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Keywords: Lions theorem; quasilinear elliptic equation; singular potential; critical exponent; ground state
solution

MSC: 35A15; 35R11; 35]92

1 Introduction

Consider the quasilinear elliptic equation:
~Apu + V(I xDulP%u = f(u), x e RN, Q)

where N > 3, p € (1, VN), V(|x|) = ﬁ, a € (0,p), A > 0is areal constant, and Apu = div(|Vu|P>Vu) is
the p-Laplacian. Here, the nonlinearity f is given by
(F1) fw) = |ulP 2u + |[u|9%u + AjufP<"%u, where A > 0, p,

ge (p(l\li\;_o;p)’ p*).

_ p’a * _  Np
= P+ pwtapn P = wp and

Remark 1.1. The generalized version of the Berestycki-Lions conditions for the nonlinearity f is given as follows:
(F2) f € C(R, R), there exists C > O such that |sf(s)| < C(|s]P« + |s|P ) fors € R;

F3)lim £} = 1 and lim £&) = 1, F(s):= [3 ;
(F3) Sgré o and Sg% HE where F(s) := [; f(t)dt; and

(F,) there exists an so € R\{0} such that F(sg) # O.
In view of (F1), clearly, the nonlinearity f satisfies the generalized version of the Berestycki-Lions conditions
(F5)-(F4). This is the “almost optimal" choice of the nonlinearity f.

As is well known, for p = 2, equation (Q) is a model for describing the stationary state of reaction-diffusion
equations in population dynamics [7]. It also arises in several other scientific fields such as plasma physics,
condensed matter physics and cosmology [6]. The existence of solution of equation (Q) has been studied
extensively by modern variational methods under various hypotheses on the singular potential V and the
nonlinearity f. Let us briefly recall some related results. For p = 2 and V(|x|) = ‘X%, the existence and nonex-
istence of solutions to equation (Q) have been studied in [3, 4, 15, 17, 20, 23]. For p # 2, the nonexistence
results of equation (Q) were presented in [1, 5, 8, 9, 14, 16, 18] and the references therein.
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Forp € (1, N)and V(x) = % Ghoussoub-Yuan [9] investigated the equation:

~Apu -~ |uP?u = |u|1‘J 2u, x e RV, (1.1

|x |”
where N > 3,pc (1,N)and u € (O ( ) ), and established the existence of solutions to equation (1.1)
by using the variational methods. Abdellaoui-Peral [1] considered the equation:
_ M+t k(x) p-2,, _
Apu P [ul “u

and discussed the existence and nonexistence of solutions to equation (1.2) under different assumptions
on k(x) by applying the concentration compactness principle and PohoZaev-type identity. Filippucci-Pucci-
Robert [8] considered the problem:

P ?u, xRV, (1.2)

‘u‘pﬁ
|x|s°

—Apu— B a2y = juP 2 xeRY, (1.3)

|x Ip
where s € (0, N) and p; = 2 v ps) is the Hardy-Sobolev critical exponent, and obtained the existence results
of equation (1.3) by the ch01ce of a suitable energy level for the mountain pass theorem and analysis of con-
centration.

Su-Wang-Willem [18] dealt with a generalized version with the singular potential:

~Apu + V(xDulP%u = Q)f(u), x e RY, (59

where 1 < p < N, and V and Q satisfy
(V1) V € C(0, o0), V > 0 and there exist real numbers a and ag such that

() ()

liminf —~ > 0 and 11rr£) inf —= > 0.

r>oo

(Q1) Q € C(0, =), Q > 0 and there exist real numbers b and by such that

limsup ——~= G < oo and limsup =—= Q( )
rdeo TP >0
They attained the radial inequalities with respect to the parameters a, aqg, b, bo, then established main re-
sults on continuous and compact embeddings and the existence of solution to equation (5Q). Badiale-Guida-
Rolando [5] generalized the embedding results under different conditions on V and Q, and explored the ex-
istence of solution to equation (§Q) with the sub-critical and super-critical growth.
If a=ag=-aand b = bg = 01in conditions (V) and (Q1), equation (GQ) reduces to (Q). Let us introduce
the result on continuous and compact embeddings described in [18].

Proposition 1.1. Suppose that N > 3 and p € (1, N). Then we have

WEP@RN, a) &> L'(RY), relpa,p’l, ac(0,p),

rad
WE@®RN, @) > L'(RY), relp’,pal, ac (p, Xp),
WERY, ) > L'(RY), relp’,e), ac [Nip, o).

. . * * * _ p’(N-D+pa  _ p’a
Furthermore, the embeddings are compact ifr # p, andr # p", where p, = SN-Dai-D = P s a1

p= N_’;, and W-E@RYN, a) := DEP(RN) N LP(RY, a) is the set of radial functions in W'P(RY, a).
It is very natural to ask whether there exists a solution to equation (Q) with the embedding top index p”* and
bottom index p,? To the best of our knowledge, it seems that so far there is no affirmative answer in the
literature.
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From Proposition 1.1, the embeddings

WEPRY, a) > IP (RY) and WHP(RY, a) < LP«(RY)

rad rad

are not compact. As a result, it is difficult to prove that the Palais-Smale (minimizing) sequence is strongly
convergent if we seek solutions of equation (Q) with the critical exponent.

Lions [10] considered the noncompact embedding problem by the concentration-compactness princi-
ple: Only vanishing, dichotomy or tightness are possible. If one can exclude vanishing and dichotomy, then
tightness occurs. It is not difficult to rule out vanishing. But sometimes it is hard to exclude the dichotomy.
Therefore, it becomes interesting to ask under what conditions dichotomy cannot occur? In [11, pp. 232], Lions
gave a useful answer.

Proposition 1.2. (Lions Theorem) Let N > 3 and p € (1, N). Let {un} c WhP (RY) be any bounded sequence
satisfying
(Condition A) le Jaw lun|"dx > 0 forr € (p, p*).

n—>oco

Then there exists {yn} C RY such that the sequence iin(x) = un(x + yn) converges weakly and a.e. to it = 0 in
L, (RY).

Following [10, 11], we can derive a similar result as follows immediately.

