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Abstract

How organisms are able to maintain robust homeostasis has in recent years received

increased attention by the use of combined control engineering and kinetic concepts, which

led to the discovery of robust controller motifs. While these motifs employ kinetic conditions

showing integral feedback and homeostasis for step-wise perturbations, the motifs’ perfor-

mance differ significantly when exposing them to time dependent perturbations. One type

of controller motifs which are able to handle exponentially and even hyperbolically growing

perturbations are based on derepression. In these controllers the compensatory reaction,

which neutralizes the perturbation, is derepressed, i.e. its reaction rate is increased by the

decrease of an inhibitor acting on the compensatory flux. While controllers in this category

can deal well with different time-dependent perturbations they have the disadvantage that

they break down once the concentration of the regulatory inhibitor becomes too low and the

compensatory flux has gained its maximum value. We wondered whether it would be possi-

ble to bypass this restriction, while still keeping the advantages of derepression kinetics. In

this paper we show how the inclusion of multisite inhibition and the presence of positive

feedback loops lead to an amplified controller which is still based on derepression kinetics

but without showing the breakdown due to low inhibitor concentrations. By searching for the

amplified feedback motif in natural systems, we found it as a part of the plant circadian clock

where it is highly interlocked with other feedback loops.

Introduction

The concept of homeostasis [1], defined by Cannon in 1929 [2], is fundamental to our under-

standing how organisms, including our body, work [3]. According to Cannon homeostasis

refers to the automatic, self-regulating processes that keep steady states within certain, but

narrow limits, despite internal or environmental perturbations [1–3]. Although (negative)

feedback is recognized as a central part in homeostatic regulation [1, 4, 5], it is not the only

dynamic component. The ‘homeostatic response’ may also include features such as anticipa-

tory mechanisms [6], feedforward loops [7], or positive feedbacks [3, 8, 9].
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In control engineering robust regulation of a variable A with set-point Aset can be achieved

by so-called integral control [10], which is able to (precisely) correct for step-wise perturba-

tions acting on a controlled variable A [10] (Fig 1).

While in engineering integral control began to be applied in the beginning of the twentieth

century with the power steering of ships [11], its usage in physiology/biology first appeared

once cybernetics [12–14] made the analogies between engineered and biological systems more

explicit. Physiological models during this first era showed the dynamical processes, loops, inte-

grated errors, etc. mostly in terms of flow diagrams, transfer functions, as engineered systems

are described [15, 16]. By the turn of the century, when the molecular biology behind physio-

logical processes became better understood researchers began to describe the control process

in terms of their reaction kinetics, such as in integral rein control [17] (focussing on that physi-

ological controllers come in antagonistic pairs; see also the later analogous notion of inflow/

outflow controllers [18]), in the integral feedback formulation of robust bacterial chemotaxis

[19, 20], or in the integral control approach of blood calcium homeostasis [21].

It became evident that certain kinetic conditions within a negative feedback loop, such as

zero-order kinetics [18–20, 22–24], autocatalysis [25–27], or second-order (bimolecular/anti-

thetic) kinetics [28, 29] can lead to robust adaptation [30, 31] by integral control where an

intrinsic integration of the error between set-point and the actual value of the controlled vari-

able is automatically performed. When these feedback motifs were investigated towards time-

dependent perturbations, it turned out that controller performances can differ significantly,

either due to the structure of the feedback loop or due to the kinetics of how the integral con-

troller is implemented [32, 33].

Feedback structures which have been found to perform well when exposed to different

time-dependent perturbations are based on derepression kinetics [32].

Fig 2 shows one of the motifs (motif 2) with derepression kinetics acting as an inflow con-

troller [18]. Reactions are color-coded and relate to the scheme in Fig 1. This motif, unlike

those not using derepression, is able to adapt perfectly to exponentially increasing perturba-

tions. Motif 2 can even balance hyperbolically increasing disturbances with doubling times

which decrease exponentially [32]. In Fig 2 k1 represents a (time-dependent or constant) per-

turbation and k2 is the maximum fully derepressed compensatory flux. E is subject to an

Fig 1. Scheme of a negative feedback with integral control regulating variable A. The difference between the set-point Aset and the actual value of A
(the error �) is integrated over time and fed back into the process which generates A. This procedure ensures that A will precisely reach Aset for step-

wise perturbations. Colors correspond to molecular reactions shown later.

https://doi.org/10.1371/journal.pone.0241654.g001
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enzymatic zero-order degradation described by the rate parameters k3 (Vmax) and KM, while k4

represents a zero-order synthesis rate with respect to E. KI is an inhibition constant.

The rate equations of the motif 2 controller are:

_A ¼
k2

1þ E
KI

� k1 � A ð1Þ

_E ¼ k4 � A �
k3 � E
KM þ E

ð2Þ

where k2/(1 + (E/KI)) describes the compensatory flux, which opposes the perturbing flux k1

A. For step-wise changes in k1 and for low KM values (KM� E), E/(KM + E)�1 and the steady

state value in A is described by the set-point (setting _E ¼ 0 and solving for Ass)

Ass ¼ Aset ¼
k3

k4

ð3Þ

which will also be defended against time-dependent (increasing) k1 values (see later).

Metaphorically speaking, the activation of the compensatory flux by derepression is some-

what like the static takeoff of an airliner, when the plane stands still at the beginning of the run-

way, but having engines in full thrust with the breaks on. When the brakes are released the

plane starts to accelerate and rapidly reaches takeoff speed.

