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Abstract This paper presents a static analysis of functionally graded (FG) single and 

sandwich beams by using a simple and efficient 4-unknown quasi-3D hybrid type 

theory, which includes both shear deformation and thickness stretching effects. The 

governing equations and boundary conditions are derived by employing the principle of 

virtual works. Navier-type closed-form solution is obtained for several beams. New 

hybrid type shear strain shape functions for the inplane and transverse displacement 

were introduced in general manner to model the displacement field of beams. Numerical 

results of the present compact quasi-3D theory are compared with other quasi-3D higher 

order shear deformation theories (HSDTs). 
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1. Introduction 

Functionally graded materials (FGMs) are a type of heterogeneous composite material 

in which the properties change gradually over one or more directions. FGMs made 

possible to avoid abrupt changes in the stress and displacement distributions. Currently, 

FGMs are alternative materials widely used in aerospace, nuclear reactor, energy 

sources, biomechanical, optical, civil, automotive, electronic, chemical, mechanical, and 

shipbuilding industries.  
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FGMs were proposed by Bever and Duwez [1], and after them several 

researchers have provided results on functionally graded plates [2-10], sandwich plates 

[11, 12], shells [13, 14] and beams [15-17]; this short list gives an idea of some 

contribuition in the field. Carrera et al. [18] investigated the influence of the stretching 

effect on the static responses of functionally graded (FG) plates and shells, which is 

especially significant for thick FG plates. Consequently, thickness stretching effects is 

also necessary to include in beam formulations for the precise mechanical prediction of 

stresses.  

As far as the authors are aware, there is limited work available for bending 

analysis of FG sandwich beams. Vo et al. [19] develop a quasi-3D polynomial theory 

with 4 unknowns to investigate the static behaviour and the effect of normal strain in 

FG sandwich beams for various power-law index, skin-core-skin thickness ratios and 

boundary conditions. In this context, the influence of non-polynomial or hybrid type 

shear strain shape functions were not explored to study FG beams along with C
1
 

HSDTs. However, it is remarkable to mention the work by Filippi et al. [20] based on 

Giunta et al. [15-17] beam formulation (1D Carrera’s unified formulation), where 

trigonometric, polynomial, exponential and miscellaneous expansions are used and 

evaluated for various structural problems. This paper attempts to cover this gap. 

In this paper, a 4-unknown hybrid type quasi-3D theory with both shear 

deformation and thickness stretching effects for the bending analysis of FG beams is 

presented. Many quasi-3D hybrid type (polynomial, non-polynomial, and hybrid) 

HSDTs, including the thickness expansion can be derived by using the present 

generalized theory. The theory complies with the tangential stress-free boundary 

conditions on the beam boundary surface, and thus a shear correction factor is not 

required. The beam governing equations and its boundary conditions are derived by 

employing the principle of virtual works. Navier-type analytical solution is obtained for 

sandwich beams subjected to transverse load for simply supported boundary conditions. 

The results are compared with other quasi-3D HSDT and further referential results for 

the displacement and stresses of FG sandwich beams are obtained.  
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2. Analytical modeling of FG beams 

 

An FG beam of length a , width b  and a total thickness h  made of a mixture of metal 

and ceramic materials are considered in the present analysis. The elastic material 

properties vary through the thickness and the power-law distribution [19]: 

                                                           mcmc EzVEEzE  )()(=)(    (1) 

where subscripts m  and c  represent the metallic and ceramic constituents, cV  is the 

volume fraction of the ceramic phase of the beam. For comparison reasons, three types 

of FG beams are considered, see Fig. 1. 