Proposition 1.3. (Lions-type theoremI) Let N > 3 and p € (1, N). Let {un} C W}(;’Z(]RN , @) be any bounded
sequence satisfying
(Condition B) 1i9m fRN |un|"dx > O, where

n—>oco

re (pa,p) ac(0,p),
re,pd) ac(p,¥4p),
re(p*’oo) ae[%p,‘”)-

Then the sequence {un} converges weakly and a.e.tou % 0inLj,, (RN )

From Conditions A and B, we see that Propositions 1.2 and 1.3 provide a technical tool to the cases: (a) the
nonlinearity f has neither the embedding top index nor embedding bottom index, and (b) the nonlinearity f
has either the embedding top index or embedding bottom index. However, Propositions 1.2 and 1.3 become in-
valid when f contains both embedding top and bottom indices. Hence, we shall establish a more generalized
result for a € (0, p) as follows.

Theorem 1.1. Suppose that N > 3,p € (1,N) and a € (0, p). Let {un} C W}(;’;(RN, a) be any bounded
sequence satisfying

(Condition C) 31_)120 Jzw [un|P dx > 0 and }L‘ZL Jgw [un[Pedx > 0.
®RM).

Then the sequence {un} converges weakly and a.e. tou % 0 in Lf’o c

Before presenting the existence of ground state solution to equation (Q), let us state the regularity properties
of any nonnegative weak solutions of equation (Q) with a € (0, p).

Theorem 1.2. Suppose that N > 3, p € (1, N), a € (0, p) and condition (F,) holds. If U is a nonnegative weak
solution of equation (Q), then the following statements are true.

(i) U e L'(RY) forr € [py, ool.

(ii) U is a positive solution.

(iii) U satisfies the PohoZaev-type identity:

u/ \VU|de+N‘“/ A upax =N/ F(U)dx.
Db Jry P Jery X RN
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As an application of Theorems 1.1 and 1.2, when the nonlinearity f satisfies condition (F;), i.e. equation (Q)
takes the form

A - - - =
~Au + WMP 2u = |ulP 2u+uT%u+ AufP<?u, xeRY, (Sp:)

we have

Theorem 1.3. Assume that N > 3,p € (1,VN), a € (0,p), q € (”WN%‘;;“), p*) and condition (F;) holds.
Suppose that

N
PP
P

e A
TS v >A>0,

a p,
%o
b

where A is a constant, Sq and S are the best constants of the following inequalities [2, 19]:

p

- P
Sa ( / ) \u|p“dx) < ullfyrpn g U E WEERY, a), (1.4)
. :

and ,
S(/ Nlu\”*dX)p <l vy u € DVPRY). (1.5)
R

Then equation (8,,:) has a positive ground state solution u & erl;g (RY, a).

The rest of this paper is organized as follows. In Section 2, we briefly introduce some useful notations and
inequalities. In Sections 3-5, we prove Theorems 1.1-1.3, respectively.

2 Preliminaries
ForN >3 andp € (1, N), let

DUP(RY) := {u c IP (RM)

/ [VulPdx < oo}
RN

p - p
[l = [ IVulPd.

with the semi-norm

Let

whPRY, a) := {u e DMP(RY)

A
b _ p _ nLpmN p(mN
”uHLP(]RN,a) = /N —| |a |u| dx < oo} =D (R ) L (R s a)

with the norm A
p — p A
oy g = /RN |Vu| dx+/RN |x|”‘|u| dx.

The following inequalities will play a crucial role in the proof of Theorem 1.3:
p

- vy
Sa ( /R . \u|p“dx) <l U € Wb (@®RY, ), .1
and

b
¥ (/ Ll dx)p <l gy u € DVPRY). 2.2)
R

A measurable function u : R¥ - R belongs to the Morrey space with the norm llullyta.o@®r), Where g €
[1, o) and @ € (0, N1, if and only if

1| o = sup ROV / u(y)|9dy < oo.
M2 (RY) R>0,x€RN B(x,R)
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Lemma 2.1. ([12], Refined Sobolev inequality with the Morrey norm) For N > 3 and p € (1, N), there exists
C > 0 such that for 1 and 9 satisfying 1% <t<land1 < 9<p", wehave

1

p" v ' 1-1
ul” dx < Cllu u .
(/RNl | > < Cllullprr@mll \IM&@%Q)(RN),

foru € DVP(RY).

It follows from Lemma 2.1 and W}L;Z (RN, a) c DY2(RN) c DVP(RYN) that

rad

1

P v I 1-1 1,p N
(1P ax)" < Clulfynsgena il Soma . € WEEE" ). (3)
To prove the generalized version of Lions-type theorem, we need the following technical lemma.

Lemma 2.2 ([18]). Let N > 3, p € (1, N) and a € (0, p). Then the inequality

c
sup U] < —rag 14w @e,a
x>0 x| e

holds foru W}&’Z(RN , Q).

Throughout this article, we will use the symbol C to denote a generic constant, possibly varying from line to
line. However, special occurrences will be denoted by C1, C or the like.

3 Proof of Theorem 1.1

In this section, by applying the refined Sobolev inequality with the Morrey norm and Lemma 2.2, we prove
a generalized version of Lions-type theorem.

Proof of Theorem 1.1. We separate the proof into four steps.
Step 1. Note that {un} is a bounded sequence in W}&Z (RN, ). Then, up to a subsequence, we assume

up — uin W};Z(RN, a), un > ua.e.inRY, up, > uin LfOC(RN).

According to (2.3) and Condition C, there exists a positive constant C such that for any n there holds
lunllyeev-p@yy = C > 0.
On the other hand, from [12, pp 809] we note that {u,} is bounded in W:(;Z(RN ,a) and
W:&Z(RN’ a) < D:&’;(RN) N Lp'(]RN) N Mp,N—p(RN).

Then we have

l[un||yep.nv-pryy < €

for some C > 0 independent of n. Hence, there exists a positive constant Cy such that for any n there holds

Co < Hu"HMPvN*P(]RN) < C(_)l.

