

TEXAS AGRICULTURAL EXPERIMENT STATIO

R. D. LEWIS, DIRECTOR, COLLEGE STATION, TEXAS.

SUMMARY

This bulletin contains the results of studies involving protein quality, lysine availability, amino acid content and gossypol tolerance as they relate to the use of cottonseed meal in swine rations. These studies also include the pathology of gossypol poisoning in pigs and the results of feeding trials with cottonseed meal made by different manufacturing processes.

Newer methods now available for processing and evaluating the protein quality and gossypol content have provided a way for making a cottonseed meal that can be used safely in complete feed mixtures or in protein supplements for swine.

When the complete ration for hogs contains not more than 0.01 percent of free gossypol, the pigs fed such rations will make good gains. No pigs have died nor have any pigs showed the slightest symptoms of cottonseed meal injury in these experiments when the ration contained 0.01 percent or less of free gossypol. This means that cottonseed meals containing 0.04 percent or less of free gossypol are safe for swine feeding. The rations fed contained liberal amounts of good quality protein.

The rations fed were improved by adding aureomycin and vitamin B_{12} .

Studies reported in this bulletin lead to the conclusions that swine producers can include cottonseed meal in rations fed to pigs with good results. Methods of formulating such rations also are included.

CONTENTS

Summary
Introduction 3
Early Observations
Factors Involved Free Gossypol Tolerance Protein Quality and Lysine Availability Fiber
Pathology of Gossypol Poisoning
Trials with Different Meals 9 Growth—Trial 1 9 Feed per 100 Pounds Gain—Trial 1 9 Growth—Trial 2 10 Feed per 100 Pounds Gain—Trial 2 10
Aureomycin plus Vitamin B ₁₂ with Meals
Cottonseed and Soybean Meals as Protein Supplements
Recommendations 12 Mixed Rations 12 Free-choice Feedings 13
Acknowledgments
Literature Cited 14

Use of Cottonseed Meal in Swine Rations

Fred Hale, Carl M. Lyman and Hilton A. Smith*

COTTONSEED MEAL, when used properly, is an excellent source of protein for use in swine rations. If the swine produced in the 13 Southern States alone were fed adequately balanced rations, they would require an amount of cottonseed meal equal to the production of about 2 million acres of cotton, figuring the average yield at two-thirds of a bale per acre.

Many tests on the use of cottonseed meal in swine rations have given poor results. These results were due largely to the quality of the meal or the way in which it was used. During recent years, information has been developed at the Texas Agricultural Experiment Station on the specifications of superior quality cottonseed meal and the factors which must be considered in its production, Lyman, Chang, and Couch (1953), Chang *et al.* (1955), Baliga and Lyman (1957) and Lyman and Baliga (1958). The program has been directed by Carl M. Lyman.

The protein supplement part of the wellbalanced swine rations is the principal feedstuff that the hog farmer has to buy, and since cottonseed meal is rich in protein, and since it is a feed that is available in a wide area at all times, it is important that we should know more about its use in hog rations.

EARLY OBSERVATIONS

Cottonseed meal can now be used in swine rations with excellent results. This statement was not true a few decades ago. In fact, early results from the feeding of cottonseed meal to hogs indicated that one might never be able to feed cottonseed meal in practical hog rations.

For example, Curtis and Carson (1892), at the Texas Agricultural Experiment Station, noted that pigs died in 6 to 8 weeks from the time of first feeding of cottonseed meal.

At the Kansas Station, Georgeson and Burtis (1895) found that when the ration contained 25 percent cottonseed meal, the pigs died in 3 to 8 weeks after they were started on the test ration.

Curtis (1895) at the Iowa Station found the meal toxic to pigs when the pigs had eaten 27 to 33 pounds per pigs Dinwiddie (1903) at the Arkansas Station found that pigs receiving 0.6 to 0.8 pound daily of cottonseed meal died in 34 to 64 days after the test started.

Hale (1930) at the Texas Station found that rations containing a maximum of 9 percent cottonseed meal could be fed to fattening hogs as well as to breeding animals without producing undesirable effects. This report showing the condition under which cottonseed meal could be used safely and profitably was soon verified by other investigators and the way was open for the limited use of cottonseed meal in swine rations. Robinson (1934) found that cottonseed meal which was toxic at levels of 18 to 20 percent of the ration was not toxic when fed at a level of 10.5 percent of rations containing some tankage.

In these years, cottonseed meal meant hydraulic cottonseed meal since this was the major processing method at the time. Today there are a few straight solvent cottonseed meals with free gossypol content too high for the products to be used safely in swine rations at the 9 percent level. Such meals are excellent for cattle and sheep and should be fed only to ruminating animals.

At the Texas Station, Lyman, Holland and Hale (1944) studied the processing variables in the hydraulic method of cottonseed oil extraction and found that by the control of the variables, time, temperature and moisture content, meal of very low gossypol content could be produced in commercial mills. Several tons of meal containing 0.024 percent free gossypol were manufactured and fed to hogs at levels as high as 25 percent of the ration. No symptoms of gossypol toxicity were observed, but protein quality in this meal was not high and consequently the growth rate of the pigs was poor.

Cottonseed processing studies required better analytical methods. The first colorimetric method for the determination of free gossypol was developed by Lyman, Holland and Hale (1943). This development provided a new, accurate and fast method for the determination of free gossypol in cottonseed meal and hastened the way for producing a high quality cottonseed meal for swine and poultry.

The microbiological method for the determination of amino acids in natural feeds was developed at the Texas Station by Kuiken, Lyman and other co-workers (1943). This method has

^{*}Respectively, professor, Department of Animal Husbandry; head, Department of Biochemistry and Nutrition; and head, Department of Veterinary Pathology.

been used extensively in protein quality evaluation studies.

Harris (1947), with the use of isopropyl alcohol as the solvent, produced a solvent-extracted cottonseed meal at the Texas Station which gave good results when fed to pigs.

More recent studies on the use of cottonseed meal in swine rations are reported in this bulletin.

FACTORS INVOLVED

Cottonseed meals manufactured under different processing conditions differ over a wide range with respect to their nutritional value as protein supplements for hogs. Because of this fact, feeding trials in which cottonseed meal is compared with other protein supplements are worthless unless information also is made available concerning the processing conditions or the chemical characteristics of the meals. Essentially the characteristics of a superior quality cottonseed meal for use in swine rations are: (1) it must be low in free-gossypol, 0.04 percent or less is recommended; and (2) it must contain high quality protein. High nitrogen solubility is a good indication of high protein quality in cottonseed meal. Seventy-five percent or higher nitrogen solubility in 0.02 N sodium hydroxide is recommended.