The controller in Fig 2 reaches its maximum compensatory flux when E� KI; any further

increase in the perturbation k1 cannot be opposed and will lead to the controller’s breakdown.

This is illustrated in Fig 3 for different KI values with k1 increasing exponentially. The k1 value at

breakdown, kbd
1

, can be estimated by setting E = KI and solving for k1 from Eq 1 with _A ¼ 0, i.e.,

kbd
1
�

k2

2Aset
ð4Þ

Fig 2. Inflow controller based on derepression kinetics (motif 2, Ref. [18]). Red color: reactions determining the

set-point; orange: perturbation; blue: A-signaling; green: E-signaling.

https://doi.org/10.1371/journal.pone.0241654.g002
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The curves Ai and Ei in the right panel show the different A and E values when KI takes the

values 10.0 (A1), 1.0 (A2), 0.1 (A3), and 1 × 10−3 (A4). While the controller’s “lifetime” (the time

span until the controller breaks down) is practically not affected by the different KI values, the

controller’s “aggressiveness”, i.e. its ability to rapidly respond to perturbations and to keep A at

Aset, is improved with decreasing KI values.

Goal of this work

While motif 2 and related controllers based on derepression can keep the controlled variable A
at its set-point even for rapidly increasing time-dependent perturbations [32, 33] (Fig 3), they

suffer from breakdown once the controller variable E becomes close to or lower than KI. We

wondered whether it would be possible to circumvent this restriction to a controller where the

control species’ concentration increases with increasing perturbation strength, while still keep-

ing the controller properties based on derepression. Using the motif 2 controller as an exam-

ple, we show that implementation of a positive feedback loop based on autocatalysis combined

with multisite inhibition kinetics can avoid controller breakdown by low E values, but still

shows the properties of a controller based on derepression.

Materials and methods

Computations were carried out by using the Fortran subroutine LSODE [34]. Plots were gen-

erated with gnuplot (www.gnuplot.info) and slightly edited with Adobe Illustrator (adobe.

com). To make notations simpler, concentrations of compounds are denoted by compound

names without square brackets. Time derivatives are generally indicated by the ‘dot’ notation.

Concentrations and rate parameter values are given in arbitrary units (au). In the Supporting

Information a set of MATLAB (mathworks.com) scripts are provided for illustration in com-

parison with corresponding Fortran calculations (S1 Matlab).

Results and discussion

Effect of multisite inhibition on controller performance

In this section we investigate the effect of multisite inhibition. In mechanistic terms, we con-

sider an enzyme or transporter, which is responsible for the compensatory flux [33]. In

Fig 3. Behavior of the motif 2 zero-order controller (Fig 2) upon an exponential increase of k1 and the influence of KI. Left panel shows k1 as a

function of time. Phase 1: k1 = k1,p1 = 2.0 and constant. The controller is at steady-state at its set-point Aset = 5.0. Phase 2: k1 starts to increase

exponentially at time tp1 = 10.0 according to the inset Equation. Right panel shows the controller’s A and E values for different KI’s, where A1 is A when

KI = 10.0, A2 is A when KI = 1.0, A3 is A when KI = 0.1, and A4 is A when KI = 1 × 10−3. The other rate constants are: k2 (max compensatory rate) =

1 × 105, k3 = 5 × 103, k4 = 1 × 103, KM = 1 × 10−6. Initial concentrations: A1-A4 = 5.0, E1 = 1 × 105, E2 = 1 × 104, E3 = 1 × 103, and E4 = 10.0. Controller

starts to break down when k1 is reaching 1 × 104 indicated by the red arrows in the left panel.

https://doi.org/10.1371/journal.pone.0241654.g003
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multisite inhibition E can bind to the enzyme or transporter at multiple sites with different

binding constants KI. To make things more straightforward, we assume that one, two, or four

molecules of E can bind to the enzyme/transporter, but always with the same binding constant

KI. In this case, Eq 1 is replaced by (see for example Ref [35])

_A ¼
k2

1þ E
KI

� �n � k1 � A ð5Þ

where n is the number of inhibiting E molecules (n = 1, 2, or 4). Taking Fig 3 with KI = 0.1 as a

starting point, Fig 4 shows the results when n is changed from 1 to 2 and to 4.

From Fig 4 it is clearly seen that multisite inhibition improves the controller’s performance,

i.e., makes the controller more aggressive by showing a more rapid response and by keeping A
closer to the controller’s set-point. However, despite the better responsiveness of the controller

when using multisite inhibition, the “lifetime” of the controller is not improved, i.e., the break-

down occurs at the same time/kbd
1

value as in Fig 3.

Increasing controller lifetime by increasing the maximum compensatory

flux

Eq 4 indicates that increasing the maximum compensatory flux k2 will increase kbd
1

and thereby

increase the lifetime of the controller (upon increasing values of k1). To automate this we have

Fig 4. Behavior of the motif 2 zero-order controller (Fig 2) upon an exponential increase of k1 (left panel Fig 3 and the influence of multisite

inhibition (Eq 5)). Phase 1: the controller is at its set-point/steady state with constant k1 = 2.0. Phase 2: Response of the controller with the

different n values upon the exponential increase of k1. Rate constants are: KI = 0.1, k2(max compensatory rate) = 1 × 105, k3 = 5 × 103, k4 = 1 × 103,

KM = 1 × 10−6. Initial concentrations: A = 5.0 (for all n), E (n = 2) = 9.9, E (n = 4) = 0.9.

https://doi.org/10.1371/journal.pone.0241654.g004
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added a new variable C, shown in Fig 5, which is activated by derepression from E, but with

the effect to increase k2.

