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1 Introduction
Consider the quasilinear elliptic equation:

−∆pu + V(|x|)|u|p−2u = f (u), x ∈ RN , (Q)

where N > 3, p ∈
(

1,
√
N
)
, V(|x|) = A

|x|α , α ∈ (0, p), A > 0 is a real constant, and ∆pu = div(|∇u|p−2∇u) is
the p-Laplacian. Here, the nonlinearity f is given by

(F1) f (u) = |u|p
*−2u + |u|q−2u + λ|u|p

*
α−2u, where λ > 0, p*α = p + p2α

p(N−1)−α(p−1) , p
* = Np

N−p and

q ∈
(
p(N+α−p)
N−p , p*

)
.

Remark 1.1. The generalized version of the Berestycki-Lions conditions for the nonlinearity f is given as follows:
(F2) f ∈ C(R,R), there exists C > 0 such that |sf (s)| 6 C(|s|p

*
α + |s|p

*
) for s ∈ R;

(F3) lim
s→0

F(s)
|s|p*α

= 1 and lim
s→0

F(s)
|s|p*

= 1, where F(s) :=
´ s

0 f (t)dt; and
(F4) there exists an s0 ∈ R\{0} such that F(s0) ≠ 0.

In view of (F1), clearly, the nonlinearity f satis�es the generalized version of the Berestycki-Lions conditions
(F2)-(F4). This is the “almost optimal" choice of the nonlinearity f .

As is well known, for p = 2, equation (Q) is a model for describing the stationary state of reaction-di�usion
equations in population dynamics [7]. It also arises in several other scienti�c �elds such as plasma physics,
condensed matter physics and cosmology [6]. The existence of solution of equation (Q) has been studied
extensively by modern variational methods under various hypotheses on the singular potential V and the
nonlinearity f . Let us brie�y recall some related results. For p = 2 and V(|x|) = 1

|x|α , the existence and nonex-
istence of solutions to equation (Q) have been studied in [3, 4, 15, 17, 20, 23]. For p ≠ 2, the nonexistence
results of equation (Q) were presented in [1, 5, 8, 9, 14, 16, 18] and the references therein.
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For p ∈ (1, N) and V(x) = 1
|x|p , Ghoussoub-Yuan [9] investigated the equation:

−∆pu −
µ
|x|p |u|

p−2u = |u|p
*−2u, x ∈ RN , (1.1)

where N > 3, p ∈ (1, N) and µ ∈
(

0,
(
N−p
p

)p)
, and established the existence of solutions to equation (1.1)

by using the variational methods. Abdellaoui-Peral [1] considered the equation:

−∆pu −
µ + k(x)
|x|p |u|p−2u = |u|p

*−2u, x ∈ RN , (1.2)

and discussed the existence and nonexistence of solutions to equation (1.2) under di�erent assumptions
on k(x) by applying the concentration compactness principle and Pohožaev-type identity. Filippucci-Pucci-
Robert [8] considered the problem:

−∆pu −
µ
|x|p |u|

p−2u = |u|p
*−2u + |u|

p*s

|x|s , x ∈ RN , (1.3)

where s ∈ (0, N) and p*s = p(N−s)
N−p is the Hardy-Sobolev critical exponent, and obtained the existence results

of equation (1.3) by the choice of a suitable energy level for the mountain pass theorem and analysis of con-
centration.

Su-Wang-Willem [18] dealt with a generalized version with the singular potential:

−∆pu + V(|x|)|u|p−2u = Q(x)f (u), x ∈ RN , (GQ)

where 1 < p < N, and V and Q satisfy
(V1) V ∈ C(0,∞), V > 0 and there exist real numbers a and a0 such that

lim inf
r→∞

V(r)
ra > 0 and lim inf

r→0

V(r)
ra0

> 0.

(Q1) Q ∈ C(0,∞), Q > 0 and there exist real numbers b and b0 such that

lim sup
r→∞

Q(r)
rb

< ∞ and lim sup
r→0

Q(r)
rb0

< ∞.

They attained the radial inequalities with respect to the parameters a, a0, b, b0, then established main re-
sults on continuous and compact embeddings and the existence of solution to equation (GQ). Badiale-Guida-
Rolando [5] generalized the embedding results under di�erent conditions on V and Q, and explored the ex-
istence of solution to equation (GQ) with the sub-critical and super-critical growth.

If a = a0 = −α and b = b0 = 0 in conditions (V1) and (Q1), equation (GQ) reduces to (Q). Let us introduce
the result on continuous and compact embeddings described in [18].

Proposition 1.1. Suppose that N > 3 and p ∈ (1, N). Then we have
W1,p
rad(RN , α) ↪→ Lr(RN), r ∈ [p*α , p*], α ∈ (0, p),

W1,p
rad(RN , α) ↪→ Lr(RN), r ∈ [p*, p*α], α ∈

(
p, N−1

p−1 p
)
,

W1,p
rad(RN , α) ↪→ Lr(RN), r ∈ [p*,∞), α ∈

[N−1
p−1 p,∞

)
.

Furthermore, the embeddings are compact if r = ̸ p*α and r = ̸ p*, where p*α = p2(N−1)+pα
p(N−1)−α(p−1) = p + p2α

p(N−1)−α(p−1) ,
p* = Np

N−p , andW
1,p
rad(RN , α) := D1,p

rad(RN) ∩ Lp(RN , α) is the set of radial functions inW1,p(RN , α).

It is very natural to ask whether there exists a solution to equation (Q) with the embedding top index p* and
bottom index p*α? To the best of our knowledge, it seems that so far there is no a�rmative answer in the
literature.
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From Proposition 1.1, the embeddings

W1,p
rad(RN , α) ↪→ Lp

*
(RN) and W1,p

rad(RN , α) ↪→ Lp
*
α (RN)

are not compact. As a result, it is di�cult to prove that the Palais-Smale (minimizing) sequence is strongly
convergent if we seek solutions of equation (Q) with the critical exponent.

Lions [10] considered the noncompact embedding problem by the concentration-compactness princi-
ple: Only vanishing, dichotomy or tightness are possible. If one can exclude vanishing and dichotomy, then
tightness occurs. It is not di�cult to rule out vanishing. But sometimes it is hard to exclude the dichotomy.
Therefore, it becomes interesting to ask underwhat conditions dichotomy cannot occur? In [11, pp. 232], Lions
gave a useful answer.

Proposition 1.2. (Lions Theorem) Let N > 3 and p ∈ (1, N). Let {un} ⊂ W1,p(RN) be any bounded sequence
satisfying
(Condition A) lim

n→∞

´
RN |un|

rdx > 0 for r ∈ (p, p*).

Then there exists {yn} ⊂ RN such that the sequence ūn(x) = un(x + yn) converges weakly and a.e. to ū ≢ 0 in
Lrloc

(
RN
)
.

Following [10, 11], we can derive a similar result as follows immediately.

Proposition 1.3. (Lions-type theorem I) Let N > 3 and p ∈ (1, N). Let {un} ⊂ W1,p
rad(RN , α) be any bounded

sequence satisfying
(Condition B) lim

n→∞

´
RN |un|

rdx > 0, where


r ∈ (p*α , p*) α ∈ (0, p),
r ∈ (p*, p*α) α ∈

(
p, N−1

p−1 p
)
,

r ∈ (p*,∞) α ∈
[N−1
p−1 p,∞

)
.

Then the sequence {un} converges weakly and a.e. to u ≢ 0 in Lrloc
(
RN
)
.

From Conditions A and B, we see that Propositions 1.2 and 1.3 provide a technical tool to the cases: (a) the
nonlinearity f has neither the embedding top index nor embedding bottom index, and (b) the nonlinearity f
has either the embedding top index or embedding bottom index. However, Propositions 1.2 and 1.3 become in-
valid when f contains both embedding top and bottom indices. Hence, we shall establish a more generalized
result for α ∈ (0, p) as follows.

Theorem 1.1. Suppose that N > 3, p ∈ (1, N) and α ∈ (0, p). Let {un} ⊂ W1,p
rad(RN , α) be any bounded

sequence satisfying
(Condition C) lim

n→∞

´
RN |un|

p*dx > 0 and lim
n→∞

´
RN |un|

p*αdx > 0.