Free Gossypol Tolerance

If cottonseed meal of high free gossypol content is used as the sole protein supplement for hogs for a long time, some of the animals are almost certain to die and the percentage loss is likely to be high. It is, therefore, important to know what is the maximum safe tolerance level for gossypol in swine rations. Table 1 gives the results of a test in which the level of free gossypol was varied from 0 to 0.028 percent. A 15.5 percent protein ration was used in this test. Free gossypol was supplied by mixing two cottonseed meals, one of very low and one of high free gossypol content. The composition of the rations for all groups except the control was: milo, 76.5 percent; mixed cottonseed meal, 9 percent; soybean oil meal, 9 percent; alfalfa leaf meal, 3 percent; limestone, 0.5 percent; salt, 0.5 percent; and aurofac (containing aureomycin and vitamin B_{12}), 0.5 percent. The ration for the control group contained 18 percent soybean meal and no cottonseed meal.

The pigs used in these tests were purebred Durocs bred and raised by the Texas Agricultural Experiment Station. They represented the kind and weight often purchased as feeder pigs for commercial feeding. Both barrows and gilts were used. The pigs were kept and fed in individual pens with concrete floors and with an outside concrete pen adjacent to the pen inside the feeding shed. Both the inside and outside pens were 4 feet by 8 feet in size. Each pen inside the barn contained an individual selffeeder and each outside pen contained an individual water trough. The pens were cleaned and washed daily.

The results (Table 1) indicate that, under the conditions of this experiment, 0.01 percent free gossypol in the ration is a safe level. All animals which received 0.01 percent free gossypol or less showed no gossypol toxicity symptoms and the gain was as good or almost as good as in the control group where the ration contained soybean meal as the sole protein supplement. There were no death losses with 0.015 percent free gossypol in the diet, but two pigs showed gossypol toxicity symptoms as indicated by severe thumping or labored breathing. This labored breathing was due to partial congestion of the lungs with fluid. Deaths occurred in all groups receiving more than 0.015 percent free gossypol.

Informal reports made at the third conference on Processing as Related to Nutritive Value of Cottonseed Meal, which was held at the Southern Regional Research Laboratory in New Orleans in 1953, indicated a lack of agreement among investigators concerning the highest level of free gossypol which should be considered safe for swine. The discovery that gossypol tolerance

TABLE 1. EFFECT OF FREE GOSSYPOL LEVEL IN THE DIET ON GROWING-FATTENING PIGS, 70-DAY TEST

			Cri	ude protei	in level of	diets 15.	5%		TITLE				
Item	Percent gossypol in diet												
	None	.0013	.0025	.007	.010	.015	.019	.022	.028				
Group number	1	2	3	4	5	6	7	8	9				
Number of animals ¹	8	8	8	8	8	8	8	8	8				
Initial weight, pounds	57.6	57.6	57.8	57.6	57.6	57.7	57.6	57.7	57.7				
Final weight, pounds	192.4	192.4	181.3	187.3	188.8	184.8	178.7 ²	185.8 ²	161.6°				
Average daily gain, pounds	1.92	1.92	1.76	1.85	1.87	1.81	1.70 ²	1.83 ²	1.52				
Feed per 100 pounds gain	367.4	377.5	374.0	348.2	364.2	361.7	364.5	351.4	373.8				
Number of deaths Number of animals which lived, but	None	None	None	None	None	None	1	2	2				
showed gossypol toxicity symptoms	None	None	None	None	None	2	2	None	4				

¹Pigs fed in individual pens.

²For animals remaining at close of test.

TABLE 2. COMPOSITION OF RAT	rions
-----------------------------	-------

Item		15% prote	in rations	30% protein rations								
Ration number	1	2	3	4	5	6	7	8				
Cottonseed meal, pounds	0	1.6	3.2	4.8	0	1.6	3.2	4.8				
Soybean meal, pounds	. 13.0	11.8	10.8	8.0	52.4	51.4	50.0	47.4				
Milo, (grain sorghum), pounds	81.0	80.6	80.0	81.2	41.6	41.0	40.8	41.8				
Alfalfa leaf meal, pounds	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5				
Limestone, pounds	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5				
Salt, pound	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5				
Aurofac, pound	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5				

levels vary with the amount and quality of the protein in the diet offers a sound basis for interpreting this apparent discrepancy.

Table 2 gives the ration used in a gossypoltolerance test with two levels of protein. Gossypol was supplied in the form of hexane-extracted cottonseed meats prepared in a commercial mill with a minimum of heat. The meal contained 0.64 percent free gossypol and 38.25 percent protein. The protein content of the soybean meal was 47.94 percent.

The results of the test are shown in Table 3. With a 15 percent crude protein diet, 0.01 percent free gossypol did not produce symptoms of gossypol toxicity, but gave slightly lower growth rate than the control group receiving no gossypol. Levels of free gossypol above 0.01 percent resulted in toxicity symptoms and the death of some animals in each group. These results are in agreement with those obtained in the first experiment (Table 1).

In sharp contrast, no animal receiving the 30 percent protein ration showed any symptoms of gossypol toxicity. When these animals were slaughtered at the termination of the experiment, no internal symptoms could be found by a qualified veterinarian who examined them.

Table 4 shows the amount of gossypol consumed by individual animals during the test period. Animals which died on the 15 percent protein ration had consumed up to 39.6 grams of gossypol. Every animal in the groups fed 30 percent protein rations and either 0.02 or 0.03 percent gossypol in the ration consumed more gossypol than did any of those which died on the 15 percent protein ration, yet none died and none showed any gossypol toxicity symptoms.

The relationship between gossypol tolerance level and the amount and quality of the protein in the ration has been substantiated by reports from three different laboratories. In addition to the investigation with swine at the Texas Agricultural Experiment Station, Cabell and Earle (1956) conducted experiments with rats and Earle and Stevenson (1957) used swine.

Protein Quality and Lysine Availability

The nutritional value of a protein depends on the kind and relative amounts of amino acids which it contains and on the digestibility of the protein. Table 5 shows the amino acid composition of cottonseed meal and the grains, corn and milo, which are generally fed with this protein supplement. The amino acids which are likely to be deficient in farm rations for swine are tryptophan, methionine and lysine. Cottonseed meal is a good source of tryptophan and a fair source of methionine, but is deficient in lysine. Lysine is thus the limiting amino acid in a cottonseed meal-corn or cottonseed mealmilo type of ration.