For the sake of simplicity the inhibition constant of the derepression of C by E is assumed

to be the same (KI) as for the E-induced derepression of the compensatory flux. The rate equa-

tions for this controller are

_A ¼
k2C

1þ E
KI

� �n � k1 � A ð6Þ

_C ¼
k5

1þ E
KI

� k6 � C ð7Þ

Note that the rate equation for E remains unaltered. We also keep the multisite inhibition of

the compensatory flux by E, but consider only a single E-binding site for the inhibition of the

zero-order generation (k5) of C. Fig 6 shows the lifetime of controllers with n = 4 and with

Fig 5. Increasing controller lifetime by an E-dependent increase of the maximum compensatory flux k2.

https://doi.org/10.1371/journal.pone.0241654.g005
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different k5 and k6 values when k1 increases exponentially as indicated in the left panel of Fig 3.

As a reference, the blue solid and dashed lines show respectively the A3 and E3 values from the

results of Fig 4 with n = 4, i.e., in the absence of C. For high k5/k6 ratios the lifetime of the con-

troller is clearly increased (see traces A1, E1 and A2, E2), while for a ratio of one (k5 = k6 = 0.1,

traces A4, E4) the lifetime of the controller is slightly reduced.

Opposing E decrease by positive feedback

While the inclusion of C increases the compensatory flux k2 C/(1 + (E/KI)
n) and leads to an

improvement in the controller’s lifetime, the controller still suffers from the general limitation

that once E is driven down to values approaching KI, i.e., the controller breaks down when

(setting E = KI)

kbd
1
�

k2C
2Aset

ð8Þ

(Fig 6). We found, that this trend can be circumvented by including a positive feedback in the

generation of C without loosing the dynamic properties of the motif 2 controller. The positive

feedback in C can be generated by first-order or second-order autocatalysis.

Fig 7 shows the scheme for both first-order and second-order autocatalysis.

In case of first-order autocatalysis Eq 7 is changed to

_C ¼
k5C

1þ E
KI

� k6 � C ð9Þ

while for the second-order case both the synthesis and degradation terms are second-order

with respect to C

_C ¼
k5C2

1þ E
KI

� k6 � C
2

ð10Þ

Fig 6. Activation of the compensatory flux for reaction scheme of Fig 5 and corresponding Eqs 6, 2 and 7 with n = 4. Left panel: Concentrations of

A and E as a function of time with different k5/k6 rate constants. Blue curves A3 and E3 correspond to the calculations without C (Fig 4 with n = 4). Right

panel: Concentrations of C with different k5/k6 rate constants as a function of time. Phase 1: the controller is at steady state at its set-point Aset = 5.0 at

constant k1 = 2.0. Phase 2: k1 increases exponentially according to the inset in the left panel of Fig 3. k5 and k6 values and initial concentrations for the

different Ai, Ei, Ci curves: i = 1, k5 = 10.0, k6 = 0.01, A0 = 5.0, E0 = 2.412, C0 = 39.81; i = 2, k5 = 1.0, k6 = 0.1, A0 = 5.0, E0 = 0.9, C0 = 1.0; i = 3, no C (Fig 4

with n = 4); i = 4, k5 = k6 = 0.1, A0 = 5.0, E0 = 0.531, C0 = 0.158. Other rate constant values: k2 = 1 × 105, k3 = 5 × 103, k4 = 1 × 103, KM = 1 × 10−6, KI =

0.1.

https://doi.org/10.1371/journal.pone.0241654.g006
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Note that for step-wise changes in k1 E becomes homeostatic controlled in addition to A,

because _C ¼ 0 in Eqs 9 or 10 implies that

Ess ¼
k5

k6

� 1

� �

KI ð11Þ

independent of the perturbation k1.

Comparing the influence of first-order and second-order autocatalysis in C on control-

ler performance. We have tested the influence of the first-order and second-order autocata-

lytic terms on the controller performance for n = 4. Considered were step-wise changes in k1,

together with linear, exponential, and hyperbolic increases of k1. For all these perturbation

types the controllers with both first-order and second-order autocatalysis show robust homeo-

stasis and defend their set-points Aset = k3/k4 successfully. It is interesting to note that E no lon-

ger decreases, but approaches a steady state during the time-dependent increase of k1! We

show here the results for exponentially and hyperbolically increasing k1 values. The controller’s

behavior for step-wise and linear changes are described in S1 Text.

Fig 7. Inclusion of autocatalysis in the generation of C.

https://doi.org/10.1371/journal.pone.0241654.g007
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First-order autocatalysis in C. The controller is described by Eqs 2, 6 and 9. The pertur-

bation k1 increases exponentially as described in the left panel of Fig 3.

Fig 8, left panel, shows that C follows the exponential increase in k1 closely, while the right

panel shows that E goes into a steady state with A kept at its set-point Aset = k3/k4 = 5.0. The

steady state value in E can be calculated from Eq 9 by noting that this equation can be written

as

1

C
�
dC
dt
¼

d ln C
dt
¼

k5

1þ E
KI

� k6 ð12Þ

Inserting into Eq 12 the value of d ln C/dt (which is equal to _k1=k1 ¼ 0:2 and using L’Hôpital’s

rule) together with the values of the other rate constants and solving for E, gives

Ess ¼
k5

d ln C
dt þ k6

� 1

� �

KI ¼ 0:7333 ð13Þ

in agreement with the numerical calculation.

