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Abstract—This work presents high level design and prelim-
inary results of the implementation of an psycho-emotional
system based on DA and 5-HT subsystems implementing 4 basic
emotions.
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I. INTRODUCTION

Just a few decades ago, developers only discussed the issue
of creating social robots and the option to include them in
the everyday practices of ordinary people [1]. Today we know
a lot of different service robots that perform social functions
under various scenarios: promoter [2], waiters/hostesses [3],
[4], security guards [5], therapeutic support [6], teacher/nanny
[7], [8] etc. One of the well-known mass-selling platform is
the Pepper robot, entertaining people in shopping malls [9],
helping in airports and a companion for the elderly [10]. There
are several platforms available for purchase and are used in
various social spaces: Nao, Paro, Promobot, Aibo, Thespian
etc. Researchers actively explore user experience of interaction
with social robots in public spaces [11] and at interpersonal
communication [12]. A lot of attention is focused on what
social interaction elements should be implemented to make
the user experience as comfortable as possible. In early works,
Terry Fong outlined human social characteristics. Ability to
express and/or perceive emotions is one among them [13]. The
significance of the emotional component in social interaction
has been confirmed by many further studies. Currently, the
affective human-robot communication is actively explored in
the field of social robotics. Turns out that people assess the
“humanity” of a robot by its ability to express and recognize
emotions [14], [15]. It happens because the most part of human
communication is encoded by facial expressions and body
movements [16]. So consumer acceptance of service robots
highly depends not only on how well the robots can meet
the functional needs of the user but also on additional user

interactions possibilities (status interaction, politeness, verbal
and non-verbal emotional communication establishment, etc.)
[17].

II. PROBLEM

Technologies and ways of emotion expression and recogni-
tion are key tasks in the study of social robotics. The emotion
recognition is mainly based on the analysis of facial expres-
sions, rarely supplemented by psycho-physiological data.

The majority of works use Ekman [18] and Russell [19]
models, while few of them exploit alternative theories, like
Plutchik’s model [20]. Usually a robot expresses emotions
via imitation of facial expressions [21], non-verbal behavior
[8], [22], [23] or through semiotic indicators: color, sound,
vibration, temperature [24]. Developers often strive to simulate
multimodal ways to express a robot’s emotions to improve a
user experience.

We can indicate the limited variance of emotional responses
in the majority of the platforms currently used (Fig. 1.1).
The link between the stimulus and the reaction is fixed and
straight-forward: in response to a specific action, the robot
always provides the same reaction. At first, users are curious
and enthusiastic with the robot interaction, but soon, as noted
by researchers [25], the novelty effect vanishes and interaction
becomes too predictable and boring. Users usually try to find
out robot’s hidden communicative capabilities, its personality-
specific features, but the lack of individual reactions to a
particular person adversely affects the ability to maintain
long-term relationships. The development of the behavioural
emotional variability that makes robot’s social behavior more
individualized towards the user [26] is a challenge for robotic
systems designers today. In this work we propose the model
that recreates the human’s emotional low-level reactions as a
possible solution to these challenges. Based on the role of
emotions we hope that this model will make a robot’s behav-
ioral system more variable, teachable and less predictable.
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III. SOLUTION

In this work we present a novel approach for affective self-
learning, adaptable behavioral reaction, emotional expression
and emotional involvement of a robot (Fig. 1.2). We also
develop the emotional social robot “Emotico” using this ap-
proach. It interacts with humans by begging for coins. This
type of human-robot interaction implies the expression of
“emotions” and adaptive emotional behavior. We use Hugo
Lövheim’s “cube of emotions” [28] as basic emotional model
for our robot based on three monoamines: dopamine (DA),
nor-adrenaline (NA) and serotonin (5-HT). These neuromodu-
lators play a central role in psycho-emotional states and drives
[29].

At the initial stage, we decided to incorporate only DA and
5-HT into our system. The robot can experience four different
emotions: joy, sadness, disgust and interest (Tab. I). “Emotico”
has different sensors, which project their signals to different
groups of neurons.

TABLE I: Robot’s four emotions based on Hugo Lövheim’s
model [28]. Each emotion has a corresponding behavioral
reaction.

Emotion DA 5-HT Robot’s behavior
Joy High High Dance
Sadness Low Low Look for people
Disgust Low High Spit out/swallow
Interest High Low Drive up

The emotional expression plays the important role in
human-robot interaction. Thus, robot should not only expe-
rience “emotions”, but also express them. Tab. I presents
the robot’s behavioral responses to the emotional state. The
interaction of our robot with humans has a certain goal –
getting coins from them that creates special feature of the
“Emotico” – manipulative behavior. Initially, low levels of DA
and 5-HT make the robot “feel sad” which drives “Emotico”
to find a source of coins.