Perhaps of more importance is the fact that a portion of the lysine in cottonseed meal cannot be digested, absorbed and utilized by the animals. Lysine availability is, therefore, a major factor in determining the quality of protein in cottonseed meal. Perhaps no other major protein

TABLE 3.	EFFECT	OF	PROTEIN	LEVEL	IN	THE	RATION	ON	GOSSYPOL	TOLERANCE	IN	GROWING-FATTENING PIGS	
							84-D	AY 1	TEST				

	Stand	ard proteir	level, 15	High protein level, 30% C.P.								
Item		% gossypo	l in diet	% gossypol in diet								
	0	.01	.02	.03	0	.01	.02	.03				
Ration number	1	2	3	4	5	6	7	8				
Number of animals ¹	8	8	8	8	8	8	8	8				
Initial weight, pounds	58	58	58	58	58	58	58	58				
Final weight, pounds	204	190	170 ²	135 ³	188	191	186	177				
Average daily gain, pounds	1.74	1.57	1.31	1.16	1.55	1.58	1.52	1.42				
Feed per 100 pounds gain, pounds	366	376	424	461	387	379	381	384				
Number of deaths Number of animals which lived, but	None	None	2	4	None	None	None	None				
showed gossypol toxicity symptoms	None	None	3	2	None	None	None	None				

'Pigs fed in individual pens.

²6 remaining animals.

³4 remaining animals.

TABLE 4. GOSSYPOL CONSUMED BY INDIVIDUAL PIGS

	15% prote	in ration		30% protein ration										
.02% gossypol		.03% g	Jossypol	.02%	gossypol	.03% gossypol								
Pig number	Total gossypol consumed, grams	Pig number	Total gossypol consumed, grams	Pig number	Total gossypol consumed, grams	Pig number	Total gossypol consumed, grams							
93 3 ²	51.8 35.7	23 ¹ 51 ³	29.6	30 50	51.1 45.4	80	65.4 62.9							
104 ¹ 39 ²	39.6 31.1	20 ² 130 ¹	26.4 35.6	21 81	45.2 40.9	79 70	64.4 57.1							
106	53.6	75 ²	44.5	125	44.9	74	62.0							
151	51.6	55	54.5	46	43.2	87	71.4							
44 ²	28.9	68	52.3	123	42.7	133	66.2							
110 ¹	24.9	361	24.0	126	41.8	77	50.9							
Average	39.7		38.1		44.4		62.5							

¹Animals which died with symptoms of gossypol poisoning.

Animals which showed gossypol toxicity symptoms but did not die.

^aRemoved from lot 3 weeks after test started because of leg injury and general unthriftiness.

concentrate varies as much in protein quality as does cottonseed meal. Such variations are largely the result of variations in manufacturing conditions.

Variations in protein quality in cottonseed meal can be measured in small animal feeding trials with rats. Table 6 shows the wide variations found in different samples. Wide variations in lysine availability in a collection of cottonseed meal are shown in Table 7. There is as much variation in protein quality among different samples of cottonseed meal made by any one processing method as there is between different manufacturing procedures. The exact conditions used in any process are of primary importance.

A modification of the Cannon (1944) rat protein repletion test described by Cabell and Earle (1954) was used for the protein quality evaluations. The procedure for the determination of lysine availability was described by Baliga and Lyman (1957).

Lyman, Change and Couch (1953) studied the chemical characteristics of cottonseed meal as these are related to nutritional value. A relationship was found between protein quality and nitrogen solubility in 0.02 N sodium hydroxide and protein quality. This test has been very useful as a mill control in the production of superior quality cottonseed meal.

Several commercial milling processes are now followed for the production of low gossypol, high protein quality cottonseed meal for use in swine and poultry rations.

Fiber

Growing and fattening pigs do not digest crude fiber as well as do cattle or sheep. The rate of gain is depressed when the fiber content of the ration for fattening pigs is 7.5 percent or more (Bohstedt *et al.*, 1933). The amount of feed required for a given gain, however, increases regularly with rations containing more than about 4.5 percent crude fiber (Lathrop *et al.*, 1938).

Cottonseed meal, as now manufactured, contains a considerable amount of hulls. The production of cottonseed meal with less hulls would yield a product with higher protein content and lower crude fiber. Such a meal would be more efficient as a protein supplement for swine.

Soybean meal with a 50 percent crude protein guarantee and with less than 3.5 percent crude fiber is now being sold for use in poultry and swine rations.

TABLE 5. ES	SENTIAL AMINC	ACID	CONTENT	OF	COTTONSEED	MEAL,	CORN	AND MIL	0
-------------	---------------	------	---------	----	------------	-------	------	---------	---

	Cottonse	ed meal	Co	orn and the second	М	ilo
Amino acid	In the sample, %	In crude protein, %	In the sample, %	In crude protein, %	In the sample, %	In crude protein, %
Arginine	4.38	11.02	0.37	4.60	0.45	4.39
Histidine	1.07	2.70	0.22	2.73	0.22	2.15
Isoleucine	1.59	4.01	0.33	4.10	0.46	4.49
Leucine	2.46	6.20	0.95	11.80	1.22	11.90
Lysine	1.67	4.20	0.27	3.35	0.24	2.34
Methionine	0.59	1.49	0.18	2.24	0.18	1.75
Phenylalanine	2.09	5.25	0.42	5.22	0.50	4.88
Threonine	1.38	3.47	0.31	3.85	0.41	4.00
Tryptophan	0.63	1.59	0.087	1.17	0.140	1.36
Valine	1.98	4.98	0.43	5.34	0.58	5.66
Protein content	39.61		8.05		10.25	

6

TABLE 6. PROTEIN QUALITY IN DIFFERENT SAMPLES OF COTTONSEED MEAL AS DETERMINED BY RAT PROTEIN REPLETION TESTS

Meal number	Type of processing	Rat protein repletion value, grams gain in weight in 10 days
1	Solvent extraction	39.3
2	Prepress solvent	38.7
3	Solvent, extraction	36.1
4	Hydraulic press	24.4
5	Slow speed screw press	22.6
6	Prepress solvent	20.9
7	High speed screw press	18.2

PATHOLOGY OF GOSSYPOL POISONING¹

The pigs that died came from lots receiving free gossypol in an amount between 0.02 to 0.03 percent of the total ration. The 0.01 percent or less level of free gossypol did not result in the death of any pigs.

The animals that died had been on the gossypol ration 38 to 79 days, with the exception of 2 which survived until the 93rd day. Even the highest level of gossypol used was not necessarily lethal. Many pigs showed only retarded growth when marketed at the usual age of 6 to 8 months.

In the seriously poisoned animals, signs of illness were typically apparent 2 to 6 days, or, exceptionally, as long as 1 month. The outstanding symptom was always dyspnea, with violently labored respirations which stockmen call thumping. Progressive weakness and emaciation were accompanied by a good appetite almost until death.

Widespread congestion and edema were salient post-mortem lesions. The lungs and liver were markedly congested in all cases; the kidneys, spleen and lymph nodes, in many.

Large amounts of fluid often were encountered in the pleural, pericardial and peritoneal cavities. Edema of the lungs, present in all cases, was commonly so extensive that a frothy fluid was visible in the trachea. In accordance

¹Further information may be found in paper by Smith, 1957.