One of the characteristic properties of the motif 2 derepression controller is its capability to

tackle rapidly increasing perturbations, like hyperbolic growth [32]. While exponential growth

in k1 has a constant doubling time the doubling time in hyperbolic growth decreases exponen-

tially and k1 will (formally) reach infinity at a certain time point. We wondered whether the

controller based on rate Eqs 2, 6 and 9 would still show this property.

In Eq 14 k1 increases hyperbolically according to

k1 ¼
40:5

40:5

k1;p1
� ðt � tp1Þ

ð14Þ

where k1,p1 is the constant value of k1 during phase 1 (k1 = 2.0 as in the previous calculations),

while tp1 is the duration of phase 1 (here 1 time unit). When time t reaches 21.25 (the infinity

limit) the value of k1 goes formally to infinity. Fig 9 shows the behavior of the controller close

to the infinity limit. In the calculation t and k1 reach 21.249997 and 1.4 × 107, respectively.

During the last 0.25 time units k1 increases by approximately 5-orders of magnitude. Despite

Fig 8. Controller performance with first-order autocatalysis in C (Eq 9) and exponential increase of k1. Phase 1: the controller is at steady state at its

set-point Aset = 5.0 with constant k1 = 2.0. Initial concentrations: A0 = 5.0, E0 = 0.9, C0 = 1.0. Phase 2: k1 increases exponentially (left panel of Fig 3), k2 =

1 × 105, k3 = 5 × 102, k4 = 1 × 102, k5 = 10.0, and k6 = 1.0. KM = 1 × 10−6, KI = 0.1, n = 4 (Eq 6). Left panel: k1 and C as a function of time; right panel: A
and E as a function of time.

https://doi.org/10.1371/journal.pone.0241654.g008
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this rapid increase in k1 the controller is able to maintain homeostasis, but finally breaks down

before the infinity limit is reached.

It is interesting to note that in case of hyperbolic growth the first-order autocatalytic growth

in C (left panel, Fig 9) is not able to maintain a constant E, i.e., E decreases, but A is still kept at

its set-point (right panel, Fig 9).

Second-order autocatalysis in C. We asked the question, how would the controller

respond when the autocatalytic generation of C becomes second-order (Eq 10), with other

words, when the generation of C is itself due to hyperbolic growth (S2 Text)?

Fig 10 shows the results when C is subject to second-order autocatalysis and k1 increases

exponentially. Although there is no apparent change in A in comparison with Fig 8 now E itself

is under homeostatic control, besides A. E’s set-point can be calculated by setting Eq 10 to

zero, which leads to

Eset ¼ KI
k5

k6

� 1

� �

ð15Þ

Fig 9. Controller performance with first-order autocatalysis in C (Eq 9) and hyperbolic increase of k1. Phase 1 (not shown): the controller is at

steady state at its set-point Aset = 5.0 with constant k1 = 2.0. Phase 1 lasts 1 time unit. Initial concentrations: A0 = 5.0, E0 = 0.9, C0 = 1.0. Phase 2: k1

increases in a hyperbolic fashion (Eq 14), k2 = 1 × 105, k3 = 5 × 105, k4 = 1 × 105, k5 = 10.0, and k6 = 1.0. KM = 1 × 10−6, KI = 0.1, n = 4 (Eq 6). Left panel:

k1 and C as a function of time just before k1 reaches the infinity limit; right panel: corresponding A and E concentrations as a function of time.

https://doi.org/10.1371/journal.pone.0241654.g009

Fig 10. Controller performance with second-order autocatalysis in C (Eq 10) and exponential increase of k1. Phase 1: the controller is at steady state

at its set-point Aset = 5.0 with constant k1 = 2.0. Initial concentrations: A0 = 5.0, E0 = 0.9, C0 = 1.0. Phase 2: k1 increases exponentially (left panel of Fig

3), k2 = 1 × 105, k3 = 5 × 102, k4 = 1 × 102, k5 = 10.0, and k6 = 1.0. KM = 1 × 10−6, KI = 0.1, n = 4 (Eq 6). Left panel: k1 and C as a function of time; right

panel: corresponding A and E concentrations as a function of time.

https://doi.org/10.1371/journal.pone.0241654.g010
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Inserting the rate constant values from Fig 10 into Eq 15 gives a value for Eset of 0.9 in agree-

ment with the numerical values for Ess.
Fig 11 shows the controller’s behavior when k1 increases hyperbolically with the same sec-

ond-order autocatalysis as in Fig 10. However, while the controller is still able to keep A at its

theoretical set-point, the value of Ess shows now an offset below Eset (Eq 15).

In the case when k1 increases hyperbolically, we wondered how well motif 2 would perform

without the help of C in comparison with controllers that have first- or second-order autoca-

talysis in C?

An answer to this question is given in Fig 12, which shows the performance of a single

motif 2 controller without C in comparison with controllers having first- and second-order

autocatalysis in C. Since the motif 2 controller without C is subject to the limitation described

by Eq 4, this controller breaks down earlier in comparison with those controllers having auto-

catalysis in C. The second-order autocatalytic controller performs best and keeps A longest at

its set-point before breakdown occurs near the infinity limit.

Fig 11. Controller performance with second-order autocatalysis in C (Eq 10) and hyperbolic increase of k1 (Eq 14). Phase 1 (not shown): the

controller is at steady state at its set-point Aset = 5.0 with constant k1 = 2.0. Phase 1 lasts 1 time unit. Initial concentrations: A0 = 5.0, E0 = 0.9, C0 = 1.0.