The DA and the 5-HT neuromodulator levels increase when
the robot gets a coin. In contrast only the 5-HT level increases
when the robot gets another object (so called fake coin). High
levels of the DA and the 5-HT make the robot “feel joy”
and it demonstrates pleasure and dances. The low level of the
DA and high level of the 5-HT make the robot “feel disgust”
and it spits out coins and other objects provided in the coin
acceptor of the robot. In absence of an external decreases DA
and 5-HT levels during some time thus making the robot “sad”.
These behavioral reactions, as well as expression of interest
and sadness, let the robot influence people attracting attention
to itself.

Fig. 1.2 presents the high-level design of the proposed social
robot that perceives the environment via coin acceptor and
camera. The digital-to-spikes (DSA) adapter interface (Sec.
IV-A) converts data from both sensors into the neuronal sub-
system representation, a sequence of spikes. DSA-generated
spikes affect the activity of neuromodulatory nuclei (DA, 5-
HT) in the neuronal subsystem (Sec. IV-D). Tab. I identifies

the behavioural response implemented via the corresponding
motor cortex activity based on psycho-emotional state that is
identified according to the levels of DA and 5-HT. The spikes-
to-digital adapter (SDA) converts outputs of the motor cortex
into the sequence of commands to robot chassis actuators
and coin acceptor drives. This way, our robot is able to
“make decisions” and move through the environment based
on its psycho-emotional state. The neuronal subsystem is
implemented as a spiking neural network based on Izhikevich
model (Sec. IV-D).

Fig. 1.3 shows the appearance of the PMB-2 platform
with “Emotico” system installed. The robot lower part is
represented by PMB-2 PAL Robotics mobile platform [27],
[30]. Camera with its pedestal and coin acceptor are located
on the top of the robot’s head.

IV. PRELIMINARY RESULTS

A. Spikes Adapter

The information in SNN is represented and transmitted by
means of spikes. The interface of digital input sensors to the
SNN is organized via DSA, for the output from SNN to digital
actuators we use the SDA. In the DSA, we map digital input
into spiking frequencies, or firing rate [Hz], and employ a
Poisson stochastic process for modelling arbitrary spike firing
events using the formula 𝑃 (𝑋𝑖) ≈ 𝑟𝑖 · 𝛿𝑡, where 𝑃 (𝑋𝑖) –
the probability of spike firing at 𝑖𝑡ℎ simulation step, 𝑟𝑖 – the
firing rate and 𝛿𝑡 – the simulation time sampling step [31]. In
each simulation step a uniformly distributed random number
𝑥𝑖 ∈ [0; 1] is generated, if 𝑥𝑖 ≤ 𝑟𝑖 ·𝛿𝑡 a spike is initiated. SDA
has not been implemented yet.

B. Coin Acceptor

The coin acceptor distinguishes between real coins and coin-
like objects, or fake coins (e.g. buttons and plastic tokens).
There are two types of sensors inside the coin acceptor: the
first one determines the presence and size of an item, the
second one determines whether the item is made of metal
or not. Two built-in actuators allow to transfer coins to the
moneybox (this process represents the act of digestion), and
throw fake coins back when the robot “feels disgust” (spitting
mechanism).

When one puts a coin in the coin acceptor the DSA activates
the corresponding DA and 5-HT nuclei (proportionally to the
value of the coin) or only 5-HT in case of fake coins (Fig. 1.2).
Neuronal subsystem makes the coin acceptor to “swallow”
or “spit out” the coin activating the corresponding behaviour.
Parts a and b (Fig. 2.1) are constructive elements of a catapult
for “spiting out” fake coins. Part a is attached to the motor
shaft that rotates triggering the catapult to “spit out” a fake
coin, while the part d is attached to the servo shaft and when
it turns, the coin falls into the moneybox “swallowing it”.

Fig. 2.2 shows the block diagram of the coin acceptor
sensors and motors. It is controlled by the Arduino Nano
[32] microcontroller. The pair of LEDs (Fig. 2.2c) and four
photoresistors (Fig. 2.2b) identify the presence of a coin or
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Fig. 1: (1) Interaction issues between humans and robots. (2) High level design of the proposed system: coin – coin acceptor,
camera – robotic camera, DSA – digital-to-spikes adapter, 5-HT and DA – serotonin and dopamine nuclei, SDA – spikes-to-
digital adapter, motor cortex – robot behavioral reaction neurons, actuators – robot control drives. (3) “Emotico” design: (a)
PMB-2 platform [27], (b) neck, (c) eyes, (d) camera box, (e) camera, (f) decorative antennas, (g) coin acceptor.