From this inequality, we deduce that for any n € N there exist o, > 0 and x» € R such that
- C
14 p > p _C o .
On /B(x,,,an) lun(y)Pdy > ||un||Mp,N—p(RN) e C1>0 (3.1)

Step 2. We show 1i_>m on =0 # 0, where ¢ € (0, o).
n—>oco
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It suffices to show that 1i9m on # oo. Otherwise, we suppose 1i_>m On = oo. In view of the boundedness of
n—>oo n—>oo
{un} and Condition C, we get

0 < lim |un|Pedy < C.
n>eo [N

Since N > 3, p € (1, N) and a < p, we have

—p+N(1—E*)<0<:>p;<p*. (3.2)
Du
It follows from (3.1)-(3.2) that
0<Cy <0;”/ lun()Pdy
B(X,,,O'n)
PaPp P

<oif (/ dy) " (/ Iun(y)l”;dy) "
B(0,0,) B(xn,0n)
3 CNE
—q P N-1 N p; Py a
oy (—N 0n> (/B(M")un(y)l dy)

PNA-B) g\ BT C N
<o () ([ wrriay)

—p+N(1—I%)
<Coy, @

-0, asn > oo,

where wy_; is the volume of the unit sphere in R". This is a contradiction.
By the Bolzano-Weierstrass theorem, up to a subsequence, still denoted by {0}, there exists & € [0, oo)
such that

lim o, = 0.
n—->oco

We now show 1i9m on = 0 # 0. Suppose on the contrary that li_>m on = 0 = 0. By using the uniform bounded-
n—->oc0 n—yoco

. 1,
ness of {un} in W E(RY, a), we have

r
. ' v . » .
ctm ([, o @) <l bl <
It follows from Holder’s and Sobolev’s inequalities that

. »
a Pg

P -p
* p* * p*
[ ey ([ a) T ([ )
B(0,0y,) B(0,0,) B(0,0,)
) vpy P
Py p' p
< (/ dy) (/ |Vun|pdy> / |Vun|Pdy
B(0,0y,) RN B(0,0y,)

5
<cs ( / dy) [ vuirdy.
B(0,0n) B(0,0n)

Similarly, for each z € RN we have

. ok
P Py

[ ([ o) [ vuray.
B(z,0,) B(0,0y,) B(z,00)
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Covering RY by balls of radius oy, in such a way that each point of R" is contained in at most N + 1 balls, we
find

P -ry
[ by <o+ s (/ dy) [ vy
RN B(0,07) R¥N

p -ry
<CIN+ 1S 7 ( / dy) !
B(0,0y)

. 1-%2 NG-Ta)
=C(N + 1)S_p7 (%) "o, *,

n
where wy_; is the volume of the unit sphere in RY.
Taking n - oo and applying li_gn on = 0leads to
n—>oco

. Pa 1-2 N(1-P)
lim [un|Pedy <C(N+1)S™? (M> " limo, ? =0,
) RN N n—>oco

which yields a contradiction to li_gn Sz un |Pkdx > 0 given in Condition C.
n—>oco

Using 1i_>m on = 0 # 0, up to a subsequence, we have o, € (g, 20) and
n—yoco

P
= lun(y)Pdy > Cy1 > 0,
oP B(xn,0n) "
which gives
2 Clé‘p
[ mopdy > S so. 3
B(xn,0n) 2

Step 3. We show that {x,} is a bounded sequence.
By way of contradiction, we can assume |xn| > oo as n > oo. According to Lemma 2.2, we have

C C
sup [un(0| < gy 1Unllwir @y o) S g -
|x]>0 |X| P2 |X| P2

1
For any (21,“‘33(17(%) " > &> 0, there exists an M > 0 such that for any n > M there holds

C
[un(x)] < SN 2D <&, x € B0, [1Xn| — on|).
[[Xn| = on|  »*

From B(xn, 0n) C B°(0, ||xn| — an), it follows that

5P
/ lun(y)|Pdy < ep/ dy = €°|B(xn, on)| = €P|B(0, 0n)| < €°|B(0, 20)| < G107
B(xn,0n) B(xn,00) 2p

Step 4. Note that {x,} is bounded. There exists 0 < C < oo such that 0 < |xn| < C. In view of lgm On=0%#
n—>oco

0, up to a subsequence, we have
B(Xn, 0n) C B(0, |xn| + 0n) C B(0, C + 25).

From (3.1), we deduce that

0< Cl(_)'p =C1 lim Oﬁ
n—>oco

< li Py 1 0_p/ Pd
ng& (on) nl)nolo ( n 0.0 [un|"dy

= lim |un|Pdy
n>eo B(xn,004)

< lim ~ |unfPdy.
n>e JB(0,C+24)

Applying the embedding W 5(RY, a) <> D-P(RY) < LP (RN), we obtain u 0.
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4 Proof of Theorem 1.2

In this section, we prove that any nonnegative weak solutions of equation (Q) with a € (0, p) have additional
regularity properties.

Lemma 4.1. Assume that all the conditions described in Theorem 1.2 hold. For each L > 2, define

0,00 - {U(x) ?f U(x) <L,
L if U(x) > L.

SetUp, = U Uf(” D where u > 1. Let C; be the best embedding constant from WUERYN, @) to L'(RY) for t €
[pa, p"). Then we have

)4

t 14 * "

( / |UU’L‘"1\tdx> <Cg [ / UP«P|UUY " Pdx + / UP P|lUUk Tt Pdx| . (4.0)
RN t RN RN

Proof. Let U be a nonnegative ground state solution of equation (Q). We show that U;, € W}(;‘Z(RN ,a). By a
straightforward calculation, we get

/ IV(UUPH V)P dx
]RN
_ / UPE DT + pu - DUUPH DU, Pdx
RN
<2? / N|Uf‘“*“|P|VU|pdx+(2p)p(p—1)” / N|UU§’("*”*1|P|VUL|de
R R
zzp/ |U§’("‘1)|p|vU|pdx+(Zp)p(y— 1)p/ |U’L’(”‘1)\p|VU|pdx
RN {x|U<LL}
<PLP (1 4 (u - 1)”)/ |VUPdx,
RN
and 4 B
7|UUf(”71)\pdx < P21 2 |UPdx.
gy |X[% gy [X]“

This implies that U} € W}(;Z(]RN ,a).
Note that U is a nonnegative ground state solution of equation (Q). Then

/N IVUP2VUVedx + /N %WVH Updx = /Nf(U)(pdx.
R R R
Substituting U;, into the above equation, we get
/N IVUP2VvUV UL dx + /N %\ng-lwdx = /Nf(U)Ude. (4.2)
R R R
Since
yuPW -1 yp-2 - p(u-1) p
P |VUP2VUVU dx UPH Vv uPdx > 0,
RN {x|U)LL}
it follows that
/ |VUP2vUV U dx
RN
= / UPH Y IvUPdx + p(u - 1) / uuP Y uP YUV UL dx (4.3)
RN RN

> / vV vy Pdx.
RN
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Note that
/ VUURHPdx <[27 + @p)(u — 1] / UP# D v U P dx
RY RY (4.4)
<(2p)u? / vPU Vv upPx.
RN
It follows from (4.2)-(4.4) and Proposition 1.1 that
t A
C; </ |UU’L‘_1|tdx> <Qp)PuP (/ |VU|P‘ZVUvUde+/ —\UU’L‘"1|pdx)
RN RN ry [X|%
<CpP [ / U P |UUr T Pdx + / UPZ‘P|UU'L“1|de}.
RN RN

O

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into three parts.
Part (i). We first show the L* estimate of U by the following four steps.