Then the sequence {un} converges weakly and a.e. to u ≢ 0 in Lploc(R
N).

Before presenting the existence of ground state solution to equation (Q), let us state the regularity properties
of any nonnegative weak solutions of equation (Q) with α ∈ (0, p).

Theorem 1.2. Suppose that N > 3, p ∈ (1, N), α ∈ (0, p) and condition (F2) holds. If U is a nonnegative weak
solution of equation (Q), then the following statements are true.

(i) U ∈ Lr(RN) for r ∈ [p*α ,∞].
(ii) U is a positive solution.
(iii) U satis�es the Pohožaev-type identity:

N − p
p

ˆ
RN
|∇U|pdx + N − α

p

ˆ
RN

A
|x|α |U|

pdx =N
ˆ
RN
F(U)dx.
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As an application of Theorems 1.1 and 1.2, when the nonlinearity f satis�es condition (F1), i.e. equation (Q)
takes the form

−∆u + A
|x|α |u|

p−2u = |u|p
*−2u + |u|q−2u + λ|u|p

*
α−2u, x ∈ RN , (Sp*α )

we have

Theorem 1.3. Assume that N > 3, p ∈
(

1,
√
N
)
, α ∈ (0, p), q ∈

(
p(N−p+α)
N−p , p*

)
and condition (F1) holds.

Suppose that α
p S

p*α
p*α−p
α S−

p*
p*−p


p*α−p
p

> λ > 0,

where λ is a constant, Sα and S are the best constants of the following inequalities [2, 19]:

Sα
(ˆ

RN
|u|p

*
αdx
) p

p*α
6 ‖u‖pW1,p(RN ,α), u ∈ W

1,p
rad(RN , α), (1.4)

and

S
(ˆ

RN
|u|p

*
dx
) p

p*

6 ‖u‖pD1,p(RN ), u ∈ D
1,p(RN). (1.5)

Then equation (Sp*α ) has a positive ground state solution u ∈ W1,p
rad
(
RN , α

)
.

The rest of this paper is organized as follows. In Section 2, we brie�y introduce some useful notations and
inequalities. In Sections 3-5, we prove Theorems 1.1-1.3, respectively.

2 Preliminaries
For N > 3 and p ∈ (1, N), let

D1,p(RN) :=
{
u ∈ Lp

*
(RN)

∣∣∣∣ˆ
RN
|∇u|pdx < ∞

}
with the semi-norm

‖u‖pD1,p(RN ) :=
ˆ
RN
|∇u|pdx.

Let

W1,p(RN , α) :=
{
u ∈ D1,p(RN)

∣∣∣∣‖u‖pLp(RN ,α) =
ˆ
RN

A
|x|α |u|

pdx < ∞
}

= D1,p(RN) ∩ Lp(RN , α)

with the norm
‖u‖pW1,p(RN ,α) :=

ˆ
RN
|∇u|pdx +

ˆ
RN

A
|x|α |u|

pdx.

The following inequalities will play a crucial role in the proof of Theorem 1.3:

Sα
(ˆ

RN
|u|p

*
αdx
) p

p*α
6 ‖u‖pW1,p(RN ,α), u ∈ W

1,p
rad(RN , α), (2.1)

and

S
(ˆ

RN
|u|p

*
dx
) p

p*

6 ‖u‖pD1,p(RN ), u ∈ D
1,p(RN). (2.2)

A measurable function u : RN → R belongs to the Morrey space with the norm ‖u‖Mq,ϖ(RN ), where q ∈
[1,∞) and ϖ ∈ (0, N], if and only if

‖u‖q
Mq,ϖ(RN ) := sup

R>0,x∈RN
Rϖ−N

ˆ
B(x,R)

|u(y)|qdy < ∞.
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Lemma 2.1. ([12], Re�ned Sobolev inequality with the Morrey norm) For N > 3 and p ∈ (1, N), there exists
C > 0 such that for ι and ϑ satisfying p

p* 6 ι < 1 and 1 6 ϑ < p*, we have

(ˆ
RN
|u|p

*
dx
) 1

p*

6 C‖u‖ιD1,p(RN )‖u‖
1−ι

M
ϑ, ϑ(N−p)

p (RN )
,

for u ∈ D1,p(RN).

It follows from Lemma 2.1 andW1,p
rad(RN , α) ⊂ D1,p

rad(RN) ⊂ D1,p(RN) that(ˆ
RN
|u|p

*
dx
) 1

p*

6 C‖u‖ιW1,p(RN ,α)‖u‖
1−ι

M
ϑ, ϑ(N−p)

p (RN )
, u ∈ W1,p

rad(RN , α). (2.3)

To prove the generalized version of Lions-type theorem, we need the following technical lemma.

Lemma 2.2 ([18]). Let N > 3, p ∈ (1, N) and α ∈ (0, p). Then the inequality

sup
|x|>0
|u(x)| 6 C

|x|
p(N−1)−α(p−1)

p2
‖u‖W1,p

rad(RN ,α)

holds for u ∈ W1,p
rad(RN , α).

Throughout this article, we will use the symbol C to denote a generic constant, possibly varying from line to
line. However, special occurrences will be denoted by C1, C̄ or the like.

3 Proof of Theorem 1.1
In this section, by applying the re�ned Sobolev inequalitywith theMorrey normandLemma 2.2,we prove

a generalized version of Lions-type theorem.

Proof of Theorem 1.1. We separate the proof into four steps.
Step 1. Note that {un} is a bounded sequence inW1,p

rad(RN , α). Then, up to a subsequence, we assume

un ⇀ u in W1,p
rad(RN , α), un → u a.e. in RN , un → u in Lploc(R

N).

According to (2.3) and Condition C, there exists a positive constant C such that for any n there holds

‖un‖Mp,N−p(RN ) > C > 0.

On the other hand, from [12, pp 809] we note that {un} is bounded inW1,p
rad(RN , α) and

W1,p
rad(RN , α) ↪→ D1,p

rad(RN) ↪→ Lp
*
(RN) ↪→Mp,N−p(RN).

Then we have
‖un‖Mp,N−p(RN ) 6 C

for some C > 0 independent of n. Hence, there exists a positive constant C0 such that for any n there holds

C0 6 ‖un‖Mp,N−p(RN ) 6 C−1
0 .

From this inequality, we deduce that for any n ∈ N there exist σn > 0 and xn ∈ RN such that

σ−pn
ˆ
B(xn ,σn)

|un(y)|pdy > ‖un‖pMp,N−p(RN ) −
C

2n > C1 > 0. (3.1)

Step 2.We show lim
n→∞

σn = σ̄ ≠ 0, where σ̄ ∈ (0,∞).
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It su�ces to show that lim
n→∞

σn ≠ ∞. Otherwise, we suppose lim
n→∞

σn = ∞. In view of the boundedness of
{un} and Condition C, we get

0 < lim
n→∞

ˆ
RN
|un|p

*
αdy 6 C.

Since N > 3, p ∈ (1, N) and α < p, we have

−p + N
(

1 − p
p*α

)
< 0⇔ p*α < p*. (3.2)

It follows from (3.1)-(3.2) that

0 < C1 6σ−pn
ˆ
B(xn ,σn)

|un(y)|pdy

6σ−pn
(ˆ

B(0,σn)
dy
) p*α−p

p*α
(ˆ

B(xn ,σn)
|un(y)|p

*
αdy
) p

p*α

=σ−pn
(ωN−1

N σNn
) p*α−p

p*α

(ˆ
B(xn ,σn)

|un(y)|p
*
αdy
) p

p*α

6σ
−p+N(1− p

p*α
)

n

(ωN−1
N

) p*α−p
p*α

(ˆ
RN
|un(y)|p

*
αdy
) p

p*α

6Cσ
−p+N(1− p

p*α
)

n

→0, as n → ∞,

where ωN−1 is the volume of the unit sphere in RN . This is a contradiction.
By the Bolzano-Weierstrass theorem, up to a subsequence, still denoted by {σn}, there exists σ̄ ∈ [0,∞)

such that
lim
n→∞

σn = σ̄.

