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The mathematical conditions for the origin of long-range order or crystallinity in

ideal crystals are one of the very fundamental problems of modern crystal-

lography. It is widely believed that the (global) regularity of crystals is a

consequence of ‘local order’, in particular the repetition of local fragments, but

the exact mathematical theory of this phenomenon is poorly known. In

particular, most mathematical models for quasicrystals, for example Penrose

tiling, have repetitive local fragments, but are not (globally) regular. The

universal abstract models of any atomic arrangements are Delone sets, which are

uniformly distributed discrete point sets in Euclidean d space. An ideal crystal is

a regular or multi-regular system, that is, a Delone set, which is the orbit of a

single point or finitely many points under a crystallographic group of isometries.

The local theory of regular or multi-regular systems aims at finding sufficient

local conditions for a Delone set X to be a regular or multi-regular system. One

of the main goals is to estimate the regularity radius �̂�d for Delone sets X in

terms of the radius R of the largest ‘empty ball’ for X. The celebrated ‘local

criterion for regular systems’ provides an upper bound for �̂d�d for any d. Better

upper bounds are known for d � 3. The present article establishes the lower

bound �̂d�d � 2dR for all d, which is linear in d. The best previously known lower

bound had been �̂�d � 4R for d � 2. The proof of the new lower bound is

accomplished through explicit constructions of Delone sets with mutually

equivalent (2dR � ")-clusters, which are not regular systems. The two- and

three-dimensional constructions are illustrated by examples. In addition to its

fundamental importance, the obtained result is also relevant for the under-

standing of geometrical conditions of the formation of ordered and disordered

arrangements in polytypic materials.

1. Introduction

The standard mathematical model of an ideal crystal is based

on two fundamental concepts: a uniformly distributed discrete

point set (or Delone set) and a crystallographic group. An

ideal crystal structure is modeled by a Delone set that can be

split into crystallographic orbits, i.e. the Delone subsets

invariant under some crystallographic group.

The origin of crystallinity, i.e. the appearance of a crystal-

lographic group of symmetries in the atomic structure created

in a crystallization process, has always been one of the very

basic problems of crystallography. Physicists usually explain it

by the fact that, in crystalline matter, local arrangements of

atoms of the same kind tend to be identical. Thus the global

regular structure is the result of the action of local forces, as

captured by the following excerpt from ch. 30 of Feynman et

al. (1964): ‘When the atoms of matter are not moving around
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very much, they get stuck together and arrange themselves in

a configuration with as low an energy as possible. If the atoms

in a certain place have found a pattern which seems to be of

low energy, then the atoms somewhere else will probably

make the same arrangement. For these reasons, we have in a

solid material a repetitive pattern of atoms’. Therefore, the

space-group symmetry and periodicity of crystal structures can

be seen as a result of the requirement of equality of local

atomic arrangements throughout the whole crystal.

The mathematical theory that addresses the fundamental

problem of relations between the local and global structure of

a crystal (namely, how local congruence of atomic arrange-

ments dictates the global structural regularity) was initiated by

Delone et al. (1976). The basic idea was to analyze Delone sets

in d-dimensional Euclidean space Rd (for precise definitions

see below). An ideal crystal structure can be modeled as a

regular or multi-regular point system, which is the orbit of a

single point or finitely many points under a crystallographic

group of isometries in Rd. The local theory proposed first by

Delone et al. (1976) aims at finding sufficient local conditions

for a Delone set X to be a regular or multi-regular system.

Thus the local theory seeks to answer the following question:

which local conditions on Delone sets X of a given type

guarantee the emergence of a crystallographic group of

symmetries producing X as an orbit set?

A major problem in the local theory concerns the regularity

radius �̂�d of Delone sets. This is the smallest positive number �
(depending on r and R, the structural constants of a Delone set

as defined in x2) with the property that each Delone set X of

type ðr;RÞ in R
d with mutually equivalent �-clusters is a

regular point system. (Here equivalence means congruence

under a center-preserving isometry.) Thus �̂�d is defined by two

properties: first, each Delone set X of type ðr;RÞ with mutually

equivalent point neighborhoods of radius �̂�d is a regular

system; and second, for any radius � smaller than �̂�d there

exists a Delone set of type ðr;RÞ with mutually equivalent

point neighborhoods of radius � which is not a regular system.

A priori it is not at all obvious from the definition that this

number �̂�d exists (but it does!), and how it would depend on d,

r and R. The celebrated ‘local criterion for regular systems’

established by Delone et al. (1976) provides the existence of an

upper bound for �̂d�d which depends on d, r and R (see also

Dolbilin, 2015, 2016).

A main goal is to find good upper and lower estimates for

the regularity radius �̂�d in terms of the radius R of the largest

‘empty ball’ that can be inserted into the point system and

having none of its points inside. (Incidentally, for Delone sets

in hyperbolic or spherical spaces there is no upper bound for

the regularity radius which is independent of r, so this problem

is meaningful only for Euclidean spaces.) For dimensions 1, 2

and 3, we have the upper bounds �̂�1 � 2R, �̂�2 � 4R and

�̂�3 � 10R, each depending only on R (and d). The proof of the

estimate for d ¼ 1 is straightforward and is presented at the

end of x2. The estimates for dimensions 2 and 3 were obtained

by M. Stogrin (in unpublished work) and, independently, by

N. Dolbilin a long time ago. The proof by Dolbilin was also

unpublished till a recent article (Dolbilin, 2016). The proofs of

the bounds for d ¼ 2 and especially for d ¼ 3 are quite

involved and are based on the local criterion for regular

systems of Delone et al. (1976) as well as on the lemma about

Delone sets in 3-space with mutually equivalent 2R-clusters

[this lemma was discovered by Stogrin a long time ago, but was

just recently published as Stogrin (2010)].

For dimensions 1 and 2, the exact values of the regularity

radius are known and are given by �̂�1 ¼ 2R and �̂�2 ¼ 4R. See

the end of x2 for a proof for d ¼ 1. For d ¼ 2, the lower bound

�̂�2 � 4R (complementing the aforementioned upper bound

�̂�2 � 4R) is established by an explicit construction of Delone

sets of type ðr;RÞ in the plane with mutually equivalent

neighborhoods of radius smaller than 4R, which are not

regular systems. More precisely, for every "> 0 there is a

Delone set X in R2 which has mutually equivalent ð4R� "Þ-
clusters but is not a regular system (see Dolbilin, 2015, 2018).

A similar construction in higher dimensions shows that

�̂�d � 4R for any d � 2. However, until quite recently, it was

an open question whether or not �̂�d was unbounded as a

function of d.

If we impose an additional restriction on the symmetries of

clusters, or more precisely on the existence of only trivial

symmetry, then there exists a dimension-independent regu-

larity radius for ‘asymmetric’ Delone sets. Namely, if 2R-

clusters are all pairwise congruent and have trivial symmetry,

and furthermore, all 4R-clusters are congruent, then 4R is the

dimension-independent regularity radius as proved by Delone

et al. (1976). On the other hand, if we require all 2R-clusters to

be centrally symmetric, then 2R is the dimension-independent

regularity radius as shown by Dolbilin (2015, 2018) [see also

Dolbilin & Magazinov (2016)].

The main result of this article is Theorem 5.8. In this

theorem we prove the lower bound

�̂�d � 2dR ðfor d � 1Þ:

It is remarkable that this new bound grows linearly in d. When

d ¼ 3 the new lower bound and the upper bound mentioned

earlier provide the estimate 6R � �̂�3 � 10R.

The proof of the new lower bound (for d> 2) is accom-

plished through an explicit construction of Delone sets in Rd

with mutually equivalent ð2dR� "Þ-clusters, which are not

regular systems. This construction is inspired by geometric

ideas involved in two previously known constructions: first,

research papers
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Figure 1
Two isohedral tilings that have equivalent first but non-equivalent second
coronas. After Engel (1986).



the previously mentioned two-dimensional construction of

Delone sets used to prove that �̂�2 � 4R; and second, the three-

dimensional construction of a non-isohedral polyhedral tiling

in R3, due to P. Engel (Engel, 1986, 1993), in which the first

coronas of any two tiles are equivalent. In particular, Fig. 1

shows two isohedral tilings based upon the same tile but

having different space groups. The tiles in the two tilings have

congruent first coronas, but their second coronas are non-

congruent. Engel (1986) provided several examples of tiles

that allow for both isohedral and non-isohedral tilings with

equivalent first coronas. To honor the influence of Engel’s

work, we are proposing the term ‘Engel set’ for the specific

type of Delone set constructed in this article.

The present article grew out of the discussions at the

sessions of a ‘Working Group on Delone Sets’ (consisting of

the seven authors) which assembled during the ‘Workshop on

Soft Packings, Nested Clusters and Condensed Matter’, held at

the American Institute of Mathematics (AIM) in San Jose,

California, USA, September 19–23, 2016. These discussions

have been inspired by the proof of the two-dimensional lower

bound presented in Nikolay Dolbilin’s lecture at the Work-

shop. This work is the result of collaboration between

professional crystallographers (I. A. Baburin and S. V.