Step 1. We claim that
p
(1 +/ |U|P'ﬂ1dx)p e oo,
RN
where iy =1+ I%.
Taking d € R* and using Holder’s inequality, we can derive

/ UP P |UUM ! Pdx
RN

<’ / UP«P|UUF P dx + / U P |\UUttPdx
{x|U()<Ld} {x|UX)>d}

p-p

[ p
. . . p . »
<adb fpa/ |UPtPHPdy + / UP dx (/ \UU’LHV’ dx) "

RN {x|U(x)>d} RN

We choose d such that

"
p-p .

. v Cpr
U* dx < ——.
/{x|U(x)>a} 2Cpp

Substituting the above two inequalities into (4.1) with the choice of t = p”, we get

b

« * p * o *
( / \urtp dx)” <207 { / UP«P | UUP " Pdx + QP P / |U\Pa+P“—de} .
RN Cp* RN RN
Taking the limit as L - oo in the above inequality leads to

b
* P p e x .
( / \U|p"dx>p <2(~:i[1+dp -pa} / UPEPHP
RN

- RN
Let py + pp - p € (pa, p’] and choose p € (1,1 + %} . Then
Ue LPFRY).
Hence, we have

UeL”®Y), p1€lpap’lU <p*,p* (1+z%m)] '
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We now choose yy := 1 + v pa . Then we obtain p“u; € [p ,P (1 + ‘%)] and

P
<1 +/ IUIP*’“dx)p "7 ¢ o,
RN
Step 2. We show that

_r _r
< / |U|IJ M2y )p Hp-1) < (CHZ)V;%I (1+/ |U|p*y1dX)P(u171) ,
RN

where y, -1 = (2 ')(yl—l)
Let u» —1+ +(u1 - 1).Thenp” +pu> —-p=p'u1 andyz—l—(p Y(u1 — 1). Let u € [u1, uz]. We find

Pa<Pa+tPU-D<DP +PU-p <P M.

From Lemma 4.1, we get

(/ \uP “dx) < (é" [/ |U\p3+p“‘pdx+/ \U|P'+W-de} < oo,
p* ]RN ]RN

For each y € [u1, 42, we have U € LP *(RY) and

UeLP2RY), p, € lpn,p uilUlp u, p'usl.

Set u = u,. Then

17
( [ o md) < [ [ wrrrac [ |U\"'+W2-pdx} oo,
RN Cp* RN RN

P -py)
p(u2-1)

Leta, = and b, = py+pu> -p - a,. Then If’,:bjz = p” +puy - p. It follows from Young’s inequality

that
/|U|Pa*P“2*de=/ |U|a2|U|b2dx
RN N

<@ [ jupace B2 / TP PP g
b P RN

<C (1 +/ |UP *p"z’pdx> .
RN
%
(/ |UP "de)p < Clb (1 +/ |UP +1”‘”2"1”dx> .
RN RN

For every x1, x» > 0, we know that

Thus, we deduce

P 17

(x1 +x2)1ﬂ <Xy +x5.

We then obtain

pr L .
<1 +/ |U|p*"2dx)p <1+ </ |UP ”de)p < Cub <1 +/ U +1""2’1”dx) .
RV RN RY
1

(1+/ |U‘p'md )p(uz 1) <(C]12)1‘2 . ( / |U|p*l"1dx) M-
RY RY
> P 1
=(Cup) 7T <1 +/ |U|p"“dx)” el
RN

That is,
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Step 3. We show that

_p L,
} *( B —— * *( _
(1 +/ |UP Psdx>ﬂ K3-1) < (CHB)“;’l <1 +/ P }de>p Hy-1) ’
RY o

where 3 -1 = (%)(Hz -1).
Letps :=1+%5 - (up - 1). Thenp” + pus - p = p'pp and p3 - 1 = (B)(uz - 1). Let p € [z, p3]. Then
Pa<Pa+PU-P <P +pu—-p <p iUa.

So we get
P

* p * .
(/ |UP "dx) "< %"I [/ |U|p“+p""pdx+/ |UP +p"_pdx} < oo,
RN p* RN RN

For each j € [u>, 3], we have U € LP #(RY) and

UeLP(RY), ps € lpa,p ] Ulp ua, p'usl.

Set u = u3. Then

. > p . .
(/ \U|p Ilsdx> g < %}13 {/ \U|p"‘+pu3_pdx+/ |U|P +P113—pdx] < oo,
RN v RN RN

_pr@-py)
Letas = p(u3-1)

that

;*:b; = p" +pus - p. It follows from Young’s inequality

/ |U|P;+PF3—PdX <C (1 +/ |U|p'+pF3—de> .
RN RN

) P
* *(u3-1) _p_ * *(up-1)
(1 +/ U y}dx)p K31 < (C]l3)“3p_1 (1 +/ \UP szx>p a1 .
RN RN

Step 4. Iterating the above process and recalling that

and b3 = p, +pus - p - as. Then

Hence, we obtain

P +PpUi-P=p M, i>1landieN,

we have

* i
Misg —1= <%> (Mi-1

__pr 1
N7 " iz -1 _p . i1
(1o [ wpm0ax) ™ <yt (1 [ jopea) ™
RN RN

_p
=(Cy,~+1)ﬁ (1 + /N |U‘p'uidx> P 0=1) .
R

and

For m € N, we further get

1 -
I_I(CHI'+1)“I‘+’ﬁ <1 +/ \UP Hldx> Pl
i=1 RN

p
* P (11
>(1+ |U|P Hme1 dx m
RN

__r

* P (me1 -1

> (/ |UP "’"”dx) "