 

2.1  Type A FG beams 

 The beam is composed of a FG material (Fig. 1a) with Vc given by: 
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2.2  Type B sandwich beams with homogeneous skins and FG core 

The bottom and top skin of sandwich beams is metal and ceramic, while, the core is 

composed of a FG material (Fig. 1b) with cV  given by [19]: 
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2.3  Type C sandwich beams with FG skins and ceramic core 

The bottom and top skin of sandwich beams is composed of a FG material , while, the 

core is ceramic (Fig. 1c) with cV  given by [19]: 
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2.4. Theoretical displacement field 

The displacement field satisfying the free surfaces boundary conditions of transverse 

shear stresses (and hence strains) vanishing at a point (x, /2h ) on the outer (top) and 

inner (bottom) surfaces of the beam, is given as follows:  

                          





)(=),(

)(=),( ***

zgwwzxw

x

w
zf

x

w

x
q

x

w
yzuzxu

sb

bsb































  (5) 

where u , sw , bw  and   are four unknown displacements of midplane of the beam. The 

constants 
**y , 

*y  and 
*q  are obtained by considering the criteria to reduce the number 

of unknowns in HSDTs as in Reddy and Liu [21]. They are as a function of the shear 

strain shape functions, )(zf  and )(zg , i.e. 1= *** yy , )
2

(=* h
fy   and )

2
(=* h

gq  .  

For deriving the equations, small elastic deformations are assumed, i.e. 

displacements and rotations are small, and obey Hookes law. The starting point of the 

present generalized quasi-3D HSDT is the 3D elasticity theory [22]. The strain-

displacement relations, based on this formulation, are written as follows: 
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where  
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The linear constitutive relations are given below: 
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in which, 
T

xzzzxxz },,{=)(   and 
T

xzzzxxz },,{=)(   are the stresses and the strain 

vectors with respect to the beam coordinate system. The ijQ  expressions are given 

below: 
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The elastic coefficients ijQ  vary through the thickness according to Eq. 1.  

Considering the static version of the principle of virtual work, the following 

expressions can be obtained: 
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where   or   are the stresses and the strain vectors, q is the distributed transverse load; 

and iiiii KQPMN ,,,,  and iR  are the resultants of the following integrations:  
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where k represent a single-layer in the case of functionally graded sandwich beam. 

The static version of the governing equations are derived from Eq. 11 by 

integrating the displacement gradients by parts and setting the coefficients of 

sb wwu  ,,  and   to zero separately. The equations obtained are as follows: 
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By substituting the stress–strain relations into the definitions of force and 

moment resultants (Eq. 12), the following constitutive equations are obtained: 
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where:   
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 The natural boundary conditions are of the form:   
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3. Solution procedure  

 

For simply-supported boundary conditions, the Navier solution is assumed to be 

of the form: 
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 where  
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From Eq. 14, it can be noticed that for ,,,,, iiiii KQPMN  and iR , the variables 

depending on x are the generalized strains, 
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where S = sin( x), C = cos( x) and so for, and the elements of the 34 matrices are 

the coefficients obtained after taking the second derivation of the strain expressions in 

Eq. 14. As is known, the strains are expressed as a function of the 4 unknowns, 

described in Eq. 5 and Eq. 17.  

The 34 matrices associated with 
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where, for example, 
2,0
xM  is: 
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All matrices of type, 
),( ba

vM , associated with the expressions of the beam 

governing Eqs. 13, for example 
x
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, are given in Appendix A. 

  In summary, substituting Eq. 17 into Eq. 13 by following the procedure 

described above, the following equations are obtained, 

                                     )=(and1,....,4)=,(= jiijijij KKjiFdK   (22a) 

Elements of ijK  in Eq. 22a can be obtained by using the matrices 
b)(a,

vM , and the 

governing Eqs. 13. 
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3. Numerical Results 

 

The results of the present hybrid type quasi-3D HSDT with 4-unknowns contemplates 

the recommendations regarding the stretching effect (see Ref. [18]). The target of this 

paper is present: (a) the generalized mathematical formulation for the quasi-3D HSDT 

with 4 unknowns; and (b) present the results of using polynomial, non-polynomial and 

quasi-3D hybrid type HSDTs for various FG sandwich beams.  

It was not the intent of this paper to present the best quasi-3D HSDT having 4-

unknowns. However, so far very accurate quasi-3D HSDT with 4 unknowns can be 
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obtained by just using referential shear strain shape functions developed previously by 

the authors [7, 19].  