Krivovichev) and professional mathematicians (M. Bouniaev,

N. Dolbilin, N. Yu. Erokhovets, A. Garber and E. Schulte),

which explains its style, attempting to combine mathematical

rigor with crystallographic intuition. In some places and,

in particular, at the end of the article, we shall interrupt

precise mathematical language by illustrative examples from

structural crystallography.

2. Basic notions

Let r and R be positive real numbers with r<R. A set X � Rd

is called a Delone set of type (r;R), or an ðr;RÞ-system, if for

any y 2 Rd the open ball of radius r centered at y,

Bo
r ðyÞ :¼ fx 2 R

d: jx� yj< rg;

contains at most one point of X and the closed ball of radius R

centered at y,

BRðyÞ :¼ fx 2 R
d: jx� yj � Rg;

contains at least one point of X. Clearly, if 0< r0 � r<R � R0

then every Delone set of type ðr;RÞ is also a Delone set of type

ðr0;R0Þ. In designating a type ðr;RÞ to a Delone set X we

usually choose r as large as possible, and R as small as possible.

For example, the integer grid 2Z2 (with grid size 2) in the plane

is a Delone set of type ð1;
ffiffiffi
2
p
Þ. In general, Delone sets can be

viewed as universal abstract models of atomic arrangements,

where coordinates of points are coordinates of atomic nuclei

or gravity centers.

The symmetry group SðXÞ of a Delone set X in Rd consists

of all isometries of Rd which map X to itself. This may include

both proper and improper isometries.

A regular system is a Delone set X � Rd whose symmetry

group SðXÞ acts transitively on the points of X, that is, for any

x; y 2 X there exists an isometry g 2 SðXÞ such that gðxÞ ¼ y.

Thus a regular system coincides with the orbit of any of its

points under its symmetry group.

For a point x in a Delone set X and for � � 0, we call the

subset

Cxð�Þ :¼ B�ðxÞ \ X

of X the cluster of radius �, or simply the �-cluster, of X at x.

Note that clusters are ‘centered clusters’, in the sense that x is

distinguished as the ‘center’ of Cxð�Þ. The cluster group Sxð�Þ
of a �-cluster Cxð�Þ is defined as the group of all isometries g

ofRd such that gðxÞ ¼ x and g½Cxð�Þ� ¼ Cxð�Þ. Thus the cluster

group Sxð�Þ is a subgroup of the full symmetry group of Cxð�Þ,
namely the stabilizer of x in the full symmetry group of

Cxð�Þ (or equivalently, the symmetry group of the ‘centered

�-cluster’ at x).

The �-clusters Cxð�Þ and Cx0 ð�Þ at two points x; x0 of X are

called equivalent if there exists an isometry g of Rd such that

gðxÞ ¼ x0 and g½Cxð�Þ� ¼ Cx0 ð�Þ. Note that g is not required to

be a symmetry of X. Equivalence is a stronger requirement

than mere congruence of the sets Cxð�Þ and Cx0 ð�Þ under g,

since the isometry g must also map the center x of Cxð�Þ to the

center x0 of Cx0 ð�Þ.
For any �> 0 the set of �-clusters of X is partitioned into

classes of equivalent �-clusters. By NXð�Þ we denote the

number of equivalence classes of �-clusters. We call NX the

cluster counting function of X. Clearly, NXð�Þ ¼ 1 for �< 2r,

since then Cxð�Þ ¼ fxg for each x 2 X.

One of the main problems in the local theory of Delone sets

is to find small positive numbers � with the property that each

Delone set X of type ðr;RÞ with mutually equivalent �-clusters

must necessarily be a regular system. The smallest such

number �, denoted b�d�d ¼ b�d�dðr;RÞ, is called the regularity radius

and a priori depends on the dimension d and the parameters

r and R.

It is instructive to look at the one-dimensional case. A

Delone set X on the line is a discrete point set, in which points

occur in a natural order and there is an obvious notion of

adjacency of points, and the distance between adjacent points

is bounded. If X is of type ðr;RÞ, then

2r � jx� yj � 2R

for any two adjacent points x; y of X. Given two positive real

numbers a and b with a � b, we call a discrete set X on the line

an ab-set if the distances between adjacent points of X

alternate between a and b. An ab-set is a Delone set with

r ¼ a=2 and R ¼ b=2. It is easy to see that every ab-set is a

regular system.

Now suppose that X is a Delone set of type ðr;RÞ on the line

with mutually equivalent �-clusters for some �> 0, and that

the �-clusters of X contain points of X on either side of the

center point of the cluster. Then X must necessarily be an ab-

set, possibly with a ¼ b, where a is the smallest non-zero

distance of a cluster point from the center, and b is the smallest

non-zero distance of a cluster point from the center on the

opposite side from the point that determines a. It follows that

X must be a regular system.

618 Igor A. Baburin et al. � On the origin of crystallinity Acta Cryst. (2018). A74, 616–629
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In any Delone set X of type ðr;RÞ, the 2R-clusters all have

the property that points of X lie on either side of the center.

Hence, if the 2R-clusters of X are mutually equivalent, then

the previous considerations (with � ¼ 2R) show that X must

be a regular system. Hence, for dimension 1, the regularity

radius satisfies the inequality �̂�1 � 2R.

We claim that �̂�1 ¼ 2R, that is, �̂�1 cannot be smaller than 2R.

It remains to show that for any positive number � with �< 2R

there exists a Delone set X of type ðr;RÞ on the line with

mutually equivalent �-clusters which is not a regular system.

So let 0<�< 2R. We can construct the point set X by placing

points along the line such that adjacent points alternately are

at a distance � or at a distance strictly between � and 2R from

each other. Then each �-cluster of X consists of just two points

at distance �, one of which is the center of the cluster. Hence X

has mutually equivalent �-clusters. On the other hand, if any

two of the distances which lie between � and 2R are mutually

distinct, then clearly X cannot be a regular system. Thus any

such set X is a Delone set of type ðr;RÞ, with r � �=2, such that

X has mutually equivalent �-clusters but X is not a regular

system. It follows that �̂�1 ¼ 2R.

3. Construction of Engel sets

In this section we present a construction of a certain family of

Delone sets in d-dimensional space Rd which we call Delone

sets of Engel type, or simply Engel sets. Later these sets are

used to establish the new lower bound for the regularity

radius. Our construction was inspired by the construction of a

non-isohedral polyhedral tiling of 3-space described by

Engel (1986).

The reader wishing to first see examples of Engel sets in

dimensions 2 and 3 may skip ahead to x4 and then return to the

present section for the discussion of the general d-dimensional

case. There are (by definition) no Engel sets in dimension 1.

Throughout this section we assume that d � 2. We let

e1; . . . ; ed denote the standard basis in Rd and write points of

R
d in row notation in the form x ¼ ðx1; . . . ; xdÞ.

The Engel sets X are determined by four parameters: a

doubly infinite integer sequence A with properties (A1), (A2)

and (A3) below, and three positive real numbers a, b and �. We

write X ¼ XðA; a; b; �Þ. Later we place restrictions on the

sequence A and the three parameters a, b and �.
The doubly infinite integer sequences A are of the form

A ¼ ðaiÞ
1

i¼�1 ¼ ð. . . ; a�2; a�1; a0; a1; a2; . . .Þ:

Later the terms ai of A will determine signed standard basis

vectors of ðd� 1Þ-space Rd�1 employed in the construction of

Engel sets. The sequence A is required to satisfy the following

properties:

(A1) ai 2 f�1; . . . ;�ðd� 1Þg for each i 2 Z;

(A2) jaij ¼ jaiþd�1j for each i 2 Z;

(A3) fja1j; . . . ; jad�1jg ¼ f1; . . . ; d� 1g.

Note that the defining properties (A1), (A2) and (A3) all

depend on d. The condition (A1) says that the term ai takes

only values from among �1; . . . ;�ðd� 1Þ, and condition

(A2) means that the related sequence of absolute values,

ðjaijÞ
1

i¼�1, is ‘ðd� 1Þ-periodic’ under shifts of indices. Thus this

sequence of absolute values is completely determined by the

d� 1 absolute values ja1j; . . . ; jad�1j, which by condition (A3)

take precisely the values 1; . . . ; d� 1 up to permutation, and

thus are mutually different. We call the terms a1; . . . ; ad�1 the

initial terms of the sequence A.