Phase 2: k1 increases hyperbolically. Rate constant values: k2 = 1 × 105, k3 = 5 × 102, k4 = 1 × 102, k5 = 10.0, and k6 = 1.0. KM = 1 × 10−6, KI = 0.1, n = 4

(Eq 6). Left panel: k1 and C as a function of time just before k1 reaches the infinity limit (blue dashed line). At time 21.249997 k1 = 1.4 × 107,

C = 5.4 × 106. Right panel: A and E concentrations as a function of time.

https://doi.org/10.1371/journal.pone.0241654.g011

Fig 12. Behavior of motif 2 controller (Fig 2) in comparison with a controller including first-order and second-order autocatalysis in C (Fig 7).

Rate constants for all three controllers: k2 = 1 × 105, k3 = 5 × 105, k4 = 1 × 105, KM = 1 × 10−6, KI = 0.1, n = 4. Additional rate constants for the

autocatalytic controllers: k5 = 10.0, and k6 = 1.0. Initial concentrations: A0 = 5.0, E0 = 0.9, C0 = 1.0 (when autocatalysis in C is included).

https://doi.org/10.1371/journal.pone.0241654.g012
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Oscillatory homeostats

This section is inspired by the fact that in physiology many cellular compounds or tissues

show oscillatory behaviors [36–40], but are also under a homeostatic regulation. For example,

circadian oscillations regulate hormones, blood glucose, and adapt organisms to the light/dark

and seasonal changes on earth [41–46]. Another interesting example is the homeostatic stabili-

zation of complex neural oscillations [47].

The motif 2 controller (Fig 2) becomes oscillatory when degradations with respect to A and

E become zero-order. The resulting oscillator can maintain robust homeostasis [48] of<A>,

where

< A >¼
1

t

Z t

0

AðtÞ dt ! Aset ð16Þ

and integration is taken over a certain time interval τ.

This oscillator is identical to Goodwin’s 1963 oscillator [49–51], although Goodwin was

probably not aware of the oscillator’s homeostatic property. The promotion of oscillations by

zero-order kinetics have also been recognized by Kurosawa and Iwasa [52] in an alternative

version of Goodwin’s equations [53].

In case of motif 2, the oscillatory reaction scheme is shown in Fig 13 with the altered rate

equation in A:

_A ¼
k2

1þ E
KI

� �n �
k1 � A
KM þ A ð17Þ

When KM� A and n = 1, Eqs 2 and 17 can be combined into a quasi-harmonic form [48]

€A
k2k4KI
ðKIþEÞ

2

þ A ¼ Aset ¼
k3

k4

ð18Þ

Fig 13. Motif 2 becomes an oscillatory homeostat whenKM� E (condition for integral control) and, in addition,

KM� A. The resulting oscillator is identical to Goodwin’s equations/oscillator from 1963 [49].

https://doi.org/10.1371/journal.pone.0241654.g013
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When the values of k1 and k2 are close to each other, the resulting oscillations are practically

harmonic (sinusoidal) and the period P of the oscillator can be estimated as

Pharm ¼
2p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2k4KI
ðKIþ<E>Þ2

q
ð19Þ

with

< E >¼
1

t

Z t

0

EðtÞ dt ð20Þ

Table 1 shows three examples of numerically calculated periods Pnum in comparison with

the corresponding harmonic periods Pharm. It may be noted that when k1 and k2 become sig-

nificantly different, the resulting oscillations become highly nonlinear and Pharm can only qual-

itatively indicate the period’s dependence on rate constants and <E>.

Fig 14 shows, as a reference, the behavior of the oscillatory m2 controller (Fig 13) when k1

increases exponentially. The value of<A> is at the controller’s set-point (5.0) and kept there,

until, as in the non-oscillatory case (Fig 3), the controller breaks down when E values become

too low.

In the case when C is included to improve controller performance (Fig 15), the resulting

controller shows an increased lifetime. This is shown in Fig 16.

The presence of C had no significant effect on the period (Fig 16, right panel) which

decreased practically in the same manner as in Fig 14 when C is absent. Despite the controller’s

increased lifetime in the presence of C, the controller will also in this case, due to the decrease

in E, eventually break down as in the nonoscillatory case (Fig 6).

Table 1. Harmonic and numerical periods.

k1 k2 Pharm Pnum
9 × 10−3 1 × 10−2 22.0 22.1

9 × 10−2 0.1 7.01 6.99

0.9 1.0 2.21 2.22

KI = 0.1, KM = 1 × 10−8, k2 = k4 = 1.0, A0 = 0.96, E0 = 3.3 × 10−3.

https://doi.org/10.1371/journal.pone.0241654.t001

Fig 14. Response of oscillatory motif 2 (Fig 13) when k1 increases exponentially in phase 2 by the growth law described in the left panel of Fig 3.

Phase 1: k1 is at 2.0; phase 2: At time t = 80 k1 starts to increase exponentially. At the end of phase 2 k1 is 1.8 × 106. Left panel: values of A,<A>, and E as

a function of time. Right panel: Calculated period as a function of time. Rate constants: k2 = 1.0 × 105, k3 = 5.0, k4 = 1.0, KI = 1.0, KM = 1.0 × 10−6, n = 4.