Table 1 presents different couples of shear strain shape functions to be evaluated 

in the present quasi-3D HSDT with 4-unknowns. The first quasi-3D HSDT is a 

polynomial HSDT, the second HSDT is the well-known trigonometric quasi-3D HSDT, 

the third one is a resent trigonometric quasi-3D HSDT propose by Mantari and Guedes 

Soares [7], and the last one is a hybrid type (which combines polynomial with non-

polynomial shape strain functions and vice versa, respectively), i.e. quasi-3D hybrid 

type HSDTs. For simplicity, the theories are called HSDT1, HSDT2 and so for (see 

Table 1). In case of the present quasi-3D hybrid type HSDT (HSDT4) it is important to 

properly select the shears strain function in order to get accurate results. However, for 

some hybrid shear strain functions such as exponential and trigonometric, this is not 

easy task. This is alleviated when one of the hybrid shears strain function is polynomial 

as in HSDT4 (see Mantari and Guedes Soares [7]).  

Navier solution is used to validate the bending behaviour of FG sandwich beams 

under an uniformly distributed load q. Displacements and stresses of symmetric and 

non-symmetric sandwich beams with FG material in the core or skins are calculated. 

Various power-law indexes and skin-core-skin thickness ratios are considered. FG 

sandwich beams made of Aluminum as metal (Al: 70=mE  GPa, 0.3=m ) and 

Alumina as ceramic ( 32OAl : 380=cE  GPa, 0.3=m ) with two slenderness ratios, ha/  

equal to 5 and 20, are considered. For convenience, the following non-dimensional 

terms are used:  
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3.1  Type A: FG beams 

 

 FG beams (Type A) under an uniformly distributed load are considered. The 

maximum displacements and stresses obtained from the different HSDTs are given in 

Tables 2 to 5 along with the results from previous referential studies (Ref. [19]). Table 2 

presents results of non-dimensionalized maximum beam deflections, it is clear that the 

results agree completely with Ref. [19]. From Table 4 can be noticed that HSDT3 

results do not agree with the others for higher values of p, this may be due to the fact 

that the functions )(zf  and )(zg  are not ideal for this case or need to be carefully 

optimized for this kind of application. Even so, Fig. 2 shows strong similarities in 

results with Ref. [19]. Therefore, all the HSDTs presented in this paper are acceptable. 

 

3.2  Type B: Sandwich beams with homogeneous skins FG core 

 

In this example, bending analysis of (1-8-1) sandwich beams of Type B is 

performed. The results are given in Tables 6 to 9. From Tables 6 and 7 can be noticed 

the sligth influence of the selected shear strain shape function f(z) in the displacements 

and stresses results for HSDT3 and HSDT4. In Table 8 can be seen that as the value of 

p  increases, for 5=/ha , HSDT2, HSDT3 and HSDT4 produces different results than 

HSDT1 and Ref. [19]. Fig. 3 shows the maximum values of axial, normal and shear 

stresses for different power-law index using the HSDT4. Maximum tensile axial stress 

and the maximum shear stress is obtained for 10=p  at the top (ceramic-rich) surface 

and the top surface of core layer respectively as in Ref. [19]. However, the maximum 

normal stress is obtained at the bottom surface for 5=p . 

 

3.3  Type C: Sandwich beams with FG skins ceramic core 

 

 Finally, two types of symmetric (1-2-1) and non-symmetric (2-2-1) sandwich 

beams of Type C are considered. The vertical displacement and stresses for various 

HSDTs are given in Tables 10 to 13. Again HSDT3 differs from the others results as p 

increases for the two normal stresses, xx and zz. Fig. 4 shows the vertical 

displacements along the thickness for different p  values. There are some difference 

between symmetric and non-symmetric beams. For the symmetric beam (Figs. 5a and 
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6a), the maximum tensile (compressive) axial and normal stress are at the top (bottom) 

surface of the core layer. However, for non-symmetric ones (Figs. 5b and 6b), the 

maximum tensile axial stress occurs at the top surface of core layer and while the 

maximum compressive normal stress occurs at the bottom surface of core layer. Fig 7 

shows that the maximum shear stress for both symmetric and non-symmetric beams 

occurs at the midplane of the beam.   