TABLE 7. VARIATION IN LYSINE AVAILABILITY IN DIFFER-ENT SAMPLES OF COTTONSEED MEAL AS DETERMINED BY RAT FEEDING TESTS AND NITROGEN SOLUBILITY

Meal desig- nation	Type of processing	Lysine avail- ability	Nitrogen solubility in 0.02 N Na0H
A	Experimental solvent		
	extraction 7	80.7	83.1
В	Screw press	82.6	87.7
C	Prepress solvent	76.9	75.9
D	Commercial meal		
	not identified	68.1	64.5
E	Screw press	55.3	53.7
F	Screw press	53.2	53.7
G	Screw press	50.7	50.9

with accepted principles, the edema was considered to have been dependent on passive congestion and venous stasis. The latter conditions were attributed to a progressively failing heart on the basis of both symptoms and lesions, Figure 1. The occurrence of gross pathologic lesions resulting with rations containing 0.02 to 0.03 percent free gossypol are listed in Table 8.

All livers were congested grossly, with at least a suspicion of intralobular necrosis or other degenerative changes. The livers generally were reddish with the lobular architecture possibly more prominent than normal. In the pig, this is normally conspicuous because of the distinct interlobular septa. Microscopic examination revealed a startling change in all the livers (Figure 2). While in 5 pigs the destruction was only partial, the remaining 13 had almost no viable parenchymal cells. In these, only a narrow rim of hepatic cells remained at the extreme periphery of each lobule. The remainder of the lobular space was filled with blood, although a scattered reticulum of Kupffer cells appeared to be intact.

While extensive areas of the skeletal muscles frequently were pale or almost white, it was difficult to demonstrate microscopically any change beyond an abnormal variation in the size

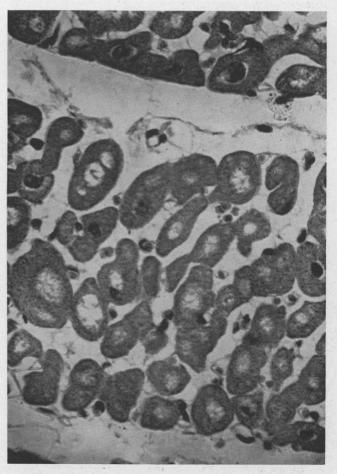


Figure 1. Degenerative changes in heart muscle.

7

TABLE 8. GROSS PATHOLOGIC LESIONS OBSERVED IN 18 PIGS FED RATIONS CONTAINING 0.02 TO 0.03 PERCENT FREE GOSSYPOL

Animal number	1	_2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1
Subcutaneous edema	+		-	41.41	+	2.96	+			+			+	1. The second			+	-
Hydrothorax	+	+		+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Congestion and edema of lungs	÷	÷	+	÷	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Hydropericardium	+	÷			+	+	+	+	+	+	+	+	+	+	+	+	+	-
Dilatation of heart	÷	÷	+	+	+	+	+	+	+	+		+	+		+			-
Hypertrophy of heart	3.7. 3	1		1.1	÷	+			+			+	+	Z.				
Hydroperitoneum	+			+	+	+	+	+	+	+		+	1.5	£.		+	+	-
Edema of gallbladder	Q.	+	+		+	+	+	+	+				+			-		
Edema of lymph nodes	+	÷	+	+	÷	÷	+	+	+	+	+	+	+		+	+		-
Congestion (and necrosis) of liver	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-
Congestion of kidney	÷	1 Bills	÷	÷	100	÷	÷		+	+	÷	+	+		+			-
"White muscles"	÷	+		and the	+	+	+	+	+	+	+							+
Icterus					1.1.1		1.2.		Constant Ser	a Vicinale	24 E.			+			+	El

of certain fibers some being atrophied, others hypertrophied (Figure 3).

The lesions portrayed are nearly identical to the lesions described by West (1940) in dogs fed poisonous amounts of cottonseed meal, except that gastroenteritis was more prominent in the dogs and petechial and ecchymotic hemorrhages were numerous. The centrilobular destruction of liver cells was less pronounced in the dogs.

In contemplating the almost unprecedented changes found in the liver, the question arises

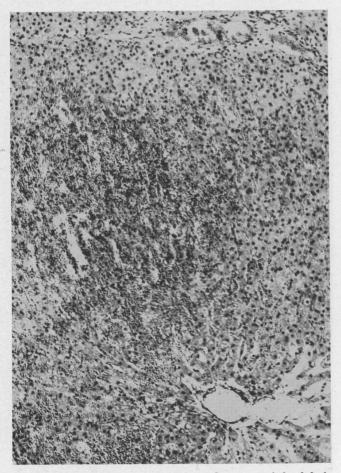


Figure 2. Early lesion in liver. One part of the lobule has undergone necrosis and is being replaced with blood.

whether this degree of hepatic injury results from the anoxia consequent upon congestion and stasis of blood, or whether a direct hepatotoxic action must be attributed to the gossypol. Also advocated has been the theory that increased blood pressure in the intralobular capillaries destroys the hepatic cells by pressure necrosis. Without attempting an unequivocal answer to this problem, certain similar and possibly related disorders of dietetic nature are the most intriguing, as well as the most perplexing.

Hove and Seibold (1955) fed a diet low in protein (soybean meal), markedly deficient in vitamin E and containing cod-liver oil, of which highly unsaturated fatty acids are characterisic constituents. After 1 to 4 months on this diet, the animals usually died and, at necropsy, showed a "hemorrhagic necrosis" of the liver similar in most respects to the hepatic condition ascribed to gossypol. Cirrhosis developed in pigs that lived for 6 months. The authors considered the livers to be comparable with those produced by Obel (1953), who described a porcine disease known as hepatosis diaetetica which occurs naturally in Sweden and Northern Europe and which was susceptible of experimental reproduction by the combined deleterious effects of (1) inadequate dietary protein (brewer's yeast, which is deficient in the sulfur-containing amino acids), (2) deficiency of vitamin E and (3) presence in the diet of considerable amounts (6 percent) of cod-liver oil with its highly unsaturated fatty acids. The similarities between the lesions arising from excessive gossypol and those described for natural or experimental cases of hepatosis diaetetica are seen in the necrotic and blood-filled hepatic lobules and in the concomitant presence of extensive edema in practically identical situations and in the presence of retrograde changes in the skeletal and cardiac musculature which, while called by different names, appear microscopically to have at least the degenerative features in common. However, certain notable differences between the cases of gossypol poisoning and those which Obel (1953) and Hove and Seibold (1955) found to result from dietetic imbalances are readily apparent both in clinical and post-mortem aspects.

TABLE 9.	CHEMICAL ANALYSES OF COTTONSEED MEA	LS
	USED IN FEEDING TRIALS 1, 2 AND 3	

Meal description	Protein content, %	Free gossypol, %
Screw press, S-51	40.38	0.020
Screw press, S-59	37.44	0.027
Screw press, S-514	40.00	0.027
Isopropanol extracted	46.12	0.013
Hydraulic	42.25	0.04
Degossypolized	39.80	0.041

Approximate value. A special analytical method is required for accurate determination on this type of meal. The method became available after this work was completed.