We now show lim
n→∞

σn = σ̄ = ̸ 0. Suppose on the contrary that lim
n→∞

σn = σ̄ = 0. By using the uniform bounded-

ness of {un} inW1,p
rad(RN , α), we have

C lim
n→∞

(ˆ
RN
|un|p

*
dy
) p

p*

6 lim
n→∞
‖un‖pW1,p

rad(RN ,α)
6 C̄.

It follows from Hölder’s and Sobolev’s inequalities that

ˆ
B(0,σn)

|un|p
*
αdy 6

(ˆ
B(0,σn)

dy
) p*−p*α

p*
(ˆ

B(0,σn)
|un|p

*
dy
) p*α

p*

6S−
p*α
p

(ˆ
B(0,σn)

dy
) p*−p*α

p*
(ˆ

RN
|∇un|pdy

) p*α−p
p
ˆ
B(0,σn)

|∇un|pdy

6CS−
p*α
p

(ˆ
B(0,σn)

dy
) p*−p*α

p*
ˆ
B(0,σn)

|∇un|pdy.

Similarly, for each z ∈ RN we have

ˆ
B(z,σn)

|un|p
*
αdy 6 CS−

p*α
p

(ˆ
B(0,σn)

dy
) p*−p*α

p*
ˆ
B(z,σn)

|∇un|pdy.
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CoveringRN by balls of radius σn, in such a way that each point ofRN is contained in at most N + 1 balls, we
�nd ˆ

RN
|un|p

*
αdy 6C(N + 1)S−

p*α
p

(ˆ
B(0,σn)

dy
) p*−p*α

p*
ˆ
RN
|∇un|pdy

6C(N + 1)S−
p*α
p

(ˆ
B(0,σn)

dy
) p*−p*α

p*

=C(N + 1)S−
p*α
p
(ωN−1

N

)1− p
*
α
p* σ

N(1− p
*
α
p*

)
n ,

where ωN−1 is the volume of the unit sphere in RN .
Taking n → ∞ and applying lim

n→∞
σn = 0 leads to

lim
n→∞

ˆ
RN
|un|p

*
αdy 6C(N + 1)S−

p*α
p
(ωN−1

N

)1− p
*
α
p* lim
n→∞

σ
N(1− p

*
α
p*

)
n = 0,

which yields a contradiction to lim
n→∞

´
RN |un|

p*dx > 0 given in Condition C.

Using lim
n→∞

σn = σ̄ ≠ 0, up to a subsequence, we have σn ∈ ( σ̄2 , 2σ̄) and

2p
σ̄p

ˆ
B(xn ,σn)

|un(y)|pdy > C1 > 0,

which gives ˆ
B(xn ,σn)

|un(y)|2dy > C1σ̄p
2p > 0. (3.3)

Step 3.We show that {xn} is a bounded sequence.
By way of contradiction, we can assume |xn| → ∞ as n → ∞. According to Lemma 2.2, we have

sup
|x|>0
|un(x)| 6 C

|x|
p(N−1)−α(p−1)

p2
‖un‖W1,p

rad(RN ,α) 6
C

|x|
p(N−1)−α(p−1)

p2
.

For any
(

C1 σ̄p
2p|B(0,2σ̄)|

) 1
p > ε > 0, there exists an M > 0 such that for any n > M there holds

|un(x)| 6 C

||xn| − σn|
p(N−1)−α(p−1)

p2
6 ε, x ∈ Bc(0, ||xn| − σn|).

From B(xn , σn) ⊂ Bc(0, ||xn| − σn|), it follows thatˆ
B(xn ,σn)

|un(y)|pdy 6 εp
ˆ
B(xn ,σn)

dy = εp|B(xn , σn)| = εp|B(0, σn)| 6 εp|B(0, 2σ̄)| < C1σ̄p
2p .

Step 4.Note that {xn} is bounded. There exists 0 < C̃ < ∞ such that 0 6 |xn| < C̃. In view of lim
n→∞

σn = σ̄ ≠
0, up to a subsequence, we have

B(xn , σn) ⊂ B(0, |xn| + σn) ⊂ B(0, C̃ + 2σ̄).

From (3.1), we deduce that

0 < C1σ̄p =C1 lim
n→∞

σpn

6 lim
n→∞

(
σpn
)

lim
n→∞

(
σ−pn
ˆ
B(xn ,σn)

|un|pdy
)

= lim
n→∞

ˆ
B(xn ,σn)

|un|pdy

6 lim
n→∞

ˆ
B(0,C̃+2σ̄)

|un|pdy.

Applying the embeddingW1,p
rad(RN , α) ↪→ D1,p

rad(RN) ↪→ Lploc(R
N), we obtain u ≢ 0.
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4 Proof of Theorem 1.2
In this section, we prove that any nonnegative weak solutions of equation (Q) with α ∈ (0, p) have additional
regularity properties.

Lemma 4.1. Assume that all the conditions described in Theorem 1.2 hold. For each L > 2, de�ne

UL(x) =
{
U(x) if U(x) 6 L,
L if U(x) > L.

Set ŪL = UUp(µ−1)
L , where µ > 1. Let C̃t be the best embedding constant from W1,p

rad(RN , α) to Lt(RN) for t ∈
[p*α , p*]. Then we have(ˆ

RN
|UUµ−1

L |tdx
) p

t

6
Cµp

C̃t

[ˆ
RN
Up

*
α−p|UUµ−1

L |pdx +
ˆ
RN
Up

*−p|UUµ−1
L |pdx

]
. (4.1)

Proof. Let U be a nonnegative ground state solution of equation (Q). We show that ŪL ∈ W1,p
rad(RN , α). By a

straightforward calculation, we get
ˆ
RN
|∇(UUp(µ−1)

L )|pdx

=
ˆ
RN
|Up(µ−1)
L ∇U + p(µ − 1)UUp(µ−1)−1

L ∇UL|pdx

62p
ˆ
RN
|Up(µ−1)
L |p|∇U|pdx + (2p)p(µ − 1)p

ˆ
RN
|UUp(µ−1)−1

L |p|∇UL|pdx

=2p
ˆ
RN
|Up(µ−1)
L |p|∇U|pdx + (2p)p(µ − 1)p

ˆ
{x|U(x)6L}

|Up(µ−1)
L |p|∇U|pdx

62pLp
2(µ−1)(1 + (µ − 1)p)

ˆ
RN
|∇U|pdx,

and ˆ
RN

A
|x|α |UU

p(µ−1)
L |pdx 6 Lp

2(µ−1)
ˆ
RN

A
|x|α |U|

pdx.

This implies that ŪL ∈ W1,p
rad(RN , α).

Note that U is a nonnegative ground state solution of equation (Q). Then
ˆ
RN
|∇U|p−2∇U∇φdx +

ˆ
RN

A
|x|α |U|

p−2Uφdx =
ˆ
RN
f (U)φdx.

Substituting ŪL into the above equation, we get
ˆ
RN
|∇U|p−2∇U∇ŪLdx +

ˆ
RN

A
|x|α |UU

µ−1
L |pdx =

ˆ
RN
f (U)ŪLdx. (4.2)

Since ˆ
RN
UUp(µ−1)−1

L |∇U|p−2∇U∇ULdx =
ˆ
{x|U(x)6L}

Up(µ−1)|∇U|pdx > 0,

it follows that ˆ
RN
|∇U|p−2∇U∇ŪLdx

=
ˆ
RN
Up(µ−1)
L |∇U|pdx + p(µ − 1)

ˆ
RN
UUp(µ−1)−1

L |∇U|p−2∇U∇ULdx

>
ˆ
RN
Up(µ−1)
L |∇U|pdx.

(4.3)
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Note that ˆ
RN
|∇(UUµ−1

L )|pdx 6[2p + (2p)p(µ − 1)p]
ˆ
RN
Up(µ−1)
L |∇U|pdx

6(2p)pµp
ˆ
RN
Up(µ−1)
L |∇U|pdx.

(4.4)

It follows from (4.2)-(4.4) and Proposition 1.1 that

C̃t
(ˆ

RN
|UUµ−1

L |tdx
) p

t

6(2p)pµp
(ˆ

RN
|∇U|p−2∇U∇ŪLdx +

ˆ
RN

A
|x|α |UU

µ−1
L |pdx

)
6Cµp

[ˆ
RN
Up

*−p|UUµ−1
L |pdx +

ˆ
RN
Up

*
α−p|UUµ−1

L |pdx
]
.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the proof into three parts.
Part (i).We �rst show the L∞ estimate of U by the following four steps.
Step 1.We claim that (

1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
< ∞,

where µ1 := 1 + p*−p*α
p .