RN
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If fRN \U|p"‘"“1dx < 1, then

, p+p,";,
m P L
_pr * P (up-1) * pH
[T(Cui)m (“/ IU|”’“dX) | 2(/ IUlp"'"”d")
i=1 RY RY
. 2
p > _*
— P ~Pq
TON s oy
That is,
p -ry

s T pH T | e
e ) ) (T C R L .
i=1

If [ |UP #m1dx > 1, then

p

m P _pr

_p * *(up-1 * Mma

H(Cyiﬂ)uifi—l (1 +/ |UP Pldx) v > </ |UP ude) P
RN RN

i=1
= p
_||U‘|Lp*“m+1(RN).
That is,
e 1
1 . T
||UHU’*“"M(]RN) S | |(CI"iJr1)""+1’1 <1 + /N |UP I"ldx) .
i R
i=1
Note that
m » pi(lnicﬁl"ﬂ%)
lim Cu; Hip1 1 = lim e i=1 Hiz1~1 Hiy1— )
Moo i|—1|( Uis1) lim

For the series E‘fl, using the root test, we get
i=1

./ InC . InC p
lim =lim i ——————— = &
idoo \| Uis1 =1  idoo (%)z(yl -1) P

oo
PER TS T InC
which indicates Z; Jia-T <o
i

n

For the series Y Lﬂ‘ﬁfi , by using the ratio test, we find
i=1

P (.
My pa-1 p (142 Guiea - 1)

lim == lim
iveo Phiz2 =1 Inpjg P ive Inpisg
In (2 +2 (g - 1)
gﬁ*lim (p pn )
P’ iveo In pisq
p*
p In%  Inpy

+
privee \ Inpiy  Inpyg

<1,

oo oo
sy . In piy —2
which implies l; uiast < oo. Hence, we have H(Cﬂi+1)”l+1 T < oo,

Letting m - oo in (4.5) and (4.6), we obtain

[|U]| = (rrvy < ©o.

— 1189

(4.5)

(4.6)
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Part (ii). We rewrite equation (Q) as -4, U = g(x, U), where
A

g(xa U) == |X|IX

U+ f(U).
For all Q cc RN\ {0}, there exists C(Q) > 0 such that |g(x, U)| < C(Q)(1 + |U|p*‘1) for x ¢ Q. It follows
from Theorem 1.2 (i) and [21, Theorem 1 and Proposition 1] that U € C*(RN\{0}). Finally, the strict positivity
follows form the strong maximum principle [22].

Part (iii). Applying Theorem 1.2 (ii) and following [8, Claim 5.3], we can derive the PohoZaev-type identity

N-p U/P ‘Y7l]|p(1X + N-a U/P 4f£§|[]|p(1x =IV'j[ F(U)dx.
p RN p RN |X| RN

Consequently, the proof is completed. O

5 Proof of Theorem 1.3

As we see, equation (SP; ) is variational and its solutions are the critical points of the functional defined
in WEP (RN, a) by

rad

J() = ju? A |u|Pde-1/ |u|qu—l*/ uf? dx.
b q Jry b Jry

. -
Wia®"2)  py Jgw

From Proposition 1.1, we know that J € C 1(er£;§ (RY, @), R).Itis easy to see thatif u € erﬁ;ﬁ (RN, @) is a critical
point of ], i.e.

0= (W, @)= / (VU 2vuve + %m\”'zw)dx
RN

—)l/ |u|p;‘2u(pdx—/ \u\q_zu(pdx—/ \u|p*_2u(pdx
RY RY RN

forall p € eréfl(]RN , a), then u is a weak solution of equation (Sp; ).
Define
c¢=1inf sup J(»(t)) >0,
7€l tefo,1]
where
r={yec(lo,1, WE®R", 0) 1(0) = 0,J(() < 0}
Define
N={ueWERY, a)[(J (), u) =0, u#0},
and let
¢ = inf J(u).
ueN
It is easy to check thatc = ¢ = ¢ := inf sup J(tu) > 0.

uc WP (RN, a)\{0} t=0

rad
Lemma 5.1. Assume that all the conditions described in Theorem 1.3 hold. Then

_p p; .
* «P op-p £
0<c<c :=min Niij(%)ppsgﬂ,%&—p

"
PyP

Pa_ * P
Proof. If (352‘“’ Svpv) > A >0, then
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We choose
N-p
Cor-D
wU(X) = R p _N-p
(Up*l + |X| pfl) P
and

*

* * p
p - p - P dy = P dy = o
||W0'||D1,p(]RN) - HW1HD1.p(RN) - /]RN |W1| dx = AN ‘W0| dx =Sr».
A straightforward calculation gives

/ (wol” dx < / LLdX
gy |X[4 < v X% (g3t 71

o1 + |x|pT)N-P
~1 1

<C —————p"d
o P¢ (0'1% +p1%)N—Pp P
1 N-1-a N—l a
| L ——ap+c
o (1+pr 1)N—P 1 o'pl +pr- 1)N—p

gc/1 pr d+C/ pN-1-a-B g
0 (0p1+pp1)N—P

It is not difficult to see that

1 pN—l—a 1 pN_1_a
/ — > —dp< | 5 ——dp<oee.
0 (071 +pp1)N-p o (gr1)N-p

Inviewofpe(l,\/ﬁ),wehaveN—l—a—l% <-1and

e p(N-p)
/ pN—l—lX— i dp < oo,
1

This implies that wg € W:{;Z(R” , a). So we have
* _ __palN-p) *
|wo|Pedx = oP p0-D-a0-D |wy [Pedx,
RN RN

-QN
/ wol|9dx = 097 / |wy|%dx,
RY RN

fo twerax =0 [ i,

and tl;m J(twg) = —o0
Let {5 > tg > O satisfy

supJ(twy) = J(towo) and J(tsws) < O.
t>0

Taking ~(t) = ttswg, we get
¢ < max J(v(8) = J(towo).
telo,1]

Note that p
0 =E " J(twg)
-1 1 —ap-1
= (tg - tg ) \|W1H%1,p(RN) + o atg / ‘X|a ‘W1|pdx (5'1)

