Iρ
∫ 1

0
(3w − ψ)(3w − ψ)t dx satisfies the estimate

F ′5(t) 6 −
D

2

1∫
0

(3wx − ψx)2 dx+ Iρ

1∫
0

(3wt − ψt)2 dx

+ c

1∫
0

(ψ − ϕx)2 dx+ c

1∫
0

θ2 dx. (27)

Proof. Taking the derivative of F5(t) with respect to t, using (8)2 and integrating by parts,
we get

F ′5(t) = −D
1∫

0

(3wx − ψx)2dx+ Iρ

1∫
0

(3wt − ψt)2dx

+G

1∫
0

(ψ − ϕx)(3w − ψ) dx+ δ

1∫
0

(3w − ψ)xθ dx.

Then, using Poincaré’s and Young’s inequalities, we arrive at (27).

Lemma 7. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). Then the functional F6(t) =

Iρ
∫ 1

0
wwt dx satisfies the estimate

F ′6(t) 6 −
2γ

3

1∫
0

w2dx−D
1∫

0

w2
x dx+ c

1∫
0

w2
t dx+ c

1∫
0

(ψ − ϕx)2 dx. (28)

Proof. By differentiating F6(t) with respect to t, using (8)3 and integrating by parts, then
use Young’s inequality to obtain (28). This completes the proof.

Now we define the following Lyapunov functional

L (t) = NE(t) +N1F1(t) +N2F2(t) +N3F3(t)

+ F4(t) + F5(t) + F6(t),

where N , N1, N2, N3 are positive constants to be selected later. Then we have the lemma
as follows.

Nonlinear Anal. Model. Control, 26(3):396–418

https://doi.org/10.15388/namc.2021.26.23051


412 W. Liu, W. Zhao

Lemma 8. Let (ϕ,ψ,w, θ) be the solution of (8)–(9). For N large enough, there exists a
positive c such that, for any t > 0,

(N − c)E(t) 6 L (t) 6 (N + c)E(t).

Proof. Using Young’s, Poincaré’s and Cauchy–Schwarz inequalities, and the fact that
(see [22])

1∫
0

ϕ2 dx 6

1∫
0

ϕ2
x dx 6 2

1∫
0

(ψ − ϕx)2 dx+ 2

1∫
0

(3wx − ψx)2 dx+ 18

1∫
0

w2
x dx,

we can easily obtain that∣∣L (t)−NE(t)
∣∣

6 α1

1∫
0

ϕ2
t dx+ α2

1∫
0

(3wt − ψt)2 dx+ α3

1∫
0

w2
t dx

+ α4

1∫
0

(ψ − ϕx)2 dx+ α5

1∫
0

(3wx − ψx)2 dx+ α6

1∫
0

w2 dx

+ α7

1∫
0

w2
x dx+ α8

1∫
0

θ2 dx+ α9

∞∫
0

µ(s)
∥∥ηx(s)∥∥22 ds, (29)

where αi (i = 1, 2, . . . , 9) are positive constants. It follows from (12) and (29) that there
exists a positive constant c such that |L (t) − NE(t)| 6 cE(t), which completes the
proof.

Now, we are ready to prove the main result in this section.

Proof of Theorem 2. From (23)–(27) and (28) we can obtain

L ′(t) 6 −ρ
1∫

0

ϕ2
t dx−

[
Iρ
2
N2 −N1ε1 − cN3 − Iρ

] 1∫
0

(3wt − ψt)2 dx

− (4αN − cN3 − c)
1∫

0

w2
t dx

−
[
G2

2
N3 −N2ε2 − c

(
1 +

1

ε4

)
− 2c

] 1∫
0

(ψ − ϕx)2 dx

−
(
D

2
−N2ε2 − ε4

) 1∫
0

(3wx − ψx)2 dx−
2γ

3

1∫
0

w2 dx
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− (D − ε4)
1∫

0

w2
x dx−

[
k

2
N1 − cN2

(
1 +

1

ε2

)
− c
] 1∫

0

θ2 dx

+

[
1

β
N − cN1

(
1 +

1

ε1

)
− cN2 − cN3

] ∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds.