Initial concentrations: A0 = 1.56, E0 = 20.55. The rate equations are given by Eqs 2 and 17.

https://doi.org/10.1371/journal.pone.0241654.g014
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Fig 15. Inclusion of C in the oscillatory m2 controller.

https://doi.org/10.1371/journal.pone.0241654.g015

Fig 16. Response of oscillatory motif 2 containing C (Fig 15) when k1 increases exponentially in phase 2 by the growth law described in the left

panel of Fig 3. Rate equations for A, E, and C are given by Eqs 17, 2 and 7, respectively. Phase 1: k1 is kept constant at 2.0; phase 2: At time t = 80 k1

starts to increase exponentially. At the end of phase 2 k1 is 1.8 × 106. Controller breakdown occurs just after 160 time units (data not shown). Left panel:

values of A,<A>, and E as a function of time. Right panel: Calculated period as a function of time. Rate constants: k2 = 1.0 × 105, k3 = 5.0, k4 = 1.0, k5 =

50.0, k6 = 1.0, KI = 1.0, KM = 1.0 × 10−6, n = 4. Initial concentrations: A0 = 1.56, E0 = 20.55, C0 = 1.0.

https://doi.org/10.1371/journal.pone.0241654.g016
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When C is generated by first-order autocatalysis (described by Eq 9) the controller is able to

defend Aset for an extended time period (Fig 17a–17c) and keeps <E> constant (Fig 17d).

After an induction period, the controller is able to follow the exponentially increasing k1 by C
(Fig 17e) and thereby becoming capable to defend Aset. Fig 17f shows the exponential decrease

of the calculated period. Since in phase 2<E> is now kept at a constant level the controller

will remain operative as long as C can be increased and the activation of A by C is maintained.

Fig 17. Response of oscillatory m2 controller with first-order autocatalytic generation of C and exponential increase of k1. Phase 1 (0-80 time

units): k1 = 2.0. Phase 2 (80-180 time units): k1 increases exponentially as shown in the left panel of Fig 3. Rate equations are given by Eqs 17, 2 and 9. (a)

A (in purple) and overall<A> (in green) as a function of time. The white outlined<A> is the<A> value calculated from 120 (white vertical line) to

180 time units showing that<A>= Aset = 5.0. (b) A,<A>, and E for the time interval 179.0-180.0. (c) A,<A>, and E for the time interval 179.9-180.0.

(d) E as a function of time. (e) k1 and C as a function of time. (f) The period as a function of time. Rate constants: k2 = 1 × 105, k3 = 5.0, k4 = 1.0, k5 = 5.0

(phase 1), k5 = 50.0 (phase 2), k6 = 0.1 (phase 1), k6 = 1.0 (phase 2), KI = 1.0, KM = 1 × 10−6. Initial concentrations: A0 = 2.684, E0 = 61.55, C0 = 86.21,

n = 4.

https://doi.org/10.1371/journal.pone.0241654.g017
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When C is generated by second-order autocatalysis (Eq 10) the resulting controller is, as for

first-order autocatalysis, able to defend Aset. Fig 18 shows the case when k1 increases exponen-

tially. We found that an increase of k2 by one order of magnitude during phase 2 was beneficial

for the controller’s homeostatic behavior. To avoid overcompensation, k5 was decreased by

one order of magnitude during phase 2. Fig 18a shows the time profiles of A and<A>. Once

Fig 18. Response of oscillatory m2 controller with second-order autocatalytic generation of C and exponential increase of k1. Phase 1 (0-40 time

units): k1 = 2.0. Phase 2 (40-160 time units): k1 increases exponentially as shown in the left panel of Fig 3. Rate equations are given by Eqs 17, 2 and 10.

Downward arrows indicate the starting point when the controller is able to compensate for the increasing k1 values. (a) A (in purple) and overall<A>
(in green) as a function of time. The white outlined<A> is the<A> value calculated from 140 (white vertical line) to 160 time units showing that

<A>= Aset = 5.0. (b) E as a function of time. (c) k1 and C as a function of time. (d) The period as a function of time. (e) High frequency oscillations near

the end of phase 2.<A> is calculated for the time interval from 159.500 to 159.501 showing that<A> (4.9989) is close to Aset = 5.0. Rate constants: k2 =

1 × 105 (phase 1), k2 = 1 × 106 (phase 2), k3 = 5.0, k4 = 1.0, k5 = 5 × 10−2 (phase 1), k5 = 1 × 10−3 (phase 2), k6 = 1 × 10−3, KI = 1.0, KM = 1 × 10−6. Initial

concentrations: A0 = 9.6, E0 = 55.4, C0 = 101.0, n = 4.

https://doi.org/10.1371/journal.pone.0241654.g018
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the controller is able to follow the increasing k1 values (indicated by the downward arrows in

the different panels) <A> is at Aset, as indicated in panel a by the white outlined <A>.

In Fig 18b E is shown as a function of time going into a steady state once control over the

increasing k1 values have been taken. The takeover of control is most clearly seen in Fig 18c

when after the induction period C is able to follow the increasing k1. Fig 18d shows that the

period is decreasing exponentially in line with the exponential increase of k1. Fig 18e shows the

high frequency oscillations in A near the end of phase 2 having a period of approximately 10−4

time units. Calculating the A-average over the 10−3 time units shows that<A> is at Aset = 5.0.

Finally we have tested a controller with second-order autocatalytic generation of C when k1

increases hyperbolically according to Eq 14. We found that a reduction of the unperturbed

period in phase 1 to approximately 2 time units gave a good illustration of an operational con-

troller under these conditions. The reduced period was achieved by increasing k4 to 50.0. This

led to a decrease in Aset (= k3/k4) to 0.1. Fig 19a shows a semilogarithmic plot of A and<A> as

a function of time. At time t = 50.0 k1 starts to grow (Eq 14) with kp,1 = 2.0. The infinity limit is

reached at 70.25 time units. Also here we observe an induction period in which the controller

adapts to the increasing k1. At about 60 time units the controller is able to oppose the increas-

ing k1 values. At the same time <E> goes into a steady state (Fig 19b) and C is able to follow k1

(Fig 19c). The period decreases in a corresponding manner as k1 increases (Fig 19d), and the

controller is able to defend Aset. Fig 19e shows that <A> = 0.0997 when <A> is determined

between 60 time units and close to the infinity limit.