_ __pa(N-p) 1 * P-gN
- Ao F D the wy[Pedx - 0% 2 27 [ jwy|9dx.
RN RN
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Let tg := lim sup ts. We claim that tg < oo. Otherwise, we assume that t, = co. Taking an upper limitas 0 > 0
>0

in (5.1), we get
A

limsup ( 271wy P +0P’“tp'1/
aeop<o #1lp1sca 7 Jew X

|W1|pdx)
- ___pa(N-p) *_ *
=lim sup (tg 1\|W1\|gl'p(RN)+}lap PN-D-ap-1) (o 1/ w1 [Pedx (5.2)
>0 RN

w-@N
+oT 1! |wq|%dx ) .
RN

It follows from p < p” and lim sup ¢y = oo that
>0

_ - A
limsup 271 ( lwq|]P +0o? "‘/ — w1 |Pdx
erp a || 1||Dl,p(]RN) RN ‘X|“| 1|

<limsup tp"1\|w1||p
o0 ¢ DLr(RY)

*_ ___palN-p) *_ N
<limsup (t{; WDy + A0P I £ / jwa Pedx
>0 RN

W-@N
+o?t 11 |wy|%dx ) .
RN

This contradicts (5.2). That is, tg < oo.
Passing to an upper limit as 0 > 0 in (5.1) leads to

-1 -1
0= (&7 =) IWalBusqny

which implies
-1 =0and to = 1.
Let {on} be a sequence such that ¢ - 0 as n - oo. Then, up to a subsequence, still defined by {on}, we have

t
?0 <tg,. (5.3)

Hence, we can choose ¢ > 0 small enough such that

t
E°<t(~,7éto.
Set X
tr ’ -1 1
(O)=—-—andg(®)=t"" -t .

8 P D 8

Then, we have g'(ty) = 0, g'(t) < O for t > to, and g'(t) > O for t < to. Hence, g(t) attains its maximum at t,.

That is, 1
== 4
8(0) < gto) = (5:4)
forany t # to.

It follows from q > 1’(1}’\%‘"}7‘1’) and (5.3)-(5.4) that

& A 5
" p gl %t~ Pdx — o q
5 ) Il + 3700 [ Pax [ wilax

~Ws) <
J(tzw3) < T g

R

VA
/N

Tk Tlek T

- p*> HWIHng(RN)

Il
=/

s
<—8§pr-»r
N

for sufficiently small 6. Consequently, we arrive at the desired result. O
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5.1 Perturbation Equation

Applying Theorems 1.1 and 1.2, it is easy to prove the existence of positive ground state solution of the
following equation (with small € > 0, see [18]):
A

-2 g2 -2 te-2 N
|X|q|u|p u=ulP Fu+u|Tu+ AufPu, x e RY. (8p:+e)

—Apu +

Set the energy functional of equation (8, ) as follows:

hww=1/mﬂvmp+f%meX—l/mhwwx— - / P de- A [ upeeax,
P Jry x| q Jry p —€ /py Do+ € Jry

Let v¢ be a positive ground state solution of equation (Sp; +e)-Forallp € W}&‘Z (RN, a), it follows that
4 p-2 A p-2 q-2
0={J:ve), @) = [ ([VvelP"VVveV + ——[velP “ve@)dx - [ve|T “vepdx
RN |x| RN

—/ [velP _S_ZVg(de—A/ Ve [P €2y pdx,
RN RY

_ 14
o:Pg(v£)=i*/ (VvelPdx+ N "‘/ Alve| dx—l/ ve|7dx
p ]RN pN RN ‘X' q ]RN

1 . A .
p*e/\wfsw—* /|w%”m,
- RN Dot E Jry

1 A 1
Ce = Je(ve) =*/ (‘vve‘p + 7‘V€|p)dX - 7/ |Vg‘qu
p RN q RN

[x|*

and

1 o A -
"o e / [velP ~fdx - — e |ve[Paedx.
— & Jgw a RN

We then have the following lemma for equation (Sp; ve)-

Lemma 5.2. Assume that all the conditions described in Theorem 1.3 hold. Then the following statements are

true.
(i) Foreachu € WEP(RN, ) \ {0}, there exists a unique T > O such that P¢(u-,) = 0 for € € (0, &), where

rad
u(¥), >0,
ur(x) = (T)
o, T=0.

Moreover, we have J¢(ur,) = max J¢(ur).
>0

(it) ce = ¢k for e € (0, &o), where

ce = inf{Je(u)|u € erl;ﬁ(]RN, a) and J;(u) = 0},
and
ek = inf{J-(W|u ¢ WYP(RY, a) and Pe(u) = 0}.

rad

(iii) lim sup c¢ < c.
>0
(iv) ce > O for e € [0, &o.

(v) Let en > 0" and {ve,} C W}(;Z(]RN, @) satisfy

]en(Vs,,) = Cep» Psn(Vs,,) =0, ];H(Ven) =0.

Then, {ve, } is bounded in erdz(RN ,a) and lirg inf ce, > 0.
n—>oco
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Proof. (i) For each u € W2P(RN, a) \ {0}, we set

rad

N-a

NP » T AlulP ™
- _r - d dx - — a9
©e(T) = Je(ur) » /RN [VulPdx + - /RN T X 7 Jox |u|?dx

™ . ™ .
A— / [uP<edx — — / lulP ~¢dx.
Dot E JrN P —€ JpN
A direct calculation gives

, - : p N-1
(1) N-»r p‘rN"p"l/ [VulPdx + N- A N-a- 1/ Alul dx - Nt / |u|?dx
b JRY )4 R q RN

v |x|e

ANTN1 - NNt .
- = |uP<edx - = [ul? ~¢dx.
Pat+E Jrn P —€ Jpn

Inviewof N > 3,p € (1, VN) and a € (0, p), we find that ¢.() > 0 for small 7 > 0 and 1i_>m @e(1) < 0.
T>oco
Then there exists 7¢ > 0 such that ¢ (7¢) = 0 and Je(uz,) = m>a())<]g(u1). Moreovet, Pe(ur,) = % Te@e(Te) = 0.
>

(ii). On one hand, Theorem 1.2 implies that cc > c£ for € € [0, &o]. On the other hand, we have

e =P 1= 1nf sup Je(y(8) > 0,
T'tefo,1]

where
r={yec (10,1, WARY, ) 1(0) = 0,/e(:(1) < 0} .