When d ¼ 2 the three conditions (A1), (A2) and (A3)

simply reduce to the single condition that ai ¼ �1 for each i.

research papers
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Figure 2
Construction of an Engel set in R3. (a) shows the standard basis e1; e2; e3

of R3. The vectors �e1 are colored in red; the vectors �e2 are colored in
blue; and the vector e3 is colored in black. (b) shows a part of the Engel
set constructed using a sequence A of the form A ¼ ð. . . ; 1; 2; 1;�2; . . .Þ.
Vertical shifts by the vector be3 are shown in black, and horizontal shifts
by the vectors ��e1 and ��e2 are shown in their respective colors, red or
blue. The even and odd layers are colored in green and purple,
respectively. (c) shows the sequence x�4; x�3; . . . ; x3; x4 associated with
the point x0 in the middle layer as defined by the rules (X1), (X2) and
(X3) described later in the text.



When d ¼ 3 condition (A1) says that ai ¼ �1;�2 for each

i; condition (A2) requires that jaij ¼ jaiþ2j for each i; and (A3)

means that the absolute values of the initial terms a1; a2 are 1

and 2, up to permutation.

The Engel sets X in d-space Rd are built layer by layer from

translates of a scaled copy of the ðd� 1Þ-dimensional standard

cubic lattice,

Y ¼ f2aðm1; . . . ;md�1Þ : m1; . . . ;md�1 2 Zg ¼ 2aZd�1;

with grid size 2a. It is not difficult to see that this grid Y is a

regular ða; a
ffiffiffiffiffiffiffiffiffiffiffi
d� 1
p

Þ-system in real ðd� 1Þ-space Rd�1 (here

viewed as the linear subspace Rd�1
	 f0g of Rd). Now, for all

sequences A with properties (A1), (A2) and (A3) as above,

and for all a; b; �> 0, define the Delone set X :¼ XðA; a; b; �Þ
in Rd as a layered set by the following rules:

(E1) X consists of layers Xm � fx 2 R
d: xd ¼ 2bmg, at levels

m 2 Z, so that X ¼
S

m2Z Xm;

(E2) X0 ¼ Y 	 f0g ¼ fðy; 0Þ 2 Rd�1
	 R ¼ R

d: y 2 Yg;

(E3) X2iþ1 ¼ X2i þ 2bed for each i 2 Z;

(E4) X2i ¼ X2i�1 þ 2bed þ �ui for each i 2 Z, where

ui :¼ signðaiÞejaij
.

Here signðaiÞ denotes the sign of ai and is defined as +1 if ai

is positive, and �1 if ai is negative.

See Fig. 2 for an example of an Engel set in dimension 3.

In the next section we elaborate on Engel sets in dimensions

2 and 3.

Notice that the ðd� 1Þ-dimensional grid Y occurs as layer

X0 in the form Y 	 f0g at level 0, and that each layer of X is a

translate of Y. Any two adjacent layers of X lie in parallel

hyperplanes which are at a distance 2b. The layer X2iþ1 at an

odd level 2iþ 1 is obtained from the layer X2i at the previous

level 2i by a ‘vertical’ shift by 2bed. However, the layer X2i at

an even level 2i is obtained from the layer X2i�1 at the previous

level 2i� 1 by a ‘vertical’ shift by 2bed followed by a ‘hori-

zontal’ shift by �ui, where ui is determined by the ith term ai of

the sequence A and is given by

ui :¼ signðaiÞejaij
:

Note that the entire set X is invariant under shifts by vectors

from the ‘horizontal’ grid Y (that is, the layer X0), and thus

under shifts by 2aej for each j ¼ 1; . . . ; d� 1. However, X is

not invariant under vertical shifts by 2bed.

Thus Engel sets are discrete layered structures in d-space

R
d defined by the conditions (E1)–(E4) above.

We first show that Engel sets are indeed Delone sets with

r ¼ a and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
when b> a. In fact, in this

case we have the following proposition.

Proposition 3.1. For all doubly infinite integer sequences A

as above, and for all positive real numbers a; b; � with b> a,

the Engel set X ¼ XðA; a; b; �Þ is an ½a;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
�-

system.

Proof. Let y be any point in R
d, and set r :¼ a and

R :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
. We need to show that the open ball

Bo
r ðyÞ contains at most one point of X, and that the closed ball

BRðyÞ contains at least one point of X.

The first part is simple. In fact, since b> a, the smallest

distance between two points in X is 2a ¼ 2r. Hence Bo
r ðyÞ

contains at most one point of X.

Consider the second part. Starting from y we can reach a

point from X by traveling by a distance of at most b in the

direction orthogonal to layers of X to the layer of X closest to

y, and then traveling from the new point by a distance of at

most a
ffiffiffiffiffiffiffiffiffiffiffi
d� 1
p

to the closest point of X in this layer [a maximal

empty ball for the 2a-dilation of the ðd� 1Þ-dimensional cubic

lattice Zd�1, that is, for Y, has radius a
ffiffiffiffiffiffiffiffiffiffiffi
d� 1
p

]. The Pythagoras

theorem then gives the necessary bound of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
for the distance of y to the closest point in X. Thus BRðyÞ

contains at least one point of X. Note that the bound for the

distance between y and a point of X is sharp for the point

y ¼ ðb; a; . . . ; aÞ halfway between the layers X0 and X1. &

From now on we assume that b> a. We also retain the

definitions of the parameters r and R from the proof of

Proposition 3.1, that is,

r :¼ a; R :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
: ð1Þ

Then Proposition 3.1 says that X is an ðr;RÞ-system. Note that

the type ðr;RÞ of X is only determined by the parameters a and

b, and that

R> r
ffiffiffi
d
p

since b> a. Conversely, if r and R are positive real numbers

such that R> r
ffiffiffi
d
p

, then there exist positive real numbers a

and b with b> a such that ðr;RÞ is the type of all Delone sets

of the form X ¼ XðA; a; b; �Þ.
We later impose further conditions on the four parameters

A; a; b; � of X.

Remark 3.2. There is an obvious and natural generalization

of the notion of Engel set allowing different distances between

adjacent layers (unevenly spaced layers). In this case two

distances between adjacent layers, say 2b and 2b0, should

alternate, giving rise to a new set depending on parameters

A; a; b; b0; �. We will also refer to these more general sets as

Engel sets.

4. Engel sets in dimensions 2 and 3

In this section we discuss the structure of Engel sets in small

dimensions, 2 and 3. As before, there are four parameters

involved, namely a doubly infinite integer sequence

A ¼ ðaiÞ
1

i¼�1 and three positive real parameters a, b and �.
Due to the nature of A, the formalism for the construction of

corresponding Engel sets XðA; a; b; �Þ simplifies considerably

in dimensions 2 and 3.

4.1. Planar Engel sets

When d ¼ 2 the defining properties (A1), (A2) and (A3)

for the doubly infinite integer sequence A ¼ ðaiÞ
1

i¼�1 reduce

to the single condition that
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ai ¼ �1 ði 2 ZÞ:

Thus A can be any doubly infinite sequence of 1’s and �1’s.

The standard basis vectors of the plane R2 are given by

e1 ¼ ð1; 0Þ and e2 ¼ ð0; 1Þ, and the points in R2 are denoted as

usual by ðx; yÞ.

The Engel sets X ¼ XðA; a; b; �Þ in R2 consist of ‘layers’ of

horizontal one-dimensional grids of grid size 2a (in a sense,

copies of Y ¼ 2aZ). More precisely,

X ¼
[
m2Z

Xm;

where each layer Xm is a translate of the layer

X0 :¼ Y 	 f0g ¼ 2aZ	 f0g

lying in the horizontal line y ¼ 2mb in R2. Note that any two

adjacent layers (horizontal lines) are at distance 2b from each

other. Each layer of X at an odd level 2iþ 1 (i 2 Z) is simply

obtained from the layer at the previous even level 2i by a

vertical shift by the vector 2be2 ¼ ð0; 2bÞ, that is,

X2iþ1 ¼ X2i þ ð0; 2bÞ:

On the other hand, since jaij ¼ 1 for all i 2 Z, each layer at an

even level 2i (i 2 Z) is obtained from the layer at the previous

odd level 2i� 1 by a shift by the vector

2be2 þ �ui ¼ 2be2 þ signðaiÞ�e1 ¼ ½signðaiÞ�; 2b�;

that is,

X2i ¼ X2i�1 þ ½signðaiÞ�; 2b�:

In other words, while going from X2i to X2iþ1 is straight-

forward and just involves a vertical shift by ð0; 2bÞ, the shift

involved in passing from X2i�1 to X2i is determined by � and

the sign of the ith term ai of the sequence A [if ai > 0 this shift

is by ð�; 2bÞ, and if ai < 0 the shift is by ð��; 2bÞ].

From Proposition 3.1 we know that, when d ¼ 2 and b> a,

the parameters r and R giving the type ðr;RÞ of XðA; a; b; �Þ as

a Delone set are given by

r ¼ a; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

:

Note that the special features of Engel sets XðA; a; b; �Þ in any

dimension are most apparent and amplified when the para-

meters a; b; � are chosen in such a way that b is (much) larger

than a, and � is (much) smaller than a. However, a priori we

are not making these assumptions on a, b and �.
As an example we consider the planar Engel set

XðA; a; b; �Þ obtained for the following parameter values.