TRIALS WITH DIFFERENT MEALS

Six different cottonseed meals, all with a free gossypol content not exceeding 0.04 percent, were fed in three tests as the sole protein supplement to growing-fattening pigs without symptoms of gossypol toxicity. These tests included commercial screw press and hydraulic meals, a special process degossypolized meal and an experimental meal made by solvent extraction with isopropyl alcohol. Results of these tests give further evidence that low gossypol cottonseed meal does not produce unfavorable physiological effects on hogs.

Table 9 shows the chemical composition of the meals used in these tests. The rations used in feeding trial 1 are given in Table 10 and the results are shown in Table 11. One of the conclusions drawn from this test is that aureomycin plus vitamin B_{12} significantly increased the growth rate of the groups fed screw-press and isopropanol-extracted cottonseed meals. A second finding of importance is that a screw-press meal plus aureomycin and vitamin B_{12} gave growth rates and feed efficiency equal to those obtained with meat scraps.

Growth—Trial 1

The group of pigs fed the control ration containing meat scraps (lot 7) made highly significantly greater average daily gains (P=.01) than the combined groups of pigs on rations containing cottonseed meals without aurofac.

There was no significant difference in average daily gains between the pigs receiving the control ration (lot 7) and the pigs receiving cottonseed meal S-514 plus aurofac (lot 4) or the group of pigs receiving the isopropanol-extracted cottonseed meal plus aurofac (lot 6).

The pigs receiving cottonseed meal S-514 plus aurofac (lot 4) made highly significantly greater average daily gains (P=.01) than the group of pigs receiving the same meal without the aurofac (lot 3). The same highly significant difference was shown for the pigs receiving isopropanol-extracted meal plus aurofac (lot 6) over the group of pigs receiving the isopropanolextracted cottonseed meal without the aurofac (lot 5).

No significant difference was found between combined groups of pigs receiving screwpress cottonseed meal without aurofac (lots 1, 2 and 3) and the pigs receiving the isopropanolextracted cottonseed meal (lot 5) without the aurofac.

The pigs receiving the isopropanol-extracted cottonseed meal plus aurofac (lot 6) made significantly greater average daily gain (P=.05) than the group receiving the screw-press cottonseed meal plus aurofac (lot 4).

Feed per 100 Pounds Gain—Trial 1

There was no significant difference in feed required per 100 pounds of gain between the control pigs receiving meat scraps in the ration (lot 7) and the combined groups of pigs receiving cottonseed meal rations without aurofac (lots 1, 2, 3 and 5). Neither was there a significant difference in the feed required per 100 pounds of gain between the control group receiving meat scraps in the ration (lot 7) and the group receiving cottonseed meal S-514 plus aurofac (lot 4). However, the pigs in lot 6 receiving isopropanol-extracted cottonseed meal used significantly less feed per 100 pounds of gain (P=.05)

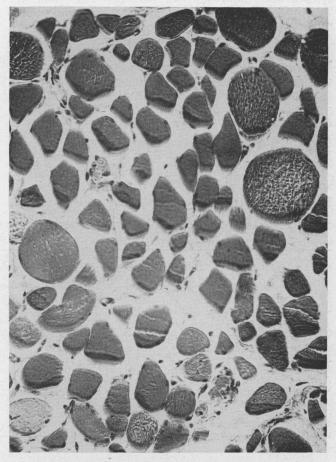


Figure 3. Degenerative changes in skeletal muscle.

Group number	1	2	3	4	5	6	7
Ground milo, pounds	79	77	79	79	81	81	84
Screw press C.S.M. ¹ S-51, pounds	16					The state of the state of the	
Screw press C.S.M. S-59, pounds		18					
Screw press C.S.M. S-514, pounds			16	16			
sopropanol extracted C.S.M., pounds					14	14	
Meat scraps, pounds					4		12.5
Alfalfa leaf meal, pounds	3	3	3	3	3 4	3	3
Limestone, pounds	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Salt, pound	0.5	0.5	0.5	0.5	0.5	0.5	0.5
Aurofac ² , pound	0	0	0	0.5	0	0.5	0

TABLE 10. COMPOSITION OF RATIONS USED IN FEEDING TRIAL 1

than did the pigs in lot 7 (the control group) receiving meat scraps.

The pigs in group 6 receiving cottonseed meal S-514 plus aurofac used significantly less feed per 100 pounds of gain (P=.05) than the pigs in lot 5 receiving the same meal without the aurofac.

The pigs receiving isopropanol-extracted cottonseed meal plus aurofac (lot 6) used highly significantly less feed per 100 pounds of gain (P=.01) than the pigs receiving the same meal without aurofac (lot 5).

Table 12 shows the rations used in feeding trial 2 and the results of this test are given in Table 13. Two different screw-press cottonseed meals, S-51 and S-59, gave growth rates equal to those obtained with soybean meal. The sample of hydraulic meal was not as good as these two screw-press meals, but gave better growth rate and feed efficiency than meat scraps. The addition of aureomycin plus vitamin B_{12} increased growth rate and improved feed efficiency in the test with hydraulic cottonseed meal.

Growth—Trial 2

No significant difference was found in the average daily gain of the combined groups of pigs receiving the expeller-processed cottonseed meals, S-51 and S-59, plus aurofac (lots 1 and 2) and the pigs receiving soybean meal plus the aurofac (lot 5).

The pigs receiving hydraulic-processed cottonseed meal plus aurofac (lot 4) made significantly greater average daily gains (P=.05) than the pigs receiving the hydraulic meal without the aurofac (lot 3).

The combined groups of pigs receiving expeller-processed cottonseed meals plus aurofac (lots 1 and 2) made highly significantly greater average daily gains (P=.01) than did the pigs receiving meat scraps plus the aurofac (lot 6).

The group of pigs receiving soybean oil meal plus aurofac (lot 5) also made highly significantly greater gains (P=.01) than did the pigs receiving meat scraps plus the aurofac (lot 6).

