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ABSTRACT 

In many cases, the mathematical support of non-stationary thermal 
experiments is based on methods for solving the inverse heat conduction 
problem (IHCP), which include boundary thermal conditions 
determination, identification of heat and mass transfer processes, 
restoration of external and internal temperature fields, etc. However, at 
present, the main field of the IHCP application remains the processing and 
interpretation of the results of the thermal experiments. It was here where 
the most considerable theoretical and applied successes were achieved in 
methods' effectiveness and the breadth of their practical use. This paper 
highlights the issues of mathematical modeling of multidimensional non-
stationary problems of metallurgical thermophysics. 

KEYWORDS 

mathematical model, multiprocessor 
system, extreme problems, parallel 
structures, residual principle, 
coefficient problems. 

The primary research purpose aims at solving problems associated with identifying parallel structures of algorithms 
and programs and their reflection in the computers’ architecture in solving a wide range of applied problems. 
Supercomputers are currently inaccessible due to the enormous cost and service price. In this regard, a real alternative 
is cluster-type computing systems by which the simulation results are covered in this paper. 
Being a relatively new technology, cluster-type parallel computing systems are useful in solving a large class of 
non-stationary multidimensional problems, while allowing to increase the productivity and quality of computations. 
The software developed in this paper can be used to plan and process the results of a thermophysical experiment. 
The algorithms developed in the application program package are simply reconstructed to solve other coefficient 
and boundary problems of thermal conductivity. The developed algorithms for solving thermophysical problems 
are highly accurate and efficient: the test solution for IHCP with accurate input data coincides with the 
thermophysical features of the sample material. The developed software for processing the results of a 
thermophysical experiment is self-regulating. Moreover, it is quite merely tuned to the solution of others and, in 
particular, of boundary IHCP. 
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Introduction. In metallurgical production, they face many diverse and interconnected 

processes. It includes heat transfer and mass exchange, hydrodynamic processes in melts, as well as a 

change in the substance aggregation state, deformation phenomena under power and thermal loads, 

etc. Most of these processes can be described based on differential equations of continuum mechanics, 

which reflect the objective laws of conservation of mass, momentum, and energy. In mathematical 
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terms, these are systems of multidimensional nonlinear differential equations that, like laws of 

chemistry and thermodynamics, describe interconnected processes, as well as their interaction. 

Moreover, the practice of recent years shows that neither the intensification of the metallurgical 

production processes nor the constructive improvement of metallurgical equipment variety is possible 

without studying and analyzing the phenomena of heat transfer by methods of mathematical modeling [1, 

2]. A theoretical study of the heat and mass transfer process is mainly based on their numerical simulation 

using computer technology. Besides, fundamental problems in the potentially endless increase of peak 

computer performance disappear with the development of cluster computing systems. Parallel computing 

systems are developing very fast, and with the advent of computing clusters [3, 4], parallel computing has 

become available to many. As a rule, mass processors, standard network technologies, and freely 

distributed software are used to build clusters. It was these circumstances that made the so-called big 

problems of metallurgical thermophysics [5 – 7] possible to solve. 

At the same time, the problems arising in the development of parallel computing systems that 

meet unique features are, as a rule, paramount and require in-depth study and research [8, 9]. Indeed, 

distributed computer modeling covers the whole spectrum of modern computer technology: 

supercomputers, cluster computing systems, local and global networks. Besides, distributed modeling 

allows solving problems requiring huge processing time, integrate mathematical models that are 

processed on various (including geographically distant) computing systems. 

In many cases, the mathematical support of non-stationary thermal experiments is based on 

methods for solving the inverse heat conduction problem (IHCP), which include boundary thermal 

conditions determination, identification of heat and mass transfer processes, restoration of external and 

internal temperature fields, etc. However, at present, the main field of the IHCP application remains 

the processing and interpretation of the results of the thermal experiments. 

This paper highlights the issues of mathematical modeling of multidimensional non-stationary 

problems of metallurgical thermophysics. 

The primary research purpose aims at solving problems associated with identifying parallel 

structures of algorithms and programs and their reflection in the computers’ architecture in solving a 

wide range of applied problems. 