Suppose A is the sequence

ð. . . ; 1; 1;�1; 1; 1;�1; 1; 1;�1; . . .Þ;

with a1 ¼ a2 ¼ 1 and a3 ¼ �1, which repeats ð1; 1;�1Þ-strings

indefinitely, in either direction. Suppose further that a ¼ 5,

b ¼ 12 and � ¼ 1, so that r ¼ a ¼ 5 and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2
p

¼ 13.

(For simplicity we have chosen integer values for a and b such

that R is also an integer.) For the corresponding Engel set

XðA; a; b; �Þ we recorded the 13 layers X�6;X�5; . . . ;X6 in

Table 1 (see Fig. 3). The second column in the table describes

the collection of points in a layer Xi. For example, layer X2 is

given by

X2 ¼ ð1þ 10ZÞ 	 f48g ¼ fð1þ 10j; 48Þ j j 2 Zg

¼ ð1; 48Þ þ Y 	 f0g

¼ f. . . ; ð�19; 48Þ; ð�9; 48Þ; ð1; 48Þ; ð11; 48Þ; ð21; 48Þ; . . .g;

and is contained in the horizontal line y ¼ 48 ¼ 4b of R2.

Later in this article we establish a general result from which

it will follow that this particular Engel set X has the property

that its clusters of radius 48 ¼ 4R� 4 are mutually equivalent.

In fact, if we set " :¼ 4 then the parameters a and b satisfy the

conditions (4) of the proof of Theorem 5.8, namely a< b and

a2 <"b=2, so that Theorem 5.8 shows that X has mutually

equivalent clusters of radius 4R� " ¼ 48; see the red clusters

in Fig. 3. On the other hand, by the particular choice of A, this

Engel set X cannot be a regular system by Corollary 5.7. (In

fact, Corollary 5.7 says that, up to isometry, regular systems

can only arise if the terms ai of A are all equal to 1, are all
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Table 1
Coordinates for the layers X�6;X�5; . . . ;X6 of the planar Engel set
XðA; a; b; �Þ, with parameters A ¼ ð. . . ; 1; 1;�1; 1; 1;�1; 1; 1;�1; . . .Þ,
a ¼ 5, b ¼ 12 and � ¼ 1.

This Engel set is a Delone set of type (5,13) with mutually equivalent clusters
of radius 48.

Layer Xm Coordinates Relationship to layer Xm�1

X�6 ð�1þ 10ZÞ 	 f�144g X�7 þ ð�1; 24Þ
X�5 ð�1þ 10ZÞ 	 f�120g X�6 þ ð0; 24Þ
X�4 10Z	 f�96g X�5 þ ð1; 24Þ
X�3 10Z	 f�72g X�4 þ ð0; 24Þ
X�2 ð1þ 10ZÞ 	 f�48g X�3 þ ð1; 24Þ
X�1 ð1þ 10ZÞ 	 f�24g X�2 þ ð0; 24Þ
X0 10Z	 f0g X�1 þ ð�1; 24Þ
X1 10Z	 f24g X0 þ ð0; 24Þ
X2 ð1þ 10ZÞ 	 f48g X1 þ ð1; 24Þ
X3 ð1þ 10ZÞ 	 f72g X2 þ ð0; 24Þ
X4 ð2þ 10ZÞ 	 f96g X3 þ ð1; 24Þ
X5 ð2þ 10ZÞ 	 f120g X4 þ ð0; 24Þ
X6 ð1þ 10ZÞ 	 f144g X5 þ ð�1; 24Þ

Figure 3
An example of a planar Engel set with highlighted 4R-clusters (blue) and
ð4R� "Þ-clusters (red).



equal to �1, or alternate between 1 and �1.) Then, in turn,

being a non-regular Engel set, X cannot have mutually

equivalent clusters of radius 4R ¼ 52 by Theorem 5.11; see the

blue clusters in Fig. 3. The two blue clusters on the left are

equivalent, while the rightmost blue cluster is not equivalent

to them. In the two blue clusters on the left, a vertical ‘column’

of points takes two small shifts to the right, while in the

rightmost blue cluster, a vertical ‘column’ takes one shift to

the right and one shift to the left. Hence NXð48Þ ¼ 1, but

NXð52Þ> 1.

For the current example, the radius can be slightly increased

from 48 to 48.15 and still have mutually equivalent clusters;

that is, even NXð48:15Þ ¼ 1. This can be seen by applying

Theorem 5.8 with a slightly smaller " than 4.

Thus, as the above Engel set shows, mutual equivalence of

clusters of radius 48 (or even 48.15) is not enough to imply

regularity of a Delone set of type (5,13).

In our example, the cluster groups of clusters of radius

greater than or equal to 2R ¼ 26 are trivial. This is consistent

with Theorem 5.5 (for k ¼ 1), which we establish in the

next section.

4.2. Engel sets in three dimensions

The standard basis vectors of 3-space R3 are given by

e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ and e3 ¼ ð0; 0; 1Þ, and points in R3

are denoted by ðx; y; zÞ. The defining properties (A1), (A2)

and (A3) for the doubly infinite integer sequence

A ¼ ðaiÞ
1

i¼�1 now reduce to the following three conditions:

ai ¼ �1;�2 ði 2 ZÞ;

ðja1j; ja2jÞ ¼ ð1; 2Þ; ð2; 1Þ;

jaiþ2j ¼ jaij ði 2 ZÞ:

The three remaining parameters a; b; � are positive real

numbers.

The Engel sets X ¼ XðA; a; b; �Þ in R3 consist of ‘layers’ of

horizontal two-dimensional grids of grid size 2a (that is, copies

of Y ¼ 2aZ2). Now

X ¼
[
m2Z

Xm;

where each layer Xm is a translate of the layer

X0 :¼ Y 	 f0g ¼ 2aZ2
	 f0g

lying in the horizontal plane z ¼ 2mb in R3. Here any two

adjacent layers (horizontal planes) lie at distance 2b from each

other. Each layer of X at an odd level 2iþ 1 (i 2 Z) is just

obtained from the layer at the previous even level 2i by a

vertical shift by the vector 2be3 ¼ ð0; 0; 2bÞ, that is,

X2iþ1 ¼ X2i þ ð0; 0; 2bÞ:

However, each layer at an even level 2i (i 2 Z) is derived

from the layer at the previous odd level 2i� 1 by a shift by

the vector

2be3 þ �ui ¼ 2be3 þ signðaiÞ�ejaij
;

that is,

X2i ¼ X2i�1 þ ½signðaiÞ�; 0; 2b� or

X2i ¼ X2i�1 þ ½0; signðaiÞ�; 2b�

according to whether jaij ¼ 1 or 2. While going from X2i to

X2iþ1 is straightforward as in the two-dimensional case and just

involves a vertical shift by ð0; 0; 2bÞ, the shift involved in

passing from X2i�1 to X2i now is determined by � and the ith

term ai itself, not just its sign.

In the three-dimensional case Proposition 3.1 is telling us

that, when b> a, the parameters r and R of XðA; a; b; �Þ are

given by

r ¼ a; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ b2
p

:

Let us look at the example of the Engel set XðA; a; b; �Þ in

3-space obtained for the following parameter values. The

infinite sequence A is given by

A ¼ ð. . . ; 1; 2;�1; 2; 1; 2;�1; 2; 1; 2;�1; 2; . . .Þ;

where a1 ¼ 1, a2 ¼ 2, a3 ¼ �1 and a4 ¼ 2, and ð1; 2;�1; 2Þ-

strings are repeated indefinitely in either direction. The

remaining parameters are a ¼ 4, b ¼ 7 and � ¼ 1, so that

r ¼ a ¼ 4 and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 þ b2
p

¼ 9. Thus the corresponding

Engel set XðA; a; b; �Þ is a Delone set of type ð4; 9Þ. The 13

layers X�6;X�5; . . . ;X6 of XðA; a; b; �Þ are listed in Table 2.

The second column again describes the collection of points in

a layer Xi using notation similar to the planar case. For

example, layer X4 is given by

X4 ¼ ð1þ 8ZÞ	ð1þ 8ZÞ 	 f56g

¼ fð1þ 8j; 1þ 8k; 56Þ j j; k 2 Zg

¼ ð1; 1; 56Þ þ 8Z	 8Z	 f0g

¼ ð1; 1; 56Þ þ Y	f0g;

and is contained in the horizontal plane z ¼ 56 ¼ 8b of R3.

Similar remarks as for our planar example also apply to our

three-dimensional example. Appealing as before to Theorem

5.8, now with " ¼ 14, we find that the Engel set X in 3-space

has the property that its clusters of radius 40 ¼ 6R� 14 are

mutually equivalent; in fact, the relevant conditions a< b and
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Table 2
Coordinates for the layers X�6;X�5; . . . ;X6 of the Engel set XðA; a; b; �Þ
in 3-space, with parameters A ¼ ð. . . ; 1; 2;�1; 2; 1; 2;�1; 2; 1; 2;
�1; 2; . . .Þ, a ¼ 4, b ¼ 7 and � ¼ 1.