Feed per 100 Pounds Gain—Trial 2

There was no significant difference in the average feed required per 100 pounds of gain between the combined groups of pigs receiving expeller cottonseed meal, S-51 and S-59, plus aurofac (lots 1 and 2) and the pigs in lot 4 receiving hydraulic-processed meal plus aurofac. Neither was there any significant difference in the feed required per 100 pounds of gain between the combined groups of pigs receiving

TABLE 11. PERFORMANCE DATA OF PIGS FED MEAT SCRAPS AND COTTONSEED MEALS MADE BY DIFFERENT PROCESSES. FEEDING TRIAL 1¹

	Lot 1	Lot 2	Lot 3	Lot 4	Lot 5	Lot 6	Lot 7
Item	Screw press C.S.M. S-51	Screw press C.S.M. S-59	Screw press C.S.M. S-514	Screw press C.S.M. S-514 + aurofac ²	Iso- propanol extracted C.S.M.	Iso- propanol extracted C.S.M. + aurofac ²	Meat scraps
Number of pigs per lot	6 ³	6 ³	6 ³	7	7	7	7
Length of test, days	84	84	84	84	84	84	84
Average final weight, pounds	195.6	191.8	186.8	214.8	191.4	221.1	216.6
Average initial weight, pounds	68.6	68.6	68.3	66.7	66.7	66.7	66.7
Total gain, pounds	127.0	123.2	118.5	148.1	124.7	154.4	149.9
Average daily gain, pounds	1.51	1.46	1.41	1.76	1.48	1.84	1.78
Feed per 100 pounds gain, pounds	411.0	394.3	406.6	375.0	406.0	365.4	393.7
Total feed eaten, pounds	3132	2914	2891	3889	3545	3950	4130

¹Complete ration mixed and fed in self-feeder.

 $^2 \text{Contained 1.8}$ grams aureomycin and 1.8 milligrams vitamin B_{12} per pound.

³One pig removed from test because of unthriftiness.

TABLE 12.	COMPOSITION	OF	RATIONS	USED	IN	FEEDING	TRIAL :	2

Group number	1	2	3	4	5	6
Ground milo, pounds	79	77	80	80	81	84
Screw press C.S.M. S-51, pounds	16					
Screw press C.S.M. S-59, pounds		18				
Hydraulic C.S.M., pounds			15	15		
Soybean oil meal, pounds					14	
Meat scraps, pounds						11
Alfalfa leaf meal, pounds	3	3	3	3	3	3
Salt, pound	0.5	0.5	0.5	0.5	0.5	0.5
Limestone, flour, pounds	1.5	1.5	1.5	1.5	1.5	1.5
Aurofac ¹ , pound	0.5	0.5		0.5	0.5	0.5

Contained 1.8 grams aureomycin and 1.8 milligrams vitamin B₁₂ per pound.

expeller cottonseed meal, S-51 and S-59, plus aurofac (lots 1 and 2) and the group of pigs receiving soybean oil meal plus the aurofac.

No significant difference was found in the feed required per 100 pounds of gain between the pigs receiving hydraulic-processed cottonseed meal (lot 3) and the pigs receiving hydraulicprocessed cottonseed meal plus aurofac (lot 4).

The combined groups of pigs receiving expeller cottonseed meal, S-51 and S-59, plus aurofac (lots 1 and 2) used highly significantly less feed per 100 pounds of gain (P=.01) than did the group of pigs receiving meat scraps plus the aurofac (lot 6).

Pigs receiving hydraulic-processed cottonseed meal plus aurofac (lot 4) used highly significantly less feed per 100 pounds of gain (P=.01) than did pigs receiving meat scraps plus aurofac (lot 6).

The group of pigs receiving soybean oil meal plus aurofac (lot 5) used highly significantly less feed per 100 pounds of gain (P=.01) than did the pigs receiving meat scraps plus the aurofac (lot 6).

There was no significant difference in the feed required per 100 pounds of gain between pigs receiving soybean oil meal plus aurofac (lot 5) and the pigs receiving hydraulic-processed cottonseed meal plus the aurofac (lot 4).

Results of a comparative test with soybean oil meal and a sample of degossypolized cottonseed

meal supplied by the Buckeye Cotton Oil Company are given in Table 14. In this test, degossypolized cottonseed meal gave growth rates and feed efficiency almost as good as those obtained with soybean oil meal. The degossypolized cottonseed meal used in this test was manufactured by the use of an aromatic amine to combine with and inactivate free gossypol.

Unfortunately, the three feeding trials reported were carried out before the nitrogen solubility test using 0.02 N sodium hydroxide was developed and, consequently, information on the solubility of the protein in these samples is not available.

The free gossypol content of the ration containing degossypolized cottonseed meal (lot 2) was 0.0096 percent. The difference in gain and in feed required per 100 pounds of gain between the two lots was not significant. Although the pigs fed the ration containing 24 percent degossypolized meal made good gains, a ration with a part of the cottonseed meal replaced with soybean meal would have a better distribution of essential amino acids.

AUREOMYCIN PLUS VITAMIN B₁₂ WITH MEALS

The addition of aurofac containing aureomycin plus vitamin B_{12} to rations in which cottonseed meals (hydraulic, screw-press or isopropanol-extracted) were used as the protein concentrate consistently resulted in more rapid

TABLE 13.	PERFORMANCE	DATA	OF	PIGS	FED	SCREW	PRESS	COTTONSEED	MEAL,	HYDRAULIC	COTTONSEED	MEAL,
		SOY	BEAL	N OIL	MEA	L AND	MEAT S	CRAPS, FEEDIN	IG TRIA	AL 2		
						1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Long and the second second second second				

Group number	1	2	3	4	5	6
Protein supplement	Screw press C.S.M. S-51	Screw press C.S.M. S-59	Hydraulic C.S.M.	Hydraulic C.S.M.	Soybean meal	Meat scraps
Aurofac1	Added	Added		Added	Added	Added
Number of pigs	7	7	6 ²	6 ²	7	6 ²
Average initial weight, pounds	502	501	445	443	501	432
Average final weight, pounds	1448	1490	968	1150	1457	978
Average total gains, pounds	946	989	523	707	956	546
Average daily gains, pounds	1.75	1.83	1.13	1.53	1.77	1.18
Average total feed consumption, pounds	517	548	367	464	513	413
Feed per 100 pounds gain, pounds	384	388	427	394	375	454

Lederle's B₁₂ concentrate with aureomycin contains 1.8 grams of aureomycin and 1.8 milligram of vitamin B₁₂ per pound. One pig was removed from lots 3, 4 and 6 because of sickness followed by general unthriftiness.

TABLE 14.	DEG	OSS	YPOLIZED	COTTONS	SEED	ME	AL AND
SOYBEAN	MEAL	AS	PROTEIN	SUPPLEME	NTS	FOR	GROW-
II	NG-FAI	TEN	ING PIGS	, FEEDING	TRIA	AL 3	

Performance data	Soybean meal	Degossy- polized cottonseed meal
Lot number	Ι	II
Number of pigs per lot ¹	8	8
Length of test, days	70	70
Average final weight, pounds	201	193
Average initial weight, pounds	69	69
Total gain, pounds	132	124
Average daily gain, pounds	1.88	1.75
Total feed eaten, pounds	3788	3640
Feed per 100 pounds gain, pounds	358.7	370
Composition of rations	%	%
Milo	74.5	70.0
Soybean meal	20	0
Cottonseed meal	0	24
Alfalfa leaf meal	3	3
Ground limestone	1.5	1.5
Salt	0.5	0.5
Aurofac ²	0.5	0.5

¹Pigs were fed in individual pens.