Taking d̄ ∈ R+ and using Hölder’s inequality, we can derive
ˆ
RN
Up

*−p|UUµ−1
L |pdx

6d̄p
*−p*α
ˆ
{x|U(x)6d̄}

Up
*
α−p|UUµ−1

L |pdx +
ˆ
{x|U(x)>d̄}

Up
*−p|UUµ−1

L |pdx

6d̄p
*−p*α
ˆ
RN
|U|p

*
α+pµ−pdx +

(ˆ
{x|U(x)>d̄}

Up
*
dx
) p*−p

p* (ˆ
RN
|UUµ−1

L |p
*
dx
) p

p*

.

We choose d̄ such that (ˆ
{x|U(x)>d̄}

Up
*
dx
) p*−p

p*

6
C̃p*

2Cµp .

Substituting the above two inequalities into (4.1) with the choice of t = p*, we get(ˆ
RN
|UUµ−1

L |p
*
dx
) p

p*

6
2Cµp

C̃p*

[ˆ
RN
Up

*
α−p|UUµ−1

L |pdx + d̄p
*−p*α
ˆ
RN
|U|p

*
α+pµ−pdx

]
.

Taking the limit as L → ∞ in the above inequality leads to(ˆ
RN
|U|p

*µdx
) p

p*

6
2Cµp

C̃p*

[
1 + d̄p

*−p*α
]ˆ

RN
|U|p

*
α+pµ−pdx.

Let p*α + pµ − p ∈ (p*α , p*] and choose µ ∈
(

1, 1 + p*−p*α
p
]
. Then

U ∈ Lp
*µ(RN).

Hence, we have

U ∈ Lp̌1 (RN), p̌1 ∈ [p*α , p*] ∪
(
p*, p*

(
1 + p* − p*α

p

)]
.
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We now choose µ1 := 1 + p*−p*α
p . Then we obtain p*µ1 ∈

[
p*, p*

(
1 + p*−p*α

p

)]
and

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
< ∞.

Step 2.We show that(
1 +
ˆ
RN
|U|p

*µ2 dx
) p

p*(µ2−1)
6 (Cµ2)

p
µ2−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
,

where µ2 − 1 =
( p*
p
)

(µ1 − 1).
Let µ2 := 1 + p*

p · (µ1 − 1). Then p* + pµ2 − p = p*µ1 and µ2 − 1 = ( p
*

p )(µ1 − 1). Let µ ∈ [µ1, µ2]. We �nd

p*α < p*α + pµ − p < p* + pµ − p 6 p*µ1.

From Lemma 4.1, we get(ˆ
RN
|U|p

*µdx
) p

p*

6
Cµp

C̃p*

[ˆ
RN
|U|p

*
α+pµ−pdx +

ˆ
RN
|U|p

*+pµ−pdx
]
< ∞.

For each µ ∈ [µ1, µ2], we have U ∈ Lp
*µ(RN) and

U ∈ Lp̌2 (RN), p̌2 ∈ [p*α , p*µ1] ∪ [p*µ1, p*µ2].

Set µ = µ2. Then (ˆ
RN
|U|p

*µ2 dx
) p

p*

6
Cµp2
C̃p*

[ˆ
RN
|U|p

*
α+pµ2−pdx +

ˆ
RN
|U|p

*+pµ2−pdx
]
< ∞.

Let a2 = p*(p*−p*α)
p(µ2−1) and b2 = p*α +pµ2 −p−a2. Then p*b2

p*−a2
= p* +pµ2 −p. It follows from Young’s inequality

that ˆ
RN
|U|p

*
α+pµ2−pdx =

ˆ
RN
|U|a2 |U|b2dx

6
a2
p*

ˆ
RN
|U|p

*
dx + p* − a2

p*

ˆ
RN
|U|p

*+pµ2−pdx

6C
(

1 +
ˆ
RN
|U|p

*+pµ2−pdx
)
.

Thus, we deduce (ˆ
RN
|U|p

*µ2 dx
) p

p*

6 Cµp2

(
1 +
ˆ
RN
|U|p

*+pµ2−pdx
)
.

For every x1, x2 > 0, we know that

(x1 + x2)
p
p* 6 x

p
p*
1 + x

p
p*
2 .

We then obtain(
1 +
ˆ
RN
|U|p

*µ2 dx
) p

p*

6 1 +
(ˆ

RN
|U|p

*µ2 dx
) p

p*

6 Cµp2

(
1 +
ˆ
RN
|U|p

*+pµ2−pdx
)
.

That is, (
1 +
ˆ
RN
|U|p

*µ2 dx
) p

p*(µ2−1)
6(Cµ2)

p
µ2−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) 1

µ2−1

=(Cµ2)
p

µ2−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
.
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Step 3.We show that(
1 +
ˆ
RN
|U|p

*µ3 dx
) p

p*(µ3−1)
6 (Cµ3)

p
µ3−1

(
1 +
ˆ
RN
|U|p

*µ2 dx
) p

p*(µ2−1)
,

where µ3 − 1 = ( p
*

p )(µ2 − 1).
Let µ3 := 1 + p*

p · (µ2 − 1). Then p* + pµ3 − p = p*µ2 and µ3 − 1 = ( p
*

p )(µ2 − 1). Let µ ∈ [µ2, µ3]. Then

p*α < p*α + pµ − p < p* + pµ − p 6 p*µ2.

So we get (ˆ
RN
|U|p

*µdx
) p

p*

6
Cµp

C̃p*

[ˆ
RN
|U|p

*
α+pµ−pdx +

ˆ
RN
|U|p

*+pµ−pdx
]
< ∞.

For each µ ∈ [µ2, µ3], we have U ∈ Lp
*µ(RN) and

U ∈ Lp̌3 (RN), p̌3 ∈ [p*α , p*µ2] ∪ [p*µ2, p*µ3].

Set µ = µ3. Then (ˆ
RN
|U|p

*µ3 dx
) p

p*

6
Cµp3
C̃p*

[ˆ
RN
|U|p

*
α+pµ3−pdx +

ˆ
RN
|U|p

*+pµ3−pdx
]
< ∞.

Let a3 = p*(p*−p*α)
p(µ3−1) and b3 = p*α +pµ3 −p−a3. Then p*b3

p*−a3
= p* +pµ3 −p. It follows from Young’s inequality

that ˆ
RN
|U|p

*
α+pµ3−pdx 6 C

(
1 +
ˆ
RN
|U|p

*+pµ3−pdx
)
.

Hence, we obtain (
1 +
ˆ
RN
|U|p

*µ3 dx
) p

p*(µ3−1)
6 (Cµ3)

p
µ3−1

(
1 +
ˆ
RN
|U|p

*µ2 dx
) p

p*(µ2−1)
.

Step 4. Iterating the above process and recalling that

p* + pµi+1 − p = p*µi , i > 1 and i ∈ N,

we have

µi+1 − 1 =
(
p*
p

)i
(µ1 − 1)

and (
1 +
ˆ
RN
|U|p

*µi+1 dx
) p

p*(µi+1−1)
6(Cµi+1)

p
µi+1−1

(
1 +
ˆ
RN
|U|p

*µidx
) 1

µi+1−1

=(Cµi+1)
p

µi+1−1

(
1 +
ˆ
RN
|U|p

*µidx
) p

p*(µi−1)
.

For m ∈ N, we further get
m∏
i=1

(Cµi+1)
p

µi+1−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)

>

(
1 +
ˆ
RN
|U|p

*µm+1 dx
) p

p*(µm+1−1)

>

(ˆ
RN
|U|p

*µm+1 dx
) p

p*(µm+1−1)
.
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If
´
RN |U|

p*µm+1 dx 6 1, then

m∏
i=1

(Cµi+1)
p

µi+1−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
>

(ˆ
RN
|U|p

*µm+1 dx
) p+ p2

p*−p*α
p*µm+1

=‖U‖
p+ p2

p*−p*α

Lp*µm+1 (RN )
.