This Engel set is a Delone set of type (4,9) with mutually equivalent clusters of
radius 48.

Layer Xm Coordinates Relationship to layer Xm�1

X�6 ð1þ 8ZÞ 	 ð�2þ 8ZÞ 	 f�84g X�7 þ ð1; 0; 14Þ
X�5 ð1þ 8ZÞ 	 ð�2þ 8ZÞ 	 f�70g X�6 þ ð0; 0; 14Þ
X�4 ð1þ 8ZÞ 	 ð�1þ 8ZÞ 	 f�56g X�5 þ ð0; 1; 14Þ
X�3 ð1þ 8ZÞ 	 ð�1þ 8ZÞ 	 f�42g X�4 þ ð0; 0; 14Þ
X�2 8Z	 ð�1þ 8ZÞ 	 f�28g X�3 þ ð�1; 0; 14Þ
X�1 8Z	 ð�1þ 8ZÞ 	 f�14g X�2 þ ð0; 0; 14Þ
X0 8Z	 8Z	 f0g X�1 þ ð0; 1; 14Þ
X1 8Z	 8Z	 f14g X0 þ ð0; 0; 14Þ
X2 ð1þ 8ZÞ 	 8Z	 f28g X1 þ ð1; 0; 14Þ
X3 ð1þ 8ZÞ 	 8Z	 f42g X2 þ ð0; 0; 14Þ
X4 ð1þ 8ZÞ 	 ð1þ 8ZÞ 	 f56g X3 þ ð0; 1; 14Þ
X5 ð1þ 8ZÞ 	 ð1þ 8ZÞ 	 f70g X4 þ ð0; 0; 14Þ
X6 8Z	 ð1þ 8ZÞ 	 f84g X5 þ ð�1; 0; 14Þ



a2 < ð"bÞ=6 are satisfied in this case. On the other hand, by the

particular choice of A, this Engel set X cannot be a regular

system by Corollary 5.7. [Note that when a1 ¼ 1 and a2 ¼ 2

only the two sequences ð. . . ; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; 1; 2; . . .Þ
and ð. . . ; 1; 2;�1;�2; 1; 2;�1;�2; 1; 2;�1;�2; . . .Þ produce

Engel sets which are regular systems.] It follows that, as a non-

regular Engel set, X cannot have mutually equivalent clusters

of radius 6R ¼ 54 by Theorem 5.11. Hence NXð40Þ ¼ 1, but

NXð54Þ> 1.

Fig. 4 shows the above Engel set and two of its 6R-clusters

(blue) and ð6R� "Þ-clusters (red). It is not clear from the

picture that the two blue clusters are not equivalent. However,

as we will show later in Lemma 5.4, the only way for these

clusters to be equivalent under an isometry is to map corre-

sponding layers to each other. Hence X�3 must be mapped to

X�1, X�2 to X0, and so on. In this case the horizontal parts of

the shifts between consecutive layers of one cluster must be

mapped onto the horizontal parts of the shifts between layers

of the other cluster. Thus the vector e2 (horizontal part of the

shift from X�1 to X0 of the right blue cluster) must be mapped

to �e1 (horizontal part of the shift from X�3 to X�2 of the left

blue cluster). On the other hand, the vector e2 (horizontal part

of the shift from X3 to X4 of the right blue cluster) must be

mapped to e1 (horizontal part of the shift from X1 to X2 of the

left blue cluster). However, these two conditions cannot be

simultaneously satisfied by a single isometry. Thus the two

clusters cannot be equivalent. More details, as well as the

discussion for the general case, can be found in the proof of

Lemma 5.4.

For this three-dimensional example the radius can be

increased to 40.28 and still have mutually equivalent clusters;

that is, NXð40:28Þ ¼ 1; here we can use Theorem 5.8 with an "
slightly smaller than 14.

Thus, our Engel set in 3-space shows that mutual equiva-

lence of clusters of radius 40 (or even 40.28) in a Delone set of

type (4,9) is not enough to imply regularity.

In our example, the cluster groups of clusters of radius

2R ¼ 18 have order 2 and are generated by a reflection (in the

plane x ¼ 0 of R3), while those for clusters of radius greater

than or equal to 4R ¼ 36 are trivial. This is consistent with

Theorem 5.5 proved in the next section.

5. Engel sets and regularity

Throughout this section let d � 2 (unless said otherwise) and

X :¼ XðA; a; b; �Þ ¼
[
m2Z

Xm

be the Engel set in d-space Rd defined as in x3 by the doubly

infinite integer sequence A and the three positive real

parameters a; b; �. Let again b> a. Then we know from

Proposition 3.1 that X is a Delone set of type ðr;RÞ, with r ¼ a

and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
. We define

E :¼ fe1; . . . ; ed�1g;

which is the set of the first d� 1 vectors from the standard

basis vectors e1; . . . ; ed of Rd.

In the following we often need to consider sets (or rather

strings) of successively adjacent layers of X, as well as corre-

sponding sets of basis vectors from E involved in (E4) in the

construction of layers at even levels. In particular, for p 2 Z

and 1 � k � d� 1 let Ep;k denote the subset of E consisting of

the basis vectors that appear in the construction of the layers

at even levels among the set of 2kþ 1 layers

Xðp; kÞ :¼ fXp�k;Xp�kþ1; . . . ;Xp; . . . ;Xpþkg

of X. Note that in the construction of the layers from Xðp; kÞ

we used the rules (E3) and (E4) in total 2k times, namely each

rule exactly k times. Then,

Ep;k ¼ fejatp
j; . . . ; ejatpþk�1j

g

for some integer tp. In particular, when k ¼ d� 1 the defining

properties (A2) and (A3) for the sequence A show that

Ep;d�1 ¼ E for each p 2 Z.
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Figure 4
An example of an Engel set in 3-space with highlighted 6R-clusters (blue)
and ð6R� "Þ-clusters (red).



We first establish a technical lemma describing a sufficient

condition for the equivalence of any two �-clusters of an

Engel set X.

Lemma 5.1. Let �> 0. Suppose that, for every p 2 Z and

every point x 2 Xp, the �-cluster C�ðxÞ of X at x contains only

points from layers Xl with jl � pj � d� 1. Then the �-clusters

at any two points of X are equivalent; that is, NXð�Þ ¼ 1.

Proof. We will prove that for any p; p0 2 Z and any two

points x 2 Xp, x0 2 Xp0 the �-clusters C�ðxÞ and C�ðx
0Þ are

equivalent. First note that, by our assumptions on X, the

�-clusters at points in Xp and Xp0 only contain points from

layers in the sets of layers Xðp; d� 1Þ or Xðp0; d� 1Þ,

respectively. The case p ¼ p0 is simple. In fact, since X is

invariant under shifts by vectors from Y, any two �-clusters at

points in Xp are even equivalent under the translation

subgroup of the symmetry group of X. Thus to prove

equivalence in the general case it is sufficient to show the

existence of an isometry of Rd that maps the union of the

layers in Xðp; d� 1Þ to the union of the layers in Xðp0; d� 1Þ.

The 2d� 1 layers in Xðp; d� 1Þ and Xðp0; d� 1Þ are

connected by formulas (E3) and (E4). Using the above

notation we can say that the layers in Xðp; d� 1Þ involve the

d� 1 shifts by the vectors

2bed þ �ut; t 2 ftp; tpþ1; . . . ; tpþd�2g

(recall here that fejatp
j; . . . ; ejatpþd�2j

g ¼ Ep;d�1 ¼ E), as well as

d� 1 shifts by the vector 2bed. The shifts of these two

types alternate. For Xðp0; d� 1Þ the same is true with p

replaced by p0.

If p and p0 have the same parity, then the orders in which the

shift types occur are the same. Hence for an isometry that

maps the union of the layers in Xðp; d� 1Þ to the union of the

layers in Xðp0; d� 1Þ, we may choose a shift that maps Xp to

Xp0 , followed by the isometry defined on the standard basis

e1; . . . ; ed of Rd via the assignments

utpþs ! utp0 þs ðs ¼ 0; . . . ; d� 2Þ

and ed ! ed.

If p and p0 have different parity, then we first apply the

reflection in the hyperplane xd ¼ b of Rd whose linear part

maps ed to �ed and fixes e1; . . . ; ed�1. This reflection sends

X0 to X1 and maps each layer Xm of X to a layer X 0m0 of a

new layered set X 0 ¼ X 0ðA0; a; b; �Þ built in a similar way

as X (with the same parameters a; b; � but a new integer

sequence, A0).