At this point, we need to choose our constants very carefully. First, we choose ε1 =
IρN2/(4N1), ε2 = min{G2N3/(4N2), D/(8N2)}, ε4 = D/8, so that

L ′(t) 6 −ρ
1∫

0

ϕ2
t dx−

[
Iρ
4
N2 − cN3 − Iρ

] 1∫
0

(3wt − ψt)2 dx

− (4αN − cN3 − c)
1∫

0

w2
t dx

[
G2

4
N3 −

8

D
c− 3c

] 1∫
0

(ψ − ϕx)2 dx

− −D
4

1∫
0

(3wx − ψx)2 dx−
2γ

3

1∫
0

w2 dx

− 7D

8

1∫
0

w2
x dx−

[
k

2
N1 − cN2

(
1 +

1

ε2

)
− c
] 1∫

0

θ2 dx

+

[
1

β
N − cN1

(
1 +

N1

N2

)
− cN2 − cN3

] ∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds. (30)

Then, we select N3 large enough so that (G2/4)N3 − (8/D)c− 3c > 0. Next, we select
N2 large enough so that (Iρ/4)N2 − cN3 − Iρ > 0. Furthermore, we select N1 large
enough so that (k/2)N1 − cN2(1 + 1/ε2)− c > 0. Finally, we select N large enough so
that 4αN − cN3 − c > 0, (1/β)N − cN1(1 +N1/N2) − cN2 − cN3 > 0. Using (12),
we obtain that there exist positive constants M1 and M2 such that (30) becomes

L ′(t) 6 −M1E(t) +M2

∞∫
0

µ′(s)
∥∥ηx(s)∥∥22 ds 6 −M1E(t), t > 0.

From Lemma 8 we obtain

L ′(t) 6 −bL (t), t > 0, (31)

where b =M1/(N + c). Then, a simple integration of (31) over (0, t) yields

L (t) 6 L (0)e−bt, t > 0. (32)

At last, estimate (32) gives exponential stability result (13) when be combined with
Lemma 8. This completes the proof.
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5 Lack of exponential stability: proof of Theorem 3

Our result is achieved by using Gearhart–Herbst–Prüss–Huang theorem to dissipative
systems (see Prüss [25] and Huang [15]).

Lemma 9. Let S(t) = eAt be a C0-semigroup of contractions on Hilbert spaceH. Then
S(t) is exponentially stable if and only if

ρ(A) ⊃ {iλ: λ ∈ R} ≡ iR and lim
|λ|→∞

∥∥(iλI −A)−1∥∥L(H)
<∞

hold, where ρ(A) is the resolvent set of the differential operator A.

Proof of Theorem 3. We will prove that there exists a sequence of imaginary number λµ
and function Fµ ∈ H with ‖Fµ‖H 6 1 such that ‖(λµI −A)−1Fµ‖H = ‖Uµ‖H → ∞,
where

λµUµ −AUµ = Fµ (33)

with Uµ = (v1, v2, v3, v4, v5, v6, v7, v8)
T not bounded. Rewriting spectral equation (33)

in term of its components, we have for λµ = λ,

λv1 − v2 = g1, λv3 − v4 = g3, λv5 − v6 = g5, λv8 + ∂sv8 − v7 = g8,

ρλv2 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

Iρλv4 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρg4,

Iρλv6 −G∂xv1 −Gv3 +
(
3G+

4γ

3

)
v5 +

4α

3
v6 −D∂xxv5 = Iρg6,

kλv7 −
1

β

∞∫
0

µ(s)∂xxv8(s) ds+ δ∂xv4 = kg7,

where λ ∈ R and F = (g1, g2, g3, g4, g5, g6, g7, g8)
T ∈ H. Take g1 = g3 = g5 = 0, then

the above system becomes

ρλ2v1 −G∂xxv1 −G∂xv3 + 3G∂xv5 = ρg2,

Iρλ
2v3 +G∂xv1 +Gv3 −D∂xxv3 − 3Gv5 + δ∂xv7 = Iρg4,

Iρλ
2v5 −G∂xv1 −Gv3 +

(
3G+

4γ

3
+

4α

3
λ

)
v5 −D∂xxv5 = Iρg6,

kλv7 −
1

β

∞∫
0

µ(s)∂xxv8(s) ds+ λδ∂xv3 = kg7,

λv8 + ∂sv8 − v7 = g8.