It is easy to see that there exists 7, large enough such that J¢(ur,) < 0. Hence, we can choose ~(t) = ur,.
Using Lemma 5.2 (i), we have ¢ < max Je(ur) = Je(ur,). Since u is arbitrary, we obtain cI'? < cf and
>

ce = cE fore € (0, &o].
(iii). For any 6 < (0, %), there exists u € eraf; (RN, a) \ {0} with P(u) = 0 such that J(u) < ¢ + 6. In view of
P(u) = 0, we get

_ _ p . .
U/ \Vu|de+U/ Alul dx=5/ \u|qu+A—IY/ \u\l’adﬂﬁ*/ P dx > 0.
P Jry P Jry I q Jry Pa JRY P Jry
Then there exists T > 0 large enough such that
=N-p =N-a % N
J(uf)=T—/ (VuPdx+ ~ / A'”l dx—T—/ lu|?dx
D Jgry p Jrv |x q Jgry

. (i*/ |u|p;dx+i*/ \u\p'dx)
Do JrY b Jgry

<-1.

We now show the continuity of -*— i Jg |u|p;*£dx and i fRN \u|p*’gdx on (1, €) € [0, 7] x (0, &9).

p+€

Firstly, it is easy to check the continuity of -* and —— on(t, &) € [0, 7] x (0, &).

Do+e
Secondly, let 0 < &, < & < €. Then py + &1 < pa +& < p . It follows from Holder’s and Young’s

inequalities that
/ ufPetedx < pip“ £ / uPetrdx + 2L / ul" dx,
RN P -pa- RN P —DPa—€1 Jrr

which gives

* * &1 —-€ * &) — €& *
/ ‘u‘pa“-‘ZdX_/ |u|p“+gldx < *17*2/ ‘u‘pa+£1dx+ *27*1/ |u|p dx.
RN RN P —Da~ &1 JRrY P Do~ €1 JRN

‘/ |u\pa+€2dx—/ lufPet®rdx| < / |u|pﬂ+£1dx—/ |ulP dx|.
RN RY RN RN

That is,
€1—-&

R (5.5)
P —Pa— &1
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From (5.5), it is not difficult to see the continuity of [, |u\p;+€dx on € € (0, &). Similarly, we can prove the
continuity of [,y \u|1’"£dx on € € (0, &) too.
. N N * *

Thirdly, let f1(7, €) = ;57, f2(T, €) = 5=, 81(€) = [pu [ulP«"*dx and g1(€) = [ [ulP “*dx. Then fy(7, €) -

g1(e) and f>(1, €) - g»(¢) are continuous on (1, &) € [0, 7] x (0, &9).
N * N *

Finally, by using the continuity of Iﬁ Jgw [u[P<*¢dx and pf—{ Jgw [ulP “¢dxon(t, &) € [0, 7]x(0, &), there

exists & > 0 such that for all € € (0, &) and 7 € [0, 7] there holds

|]£(ur) - ](ur)‘

=V *A / |u|p;+5dx—i*/ ufPadx + *1 / |u|p*_£dx—i*/ uf? dx
Dot € Jry Do JRY b —€ Jry 2 5:0

<V |_A /|u|1’1*£dx-i*/ uPedx| + 7 | /|u|p*’£dx—i*/ P dx
Do+ & JrN Pa JRN P —€ Jry P Jry

<0,

which implies
1 -
Je(uz) < Dk £€(0,8).

Note that J¢(ur) > 0 for T small enough. Then there exists 7 € (0, T) such that % Je(u)|r=z,, and Pe(uz,) =
0. By Lemma 5.2 (i), we know J(uz,) < J(u). Thus, for any ¢ € (0, &) there holds

ce < Jeluz,) <J(uz,)+6 <JWw)+6<c+26.

Hence, limsupce < c.
>0
(iv). By a direct calculation, we have

a [ Al

> 0.
DN Jo xa X =0

1
Ce = Je(ve) — Pe(ve) = N/ |VVs|2dX+
RN

(v). By virtue of Lemma 5.2 (iii), we have

Alve, [P

_ _ _1 p a p
c+1 > ce, =Je,(Ve,) = Pe, (ve,) = N /]RN Ve, [Fdx + DN /RN x| dx > CHv‘gn”W’la,l;(]RN’a)'
Namely, {v¢, } is bounded in erc;‘;(RN , Q).
It follows from (2.1)-(2.2) that
0 = Pe,(ve,) = C||ve,|I? - “ - Poten pen
= Pe,(ve,) = C||ve, || Cllve, |l Cllve, |l Cllve, ||

1, 1, 1, 1, )
WP (RN, a) W, A (RN, a) WP (RN, a) W, B (RN, a)

which implies that there exists C > 0 independent of n such that
HVEnHW’lari(RN,a) = C.

Hence, we obtain lim inf c¢, > O. O

n—oco

5.2 Ground State Solution

In this subsection, by using the perturbation method [13] and PohoZaev-type identity [1], we present the
proof of Theorem 1.3.

Proof of Theorem 1.3. We separate our proof into two steps.
Step 1. We take € - 0 in equation (Sp; +¢)- For each small €5, there exists a positive ground state solution
Ve,. Using Lemma 5.2 (iii), we have

1

c+12ce, =Je,(ve,) - *7<];,,(Ven), Ve,) = (
Pa*én

1_# HV HP
P prten) ! WEE Q'
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This implies that {v¢, } is bounded in W}(;’;(RN , a). Then, up to a subsequence, we assume that

Ve, — vin W}éﬁ(RN, a), ve, >va.e.inRY, ve, > vin L'RY), r € (o, p).

Forany ¢ € W}L;Z(RN , ), as n > oo, we claim that

/ [Ve, |p*’s"’2vgn(pdx =/ |v|p*’2wpdx+ o(1) (5.6)
RN RN

and
/ Ve, [Pa* €2 ve, dx = / [v[P«~2vdx + 0(1). (5.7)
RN RN

Here, we only show (5.6), because the proof of (5.7) can be processed in a similar manner. For any € > O,
there exists a sufficiently large R > 0 such that

/ el e g / VP 2ypdx
x|>R

|x|>R

< / Ve, [P~ ol + / VP pldx
|x|>R |x|>R
1

1
* ! p*-en * p*-en
<( [ el | toFmax
|x|>R |x|>R

. 1oy . 1% €
+ / [v]P dx / lplP dx | < 5
|x|>R |x|>R

On the other hand, note that {ve,} is bounded in eréfi (RN, a). There exists C > 0 such that