(1) (2) (3)

Fig. 2: (1) The mechanism of the coin acceptor: (a) torque arm, (b) catapult, (c) coin, (d) servo arm. (2) The block diagram
of the coin acceptor sensors and motors: (a) Arduino Nano, (b) photoresistors, (c) LED, (d) metal contacts, (e) DC motor,
(f) DC motor driver, (g) servomotor. (3) Major steps of vision subsystem algorithm: (a) image acquisition from USB-camera,
(b) converting image to gray-scale, (c) face detection, (d) face region split into sub-regions, (e) average intensity of each
sub-region identification, (f) scaled intensity values 1D array.

other object in the coin acceptor and its size. We also use two
contacts (Fig. 2.2d) to determine a fake coin.

C. Vision Subsystem
The vision subsystem is a DSA that performs mapping of

information derived from video frames to spikes activity thus
affecting robot’s psycho-emotional state. It is written in C++
using machine learning library OpenCV [33]. Major steps of
the algorithm behind the DSA are presented in Fig 2.3 where
red arrows indicate the sequence of steps. The subsystem
reads an image from the USB-camera (Fig. 2.3a), converts
it into grayscale (Fig. 2.3b), applies histogram equalization
and performs face detection by Haar feature-based cascade
classifier [34] (Fig. 2.3c). Detected face region is then resized
to the number of neurons N allocated for visual cortex of
the robot and is split into N sub-regions (Fig. 2.3d). The
average value of pixel lightness is normalized in the range

[0 . . . 100] for each sub-region (Fig. 2.3e). These values are
used as spiking frequencies arranged into one-dimensional
array (Fig. 2.3f) which is published to the neuronal subsystem.
If no face is detected an empty array is published.

D. Neuronal Subsystem

The neuronal subsystem is a spiking neural network (SNN)
(Fig. 1.2) based on Izhikevich neuron model [35] written
in C++ with the Boost Graph Library [36]. We provide the
API to: (1) create groups of neurons with certain properties,
(2) connect groups of neurons in one-to-one or many-to-many
modes, (3) attach groups of neurons to spike generators
(4) simulate neuronal activity with a predefined resolution.
Each simulation step we keep track of neuronal activity and
update the state of neurons considering input stimuli coming
from adjacent neurons and spike generators. We run two
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types of simulations to demonstrate the capabilities of the
implemented SNN (Fig. 3):

1) simulation of one neuron network configuration for the
200ms with sampling 0.5ms, where one neuron is at-
tached to a 500Hz Poisson spike generator producing
the current 372 pA ± 10 pA.

2) simulation of two groups of neurons SNN, Input and
Output groups with 10 neurons in each. The Input is
attached to the 400 pA ± 10 pA spike generator and
connected to the Output in 1-to-1 mode with weights of
320 pA ± 10 pA and axonal delays of 10ms ± 2ms
(Fig. 3.3). Generated spikes directly stimulate the Input
triggering spiking activity in the adjacent Output group
neurons.

The first simulation starts with a neuron in the resting state
𝑉𝑟𝑒𝑠𝑡 = −72mV. The spike generator produces current (Fig.
3.1) that increases the membrane potential up to the threshold
value 𝑉𝑡ℎ = −55mV, where an action potential is initiated, i.e.
the potential goes up to the 𝑉𝑝𝑒𝑎𝑘 = +35mV and drops down
to −80mV. The membrane recovers to the resting state in 5ms
during the so-called refractory period. Frequent consecutive
input stimuli (see Fig. 3.1 around 50ms) results in a higher
neuronal spiking activity.

In case of the second simulation the spike generator operates
in three modes: (1) low external stimuli for the first 50ms, the
firing rate is 40Hz; (2) high stimuli for the next 100ms with
the firing rate of 500Hz; (3) low stimuli with the firing rate of
40Hz. Input and Output spikes raster plots (Fig. 3.4 and 3.7)
exhibit the spiking activity of corresponding neuron groups.
Relatively low firing activity on both of groups is presented
in the first mode with the maximum mean current in Input
(Fig. 3.5) ∼150 pA and Output (Fig. 3.8) ∼50 pA respectively.
In the second mode, during the 50-150ms, the spiking activity
in the Input increases (Fig. 3.5) with the maximum mean
current in the Input ∼600 pA which causes more dense spikes
distribution in the Output (Fig. 3.7) - the maximum mean
current increases to ∼100-150 pA (Fig. 3.8). In the third mode,
the spiking activity on the Input goes back to the initial one
(see the 150-200ms interval). The mean current decreases for
the Input while the Output preserve delayed synaptic currents.

E. Benchmarks

In this work we employ the PMB-2 mobile robot with the
following hardware parameters: (1) CPU Intel Core i7-4790S
(4 cores @3.2GHz); (2) Intel HD Graphics (no dedicated
GPU); (3) RAM 16GB (DDR3). To estimate the PMB-2
operation in real-time, we computed real time factor (RTF)
for different SNN configurations. We used 5 neuron groups
with a static number of neurons in each group connected in
1-to-1 mode (Fig. 3.2), forming a graph with 2 ·

(︀
5
2

)︀
·𝑛2 edges,

where 𝑛 is the number of neurons in a group. The simulation
time was divided into sub-intervals with steps of 0.1, 0.25 and
0.5ms. The 500Hz Poisson spike generator was attached to
one of the neuron groups.