Due to the boundary conditions in (9), we can suppose that v1 = A cos(µπx/2), v3 =
B sin(µπx/2), v5 = C sin(µπx/2), v7 = E cos(µπx/2), v8 = φ(s) cos(µπx/2).
Choosing

g2 =
1

ρ
cos

(
µπ

2
x

)
, g4 = g6 = g7 = g8 = 0,
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then we can obtain[
ρλ2 +G

(
µπ

2

)2 ]
A−Gµπ

2
B + 3G

µπ

2
C = 1,

−Gµπ
2
A+

[
Iρλ

2 +G+D

(
µπ

2

)2 ]
B − 3GC − δ µπ

2
E = 0,

G
µπ

2
A−GB +

[
Iρλ

2 + 3G+
4γ

3
+

4α

3
λ+D

(
µπ

2

)2 ]
C = 0,

λδ
µπ

2
B + kλE +

1

β

(
µπ

2

)2 ∞∫
0

µ(s)φ(s) ds = 0,

φ′(s) + λφ(s)− E = 0.

(34)

In the above equations, we take λ=λµ :=i
√
G/ρg(µπ/2) such that ρλ2+G(µπ/2)2=0.

Solving (34)5, we get

φ(s) =
E

λ

(
1− e−λs

)
. (35)

Then substituting (35) into (34)4, we can get

E =

Gδ
ρ
µπ
2

g(0)
β [1− kG

ρ
β
g(0) ]−

1
β

∫∞
0
µ(s)e−λs ds

B.

The combination of (34)2 and (34)3 gives

Iρ

(
D

Iρ
− G

ρ

)(
µπ

2

)2

B

+

[
4γ

3
+

4α

3
λ+ Iρ

(
D

Iρ
− G

ρ

)(
µπ

2

)2 ]
C − δ µπ

2
E = 0. (36)

Substituting E into (36), we get C = −Λµ/ΓµB, where

Λµ = Iρ

(
D

Iρ
− G

ρ

)(
µπ

2

)2

−
Gδ2

ρ (µπ2 )2

g(0)
β [1− kG

ρ
β
g(0) ]−

1
β

∫∞
0
µ(s)e−λs ds

,

Γµ = Iρ

(
D

Iρ
− G

ρ

)(
µπ

2

)2

+
4α

3
λ+

4γ

3
.

Substituting C into (34)1, we get

B = − Γµ
Gµπ

2 (Γµ + 3Λµ)
.
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Similarly, substituting C into (34)3, we get

A =
GΓµ + ΛµΓµ + 3GΛµ

Gµπ
2 Γµ

B = −GΓµ + ΛµΓµ + 3GΛµ
G2(Γµ + 3Λµ)(

µπ
2 )2

.

At this point, we introduce the number γg = 1−(kG/ρ)(β/g(0)) and consider separately
two cases.

Case γg = 0. Let µ→∞, we get

A→ − βδ2

ρG
∫∞
0
µ(s)e−λs ds

, B → 0, C → 0.

Case γg 6= 0. Let µ→∞, we get

A→ −
Iρχg(

D
Iρ
− G

ρ )

G2[(DIρ −
G
ρ )γg + 3χg]

, B → 0, C → 0.

Thus,

‖Uµ‖2H >
1

2
G

[
3C −B +

(
µπ

2

)
A

]2
→∞ µ→∞.

This implies that ‖Uµ‖H → ∞ as µ → ∞. Therefore, there is no exponential stability.
This completes the proof.

6 Conclusion and open problem

In this paper, we first prove the well-posedness for a laminated beam with Gurtin–Pipkin
thermal law and structural damping. Then we prove that the system is exponentially stable
if and only if that stability number is equal to zero (χg = 0). When the stability number
is not zero (χg 6= 0), the problem of whether it is possible to get the polynomial stability
for system (8)–(9) is still an interesting open problem.

Recently, Guesmia [11] considered the stability of the laminated beam with interfacial
slip and infinite memory acting only on the transverse displacement, the rotation angle,
and the amount of slip, respectively. He combined the energy method and the frequency
domain approach to show that the infinite memory is capable alone to guarantee the strong
and polynomial stability of the model, and mentioned also that “when the exponential
stability is not satisfied, obtaining the optimal decay rate of solutions is, in our opinion,
a very nice and hard question”.
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