 

4. Conclusions 

 

A generalized hybrid type quasi-3D HSDT with only 4-unknowns and stretching effects 

to study advanced composite beams is presented in this paper. The governing equations 

and boundary conditions are derived by employing the principle of virtual work. A 

Navier-type closed-form solution is obtained for functionally graded single and 

sandwich beams subjected to distribuited load for simply supported boundary 

conditions. The important conclusions that emerge from this paper can be summarized 

as follows:   

a) Multiple shears strain shape function can be evaluated by using the present 

theory. 

b) So far polynomial shear strain functions are easy to implement and simple to 

compute. In this type of case studies the present polynomial quasi-3D HSDT 

produce very accurate results.  

c) Hybrid type (polynomial and non-polynomial) shear strain function are more 

accurate than pure trigonometric ones. 

 

Further studies need to be performed for different case studies and types of FG 

sandwich beams, for example, exponentially graded beams.  
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   Appendix A   

 

Definition of Matrices of type, 
ba

vM
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The matrices associated with the terms in the generalized bending governing equations 

(Eq. (10a-e)) are the following: 
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Figure 1. Geometry and coordinate of a FG sandwich beam. 

Figure  2. Comparison of the shear stress through the thickness of FG S-S beams under 

uniform load (Type A, 5=/ha ). 

Figure  3: Variation of the stresses through the thickness of (1-8-1) FG sandwich S-S 

beams under uniform load (HSDT4, Type B, 5=/ha ).   

Figure  4: Variation of the vertical displacement through the thickness of FG sandwich 

S-S beams under uniform load (HSDT1, Type C, 5=/ha ). 

Figure  5: Variation of the axial stress through the thickness of FG sandwich S-S beams 

under uniform load (HSDT4, Type C, 5=/ha ). 

Figure  6: Variation of the normal stress through the thickness of FG sandwich S-S 

beams under uniform load (HSDT4, Type C, 5=/ha ). 

Figure  7: Variation of the shear stress through the thickness of FG sandwich S-S beams 

under uniform load (HSDT4, Type C, 5=/ha ). 
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Tables 

Table 1.  

     Model  function )(zf  and )(zg   
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4
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4
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Hybrid HSDT4 )
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tanzf  

2

24
1=)(

h

z
zg   

 

 

 

 

Table 2.  

 

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 3.1397 6.1338 7.8606 9.6037 10.7578 

 HSDT1 3.1397 6.1338 7.8606 9.6037 10.7578 

 HSDT2 3.1397 6.1338 7.8606 9.6037 10.7577 

 HSDT3 3.1397 6.1338 7.8605 9.6033 10.7575 

 HSDT4 3.1397 6.1338 7.8605 9.6033 10.7575 

20 Vo et al. 2.8947 5.7201 7.2805 8.6479 9.5749 

 HSDT1 2.8947 5.7201 7.2805 8.6479 9.5748 

 HSDT2 2.8947 5.7201 7.2805 8.6479 9.5748 

 HSDT3 2.8947 5.7201 7.2805 8.6479 9.5749 

 HSDT4 2.8947 5.7201 7.2805 8.6479 9.5748 
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Table 3.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 3.8005 5.8812 6.8818 8.1140 9.7164 

 HSDT1 3.8005 5.8812 6.8819 8.1140 9.7164 

 HSDT2 3.8006 5.8812 6.8819 8.1140 9.7165 

 HSDT3 3.8007 5.8815 6.8822 8.1141 9.7166 

 HSDT4 3.8004 5.8810 6.8815 8.1135 9.7159 

20 Vo et al. 15.0125 23.2046 27.0988 31.8137 38.1395 

 HSDT1 15.0126 23.2047 27.0990 31.8139 38.1393 

 HSDT2 15.0126 23.2047 27.0990 31.8139 38.1402 

 HSDT3 15.0141 23.2073 27.1017 31.8168 38.1429 

 HSDT4 15.0126 23.2047 27.0989 31.8138 38.1395 

 
 
 
 
 

 

Table 4.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

 Vo et al. 0.1352 0.0670 0.0925 0.0180 -0.0181 

 HSDT1 0.1352 0.0670 0.0925 0.0181 -0.0181 

 HSDT2 0.1352 0.0671 0.0926 0.0182 -0.0180 

 HSDT3 0.1363 0.0689 0.0946 0.0202 -0.0157 

 HSDT4 0.1351 0.0670 0.0924 0.0178 -0.0183 

20 Vo et al. 0.0337 -0.5880 -0.6269 -1.1698 -1.5572 

 HSDT1 0.0338 -0.5879 -0.6269 -1.1697 -1.5571 

 HSDT2 0.0338 -0.5879 -0.6268 -1.1686 -1.5543 

 HSDT3 0.0389 -0.5793 -0.6173 -1.1594 -1.5458 

 HSDT4 0.0338 -0.5879 -0.6269 -1.1697 -1.5571 
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Table 5.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