Period homeostasis with respect to step-wise perturbations in k1

Since in some oscillatory physiologies, like circadian rhythms, period homeostasis is observed

with respect to certain step-wise environmental perturbations, for example in temperature or

pH [54, 55], we wondered whether it would be possible to include an additional variable to

one of the above oscillatory controllers which would give homeostasis not only in <A> but

also in the oscillator’s period. We have previously shown [48] how the basic oscillatory m2

motif (Fig 13) can show period homeostasis by the addition of controller variables that keep E
and the chemical fluxes through E at a constant level. Here we show that we can do the same

by taking, as an example, the controller described in Fig 15 (including autocatalytic formation

of C).

Fig 20 shows the controller’s reaction scheme with the additional variable I1, which keeps

<C> and thereby <E> under homeostatic control. The rate equations are:

_A ¼
k2C

1þ E
KI

� �n �
k1 � A
KM þ A

þ k9 � I1 ð21Þ

_E ¼ k4 � A �
k3 � E
KM þ E

ð22Þ

_C ¼
k5C

1þ E
KI

� k6 � C ð23Þ

_I1 ¼ k7 � C �
k8 � I1

KM þ I1

ð24Þ
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I1 acts as an additional inflow controller with the property to keep <C> at a constant level.

The two compensatory fluxes

j2 ¼
k2C

1þ E
KI

� �n ð25Þ

Fig 19. Response of oscillatory m2 controller with second-order autocatalytic generation of C and hyperbolic increase of k1. Rate equations are

given, as in Fig 18, by Eqs 17, 2 and 10. Phase 1 (0-50 time units): k1 = 2.0. Phase 2 (50-70.24999992 time units) k1 increases hyperbolically (Eq 14) from

2.0 to 5.8673 × 108. Aset = 0.1. (a) A and average<A> as a function of time. Aset = 0.1. (b) Concentration of E as a function of time. (c) k1 and C time

profiles. (d) The period as a function of time. (e) Concentration of A and calculated<A> (= 0.0997) during phase 2 (time interval 60.0-70.24999992)

when oscillations are present. Rate constants: k2 = 1 × 105 (phase 1), k2 = 1 × 106 (phase 2), k3 = 5.0, k4 = 50.0, k5 = 5 × 10−2 (phase 1), k5 = 1 × 103 (phase

2), k6 = 1 × 10−3 (phase 1), k6 = 1.57 × 102 (phase 2), KI = 1.0, KM = 1 × 10−6. Initial concentrations: A0 = 2.736 × 10−4, E0 = 4.793 × 101, C0 = 1.489 × 102,

n = 4.

https://doi.org/10.1371/journal.pone.0241654.g019
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and

j9 ¼ k9 � I1 ð26Þ

act together such that <A>, <E>, and<C> are under homeostatic control, which leads to

regulated fluxes through A, E, and C such that the period of the oscillator becomes constant.

Fig 21 illustrates the period homeostasis for step-wise changes of k1 from 2.0 to 10.0. The

period length during phase 1 (k1 = 2.0) is approximately 18 time units. Directly after the step

Fig 20. Reaction scheme of oscillatory m2 controller with autocatalytic generation of C and period homeostasis

with respect to step-wise perturbations in k1.

https://doi.org/10.1371/journal.pone.0241654.g020
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Fig 21. Example of period homeostasis of the controller in Fig 20 when k1 changes from 2.0 (phase 1) to 10 at time t = 500. Panel

a shows oscillatory A and the calculated average<A> as a function of time. (b) Concentration of E as a function of time (in blue) and

<E> (orange lines). For phase 1<E> was calculated for the entire phase, i.e., for the time interval 0-500, while in phase 2<E> was

calculated for the time interval 2000-2500. (c) Step-wise change of k1 from 2 to 10 (left ordinate, outlined in black). Right ordinate:

concentration of C as a function of time. Orange lines: calculated average<C> for the time intervals given in panel b. (d) Time plot

(in purple) and average value (in green) of respectively KI/(KI + E) and<KI/(KI + E)>. The average values are calculated for the time

intervals as stated for panel b. For visibility, ordinate values, which have maximum values of 1 are cut off at 0.02. (e) Calculated period

length as a function of time showing that I1 manages to keep period homeostatically controlled. (f) I1 as a function of time. Rate
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in k1 the period drops to approximately 4 time units but then increases to its original value due

to the increase in I1 (panels a, e, and f). The set-point of<C> can be calculated from Eq 24 by

setting _< I1 > ¼ 0, which leads to

< _I1 >¼< k7 � C > �
k8 � I1

KM þ I1

� �

¼ 0 ) < C >¼
k8

k7

ð27Þ

by assuming that <I1/(KM + I1)> = 1, i.e, KM� I1.

Fig 21c shows that the calculated <C> value (= 0.001) is in perfect agreement with Eq 27.

Applying < _C=C >¼ 0 in Eq 23 leads to the condition

KI

KI þ E

� �

¼
k6

k5

¼ 0:01 ð28Þ

which is obeyed, as seen in Fig 21d. However, despite the fact that Eq 28 is fulfilled, we were

not able to extract an analytical value for <E>. To get <E> (Fig 21b) we used the numerical

solution of the rate equations.