1

* 1_19*’571
/ [ve, [P ~5ndx <C.
XI<R

In view of E ¢ RN and small &, > 0, it follows from Holder’s and Young’s inequalities that

/ ol ndx
E
&n P*

*P;’En
< ( / |¢\p3dx)”’“ ( / \<o|”*dx>
E E

£n p* p*_p;_gn / p*
<—— adx + =—5— dx
)4 _po(/E‘(p| D —Da El(p|

</|(p\p;dx+/|<p|p*dx.
E E

For any € > 0, there exists § > 0 such that when E ¢ {x € R¥||x| < R} with |E| < & there holds

/ Ve, P 75" ve, @dx
E

1 1

1= *-en * *-en
< (/ Ve P ‘E"dx) ’ (/W ‘f"dx)‘”
E E
. L . < N\
< (/ Veul? ‘f“dx) (/|<o|padx+/\<p|1” dx)
E E E

<Ce,

where the last inequality is true due to the absolute continuity of [, |<p|p; dx and [ \(p|p'dx.
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Making use of the fact |ve, ‘p'_{:n_z\/sn Q> |v|p"2wp a.e. in RY, by Vitali’s convergence Theorem, we have

_ . ¢
/ |ve, [P 5 2v8n<pdx=/ VIP vedx + =.
XI<R IXI<R 2

Then
[ Vel o R vepax= [ v vpax
RN RN

< / Ve, P72, pdx - / VP 2vpdx
|x|>R

|x|>R
+/ [Ve, P ’5”’2vg,,godx—/ V[P 2vepdx
[X|<R IX|<R
<e.

Hence, we arrive at (5.6).
It follows from (5.6) and (5.7) that

0 =<]:‘In(vé‘n)’ §0>
A

= p-2
RN(WVE"l Ve,V + x|

Veu P2Ve, p)dx - / Ve T 2ve, il
RN

_/ |V€n|p*_£"_2Vgn(de—/1/ |V€n|P;+£n—2vgn(de
RN RN
A
x|«
—/ |v|p*’2wpdx—/l/ |v|p;’2wpdx
RN RN
=J (), ¢).

This indicates that v is a weak solution of equation (Q).
Step 2. We claim that v # 0.
In view of (J¢, (Ve,), Ve,) = 0, we get

14 * "
e, Pdx+ [ AVell gy [ v fqdxs [ pve PEdx A [ (e, Ptendx (5.8)
a
RN Ry |X] RN RN RN

It follows from Holder’s and Young’s inequalities that

=/ (VvP2VvVe + |v|p"2wp)dx—/ V|9 2vedx
RN RY

£n

F**P;’En
[ s ([ i) 5 ([ e
RN RN RN

(5.9)
SW/ ‘v8n|p;dx+ *Sn * / |V€n|p'dxs
D —Dq RN D —Dg Jr¥
and ..
e L
e i ([ velria) ([ e lax) 7
RN RN RN (5.10)
< [ vaides PP [
D —DPa JrRN D —Da RN
Substituting (5.9) and (5.10) into (5.8) leads to
p
/ |va"|pdx+/ A|V€Z| dx
RN gy |X] (5.11)

< (1M) [ e axs (AM> [ errax [ e foax
D —Da RN P —Da RN RN

It suffices to show that there exists C > O such that C < IVenllyrr @y g)- Otherwise, we assume that
rad ’
Vel e @ gy = O Then it yields c¢, > 0, which contradicts 1irr_1) inf c¢, > 0, see Lemma 5.2 (v).
rad ’ n—>oco
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It follows from (5.11) and 0 < C < [|ve, || yy1r (®Y.a) that only one of the following statements is true
rad ’

0 / Ive, [Prdx > 0 and C < / (ve, [P’ dx; or
RN RN
(ii)Cg/ |vgn|p;dx and / \vgn\p'dx—)o; or
RN RN
(iii)Cg/ Ve, [Padx and c</ Ve, [P dx.
RN RN
We first exclude (i) in (5.12). Suppose on the contrary that (5.12) (i) holds. It follows from (5.12) (i) and (5.11)
that

14
/ |vVgn\de</ |VV£,,|de+/ AlVe " gy
RN RN RN

|x|«
g/ [Ve, P dx
RN
P
D

<S 7 (/ |van|pdx) ,
RN

a
Sr-r </ |Vve, [Pdx.
RN

(5.12)

which gives

In view of Lemma 5.2, we get

C >Ce,

=Je, (Ve,,) - %Psn (VE,.)

:l/ \vanlzdx+ /Alv":"
N Jrx Ry [X[®

1
>= Ve, |Pdx
N/RN‘ Enl

577,

=

R Py
o I -
This yields a contradiction with the fact of ¢ < min %S o, 1% (%) rar Spe” 4 see Lemma 5.1. Hence, (5.12)
(i) can not occur.

We now exclude (ii) in (5.12). Suppose on the contrary that (5.12) (ii) holds. It follows form (5.12) (ii) and
(5.11) that

/ |van|pdx+/ A'”E;;' dx</1/ Ve, [Pedx
RN Ry |X]

Py p %
—_Za p
AS,” / |VVs,,|pdx+/ Aledl” gy ,
RN ry X%

L p
1 Pt ha </ |VVsn|pdx+/ AlVes " gy
A RN ry X%

N\

which gives
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Using Lemma 5.2 yields
C >Ce,

=Je, (Vsn) - Pe, (Va,,)

Alve, [P

p n

N/ [Vve, [Pdx + N/ \x|“

Alve, P

> P n
> DN </ [VVe,| dx+/RN I dx)

1\ Py
a PaP Lprep
>— (= “
“ pN </1) Sa

.
. » P

p * *_ .
This contradicts the fact of ¢ < min %S Py iN (%) rar Spe? 4 see Lemma 5.1. Hence, (5.12) (ii) can not

occur either.
We now draw a conclusion that (5.12) (iii) is true. By virtue of Theorem 1.1, we have v # 0. In view of
Theorem 1.2, P(v) = 0 and the weakly lower semi-continuity of the norm, we obtain

c<Jv)
=J(v) - P(v)
AlvP
P
N/ |[Vv| dx+pN E dx
p Alve, P

< 11m 1nf = |van| dx + hm 1nf

N RN |X|a
=Je, (Ve,) - Npsn (ve,)
=Cg,
<cC.

Consequently, v is a positive ground state solution. O
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