Then each X 0m0 is again a translate of Y, and X 00 ¼ X0. We

can now proceed as before, for two reasons: first, the parity of

each layer is altered by the reflection in the hyperplane xd ¼ b;

and second, the proof of the previous case (when p and p0 had

the same parity) works equally well if the two collections of

layers are taken from different Engel sets with the same

parameters a; b; � (but possibly different sequences A and

A0) rather than from the same Engel set. This completes the

proof. &

We note the following important consequence of the

previous lemma. Here we describe sufficient conditions on the

parameters a and b which allow us to conclude that any two

clusters of X of radius 2dR� " are equivalent. Recall that the

parameter R is given by R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
.

Theorem 5.2. Let d � 2 and "> 0. For all sequences A as

above, and all a; b; �> 0 with a< b and 2dR� "< 2db, the

cluster counting function of the Engel set X :¼ XðA; a; b; �Þ
satisfies NXð2dR� "Þ ¼ 1. In particular, this property holds

when a2 � ð"bÞ=½dðd� 1Þ�.

Proof. First note that X depends on ", by the choice of the

parameters a and b. The first statement of the theorem follows

directly from Lemma 5.1, since the term 2db occurring in the

condition on R is the distance between two hyperplanes that

contain layers of X that are 2d steps apart. For the second

statement note that

2dR� " ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
� "

¼ 2db

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðd� 1Þ

a

b

� �2
r

� "

< 2db 1þ
ðd� 1Þa2

2b2

� �
� "

¼ 2dbþ
dðd� 1Þa2

b
� "

� �
;

where we used the trivial inequality
ffiffiffiffiffiffiffiffiffiffiffi
1þ x
p

< 1þ ðx=2Þ for

positive real numbers x.

Hence, if a2 � ð"bÞ=½dðd� 1Þ� then 2dR� "< 2db and so

the condition on R for the first statement is satisfied. &

Next we investigate the cluster groups of clusters in

X ¼ XðA; a; b; �Þ ¼
[
p2Z

Xp:

We begin with two technical lemmas.

For each p 2 Z and each x 2 Xp define the sequence of

points ðxjÞ
1

j¼�1 by the following rules (see Fig. 2c for an

illustration of some of these points):

(X1) x0 ¼ x;

(X2) xjþ1 ¼ xj þ 2bed 2 Xpþjþ1, if pþ j is even (and

pþ j ¼ 2i);

(X3) xjþ1 ¼ xj þ 2bed þ �ui 2 Xpþjþ1, if pþ j is odd (and

pþ j ¼ 2i� 1).

Then this sequence of points from X satisfies the following

properties.

Lemma 5.3. Suppose �< a. Let p 2 Z and x 2 Xp, and let

ðxjÞ
1

j¼�1 be the sequence of points from X associated with x as

above. Then, for each j 2 Z, the point xj is the unique point of
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the layer Xpþj closest to both point xjþ1 and xj�1, with the

distances given by

ðjxj � xj�1j; jxjþ1 � xjjÞ ¼
ð2b;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4b2
p

Þ; if pþ j is odd;
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4b2
p

; 2bÞ; if pþ j is even:

�

Proof. We demonstrate the case when pþ j is odd, with

pþ j ¼ 2i� 1; the case when pþ j is even is similar. Then the

line segment from xj�1 to xj is the perpendicular from xj�1 to

the layer Xpþj; hence xj is the closest point of Xpþj to xj�1, and

jxj � xj�1j ¼ 2b, as claimed. Further, recall that any point

x0 2 Xpþj has the form

xjþ1 � 2bed � �ui þ ð2am1; . . . ; 2amd�1; 0Þ;

where m1; . . . ;md�1 2 Z and ui ¼ signðaiÞejaij
. Set s :¼ jaij.

Then x0 satisfies

jxjþ1 � x0j2 ¼ jð2am1; . . . ; 2ams � �; . . . ; 2amd�1;�2bÞj2

¼ 4a2 m2
1 þ . . .þ ms �

�

2a

� 	2

þ . . .þm2
d�1

" #
þ 4b2:

Since �< a, this term takes its minimum value precisely when

m1 ¼ . . . ¼ md�1 ¼ 0, that is, when x0 ¼ xj. For x0 ¼ xj we

then obtain

jxjþ1 � x0j2 ¼ �2
þ 4b2:

Thus jxjþ1 � xjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ 4b2
p

, as claimed. Hence the lemma

follows. &

For an isometry ’ of Rd we let B’ denote the matrix of the

linear part of ’, that is,

’ðyÞ ¼ B’yþ z’ ðy 2 R
d
Þ;

for some z’ 2 R
d.

Our next lemma relates the two sequences of points

ðxjÞ
1

j¼�1 and ðx0jÞ
1

j¼�1 from X which are associated with two

points x and x0 of X, respectively.

Lemma 5.4. Suppose 0<�< a< b. Let ’ be an isometry of

R
d that maps point x 2 Xp to point x0 2 Xp0 and cluster

Cxð2kRÞ to cluster Cx0 ð2kRÞ for some integer k � 1. Then for

all j ¼ �k; . . . ; k,

’ðxjÞ ¼
x0j; if p� p0 is even;
x0�j; if p� p0 is odd;

�
and

’½Xpþj \ Cxð2kRÞ� ¼
Xp0þj \ Cx0 ð2kRÞ; if p� p0 is even;
Xp0�j \ Cx0 ð2kRÞ; if p� p0 is odd:

�
ð2Þ

Moreover, B’es ¼ �e�ðsÞ for s ¼ 1; . . . ; d� 1, for some

permutation � of the set f1; . . . ; d� 1g; and

B’ed ¼
ed; if p� p0 is even;
�ed; if p� p0 is odd:

�
ð3Þ

Proof. First recall that for any m 2 Z and any point y 2 Xm,

the points y� 2aes, with s ¼ 1; . . . ; d� 1, belonging to the

same layer Xm as y are the points of X closest to y. Hence,

since ’ maps x 2 Xp to x0 2 Xp0 , this shows that B’es ¼ �e�ðsÞ
for some permutation � of f1; . . . ; d� 1g. It then follows that

’ðXpÞ ¼ Xp0 .

The closest point to x in Cxð2kRÞ not lying in Xp is x1

if p is even, or x�1 if p is odd; note here that R> b. This

immediately implies equation (3), and therefore

’ðXpþjÞ ¼ Xp0þj or ’ðXpþjÞ ¼ Xp0�j for each j ¼ �k; . . . ; k,

according to whether p� p0 is even or odd. This establishes

the second statement of the lemma, that is, equation (2). But

then the first statement of the lemma follows as well, by

Lemma 5.3, if we can show that xj 2 Cxð2kRÞ and

x0j 2 Cx0 ð2kRÞ for j ¼ �k; . . . ; k. Note here that the required

condition of Lemma 5.3, that �< a, is guaranteed to hold here

by our assumptions on � and a.

Now to accomplish the proof of the first statement, we use

the defining properties (X1), (X2) and (X3) for the sequences

of points xj and x0j to estimate the distances jxj � x0j and

jx0j � x00j. For xj, we first rewrite xj � x0 as a sum and use the

triangle inequality to obtain

jxj � x0j ¼
Pj

l¼1

ðxl � xl�1Þ





 



 �Xj

l¼1

jxl � xl�1j:

Now Lemma 5.3 applies to the summands on the right-hand

side and shows that

jxj � x0j �
k

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2bÞ

2
þ �2

q
þ

k

2


 �
ð2bÞ

<
k

2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2bÞ

2
þ ðd� 1Þð2aÞ

2

q
þ

k

2


 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2bÞ2 þ ðd� 1Þð2aÞ2

q
¼ 2kR;

where b
c and d
e denote the floor and ceiling functions of a

real number, respectively. Hence xj 2 Cxð2kRÞ. This estab-

lishes the desired property for the points xj. The proof for the

points x0j is similar. This concludes the proof. &

We now investigate symmetries of clusters of Engel sets.

Recall that, by definition, the cluster group Sxð�Þ of a �-cluster

Cxð�Þ at a point x of X is the stabilizer of x in the full symmetry

group of Cxð�Þ. The following theorem describes the cluster

groups of 2kR-clusters of Engel sets for k � 1.

Recall that the d-crosspolytope (hyperoctahedron) is the

d-dimensional convex polytope in R
d with vertices

�e1; . . . ;�ed, here viewed as points (see Coxeter, 1973).

When d ¼ 2 this is a square, and when d ¼ 3 this is an octa-

hedron. The d-crosspolytope is one of the regular solids in Rd.
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Its full symmetry group is isomorphic to Cd
2	 Sd, the semi-

direct product of the elementary abelian group Cd
2 of order 2d,

and the symmetric group Sd on d symbols. The subgroup Cd
2 is

generated by the d reflections in the standard coordinate

hyperplanes of Rd, and the subgroup Sd consists of all

isometries of Rd that permute the basis vectors e1; . . . ; ed.

Note that if L � f1; . . . ; dg then f�eljl 2 Lg is the vertex set of

an jLj-dimensional crosspolytope in the jLj-dimensional

linear subspace spanned by the vectors in feljl 2 Lg. We refer

to this polytope as the crosspolytope defined by f�eljl 2 Lg.