²Contained 1.8 grams aureomycin and 1.8 milligram vitamin B₁₂ per pound.

gains. This conclusion was verified by further tests not included in these tables.

COTTONSEED AND SOYBEAN MEALS AS PROTEIN SUPPLEMENTS

Table 15 shows the results obtained in a test in which a protein supplement containing soybean meal was compared with a supplement in which

TABLE	15.	USE	OF	LOW	GOSSY	POL-HIGH	PROTE	EIN	
OUALIT	Y CC	DTTON	SEED	MEAL	¹ AND	SOYBEAN	MEAL	IN	
SUP	PLEM	ENTS	FOR	GROV	VING-F	ATTENING	PIGS ²		

Group number	1	2
	Composition supplement	
Cottonseed meal	37	0
Soybean meal	37	74
Alfalfa leaf meal	19	19
Limestone	4	4
Salt	1	1
Aurofac ³	2	2
	Growth r feed effi	
Number of pigs	8	- 8
Average initial weight, pounds	- 64.7	64.8
Average final weight, pounds	219.6	214.1
Average daily gain, pounds	2.01	1.94
Feed required per 100 pounds gain:		
Milo, pounds	341.3	322.2
Protein supplement, pounds	43.5	50.4
Total feed, pounds	384.8	372.6

'The cottonseed meal used in this test contained 0.033% free gossypol and had a nitrogen solubility of 74.1%.

²Protein supplement and milo were fed free choice in self-feeders.

³Aurofac (1.8 grams aureomycin, 1.8 milligrams B₁₂ per pound).

⁴Differences in gain and feed utilization were not statistically significant at the 5% level. Pigs in each group fed in individual lots.

50 percent of the soybean meal was replaced with a low gossypol, high-protein quality cottonseed meal.

The pigs were fed in individual pens for 77 days. The straight soybean meal supplement was slightly more palatable than the cottonseed-soybean meal mixture since the pigs getting the soybean meal supplement ate 7 pounds more supplement per pig during the test.

The pigs getting the mixed supplement gained 0.07 pound more per pig per day, but the difference was not significant.

There was no significant difference in feed required per 100 pounds of gain for the two groups, although the pigs getting the soybean meal supplement required 0.12 pound less feed per pound of gain.

The pigs getting the cottonseed-soybean meal mixture ate 2.2 percent less supplement per 100 pounds of gain, which indicates that when these feeds are fed free-choice in self feeders, the chances are that the pigs will overeat a straight soybean meal supplement before they would a cottonseed-soybean meal mixture. This would tend to make the cottonseed-soybean meal mixture more economical to feed.

RECOMMENDATIONS

Two methods of feeding are used in swine production. In the first method, the feeds used are mixed completely for self-feeding or the mixture can be fed by hand, usually twice per day. In the second method, a protein supplement mixture is formulated to be fed in one compartment along with corn or milo in a second compartment of a self-feeder, free-choice. A third compartment of the self-feeder is used frequently for a mineral mixture.

Mixed Rations

Table 16 shows the percentage of crude protein needed in complete or mixed rations for different classes and weights of hogs.

In formulating rations for complete mixtures, one can use enough high quality cottonseed meal to furnish 25 percent of the crude protein for mixtures containing 15 to 16 percent crude protein.

High quality cottonseed meal can furnish 30 percent of the crude protein for mixtures containing 12 to 14 percent total crude protein where the cottonseed meal contains 0.04 percent or less of free gossypol.

Thirty-seven to 40 pounds of cottonseed meal can be used in a 100-pound protein supplement mixture. This protein supplement mixture can then be mixed with ground grain to formulate the complete mixtures containing the percentage of crude protein recommended in Table 16.

Class of hogs	Growing and fattening hogs			Breeding stock			
	100.	100 to	240	Sows		Boars	
		200 pounds		Gestation period	Lactating period	Breeding season	Non- breeding season
Percent crude protein in feed mixture	16	14	12	15	15	15	14

Free-choice Feedings

The free-choice method of feeding is practical and economical where one is feeding out hogs for market.

Table 17 shows two protein supplement mixtures containing cottonseed meal which are recommended for both free-choice feeding and formulating complete mixtures.

After the pigs are 10 weeks old, they can be fed the protein supplement and grain free-choice in different compartments of a self-feeder.

Pigs intended for breeding should be taken off the free-choice method of feeding when they are 4 to 5 months old and be fed a complete mixture twice daily by hand. The condition of the breeding animals can be controlled better by hand feeding during the development period of the animal.

Milo or corn with either protein supplement no. 1 or no. 2 may be fed free-choice in self-feeders to growing-fattening pigs after the pigs have reached 40 pounds live weight, or after they are 10 weeks old.

For brood sows, gilts and herd boars, one may use a mixture containing supplement no. 2 as follows:

MIXTURE A

Ground milo	63	pounds
Wheat shorts	20	pounds
Supplement no. 2	17	pounds

Total

100 pounds

Mixture A contains 15 percent crude protein and 5 to 6 pounds of this mixture per sow daily should give good results during the gestation period. After farrowing and being brought to a full feed gradually, sows with 8 pigs will require 11 to 12 pounds of the mixture daily per sow. Green pasture should be provided for brood sows during the gestation and lactating periods and for herd boars. If the green pasture is excellent, mixture A can be changed to only 10 pounds of supplement with 27 pounds of wheat shorts. This change should not be made, however, unless the pasture is plentiful, green and tender. Mature pasture or forage plants are of little use to swine. Ground oats may replace all or a part of the wheat shorts in mixture A.

Where one would like a mixture for the brood sow or herd boar and would prefer supplement no. 1, the following 15 percent crude protein mixture may be used:

MIXTURE B

Ground milo		pounds
Supplement no. 1	16	pounds
Wheat shorts	15	pounds
Ground oats	10	pounds
Total	100	pounds

This mixture B should be used where good green pasture is available for the breeding herd.

Where no green pasture is available, mixture C is recommended.

MIXTURE C

Ground milo		pounds
Supplement no. 1 Wheat shorts		pounds pounds
Ground oats	10	pounds
Green alfalfa meal	8	pounds
Total	100	pounds

If the sows have access to a good green forage crop, mixture B may be changed to one containing 65 pounds of ground milo, 15 pounds of wheat shorts, 10 pounds of ground oats and 10 pounds of supplement no. 1.

TABLE 17. USE OF COTTONSEED MEAL IN PROTEIN SUP-PLEMENTS FOR SWINE RATIONS

	Crude	Number 1 ¹	Number 2 ²	
Ingredients	protein, %	Pounds	Pounds	
Soybean meal	44	35	37	
Cottonseed meal	41	20	37	
Meat scraps	50	20	1967 P 28 1 13	
Dehydrated alfalfa leaf meal	20	20	19	
Ground limestone		2	4	
Salt		1	1	
Aurofac ³		2	2	
Total		100	100	

¹Percent of total crude protein is 37.60.