An interesting aspect is whether period homeostasis can also be obtained when the pertur-

bation becomes time-dependent. We will deal with this situation more generally in another

paper.

Controller breakdown due to saturation

We have shown that the breakdown of the simple derepression m2 controllers (Figs 2 and 13)

can be delayed or even circumvented by including a component C which is activated by dere-

pression from E, but itself activates the generation of E via A (Fig 5). However, there is the

question how saturation may affect the performance of the controllers. For example, although

the controllers containing a first-order autocatalysis in C are apparently able to follow expo-

nentially increasing k1 values (Figs 9 and 17) they eventually will break down since neither the

perturbation k1 nor the increase in C can continue ad infinitum.

In this respect, the models presented here need to be considered as idealizations. For exam-

ple, concerning the growth of k1 and C, k1 and C will eventually approach saturation levels. In

the case of k1, the removal of A may be due to an enzyme or a transporter, which eventually

will go into saturation. Likewise, C will be generated by corresponding enzymatic processes

and will be subject to saturation (see for example Ref [18] (Supporting Material) and Ref [56]).

A brief overview over these breakdown scenarios are now given. When k1, i.e. the removal

of A, goes into saturation before the production of C and before the C-signaling to the com-

pensatory flux, the controller will be able to keep homeostasis of A at its set-point, at a high but

constant level of k1. When C-signaling goes into saturation before k1 and C become saturated,

then the controller will break down due to an unbalanced exponential increase of C. Finally,

when C production becomes saturated, but the removal of A by k1 and C-signaling are still

operative, then breakdown of the controller occurs, because the kinetics of the C production

are not able to oppose the rapid decrease of A and A levels will go to zero.

Example: The TOC1/PRR5-RVE8 negative feedback loop

A question natural to ask, is whether the above “A-E-C” regulatory circuits can be found in

physiology. Would the properties be the same as in the isolated case, i.e., as studied here? Since

constants: k2 = 1 × 105, k3 = 500, k4 = k5 = 100, k6 = 1.0, k7 = 100, k8 = 0.1, k9 = 8 × 10−2, KI = 1.0, KM = 1 × 10−6. Initial concentrations:

A0 = 2.683, E0 = 4.463 × 103, C0 = 4.108 × 10−6, I1,0 = 2.705, n = 1.

https://doi.org/10.1371/journal.pone.0241654.g021
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circadian rhythms are based on transcriptional-translational negative feedback loops, the

Goodwin oscillator and the m2-scheme has served as a basic model to describe circadian oscil-

lations [49–51, 57, 58]. We have taken the plant circadian clock organization and looked for

the A-E-C motif (Fig 5) there. In plants the circadian organization is complex [59, 60] and con-

sists of several interlocked negative feedback loops where each of them can approximately be

described by a basic m2-scheme (Fig 13). Plants have a morning oscillator based on the genes

LHY (Late Elongated Hypocotyl) and CCA1 (Circadian Clock Associated 1) and an evening

complex (EC) which also contains an autoregulatory negative feedback loop. In addition, there

appear to be transcriptional-translational negative feedbacks in the organization of pseudo-

response regulators (PRR’s). The PRR gene family consists of five paralogue genes (PRR1, 3, 5,

7, and PRR9). PRR1 (also known as Timing of CAB expression 1 (TOC1)) is presently one of the

best characterized gene in the PRR family. They are implicated in clock function and act as

period controlling factors [61]. TOC1 and PRR5 are interlocked with the morning oscillator

components LHY and CCA1 and the evening complex. It is in the TOC1/PRR5 feedback struc-

ture including the RVE8 (REVEILLE8) gene we find the A-E-C motif.

Fig 22 shows part of the plant circadian network including TOC1/PRR5 and RVE8. The

TOC1 and RVE8 genes, when mutated, affect the period of the plant circadian clock. In addi-

tion, RVE8 has also an influence on the circadian period with respect to temperature (tempera-

ture compensation) [62]. RVE8 interacts with LHY, CCA1, and the EC, which in their turn

also have an influence on the plant circadian rhythm. The TOC1/PRR5-mRNA’s are part of a

Fig 22. Part of the plant circadian clock involving the TOC1 m2-type feedback loop. The A-E-C motif (Fig 5) is

outlined in red.

https://doi.org/10.1371/journal.pone.0241654.g022
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negative feedback loop where the proteins TOC1 and PRR5 feed negatively back on their tran-

scription. RVE8 is a MYB-like transcription factor and activates the transcription of TOC1/

PRR5, but needs NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1 and 2 (LNK1

and LNK2) [63, 64] to do that. TOC1/PRR5 on their side inhibit the production of RVE8 pos-

sibly by transcriptional repression [65]. Our results with the A-E-C motif suggests, in agree-

ment with experimental implications [62], that RVE8 may take part in the homeostasis of the

TOC1/PRR5 negative feedback loop, to stabilize homeostatic properties of the plant circadian

clock, including the period. For example, overexpression of RVE8 leads to a shorter circadian

period. In analogy, increase of k5 in Fig 5 leads also to a shorter period. However, the TOC1/

PRR5 circuits are highly interlocked with other clock components. Thus, other roles of the

TOC1/PRR5-RVE8 loop may emerge when detailed models of the plant circadian clock are

considered.

While we started to find an improvement of the m2-regulatory loop, we arrived at the

A-E-C motif. We feel that this or similar feedback structures may be found in other physiologi-

cal regulations, but more investigations are needed in this respect.
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