For example, if d ¼ 3 and L has two elements, then this is an

equatorial square of the regular octahedron.

Theorem 5.5. Let d � 2, let 0<�< a< b, let

X :¼ XðA; a; b; �Þ, and let x 2 Xp for some p 2 Z.

Further, let k � 1 and 2kR< 2bðkþ 1Þ. Then the cluster

group Sxð2kRÞ of the 2kR-clusters of X is the full symmetry

group of the ðd� k� 1Þ-crosspolytope defined by E n Ep;k if

1 � k � d� 2, and is the trivial group if k � d� 1. Thus

Sxð2kRÞ ffi Cd�k�1
2 	 Sd�k�1 ð1 � k � d� 2Þ;

and Sxð2kRÞ ¼ 1 if k � d� 1. In particular, this holds when

a2 < ð2b2Þ=½kðd� 1Þ�.

Proof. For the first two statements we may assume without

loss of generality that x ¼ o, the origin, and hence that p ¼ 0.

Any isometry ’ 2 Soð2kRÞ necessarily fixes o and hence is

entirely defined by its matrix B’. By Lemma 5.4, applied with

x0 ¼ x ¼ o and p ¼ p0 ¼ 0, there exists a permutation � of

f1; . . . ; d� 1g such that B’es ¼ �e�ðsÞ for s ¼ 1; . . . ; d� 1,

and Bed ¼ ed. Moreover, again by Lemma 5.4, Bxj ¼ xj for

j ¼ �k; . . . ; k and thus ’ðeÞ ¼ Be ¼ e for all vectors e 2 E0;k.

It follows that ’ acts trivially on the ðkþ 1Þ-dimensional linear

subspace E0;k spanned by the vectors in E0;k [ fedg, and that ’
determines on the orthogonal complement E?0;k of E0;k

(spanned by the d� k� 1 basis vectors in E n E0;k) a

symmetry of the ðd� k� 1Þ-crosspolytope P0;k with vertex set

f�eje 2 E n E0;kg in E?0;k.

Conversely, any symmetry of the ðd� k� 1Þ-crosspolytope

P0;k in E?0;k lifts in an obvious way to an isometry ’ of Rd that

acts trivially on E0;k and lies in Sxð2kRÞ. Note here that the

layers Xj with jjj � kþ 1 are not involved. This proves the first

two statements.

Finally, note that a2 < ð2b2Þ=½kðd� 1Þ� implies

2kR< 2bðkþ 1Þ, so that the last statement follows from our

previous considerations. &

Theorem 5.5 demonstrates nicely how the cluster group of a

cluster gets smaller as the cluster grows in size from a radius of

2R (for k ¼ 1), to 2kR (for intermediate k), to 2ðd� 2ÞR (for

k ¼ d� 2 � 1), to 2ðd� 1ÞR or larger (for k � d� 1Þ. The

corresponding cluster groups of the clusters at these stages are

Cd�2
2 	 Sd�2; Cd�k�1

2 	 Sd�k�1; C2 and 1;

of orders 2d�2ðd� 2Þ!, 2d�k�1ðd� k� 1Þ!, 2 and 1, respectively.

Our next theorem characterizes the Engel sets that are

regular systems. The upshot is that most Engel sets are not

regular systems. The characterization is expressed in terms of

the doubly infinite integer sequence A involved in the

construction of Engel sets.

Recall that condition (A2) for A requires that the terms of

A satisfy jaiþd�1j ¼ jaij for each i 2 Z. Note that there are

uncountably many such sequences A with the same initial

values a1; . . . ; ad�1; in fact, these initial values determine the

value of ai at a position i 6¼ 1; . . . ; d� 1 only up to sign, so

there are two possible choices at each position. Our next

theorem says that among the uncountable infinity of corre-

sponding Engel sets sharing the same initial values, only two

are regular systems.

Theorem 5.6. Let d � 2 and 0<�< a< b. Then the Engel

set XðA; a; b; �Þ is a regular system if and only if the sequence

A is such that either aiþd�1 ¼ ai for all i 2 Z or aiþd�1 ¼ �ai

for all i 2 Z.

Proof. First suppose that X :¼ XðA; a; b; �Þ is a regular

system. Then the symmetry group SðXÞ of X acts transitively

on the points of X. Choose any point x 2 X and consider the

sequence of points xj associated with x as in (X1), (X2) and

(X3). Then, since SðXÞ acts transitively on X, there exists an

isometry ’ 2 SðXÞ which maps x ¼ x0 to x0 :¼ x2 and thus the

cluster Cxð2kRÞ to the cluster Cx0 ð2kRÞ for each k � 1. Then,

by Lemma 5.4, ’ maps x2i to x2iþ2, and ui ¼ signðaiÞejaij
to

uiþ1 ¼ signðaiþ1Þejaiþ1j
, for all i 2 Z. Therefore if � ¼ �1 is

defined by the equation ad ¼ �a1 (that is, � ¼ ad=a1), then also

ud ¼ �u1. Hence, uiþd�1 ¼ �ui and aiþd�1 ¼ �ai for each i 2 Z.

This establishes one direction of the theorem.

Conversely, suppose the stated condition on A holds. Then

aiþd�1 ¼ �ai for all i 2 Z, where either � ¼ 1 or � ¼ �1. Note

that then also uiþd�1 ¼ �ui for all i 2 Z. We wish to show that

this implies that SðXÞ acts transitively on X. Since X is

invariant under shifts by vectors from vectors in the ðd� 1Þ-

lattice Y involved in the construction, it suffices to show that

we can move the layer X0 of X to any other layer of X by a

symmetry ’ of X.

We first explain how layer X0 can be moved to layer X2 by

an element of SðXÞ and then similarly to any layer X2i for

i 2 Z. Consider the isometry ’ obtained as the composition of

a shift by the vector 4bed, followed by the isometry ’0 of Rd

determined by the conditions ’0ðedÞ ¼ ed and ’0ðujÞ ¼ ujþ1 for

j ¼ 1; . . . ; d� 1. We claim that ’0ðujÞ ¼ ujþ1 for all j 2 Z.

Since uiþd�1 ¼ �ui for all i 2 Z, we see that the desired

property holds for j ¼ d; in fact, ud ¼ �u1 is mapped by ’0 to

�u2 ¼ udþ1. Now assume inductively that ’ðujÞ ¼ ujþ1 holds

for a range of consecutive subscripts, j ¼ s; sþ 1; . . . ; t (say)

with jt � sj � d. Then ’0 takes point utþ1 ¼ �utþ2�d to point

�utþ2�dþ1 ¼ utþ2 and similarly point us�1 ¼ �us�1þd�1 to

point �us�1þd ¼ us. Therefore, uj is mapped to ujþ1 for all

j 2 Z. It follows that the isometry ’ is indeed a symmetry of X,

that is, ’ 2 SðXÞ.

Next we describe a symmetry of X that moves X0 to X1. We

again compose suitable isometries. As in the proof of Lemma

5.1, we first apply the reflection in the hyperplane xd ¼ b, in

order to map layer Xm of X to layer X 0m of a new layered set X 0

for each m 2 Z, with X 01 ¼ X0. After that, we employ the
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isometry ’0 ofRd determined by the conditions ’0ðedÞ ¼ ed and

’0ðujÞ ¼ �u1�j for j ¼ 1; . . . ; d� 1. We claim that then

’0ðujÞ ¼ �u1�j for each j 2 Z. This holds for j ¼ d, since

’0ðudÞ ¼ ’
0
ð�u1Þ ¼ ��u0 ¼ �u1�d:

Now assume inductively that ’ðujÞ ¼ �u1�j holds for a range

of consecutive subscripts, j ¼ s; sþ 1; . . . ; t (say) with

jt � sj � d. Then the isometry ’0 takes point utþ1 ¼ �utþ2�d

to point

��ud�t�1 ¼ �u1�ðtþ1Þ;

and point us�1 ¼ �us�1þd�1 to point

��u3�s�d ¼ �u2�s ¼ �u1�ðs�1Þ:

Thus, ’0 maps uj to�u1�j for all j. It follows that the composed

isometries give a symmetry of X which takes X0 to X1. This

completes the proof. &

The previous theorem allows us to conclude that there are

only a few regular systems among Engel sets. More precisely,

we have the following corollary.

Corollary 5.7. Let d � 2 and 0<�< a< b. Then among the

uncountably many Engel sets XðA; a; b; �Þ obtained for

sequences A with the same initial values a1; . . . ; ad�1 there are

up to isometry exactly two (different) regular systems, namely

those obtained for the two sequences A with aiþd�1 ¼ ai for all

i 2 Z or aiþd�1 ¼ �ai for all i 2 Z (that is, those corresponding

to � ¼ 1 and � ¼ �1, respectively).