Mathematical Formulation of Research Problem. When solving IHCP, it is first of all 

necessary to illuminate the controllability conditions of mathematical models (MM) that allow, by 

methods of mathematical modeling, bringing the system into a given thermal state using control 

actions. We will proceed from the fact that MM is known and includes several causal features, which 

we denote by the R-input parameters’ vector. Let a discrete analog of MM and a computational 

algorithm be developed. The MM sensitivity to vector R variations, i.e., it is shown that the desired 

solution to a specific MM problem is determined not only by the functions of spatial coordinates and 

time but also by the R-input parameters’ function. Thus, to evaluate the reliability of the obtained MM 

solution, it is necessary to study its behavior with variations in the input data. When studying the MM 

sensitivity, variations in input parameters are assumed to be given. Equally important are the 

formulation and methods of solving inverse problems, which essence is to evaluate the vector R input 

parameters from the actual information about the simulated system known from the experiment. The 

mathematical modeling process of this class of problems involves several stages. 

First, the development of an algorithm and a computational program for solving the direct 

MM problem, the computational algorithm for solving that implements the transformation. 

),,( RtxT =                                                  (1) 

determining the MM temperature state vector as a function of independent variables and input 

parameters of the vector R. 

Secondly, when solving IHCP as a quality criterion for identifying the parameters R on MM 

solutions, it is necessary to introduce into the algorithm a particular functional characterizing the 

model as a whole or the deviations between the measured Тe(tj) and the computed values of the state 

vector Тp(tj). Let us choose the standard mean square residual as deviation the measure.  

 2( , ) ( ) ,p e p eT T T T= −                                                  (2) 

wherein Тp is the thermal state vector value computed by the MM model. The components of the Тe(tj) 

vector can be determined on a discrete set of points of a given domain of temperature function 

definition. As a rule, in practice, several such criteria are used for the model’s quality assessment. 
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Thus, we have come to one of the promising directions in solving IHCP corresponding to their 

extreme formulation using well-known numerical methods of optimization theory. Considering that the 

computation of the vector gradJ() inherent in these methods is a serious mathematical problem, we show 

how this can be avoided. Note that if MM implements transformation (1), then at each step of such 

transformations, it is possible to compute the values of functional (2). It allows, by repeated variation of the 

vector R input parameters, constructing a sequence of changes in functional (2) that would include the point 

of its minimum. Thus, if this is feasible, then the IHCP solution is reduced to minimizing the function of 

many variables. This algorithm most looks merely for one variable of the vector R. The solving IHCP 

algorithm, in this case, includes separation of the interval containing the minimum functional point and the 

procedure for its refining. The update of the minimum coordinate can be implemented as follows. Suppose 

that the functional J(R) (2) has a sufficient analyticity margin concerning the vector R input parameters. Let 

us represent its value by a segment of the Taylor series near a minimum. 

,

2
1 ,1 ,2 ,3( ) .....,

kp p R p R pJ R J J J  + = + + +
 
                                           (3) 
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                                               (4) 

are known Taylor components, and p=1,2,3, ... are the numbers of grid nodes. 

Having saved three terms in (3), differentiating concerning ƐR, and equating to zero, we 

construct the interpolation formula 

3,

2,1

2

)(

p

ppp

p
J

JRR
RR 

−
−=

+ ,                                          (5) 

wherein all the notations correspond to those adopted above. Thus, the IHCP solution from this class 

of problems reduces to separating the minimum and its refinement by iterations according to formula 

(5). This algorithm is tested below on solutions of coefficient IHCP. 

Construction Features of the Controlled MM for the Coefficient IHCP Problem. Let us 

consider the one-dimensional problem of unsteady heat conduction described by the quasilinear equation. 
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wherein 
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are dimensionless input data, k is a parameter of the sample (plate, cylinder, and ball) shape. 

Equation (6), after time discretization, is transformed at grid domain nodes (р=1,2,…,mx-1) 

into an ordinary differential equations system of a two-point type. 

),()()(2)( 1,1,1,1, xppxppxppxp xxxx
TOBTBTAT   ++++ =−+                            (8) 
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The functions ( ) ( )xpxp Xx
TOT   1,,

,1 ++
 in (9) are assigned to the current and previous time 

layers, respectively. 

The solution of the investigated differential equation according to the direct method is 

presented in an analytical form by nodes 

,)()( 21*

1,1,
xx

xx
eDeCTT ppxpxp



  −

++ ++=                                     (10) 

wherein 
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,,, 2

21 ppppppp BAAA +=+=−=                                      (11) 

are the roots of the characteristic equation; 

Cp, Dp are the integration constants; 

( )Xp X
T 

*

1+  is a particular solution to the inhomogeneous equation (8). 

The final sub-node solution to this problem takes the following form 
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are the grid complexes. 