That is,

‖U‖Lp*µm+1 (RN ) 6

[ m∏
i=1

(Cµi+1)
1

µi+1−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) 1

p*(µ1−1)
] p*−p*α
p*−p*α+p

. (4.5)

If
´
RN |U|

p*µm+1 dx > 1, then

m∏
i=1

(Cµi+1)
p

µi+1−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) p

p*(µ1−1)
>

(ˆ
RN
|U|p

*µm+1 dx
) p

p*µm+1

=‖U‖p
Lp*µm+1 (RN )

.

That is,

‖U‖Lp*µm+1 (RN ) 6
m∏
i=1

(Cµi+1)
1

µi+1−1

(
1 +
ˆ
RN
|U|p

*µ1 dx
) 1

p*(µ1−1)
. (4.6)

Note that

lim
m→∞

m∏
i=1

(Cµi+1)
p

µi+1−1 = lim
m→∞

e
p

m∑
i=1

(
ln C

µi+1−1 + ln µi+1
µi+1−1

)
.

For the series
∞∑
i=1

ln C
µi+1−1 , using the root test, we get

lim
i→∞

i

√
ln C

µi+1 − 1 = lim
i→∞

i

√
ln C

( p*p )i(µ1 − 1)
= p
p* < 1,

which indicates
∞∑
i=1

ln C
µi+1−1 < ∞.

For the series
∞∑
i=1

ln µi+1
µi+1−1 , by using the ratio test, we �nd

lim
i→∞

ln µi+2
µi+2 − 1 ·

µi+1 − 1
ln µi+1

= pp* lim
i→∞

ln
(

1 + p*
p (µi+1 − 1)

)
ln µi+1

6
p
p* lim

i→∞

ln
(
p*
p + p*

p (µi+1 − 1)
)

ln µi+1

= pp* lim
i→∞

 ln p*
p

ln µi+1
+ ln µi+1

ln µi+1


<1,

which implies
∞∑
i=1

ln µi+1
µi+1−1 < ∞. Hence, we have

∞∏
i=1

(Cµi+1)
p

µi+1−1 < ∞.

Letting m → ∞ in (4.5) and (4.6), we obtain

‖U‖L∞(RN ) < ∞.
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Part (ii).We rewrite equation (Q) as −∆pU = g(x, U), where

g(x, U) = − A
|x|α U + f (U).

For all Ω ⊂⊂ RN \ {0}, there exists C(Ω) > 0 such that |g(x, U)| 6 C(Ω)(1 + |U|p
*−1) for x ∈ Ω. It follows

from Theorem 1.2 (i) and [21, Theorem 1 and Proposition 1] that U ∈ C1(RN\{0}). Finally, the strict positivity
follows form the strong maximum principle [22].

Part (iii).Applying Theorem 1.2 (ii) and following [8, Claim 5.3], we can derive the Pohožaev-type identity

N − p
p

ˆ
RN
|∇U|pdx + N − α

p

ˆ
RN

A
|x|α |U|

pdx =N
ˆ
RN
F(U)dx.

Consequently, the proof is completed.

5 Proof of Theorem 1.3
As we see, equation (Sp*α ) is variational and its solutions are the critical points of the functional de�ned

inW1,p
rad(RN , α) by

J(u) := 1
p ‖u‖

p
W1,p
rad(RN ,α)

− λ
p*α

ˆ
RN
|u|p

*
αdx − 1

q

ˆ
RN
|u|qdx − 1

p*

ˆ
RN
|u|p

*
dx.

FromProposition 1.1, we know that J ∈ C1(W1,p
rad(RN , α),R). It is easy to see that if u ∈ W1,p

rad(RN , α) is a critical
point of J, i.e.

0 = 〈J′(u), φ〉 =
ˆ
RN

(|∇u|p−2∇u∇φ + A
|x|α |u|

p−2uφ)dx

− λ
ˆ
RN
|u|p

*
α−2uφdx −

ˆ
RN
|u|q−2uφdx −

ˆ
RN
|u|p

*−2uφdx

for all φ ∈ W1,p
rad(RN , α), then u is a weak solution of equation (Sp*α ).

De�ne
c = inf

γ∈Γ
sup
t∈[0,1]

J(γ(t)) > 0,

where
Γ =

{
γ ∈ C

(
[0, 1],W1,p

rad(RN , α)
)
|γ(0) = 0, J(γ(1)) < 0

}
.

De�ne
N = {u ∈ W1,p

rad(RN , α)|〈J′(u), u〉 = 0, u ≠ 0},

and let
c̄ = inf

u∈N
J(u).

It is easy to check that c = c̄ = ¯̄c := inf
u∈W1,p

rad(RN ,α)\{0}
sup
t>0

J(tu) > 0.

Lemma 5.1. Assume that all the conditions described in Theorem 1.3 hold. Then

0 < c < c* := min

 α
Np

(
1
λ

) p
p*α−p S

p*α
p*α−p
α , 1

N S
p*
p*−p

 .

Proof. If

 α
p S

p*α
p*α−p
α S−

p*
p*−p


p*α−p
p

> λ > 0, then

α
Np

(
1
λ

) p
p*α−p S

p*α
p*α−p
α >

1
N S

p*
p*−p .
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We choose

ωσ(x) = Cσ
N−p
p(p−1)

(σ
p
p−1 + |x|

p
p−1 )

N−p
p

and
‖wσ‖pD1,p(RN ) = ‖w1‖pD1,p(RN ) =

ˆ
RN
|w1|p

*
dx =

ˆ
RN
|wσ|p

*
dx = S

p*
p*−p .

A straightforward calculation gives
ˆ
RN

|wσ|p
|x|α dx 6C

ˆ
RN

1
|x|α

σN−p

(σ
p
p−1 + |x|

p
p−1 )N−p

dx

6C
ˆ ∞

0

1
ρα

1
(σ

p
p−1 + ρ

p
p−1 )N−p

ρN−1dρ

=C
ˆ 1

0

ρN−1−α

(1 + ρ
p
p−1 )N−p

dρ + C
ˆ ∞

1

ρN−1−α

(σ
p
p−1 + ρ

p
p−1 )N−p

dρ

6C
ˆ 1

0

ρN−1−α

(σ
p
p−1 + ρ

p
p−1 )N−p

dρ + C
ˆ ∞

1
ρN−1−α− p(N−p)

p−1 dρ.

It is not di�cult to see that
ˆ 1

0

ρN−1−α

(σ
p
p−1 + ρ

p
p−1 )N−p

dρ 6
ˆ 1

0

ρN−1−α

(σ
p
p−1 )N−p

dρ < ∞.

In view of p ∈ (1,
√
N), we have N − 1 − α − p(N−p)

p−1 < −1 and
ˆ ∞

1
ρN−1−α− p(N−p)

p−1 dρ < ∞.

This implies that wσ ∈ W1,p
rad(RN , α). So we have

ˆ
RN
|wσ|p

*
αdx = σp−

pα(N−p)
p(N−1)−α(p−1)

ˆ
RN
|w1|p

*
αdx,

ˆ
RN
|wσ|qdx = σq+ (p−q)N

p

ˆ
RN
|w1|qdx,

ˆ
RN

1
|x|α |wσ|

pdx = σp−α
ˆ
RN

1
|x|α |w1|pdx,

and lim
t→∞

J(twσ) = −∞.
Let t̄σ > tσ > 0 satisfy

sup
t>0

J(twσ) = J(tσwσ) and J(t̄σwσ) < 0.

Taking γ(t) = tt̄σwσ, we get
c 6 max

t∈[0,1]
J(γ(t)) = J(tσwσ).

Note that
0 = ddt

∣∣∣∣
t=tσ

J(twσ)

=
(
tp−1
σ − tp

*−1
σ

)
‖w1‖pD1,p(RN ) + σp−α tp−1

σ

ˆ
RN

A
|x|α |w1|pdx

− λσp−
pα(N−p)

p(N−1)−α(p−1) tp
*
α−1
σ

ˆ
RN
|w1|p

*
αdx − σq+ (p−q)N

p tq−1
σ

ˆ
RN
|w1|qdx.