 Vo et al. 0.7233 0.7233 0.6622 0.5840 0.6396 

 HSDT1 0.7233 0.7233 0.6622 0.5840 0.6396 

 HSDT2 0.7232 0.7232 0.6622 0.5840 0.6396 

 HSDT3 0.7223 0.7223 0.6612 0.5829 0.6385 

 HSDT4 0.7223 0.7223 0.6612 0.5829 0.6385 

20 Vo et al. 0.7432 0.7432 0.6809 0.6010 0.6583 

 HSDT1 0.7433 0.7433 0.6809 0.6011 0.6584 

 HSDT2 0.7433 0.7433 0.6809 0.6011 0.6584 

 HSDT3 0.7423 0.7424 0.6799 0.6005 0.6522 

 HSDT4 0.7423 0.7423 0.6799 0.6005 0.6522 

 

 

 

Table 6.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 3.9374 6.5505 7.7721 8.8089 9.2426 

 HSDT1 3.9374 6.5505 7.7721 8.8089 9.2426 

 HSDT2 3.9374 6.5505 7.7721 8.8089 9.2426 

 HSDT3 3.9374 6.5505 7.7719 8.8081 9.2417 

 HSDT4 3.9373 6.5505 7.7719 8.8081 9.2417 

20 Vo et al. 3.6841 6.1383 7.2143 7.9435 8.1710 

 HSDT1 3.6841 6.1383 7.2143 7.9435 8.1709 

 HSDT2 3.6841 6.1383 7.2142 7.9435 8.1710 

 HSDT3 3.6841 6.1383 7.2142 7.9435 8.1709 

 HSDT4 3.6841 6.1383 7.2143 7.9435 8.1709 
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Table 7.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 4.4603 6.0069 6.5253 6.8927 7.2292 

 HSDT1 4.4604 6.0069 6.5254 6.8928 7.2293 

 HSDT2 4.4604 6.0070 6.5254 6.8928 7.2293 

 HSDT3 4.4607 6.0073 6.5256 6.8928 7.2292 

 HSDT4 4.4602 6.0067 6.5250 6.8922 7.2286 

20 Vo et al. 17.6318 23.7073 25.6848 26.9703 28.2298 

 HSDT1 17.6319 23.7074 25.6849 26.9705 28.2299 

 HSDT2 17.6319 23.7074 25.6849 26.9706 28.2301 

 HSDT3 17.6340 23.7100 25.6875 26.9730 28.2324 

 HSDT4 17.6319 23.7074 25.6848 26.9703 28.2298 

 

 

Table 8.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 0.0872 0.1043 0.1277 0.0619 -0.0001 

 HSDT1 0.0873 0.1044 0.1277 0.0620 -0.0001 

 HSDT2 0.0873 0.1044 0.1278 0.0621 0.0002 

 HSDT3 0.0888 0.1063 0.1296 0.0638 0.0017 

 HSDT4 0.0872 0.1043 0.1276 0.0617 -0.0004 

20 Vo et al. -0.2904 -0.4373 -0.4179 -0.8042 -1.1450 

 HSDT1 -0.2903 -0.4372 -0.4178 -0.8042 -1.1449 

 HSDT2 -0.2903 -0.4372 -0.4177 -0.8043 -1.1442 

 HSDT3 -0.2832 -0.4285 -0.4087 -0.7953 -1.1363 

 HSDT4 -0.2903 -0.4372 -0.4178 -0.8042 -1.1449 
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Table 9.  