Setting in (12) Ɛx=0, we obtain MM algebraic analog in the form of a system of linear 

differential equations of a tridiagonal structure 
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The quadratic dependence of the argument ( )Xp X
TO  1+

 concretizes the form of the initial 

function Ɛx 
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Considering these dependencies, particular solution of inhomogeneous equation (8), which is 

included in the MM (14) in an implicit form, takes following form 
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(19) 

The solution of linear algebraic equations system (14) for given input data is entirely simply 

implemented by the sweep method. Thus, we can assume that we developed the first MM being 

necessary to solve the coefficient IHCP in the above (extreme) statement. Let us designate it as Model 

1. We should also add its gradient analog to the (temperature) MM (14). By differentiating function 

(12) Ɛx concerning and setting Ɛx=0, we construct the gradient Model 2 
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1 2

* 2 2
,2 ,2 1 2 2 10

0 1 2 ,
x

p p
P x PT T F F

Det Det

 


    

− −
−  − 

=

     = + + − +    
  

             (20) 



International Academy Journal Web of Scholar 2(52), 2021  

 

RS Global 5 

 

wherein the function ( )XpT 

*

2+  is computed by the formula 

21

*

2, 2)( MMT XXp x
 +=+ .                                        (21) 

Thus, the identification MM, which includes Model 1 (14) and Model 2 (20), allows formulating a 

solution to the coefficient IHCP in an extreme setting according to the scheme described above. 

The proposed approach is implemented as a package of application programs.  

The Solution of the Test Coefficient IHCP Using Mathematical Modeling. As a test 

problem let us consider a cylindrical sample made of a material with thermophysical properties [16] 

(coke from gas coal p. 41, Table 42-molded coke):  

,10208.0281.1

10024.0161.0

2

2

TC
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+=
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−
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 (22) 

The density of coke from gas coal 3/,1912 mkgр = . With such thermophysical properties, we 

simulated the temperature field of a cylindrical shape sample (k=1). For given time-linear temperature 

change at sample boundary ( )+= 10020TL , the temperature field for a particular time moment 

,5.0/
2

0 == Rta  wherein ( )1,1/ 00000 === ccpa  , shown in Fig. 1 - 3. 

 

Fig. 1. The change in temperature over the at time moment 
1 0,5 = =  

 

Fig. 2. The solution of the coefficient cross-section of the sample IHCP with =R  

                   Т 

( /r L ) 
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Fig. 3. The solution of the coefficient IHCP with aR =  with control relative to the coefficient of 

thermal diffusivity 

The coefficient exact values of thermal conductivity and thermal diffusivity are respectively equal 

( ) ( ) 054.0,166.0 22 == faf , wherein 2f  is the temperature change in the second node along the cross-

section of the sample. The minimum residuals presented in Fig. 2, 3 exactly correspond to these values.  

Conclusions. In many cases, the mathematical support of non-stationary thermal experiments 

is based on methods for solving the inverse heat conduction problem (IHCP), which include boundary 

thermal conditions determination, identification of heat and mass transfer processes, restoration of 

external and internal temperature fields, etc. However, at present, the main field of the IHCP 

application remains the processing and interpretation of the results of the thermal experiments. It was 

here where the most considerable theoretical and applied successes were achieved in methods' 

effectiveness and the breadth of their practical use. This paper highlights the issues of mathematical 

modeling of multidimensional non-stationary problems of metallurgical thermophysics. 

The primary research purpose aims at solving problems associated with identifying parallel 

structures of algorithms and programs and their reflection in the computers’ architecture in solving a 

wide range of applied problems. 

Supercomputers are currently inaccessible due to the enormous cost and service price. In 

this regard, a real alternative is cluster-type computing systems by which the simulation results are 

covered in this paper. 

Being a relatively new technology, cluster-type parallel computing systems are useful in 

solving a large class of non-stationary multidimensional problems, while allowing to increase the 

productivity and quality of computations. 

The software developed in this paper can be used to plan and process the results of a 

thermophysical experiment. The algorithms developed in the application program package are simply 

reconstructed to solve other coefficient and boundary problems of thermal conductivity. 

The developed algorithms for solving thermophysical problems are highly accurate and 

efficient: the test solution for IHCP with accurate input data coincides with the thermophysical 

features of the sample material. 

The developed software for processing the results of a thermophysical experiment is self-

regulating. Moreover, it is quite merely tuned to the solution of others and, in particular, of 

boundary IHCP. 
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