(5.1)
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Let t0 := lim sup
σ→0

tσ. We claim that t0 < ∞. Otherwise, we assume that t0 = ∞. Taking an upper limit as σ → 0

in (5.1), we get

lim sup
σ→0

(
tp−1
σ ‖w1‖pD1,p(RN ) + σp−α tp−1

σ

ˆ
RN

A
|x|α |w1|pdx

)
= lim sup

σ→0

(
tp
*−1
σ ‖w1‖pD1,p(RN ) + λσp−

pα(N−p)
p(N−1)−α(p−1) tp

*
α−1
σ

ˆ
RN
|w1|p

*
αdx

+σq+ (p−q)N
p tq−1

σ

ˆ
RN
|w1|qdx

)
.

(5.2)

It follows from p < p* and lim sup
σ→0

tσ = ∞ that

lim sup
σ→0

tp−1
σ

(
‖w1‖pD1,p(RN ) + σp−α

ˆ
RN

A
|x|α |w1|pdx

)
< lim sup

σ→0
tp
*−1
σ ‖w1‖pD1,p(RN )

6 lim sup
σ→0

(
tp
*−1
σ ‖w1‖pD1,p(RN ) + λσp−

pα(N−p)
p(N−1)−α(p−1) tp

*
α−1
σ

ˆ
RN
|w1|p

*
αdx

+σq+ (p−q)N
p tq−1

σ

ˆ
RN
|w1|qdx

)
.

This contradicts (5.2). That is, t0 < ∞.
Passing to an upper limit as σ → 0 in (5.1) leads to

0 =
(
tp−1

0 − tp
*−1

0

)
‖w1‖pD1,p(RN ),

which implies
tp−1

0 − tp
*−1

0 = 0 and t0 = 1.
Let {σn} be a sequence such that σ → 0 as n → ∞. Then, up to a subsequence, still de�ned by {σn}, we have

t0
2 < tσn . (5.3)

Hence, we can choose σ̃ > 0 small enough such that
t0
2 < tσ̃ = ̸ t0.

Set

g(t) = tp
p −

tp
*

p* and g′(t) = tp−1 − tp
*−1.

Then, we have g′(t0) = 0, g′(t) < 0 for t > t0, and g′(t) > 0 for t < t0. Hence, g(t) attains its maximum at t0.
That is,

g(t) < g(t0) = 1
N

(5.4)

for any t ≠ t0.
It follows from q > p(N+α−p)

N−p and (5.3)-(5.4) that

J(tσ̃wσ̃) 6
(
tpσ̃
p −

tp
*

σ̃
p*

)
‖w1‖pD1,p(RN ) + σ̃p−α tσ̃

ˆ
RN

A
|x|α |w1|pdx −

σ̃q+ (p−q)N
p tqσ̃
q

ˆ
RN
|w1|qdx

6

(
tpσ̃
p −

tp
*

σ̃
p*

)
‖w1‖pD1,p(RN )

=
(
tpσ̃
p −

tp
*

σ̃
p*

)
S

p*
p*−p

< 1
N S

p*
p*−p

for su�ciently small σ̃. Consequently, we arrive at the desired result.
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5.1 Perturbation Equation

Applying Theorems 1.1 and 1.2, it is easy to prove the existence of positive ground state solution of the
following equation (with small ε > 0, see [18]):

−∆pu + A
|x|α |u|

p−2u = |u|p
*−ε−2u + |u|q−2u + λ|u|p

*
α+ε−2u, x ∈ RN . (Sp*α+ε)

Set the energy functional of equation (Sp*α+ε) as follows:

Jε(u) := 1
p

ˆ
RN

(|∇u|p + A
|x|α |u|

p)dx − 1
q

ˆ
RN
|u|qdx − 1

p* − ε

ˆ
RN
|u|p

*−εdx − λ
p*α + ε

ˆ
RN
|u|p

*
α+εdx.

Let vε be a positive ground state solution of equation (Sp*α+ε). For all φ ∈ W
1,p
rad(RN , α), it follows that

0 = 〈J′ε(vε), φ〉 =
ˆ
RN

(|∇vε|p−2∇vε∇φ + A
|x|α |vε|

p−2vεφ)dx −
ˆ
RN
|vε|q−2vεφdx

−
ˆ
RN
|vε|p

*−ε−2vεφdx − λ
ˆ
RN
|vε|p

*
α+ε−2vεφdx,

0 = Pε(vε) = 1
p*

ˆ
RN
|∇vε|pdx + N − α

pN

ˆ
RN

A|vε|p
|x|α dx − 1

q

ˆ
RN
|vε|qdx

− 1
p* − ε

ˆ
RN
|vε|p

*−εdx − λ
p*α + ε

ˆ
RN
|vε|p

*
α+εdx,

and
cε = Jε(vε) = 1

p

ˆ
RN

(|∇vε|p + A
|x|α |vε|

p)dx − 1
q

ˆ
RN
|vε|qdx

− 1
p* − ε

ˆ
RN
|vε|p

*−εdx − λ
p*α + ε

ˆ
RN
|vε|p

*
α+εdx.

We then have the following lemma for equation (Sp*α+ε).

Lemma 5.2. Assume that all the conditions described in Theorem 1.3 hold. Then the following statements are
true.

(i) For each u ∈ W1,p
rad(RN , α) \ {0}, there exists a unique τε > 0 such that Pε(uτε ) = 0 for ε ∈ (0, ε0], where

uτ(x) =
{
u( xτ ), τ > 0,
0, τ = 0.

Moreover, we have Jε(uτε ) = max
τ>0

Jε(uτ).

(ii) cε = cPε for ε ∈ (0, ε0], where

cε = inf{Jε(u)|u ∈ W1,p
rad(RN , α) and J′ε(u) = 0},

and
cPε = inf{Jε(u)|u ∈ W1,p

rad(RN , α) and Pε(u) = 0}.

(iii) lim sup
ε→0

cε 6 c.

(iv) cε > 0 for ε ∈ [0, ε0].
(v) Let εn → 0+ and {vεn} ⊂ W1,p

rad(RN , α) satisfy

Jεn (vεn ) = cεn , Pεn (vεn ) = 0, J′εn (vεn ) = 0.

Then, {vεn} is bounded inW1,p
rad(RN , α) and lim inf

n→∞
cεn > 0.
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Proof. (i) For each u ∈ W1,p
rad(RN , α) \ {0}, we set

φε(τ) = Jε(uτ) = τ
N−p

p

ˆ
RN
|∇u|pdx + τN−α

p

ˆ
RN

A|u|p
|x|α dx − τ

N

q

ˆ
RN
|u|qdx

− λ τN

p*α + ε

ˆ
RN
|u|p

*
α+εdx − τN

p* − ε

ˆ
RN
|u|p

*−εdx.

A direct calculation gives

φ′ε(τ) =N − pp τN−p−1
ˆ
RN
|∇u|pdx + N − α

p τN−α−1
ˆ
RN

A|u|p
|x|α dx − Nτ

N−1

q

ˆ
RN
|u|qdx

− λNτ
N−1

p*α + ε

ˆ
RN
|u|p

*
α+εdx − Nτ

N−1

p* − ε

ˆ
RN
|u|p

*−εdx.

In view of N > 3, p ∈ (1,
√
N) and α ∈ (0, p), we �nd that φ′ε(τ) > 0 for small τ > 0 and lim

τ→∞
φ′ε(τ) < 0.

Then there exists τε > 0 such that φ′ε(τε) = 0 and Jε(uτε ) = max
τ>0

Jε(uτ). Moreover, Pε(uτε ) = 1
N τεφ

′
ε(τε) = 0.

(ii). On one hand, Theorem 1.2 implies that cε > cPε for ε ∈ [0, ε0]. On the other hand, we have

cε =cmpε := inf
γ∈Γ

sup
t∈[0,1]

Jε(γ(t)) > 0,

where
Γ =

{
γ ∈ C

(
[0, 1],W1,p

rad(RN , α)
)
|γ(0) = 0, Jε(γ(1)) < 0

}
.