a/h Theory 0=p  1=p  2=p  5=p  10=p  

5 Vo et al. 0.7486 0.7219 0.6365 0.5262 0.5733 

 HSDT1 0.7486 0.7219 0.6365 0.5262 0.5733 

 HSDT2 0.7486 0.7219 0.6365 0.5262 0.5733 

 HSDT3 0.7476 0.7209 0.6354 0.5249 0.5720 

 HSDT4 0.7476 0.7209 0.6354 0.5249 0.5720 

20 Vo et al. 0.7683 0.7418 0.6543 0.5414 0.5900 

 HSDT1 0.7684 0.7419 0.6544 0.5415 0.5900 

 HSDT2 0.7684 0.7419 0.6544 0.5415 0.5900 

 HSDT3 0.7674 0.7409 0.6533 0.5401 0.5861 

 HSDT4 0.7673 0.7409 0.6533 0.5401 0.5861 
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Table 10.  

p Theory 5=/ha  20=/ha  

  1-2-1 2-2-1 1-2-1 2-2-1 

0 Vo et al. 3.1397 3.1397 2.8947 2.8947 

 HSDT1 3.1397 3.1397 2.8947 2.8947 

 HSDT2 3.1397 3.1397 2.8947 2.8947 

 HSDT3 3.1397 3.1397 2.8947 2.8947 

 HSDT4 3.1397 3.1397 2.8947 2.8947 

1 Vo et al. 5.3612 5.7777 5.0975 5.5040 

 HSDT1 5.3611 5.7777 5.0975 5.5040 

 HSDT2 5.3611 5.7777 5.0975 5.5040 

 HSDT3 5.3611 5.7777 5.0975 5.5040 

 HSDT4 5.3611 5.7777 5.0975 5.5040 

2 Vo et al. 6.6913 7.4629 6.4235 7.1790 

 HSDT1 6.6913 7.4630 6.4235 7.1791 

 HSDT2 6.6913 7.4630 6.4235 7.1791 

 HSDT3 6.6913 7.4631 6.4235 7.1791 

 HSDT4 6.6913 7.4630 6.4235 7.1791 

5 Vo et al. 8.4276 9.6459 8.1589 9.3498 

 HSDT1 8.4276 9.6462 8.1589 9.3501 

 HSDT2 8.4276 9.6462 8.1589 9.3501 

 HSDT3 8.4277 9.6463 8.1589 9.3500 

 HSDT4 8.4276 9.6463 8.1589 9.3501 

10 Vo et al. 9.3099 10.6769 9.0413 10.3715 

 HSDT1 9.3099 10.6772 9.0413 10.3719 

 HSDT2 9.3099 10.6772 9.0413 10.3719 

 HSDT3 9.3100 10.6773 9.0413 10.3718 

 HSDT4 9.3099 10.6773 9.0413 10.3719 
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Table 11.  

p Theory 5=/ha  20=/ha  

  1-2-1 2-2-1 1-2-1 2-2-1 

0 Vo et al. 3.8005 3.8005 15.0125 15.0125 

 HSDT1 3.8005 3.8005 15.0126 15.0126 

 HSDT2 3.8006 3.8006 15.0126 15.0126 

 HSDT3 3.8007 3.8007 15.0141 15.0141 

 HSDT4 3.8004 3.8004 15.0126 15.0126 

1 Vo et al. 1.2315 1.2459 4.8797 4.9360 

 HSDT1 1.2315 1.2459 4.8797 4.9360 

 HSDT2 1.2315 1.2459 4.8797 4.9360 

 HSDT3 1.2316 1.2460 4.8803 4.9367 

 HSDT4 1.2314 1.2459 4.8797 4.9360 

2 Vo et al. 1.5505 1.5849 6.1526 6.2882 

 HSDT1 1.5505 1.5850 6.1526 6.2883 

 HSDT2 1.5505 1.5850 6.1526 6.2883 

 HSDT3 1.5506 1.5851 6.1535 6.2892 

 HSDT4 1.5504 1.5849 6.1526 6.2883 

5 Vo et al. 1.9672 2.0160 7.8185 8.0100 

 HSDT1 1.9672 2.0160 7.8186 8.0100 

 HSDT2 1.9672 2.0160 7.8186 8.0100 

 HSDT3 1.9674 2.0162 7.8197 8.0112 

 HSDT4 1.9672 2.0160 7.8186 8.0100 

10 Vo et al. 2.1788 2.2161 8.6655 8.8094 

 HSDT1 2.1788 2.2162 8.6656 8.8095 

 HSDT2 2.1788 2.2162 8.6656 8.8095 

 HSDT3 2.1791 2.2164 8.6669 8.8430 

 HSDT4 2.1788 2.2161 8.6656 8.8418 
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Table 12.  