Proof. Theorem 5.6 implies that there can be at most two

regular systems of the kind described. It remains to show that

the regular systems corresponding to � ¼ 1 and � ¼ �1

cannot be congruent.

Suppose the regular systems XðA; a; b; �Þ and XðA0; a; b; �Þ
obtained for two sequences A and A0 (with the same initial

values a1; . . . ; ad�1) are congruent under an isometry ’ of Rd.

Without loss of generality we may assume that ’ fixes the

origin and thus is a linear isometry. Let ui and u0i denote the

corresponding vectors as defined in (E4). Then a similar

argument as in the proof of Lemma 5.4 shows that we must

have ’ðuiÞ ¼ u0i for all i 2 Z. Hence, if � ¼ �1 is defined by

the equation ud ¼ �u1 (that is, � ¼ ud=u1), then we must also

have u0d ¼ �u01.

It follows immediately that the two regular systems corre-

sponding to � ¼ 1 and � ¼ �1 cannot be congruent. &

Combining the previous corollary with Theorem 5.2 we

finally obtain the main result of this article.

Theorem 5.8. Suppose d � 2 and R is a fixed positive

number. For any ", with 0<"< 2dR, there exists a non-regular

Delone set X of type ðr;RÞ in d-space such that

NXð2dR� "Þ ¼ 1.

Proof. Choose a pair of parameters a; b such that

a< b; R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ðd� 1Þa2

p
and a2 <

"b

dðd� 1Þ
; ð4Þ

and fix the initial part of the doubly infinite sequence A as

a1; . . . ; ad�1 (but allow the signs of the other terms ai of A to

vary). We also choose a number � such that 0<�< a. Then

Theorem 5.2 implies that any Engel set X from the infinite

family of Engel sets XðA; a; b; �Þ satisfies the condition

NXð2dR� "Þ ¼ 1. However, according to Corollary 5.7, only

two of these sets will be regular sets. &

Now we can also establish the new lower bound for the

regularity radius of Delone sets. Recall that, given the para-

meters r and R, the regularity radius �̂�d is the smallest positive

number � with the property that each Delone set X of type

ðr;RÞ in Rd with mutually equivalent �-clusters is a regular

point system. Then the previous theorem immediately implies

the following lower bound for �̂�d (when d � 2), which is linear

in d. But the bound is also valid for d ¼ 1.

Theorem 5.9. For d � 1 we have �̂�d � 2dR.

Proof. As we saw at the end of x2, the inequality holds when

d ¼ 1. Now suppose d � 2 and 0<�< 2dR. Set " :¼ 2dR� �
and apply Theorem 5.8. The Delone set X of Theorem 5.8 then

satisfies NXð�Þ ¼ 1 but is not a regular system. This shows that

no positive number � less than 2dR has the property that each

Delone set of type ðr;RÞ with mutually equivalent �-clusters is

a regular point system. Thus �̂�d � 2dR. &

Remark 5.10. The Engel sets from the proofs of Theorems

5.8 and 5.9 are characterized by b being much larger than a;

hence they are very elongated in one direction. From a crys-

tallographic point of view, this would imply an unphysically

large distance between consecutive layers compared with

distances between points within one layer. On the other hand,

it is possible to introduce more realistic Engel sets with a close

to b and a small �. These sets can be obtained by a slight

deformation of a regular cubic lattice 2aZd. For such a Delone

set R is close to
ffiffiffi
d
p

a and (due to Lemma 5.1) the �-clusters

with � close to 2da are congruent. By taking an appropriate

sequence A we obtain a non-regular Delone set XðA; a; b; �Þ.
Thus, for such deformations of a regular lattice the congruence

of ð2
ffiffiffi
d
p

R� "Þ-clusters is not enough to ensure regularity.

Our last theorem characterizes the regularity of an Engel

set in terms of its cluster counting function. In particular it says

that, for Engel sets, the radius 2dR� " in Theorem 5.8 cannot

be replaced by 2dR (or any larger number).

Theorem 5.11. Let d � 2 and 0<�< a< b. Then an Engel

set X :¼ XðA; a; b; �Þ is a regular system if and only if

NXð2dRÞ ¼ 1.

Proof. Clearly, if X is a regular system, then NXð�Þ ¼ 1 for

each �> 0 and thus NXð2dRÞ ¼ 1. Conversely, suppose

NXð2dRÞ ¼ 1. Take x :¼ o and x0 :¼ x2i for some i 2 Z. Then,

by Lemma 5.4 with k ¼ d, the linear part of the isometry that

realizes the equivalence of the clusters Cxð2dRÞ and Cx0 ð2dRÞ
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must map ul to uiþl for each of the d values l0; . . . ; l0 þ d� 1

(say) of l arising in the construction of the layers X�d; . . . ;Xd

of X. If � ¼ �1 is defined by ul0þd�1 ¼ �ul0
(that is,

� :¼ ul0þd�1=ul0
), then necessarily uiþd�1 ¼ �ui for all i 2 Z.

Hence XðA; a; b; �Þ is a regular system. &

6. Engel sets in crystallography and crystal chemistry

The example of three-dimensional Engel sets with identical 4R

but different 6R environments is shown in Fig. 5. The first set

(Fig. 5a) is a crystallographic orbit in the space group P4122

with the approximate unit-cell parameters a = b = 3, c = 25 Å,

and point coordinates (0.200; 0.200; 0.420). The second set

(Fig. 5b) is an orbit of the point (0.029; 0.080; 0.340) in the

space group C2=c with the unit-cell parameters a = b = 4.245,

c = 12.6 Å, � = 96
. Both orbits are Delone sets with r ’ 1:125

and R ’ 2:795 Å. They are essentially also Engel sets as

defined above: they can be considered as consisting of

double layers of a two-dimensional square lattice (shown by

black lines).

The P4122 structure contains four double layers per unit cell

with each double layer shifted relative to the adjacent ones by

1.2 Å, along either a or b axes. The sequence of shifts in the

P4122 structure can be described as . . .þ a0;þb0;�a0;�b0 . . .,
where ja0j ¼ jb0j = 1.2 Å (Fig. 5c).

The C2=c structure contains two double layers per unit cell

only with the shifts of adjacent layers along the [110] and

[�1110] directions. The sequence of shifts can be described as

. . . a0 þ b0; b0 � a0; . . ., where ja0 þ b0j ¼ jb0 � a0j = 1.2 Å

(Fig. 5d).

The two sets have congruent 2R (Fig. 5e) and 4R environ-

ments of their points, but are obviously different. The 2R

environment of the point defines the double layer to which it

belongs plus one square lattice from the adjacent double layer.

The 4R environment defines the positions of the two adjacent

double layers, which is obviously not enough to define the

whole structure, that can be fixed only by fixing the position of

the next-neighboring layer through the 6R environment as

shown in Fig. 6.

The two sets shown in Fig. 5 provide a crystallographic

example of Theorem 5.11. From the standpoints of crystal

chemistry and crystallography, it is obvious that the Engel sets

can be viewed as models of polytypic structures, which are

very common in layered materials. According to Guinier et al.

(1984), ‘ . . . an element or compound is polytypic if it occurs in

several different structural modifications, each of which may

be regarded as built up by stacking layers of (nearly) identical

structure and composition, and if the modifications differ only

in their stacking sequence’. The two structures shown in Fig. 5

can be considered as classical examples of polytypes with the

P4122 structure being 4T and the C2=c structure being 2M

polytypes. The formation of long-range-order arrangements

(ideal crystals) in this family of structures would require the

fullfillment of the 6R regularity radius requirement, whereas

violation of this condition would result in the formation of

disordered layer stackings. Thus Theorem 5.11 is not only an

important fundamental result, but also provides a useful tool

for understanding the geometric conditions for the formation

of ordered and disordered polytypic layered materials. Finally,
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Figure 5
Two examples of the Engel sets in 3-space with identical 4R- and different
6R-clusters: the set with the P4122 space group (a), the set with the C2=c
space group (b) (the black lines outline the double layers, the blue lines
link the closest points from the adjacent double layers, red arrows
indicate the direction of shifts of double layers relative to each other), the
top views on the two sets [(c) and (d), respectively], showing the systems
of shifts of adjacent rectangular double layers, and 2R-cluster of a single
point in the sets [(e); identical for the two sets].

Figure 6
Schematic representation of an Engel set with the spheres of the 2R-, 4R-
and 6R-radii (shown by green dotted, violet dashed and red dotted–
dashed lines, respectively) drawn around a central point (shown in red).
See text for details.



we would like to point out that Theorem 5.11 provides the

lower bound of 6R in three-dimensional Euclidean space,

whereas 10R is the currently proved upper bound. We

conjecture that 6R is a sharp upper bound; however, there is

no proof for this statement at the moment.

We believe that the local theory first proposed by Delone

et al. (1976) and developed herein will be useful for

understanding the mechanisms of crystallization of complex

crystalline materials at the micro- and nanoscopic levels and

the development of theories of self-assembly in inorganic and

molecular systems.
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