It is easy to see that there exists τ1 large enough such that Jε(uτ1 ) < 0. Hence, we can choose γ(t) = utτ1 .
Using Lemma 5.2 (i), we have cmpε 6 max

τ>0
Jε(uτ) = Jε(uτε ). Since u is arbitrary, we obtain cmpε 6 cPε and

cε = cPε for ε ∈ (0, ε0].
(iii). For any δ ∈ (0, 1

2 ), there exists u ∈ W1,p
rad(RN , α) \ {0}with P(u) = 0 such that J(u) < c + δ. In view of

P(u) = 0, we get

N − p
p

ˆ
RN
|∇u|pdx + N − α

p

ˆ
RN

A|u|p
|x|α dx = N

q

ˆ
RN
|u|qdx + λN

p*α

ˆ
RN
|u|p

*
αdx + N

p*

ˆ
RN
|u|p

*
dx > 0.

Then there exists τ̄ > 0 large enough such that

J(uτ̄) = τ̄
N−p

p

ˆ
RN
|∇u|pdx + τ̄N−α

p

ˆ
RN

A|u|p
|x|α dx − τ̄

N

q

ˆ
RN
|u|qdx

− τ̄N
(
λ
p*α

ˆ
RN
|u|p

*
αdx + 1

p*

ˆ
RN
|u|p

*
dx
)

6 − 1.

We now show the continuity of τN
p*α+ε
´
RN |u|

p*α+εdx and τN
p*−ε
´
RN |u|

p*−εdx on (τ, ε) ∈ [0, τ̄] × (0, ε0).

Firstly, it is easy to check the continuity of τN
p*α+ε and τN

p*−ε on (τ, ε) ∈ [0, τ̄] × (0, ε0).
Secondly, let 0 < ε1 < ε2 < ε0. Then p*α + ε1 < p*α + ε2 < p*. It follows from Hölder’s and Young’s

inequalities that
ˆ
RN
|u|p

*
α+ε2 dx 6 p* − p*α − ε2

p* − p*α − ε1

ˆ
RN
|u|p

*
α+ε1 dx + ε2 − ε1

p* − p*α − ε1

ˆ
RN
|u|p

*
dx,

which gives
ˆ
RN
|u|p

*
α+ε2 dx −

ˆ
RN
|u|p

*
α+ε1 dx 6 ε1 − ε2

p* − p*α − ε1

ˆ
RN
|u|p

*
α+ε1 dx + ε2 − ε1

p* − p*α − ε1

ˆ
RN
|u|p

*
dx.

That is, ∣∣∣∣ˆ
RN
|u|p

*
α+ε2 dx −

ˆ
RN
|u|p

*
α+ε1 dx

∣∣∣∣ 6 ε1 − ε2
p* − p*α − ε1

∣∣∣∣ˆ
RN
|u|p

*
α+ε1 dx −

ˆ
RN
|u|p

*
dx
∣∣∣∣ . (5.5)
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From (5.5), it is not di�cult to see the continuity of
´
RN |u|

p*α+εdx on ε ∈ (0, ε0). Similarly, we can prove the
continuity of

´
RN |u|

p*−εdx on ε ∈ (0, ε0) too.
Thirdly, let f1(τ, ε) = τN

p*α+ε , f2(τ, ε) = τN
p*−ε , g1(ε) =

´
RN |u|

p*α+εdx and g2(ε) =
´
RN |u|

p*−εdx. Then f1(τ, ε) ·
g1(ε) and f2(τ, ε) · g2(ε) are continuous on (τ, ε) ∈ [0, τ̄] × (0, ε0).

Finally, by using the continuity of τN
p*α+ε
´
RN |u|

p*α+εdx and τN
p*−ε
´
RN |u|

p*−εdx on (τ, ε) ∈ [0, τ̄]×(0, ε0), there
exists ε̄ > 0 such that for all ε ∈ (0, ε̄) and τ ∈ [0, τ̄] there holds

|Jε(uτ) − J(uτ)|

=τN
∣∣∣∣ λ
p*α + ε

ˆ
RN
|u|p

*
α+εdx − λ

p*α

ˆ
RN
|u|p

*
αdx + 1

p* − ε

ˆ
RN
|u|p

*−εdx − 1
p*

ˆ
RN
|u|p

*
dx
∣∣∣∣

6τN
∣∣∣∣ λ
p*α + ε

ˆ
RN
|u|p

*
α+εdx − λ

p*α

ˆ
RN
|u|p

*
αdx
∣∣∣∣ + τN

∣∣∣∣ 1
p* − ε

ˆ
RN
|u|p

*−εdx − 1
p*

ˆ
RN
|u|p

*
dx
∣∣∣∣

<δ,

which implies
Jε(uτ̄) 6 −1

2 , ε ∈ (0, ε̄).

Note that Jε(uτ) > 0 for τ small enough. Then there exists τ̄ε ∈ (0, τ̄) such that d
dτ Jε(uτ)|τ=τ̄ε , and Pε(uτ̄ε ) =

0. By Lemma 5.2 (i), we know J(uτ̄ε ) 6 J(u). Thus, for any ε ∈ (0, ε̄) there holds

cε 6 Jε(uτ̄ε ) 6 J(uτ̄ε ) + δ 6 J(u) + δ < c + 2δ.

Hence, lim sup
ε→0

cε 6 c.

(iv). By a direct calculation, we have

cε = Jε(vε) − Pε(vε) = 1
N

ˆ
RN
|∇vε|2dx + α

pN

ˆ
RN

A|vε|2
|x|α dx > 0.

(v). By virtue of Lemma 5.2 (iii), we have

c + 1 > cεn = Jεn (vεn ) − Pεn (vεn ) = 1
N

ˆ
RN
|∇vεn |pdx + α

pN

ˆ
RN

A|vεn |p
|x|α dx > C‖vεn‖pW1,p

rad(RN ,α)
.

Namely, {vεn} is bounded inW1,p
rad(RN , α).

It follows from (2.1)-(2.2) that

0 = Pεn (vεn ) > C‖vεn‖pW1,p
rad(RN ,α)

− C‖vεn‖qW1,p
rad(RN ,α)

− C‖vεn‖
p*α+εn
W1,p
rad(RN ,α)

− C‖vεn‖p
*−εn
W1,p
rad(RN ,α)

,

which implies that there exists C > 0 independent of n such that

‖vεn‖W1,p
rad(RN ,α) > C.

Hence, we obtain lim inf
n→∞

cεn > 0.

5.2 Ground State Solution

In this subsection, by using the perturbation method [13] and Pohožaev-type identity [1], we present the
proof of Theorem 1.3.

Proof of Theorem 1.3. We separate our proof into two steps.
Step 1.We take ε → 0 in equation (Sp*α+ε). For each small εn, there exists a positive ground state solution

vεn . Using Lemma 5.2 (iii), we have

c + 1 > cεn = Jεn (vεn ) − 1
p*α + εn

〈J′εn (vεn ), vεn 〉 >
(

1
p −

1
p*α + εn

)
‖vεn‖pW1,p

rad(RN ,α)
.
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This implies that {vεn} is bounded inW1,p
rad(RN , α). Then, up to a subsequence, we assume that

vεn ⇀ v in W1,p
rad(RN , α), vεn → v a.e. in RN , vεn → v in Lr(RN), r ∈ (p*α , p*).

For any φ ∈ W1,p
rad(RN , α), as n → ∞, we claim that

ˆ
RN
|vεn |p

*−εn−2vεnφdx =
ˆ
RN
|v|p

*−2vφdx + o(1) (5.6)

and ˆ
RN
|vεn |p

*
α+εn−2vεnφdx =

ˆ
RN
|v|p

*
α−2vφdx + o(1). (5.7)

Here, we only show (5.6), because the proof of (5.7) can be processed in a similar manner. For any ϵ > 0,
there exists a su�ciently large R > 0 such that

ˆ
|x|>R

|vεn |p
*−εn−2vεnφdx −

ˆ
|x|>R

|v|p
*−2vφdx

6
ˆ
|x|>R

|vεn |p
*−εn−1|φ|dx +

ˆ
|x|>R

|v|p
*−1|φ|dx

6

(ˆ
|x|>R

|vεn |p
*−εndx

)1− 1
p*−εn

(ˆ
|x|>R

|φ|p
*−εndx

) 1
p*−εn

+
(ˆ

|x|>R
|v|p

*
dx
)1− 1

p*
(ˆ

|x|>R
|φ|p

*
dx
) 1

p*

< ϵ2 .

On the other hand, note that {vεn} is bounded inW1,p
rad(RN , α). There exists C > 0 such that

(ˆ
|x|6R

|vεn |p
*−εndx

)1− 1
p*−εn

< C.