p Theory 5=/ha  20=/ha  

  1-2-1 2-2-1 1-2-1 2-2-1 

0 Vo et al. 0.1352 0.1352 0.0337 0.0337 

 HSDT1 0.1352 0.1352 0.0338 0.0338 

 HSDT2 0.1352 0.1352 0.0338 0.0338 

 HSDT3 0.1363 0.1363 0.0389 0.0389 

 HSDT4 0.1351 0.1351 0.0338 0.0338 

1 Vo et al. 0.0447 0.0286 0.0111 -0.0625 

 HSDT1 0.0447 0.0286 0.0112 -0.0625 

 HSDT2 0.0447 0.0287 0.0112 -0.0625 

 HSDT3 0.0451 0.0291 0.0133 -0.0602 

 HSDT4 0.0447 0.0286 0.0112 -0.0625 

2 Vo et al. 0.0564 0.0341 0.0141 -0.0895 

 HSDT1 0.0564 0.0341 0.0141 -0.0895 

 HSDT2 0.0564 0.0342 0.0141 -0.0895 

 HSDT3 0.0570 0.0348 0.0170 -0.0864 

 HSDT4 0.0564 0.0341 0.0141 -0.0895 

5 Vo et al. 0.0712 0.0454 0.0178 -0.1010 

 HSDT1 0.0712 0.0455 0.0178 -0.1009 

 HSDT2 0.0712 0.0455 0.0178 -0.1009 

 HSDT3 0.0720 0.0463 0.0216 -0.0969 

 HSDT4 0.0712 0.0455 0.0178 -0.1009 

10 Vo et al. 0.0783 0.0518 0.0195 -0.0998 

 HSDT1 0.0783 0.0518 0.0196 -0.0997 

 HSDT2 0.0784 0.0518 0.0196 -0.0997 

 HSDT3 0.0792 0.0528 0.0238 -0.0737 

 HSDT4 0.0783 0.0518 0.0196 -0.0780 
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Table 13.  

p Theory 5=/ha  20=/ha  

  1-2-1 2-2-1 1-2-1 2-2-1 

0 Vo et al. 0.7233 0.7233 0.7432 0.7432 

 HSDT1 0.7233 0.7233 0.7433 0.7433 

 HSDT2 0.7233 0.7233 0.7433 0.7433 

 HSDT3 0.7223 0.7223 0.7423 0.7423 

 HSDT4 0.7223 0.7223 0.0338 0.7423 

1 Vo et al. 0.7993 0.8342 0.8193 0.7432 

 HSDT1 0.7993 0.8342 0.8194 0.8553 

 HSDT2 0.7993 0.8343 0.8194 0.8553 

 HSDT3 0.7983 0.8333 0.8185 0.8544 

 HSDT4 0.7983 0.8333 0.0112 0.8544 

2 Vo et al. 0.8349 0.8920 0.8556 0.9142 

 HSDT1 0.8349 0.8920 0.8557 0.9143 

 HSDT2 0.8349 0.8920 0.8557 0.9143 

 HSDT3 0.8340 0.8911 0.8549 0.9135 

 HSDT4 0.8340 0.8911 0.0141 0.9135 

5 Vo et al. 0.8763 0.9683 0.8986 0.9927 

 HSDT1 0.8763 0.9683 0.8987 0.9928 

 HSDT2 0.8763 0.9683 0.8987 0.9928 

 HSDT3 0.8754 0.9676 0.8975 0.9900 

 HSDT4 0.8754 0.9676 0.0178 0.9900 

10 Vo et al. 0.8980 1.0148 0.9214 1.0405 

 HSDT1 0.8980 1.0148 0.9214 1.0406 

 HSDT2 0.8980 1.0148 0.9214 1.0406 

 HSDT3 0.8972 1.0140 0.9227 1.0396 

 HSDT4 0.8972 1.0140 0.0196 1.0396 
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Figures 

Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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