Benchmark results (Tab. II) indicate that near real-time
performance is possible only in case of SNN with groups

TABLE II: Performance measures for 5 groups of neurons

Neurons in group Simulation step (ms) Real time factor

5
0.1 4.5
0.25 1.8
0.5 0.9

10
0.1 16.9
0.25 6.7
0.5 3.3

of 5-10 neurons and simulation time sub-intervals 0.5ms. We
observe CPU throttling – the temperature reached 86− 89∘C
and CPU started to drop down core frequencies at 0.1ms steps.

V. RELATED WORK

The problem of developing emotional robots was considered
by various authors. One of the first emotional robots is
the Kismet robot [37], where the Russell model [19] was
used. The Kismet descendant – the Leonardo robot [38] is
able to emotionally interact with human agents using facial
expressions and gestures. The emotional robot Nexi is used
in experiments to study the effect of non-verbal signals in
the interaction between human and robot [39]. Authors of
the the paper [40] describe Nexi’s learning via approval and
disapproval signals generated by human trainers.

Possibly one of the famous examples of a social emotional
robots is the Pepper [41]. Pepper is able to recognize the
emotions of humans, as well as to express her emotions
verbally and non-verbally via gestures.

VI. DISCUSSION

We see two main prospects for this work. First the study of
users reaction to a robot emotions expression. In the current
platform, emotions are expressed via motion, light indicators
and facial expression, but we exclude the verbal component
(language methods of expressing emotions require additional
research). All of these components have a complex effect on
the interaction, however, some of them may turn out to be
more significant for the user experience.

The topic of human user obedience to the robot today is
in the focus of great interest. New social roles of a robot, for
example, a teacher, a doctor, a security guard, a trainer, a police
officer, a boss, etc., make its possible status higher than a user.
In some sense, the social role of a robot gives its power over
user. From this perspective we face a lot of questions that has
to be answered, since this field has been studied very little [42].
How can social robots demand obedience from users? What
are the consequences of user obedience to the leadership of the
robot? How does obedience to a human differ from obedience
to a robot? How does a person resist the influence of a robot?
Is obedience to a robot based on trust, fear, inspiration or
something else? The discourse of power is often associated
with emotions. The proposed robot is designed to use the
communicative scenario of requesting money from the user.
This discourse allows to explore various influence strategies
that a robot can apply to the user: request, manipulation, threat,
appeal to sympathy/pity, blackmail, negotiations, etc.
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Fig. 3: (1) One neuron simulation results: neuronal current (top) and membrane potential (bottom) graphs. (2) Benchmark
neuron network topology. Five neuron groups connected one-to-one. (3) Two groups of 10 neurons SNN topology. Spike
generator connected to the Input group that is connected to the Output group one-to-one. (4-6) Simulation results for the Input
in two groups SNN configuration: spikes raster plot, mean current and voltage diagrams. (7-9) Output simulation results.

The second direction of the project development is low-level
reactions model implementation. We suppose this could be the
key to building long-term human-robot interaction. Further
development of the robot includes evolution of almost each
system. Moreover, most of the following ideas are already put
into work. Two additional sensors are to be implemented in the
system - ultrasonic sensor and gyroscope to provide new input
data for robot’s neuronal system allowing robot’s psycho-
emotional state to be influenced by different external factors.
Vision system will be based on deep learning frameworks like
convolutional neural network to enable user’s facial features to
affect robot’s psycho-emotional state based on their previous
interactions. We plan to extend our subcortical areas model
with additional NA subsystem and further develop DA and
5-HT subsystems.

Main concerns and limitations for the current implementa-
tion of bio-inspired neural network are the issues with robotic
embedded system performance. We plan to carry on with
searching for the extension of the current computational sys-
tem and further less computational power consuming solution
for our model of the neural network. The crucial and really
strict factor for the system is the operation of the neuronal
subsystem in the real-time that does not really fits nicely in
the current widely used von Neumann architecture.

Behavioral patterns will be developed in a robotic system to
apply them depending on its psycho-emotional state. Current
robot’s facial features are planned to be substituted with
mechanical ones. This way robot will be able to change its
facial expression according to psycho-emotional state thus
establishing more effective interaction with humans.

As a part of our future work we also plan to make use of the
developed system in USAR domain. It can help to maintain
psycho-emotional state of the victim in a stressful situation
while waiting for the rescue team.
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may i tickle you?: Children’s and adults’ responses to an entertainment
robot at a shopping mall,” in Proceedings of the Companion of the
2017 ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2017, pp. 53–54.
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