In view of E ⊂ RN and small εn > 0, it follows from Holder’s and Young’s inequalities that
ˆ
E
|φ|p

*−εndx

6

(ˆ
E
|φ|p

*
αdx
) εn

p*−p*α
(ˆ

E
|φ|p

*
dx
) p*−p*α−εn

p*−p*α

6
εn

p* − p*α

ˆ
E
|φ|p

*
αdx + p* − p*α − εn

p* − p*α

ˆ
E
|φ|p

*
dx

6
ˆ
E
|φ|p

*
αdx +

ˆ
E
|φ|p

*
dx.

For any ϵ > 0, there exists δ > 0 such that when E ⊂ {x ∈ RN ||x| 6 R} with |E| < δ there holds
ˆ
E
|vεn |p

*−εn−2vεnφdx

6

(ˆ
E
|vεn |p

*−εndx
)1− 1

p*−εn
(ˆ

E
|φ|p

*−εndx
) 1

p*−εn

6

(ˆ
E
|vεn |p

*−εndx
)1− 1

p*−εn
(ˆ

E
|φ|p

*
αdx +

ˆ
E
|φ|p

*
dx
) 1

p*−εn

<Cϵ,

where the last inequality is true due to the absolute continuity of
´
E |φ|

p*αdx and
´
E |φ|

p*dx.
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Making use of the fact |vεn |p
*−εn−2vεnφ → |v|p

*−2vφ a.e. in RN , by Vitali’s convergence Theorem, we have
ˆ
|x|6R

|vεn |p
*−εn−2vεnφdx =

ˆ
|x|6R

|v|p
*−2vφdx + ϵ

2 .

Then ˆ
RN
|vεn |p

*−εn−2vεnφdx −
ˆ
RN
|v|p

*−2vφdx

6
ˆ
|x|>R

|vεn |p
*−εn−2vεnφdx −

ˆ
|x|>R

|v|p
*−2vφdx

+
ˆ
|x|6R

|vεn |p
*−εn−2vεnφdx −

ˆ
|x|6R

|v|p
*−2vφdx

6ϵ.

Hence, we arrive at (5.6).
It follows from (5.6) and (5.7) that

0 =〈J′εn (vεn ), φ〉

=
ˆ
RN

(|∇vεn |p−2∇vεn∇φ + A
|x|α |vεn |

p−2vεnφ)dx −
ˆ
RN
|vεn |q−2vεnφdx

−
ˆ
RN
|vεn |p

*−εn−2vεnφdx − λ
ˆ
RN
|vεn |p

*
α+εn−2vεnφdx

=
ˆ
RN

(|∇v|p−2∇v∇φ + A
|x|α |v|

p−2vφ)dx −
ˆ
RN
|v|q−2vφdx

−
ˆ
RN
|v|p

*−2vφdx − λ
ˆ
RN
|v|p

*
α−2vφdx

=〈J′(v), φ〉.

This indicates that v is a weak solution of equation (Q).
Step 2.We claim that v ≢ 0.
In view of 〈J′εn (vεn ), vεn 〉 = 0, we get

ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx =

ˆ
RN
|vεn |qdx +

ˆ
RN
|vεn |p

*−εndx + λ
ˆ
RN
|vεn |p

*
α+εndx. (5.8)

It follows from Holder’s and Young’s inequalities that

ˆ
RN
|vεn |p

*
α+εndx 6

(ˆ
RN
|vεn |p

*
αdx
) p*−p*α−εn

p*−p*α
(ˆ

RN
|vεn |p

*
dx
) εn

p*−p*α

6
p* − p*α − εn
p* − p*α

ˆ
RN
|vεn |p

*
αdx + εn

p* − p*α

ˆ
RN
|vεn |p

*
dx,

(5.9)

and ˆ
RN
|vεn |p

*−εndx 6
(ˆ

RN
|vεn |p

*
αdx
) εn

p*−p*α
(ˆ

RN
|vεn |p

*
dx
) p*−p*α−εn

p*−p*α

6
εn

p* − p*α

ˆ
RN
|vεn |p

*
αdx + p* − p*α − εn

p* − p*α

ˆ
RN
|vεn |p

*
dx.

(5.10)

Substituting (5.9) and (5.10) into (5.8) leads to
ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx

6

(
1 + εn(λ − 1)

p* − p*α

)ˆ
RN
|vεn |p

*
dx +

(
λ + εn(1 − λ)

p* − p*α

)ˆ
RN
|vεn |p

*
αdx +

ˆ
RN
|vεn |qdx.

(5.11)

It su�ces to show that there exists C > 0 such that C 6 ‖vεn‖W1,p
rad(RN ,α). Otherwise, we assume that

‖vεn‖W1,p
rad(RN ,α) → 0. Then it yields cεn → 0, which contradicts lim inf

n→∞
cεn > 0, see Lemma 5.2 (v).
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It follows from (5.11) and 0 < C 6 ‖vεn‖W1,p
rad(RN ,α) that only one of the following statements is true.

(i)
ˆ
RN
|vεn |p

*
αdx → 0 and C 6

ˆ
RN
|vεn |p

*
dx; or

(ii) C 6
ˆ
RN
|vεn |p

*
αdx and

ˆ
RN
|vεn |p

*
dx → 0; or

(iii) C 6
ˆ
RN
|vεn |p

*
αdx and C 6

ˆ
RN
|vεn |p

*
dx.

(5.12)

We �rst exclude (i) in (5.12). Suppose on the contrary that (5.12) (i) holds. It follows from (5.12) (i) and (5.11)
that ˆ

RN
|∇vεn |pdx 6

ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx

6
ˆ
RN
|vεn |p

*
dx

6S−
p*
p

(ˆ
RN
|∇vεn |pdx

) p*
p

,

which gives

S
p*
p*−p 6

ˆ
RN
|∇vεn |pdx.

In view of Lemma 5.2, we get

c >cεn

=Jεn (vεn ) − 1
N Pεn (vεn )

= 1
N

ˆ
RN
|∇vεn |2dx + α

pN

ˆ
RN

A|vεn |p
|x|α dx

>
1
N

ˆ
RN
|∇vεn |pdx

>
1
N S

p*
p*−p .

This yields a contradiction with the fact of c < min

 1
N S

p*
p*−p , α

pN
(1
λ
) p
p*α−p S

p*α
p*α−p
α

, see Lemma 5.1. Hence, (5.12)

(i) can not occur.
We now exclude (ii) in (5.12). Suppose on the contrary that (5.12) (ii) holds. It follows form (5.12) (ii) and

(5.11) that ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx 6λ

ˆ
RN
|vεn |p

*
αdx

6λS−
p*α
p

α

(ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx

) p*α
p

,

which gives (
1
λ

) p
p*α−p S

p*α
p*α−p
α 6

ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx.
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Using Lemma 5.2 yields
c >cεn

=Jεn (vεn ) − Pεn (vεn )

= 1
N

ˆ
RN
|∇vεn |pdx + α

pN

ˆ
RN

A|vεn |p
|x|α dx

>
α
pN

(ˆ
RN
|∇vεn |pdx +

ˆ
RN

A|vεn |p
|x|α dx

)

>
α
pN

(
1
λ

) p
p*α−p S

p*α
p*α−p
α .

This contradicts the fact of c < min

 1
N S

p*
p*−p , α

pN
(1
λ
) p
p*α−p S

p*α
p*α−p
α

, see Lemma 5.1. Hence, (5.12) (ii) can not

occur either.
We now draw a conclusion that (5.12) (iii) is true. By virtue of Theorem 1.1, we have v ≢ 0. In view of

Theorem 1.2, P(v) = 0 and the weakly lower semi-continuity of the norm, we obtain

c 6J(v)
=J(v) − P(v)

= 1
N

ˆ
RN
|∇v|pdx + α

pN

ˆ
RN

A|v|p
|x|α dx

6 lim inf
n→∞

1
N

ˆ
RN
|∇vεn |pdx + lim inf

n→∞

α
pN

ˆ
RN

A|vεn |p
|x|α dx

=Jεn (vεn ) − 1
N Pεn (vεn )

=cεn
6c.

Consequently, v is a positive ground state solution.
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