²Percent of total crude protein is 35.25.

³Containing 1.8 grams of aureomycin and 1.8 grams of vitamin B₁₂ per pound.

ACKNOWLEDGMENTS

The authors are indebted to the Educational Service, National Cottonseed Products Association, Inc., Dallas, Texas for grants-in-aid; Buckeye Cotton Oil Co., Memphis, Tennessee, for furnishing degossypolized cottonseed meal; Southern Regional Research Laboratory, U. S. Department of Agriculture, for supplies of special processes of cottonseed meals; and to Otto P. Seeman, herdsman, for his efficient assistance in the feeding of the experimental animals.

LITERATURE CITED

- Baliga, B. P. and C. M. Lyman. 1957. Preliminary report on the nutritional significance of bound gossypol in cottonseed meal. J. Amer. Oil Chemists' Soc. 34:21.
- Bohstedt, G. and J. M. Fargo. 1933. Facts for farmers. Wis. Agr. Exp. Sta. Bul. 425.
- Cabell, C. A. and I. P. Earle. 1956. Relation of amount and quality of protein in the diet to free gossypol tolerance by the rat. J. Amer. Oil Chemists' Soc. 33:416.
- Cannon, P. R., E. M. Humphreys, R. W. Wissler and L. E. Frazier. 1944. The effects of feeding possible blood substitutes on serum protein regeneration and weight recovery in the hypoproteinemic rat. J. Clin. Invest. 23:601.
- Chang, Wan Yuin, J. R. Couch, Carl M. Lyman and others. 1955. The nutritional value of prepress-solvent cottonseed meals. J. Amer. Oil Chemists' Soc. 32:103.
- Curtis, C. F. 1895. Feeding cottonseed and other meals to hogs. Iowa Agr. Exp. Sta. Bul. 28.
- Curtis, G. W. and J. W. Carson. 1892. Effect of cottonseed and cottonseed meal as foods for hogs. Tex. Exp. Sta. Bul. 21
- Dinwiddie, R. R. 1903. Pig feeding experiments with cottonseed meal. Ark. Agr. Exp. Sta. Bul. 76.
- Earle, I. P. and J. W. Stevenson. 1957. Relation of quantity and quality of dietary protein to tolerance of the growing pig for free gossypol. Proceedings of Fourth Conference on Processing as Related to Nutritive Value of Cottonseed Meal. p. 66.
- Georgeson, M., F. C. Burtis and D. H. Otis. 1895. Feeding experiments with pigs on corn,

wheat, kafir corn, and cottonseed meal. Kan. Agr. Exp. Bul. 53.

- Hale, Fred. March, 1930. Cottonseed meal as a feed for hogs. Tex. Agr. Exp. Sta. Bul. 410.
- Hale, Fred and C. M. Lyman. 1957. Effect of protein level in the ration on gossypol tolerance in growing-fattening pigs. J. Animal Sci. 16:364.
- Harris, W. D., F. F. Bishop, C. M. Lyman and R. Helpert. 1947. Isopropanol as a solvent for extraction of cottonseed oil. J. Amer. Oil Chemists' Soc. 24:370.
- Hove, E. L., and H. R. Seibold. 1955. Liver necrosis and altered fat composition in vitamin E-deficient swine. J. Nutr. 56:173.
- Kuiken, K. A., W. H. Norman, C. M. Lyman and F. Hale. 1943. The microbiological determination of amino acids. Sci. 98:266. Also J. Biol. Chem. 151:615.
- Lathrop, A. W. and G. Bohstedt. 1938. Oat mill feed—its usefulness and value in livestock rations. Wis. Agr. Exp. Sta. Bul. 135.
- Lyman, C. M. and B. P. Baliga. 1958. Reactions of proteins with gossypol. Arch. Biochem. and Biophys. In press.
- Lyman, C. M., W. Y. Chang and J. R. Couch. 1953. Evaluation of protein quality in cottonseed meals by chick growth and by a chemical index method. J. Nutr. 49:679.
- Lyman, C. M., B. R. Holland and F. Hale. 1943. Determination of free gossypol in cottonseed meal, a colorimetric method. Ind. and Eng. Chem. Anal. Ed. 15:489.
- Lyman, C. M., B. R. Holland and F. Hale. 1944. Processing cottonseed meal, a manufacturing method for eliminating toxic qualities. Ind. and Eng. Chem. Anal. Ed. 36:188.
- Obel, A. L. 1953. Studies on the morphology and etiology of so-called toxic liver dystrophy (hepatosis diaetetica) in swine. Acta Path. et Microbiol. Scandinav. Suppl. 94, 87 pp.
- Robison, W. L. 1934. Cottonseed meal for pigs. Ohio Agr. Exp. Sta. Bul. 543.
- Smith, Hilton A. 1957. The pathology of gossypol poisoning. Am. J. Path. 33:353.
- West, J. L. 1940. Lesions of gossypol poisoning in the dog. J. Am. Vet. M. A. 69:74.

[Blank Page in Original Bulletin]

51

Location of field research units of the Texas Agricultural Experiment Station and cooperating agencies

ORGANIZATION

OPERATION

State-wide Research

The Texas Agricultural Experiment Station is the public agricultural research agency of the State of Texas, and is one of ten parts of the Texas A&M College System

IN THE MAIN STATION, with headquarters at College Station, are 16 subject matter departments, 2 service departments, 3 regulatory services and the administrative staff. Located out in the major agricultural areas of Texas are 21 substations and 9 field laboratories. In addition, there are 14 cooperating stations owned by other agencies. Cooperating agencies include the Texas Forest Service, Game and Fish Commission of Texas, Texas Prison System, U. S. Department of Agriculture, University of Texas, Texas Technological College, Texas College of Arts and Industries and the King Ranch. Some experiments are conducted on farms and ranches and in rural homes.

THE TEXAS STATION is conducting about 400 active research projects, grouped in 25 programs, which include all phases of agriculture in Texas. Among these are:

Conservation and improvement of soil Conservation and use of water Grasses and legumes Grain crops Cotton and other fiber crops Vegetable crops Citrus and other subtropical fruits Fruits and nuts Oil seed crops Ornamental plants Brush and weeds Insects Beef cattle Dairy cattle Sheep and goats Swine Chickens and turkeys Animal diseases and parasites Fish and game Farm and ranch engineering Farm and ranch business Marketing agricultural products Rural home economics Rural agricultural economics

Plant diseases

Two additional programs are maintenance and upkeep, and central services.

Research results are carried to Texas farmers, ranchmen and homemakers by county agents and specialists of the Texas Agricultural Extension Service AGRICULTURAL RESEARCH seeks the WHATS, the WHYS, the WHENS, the WHERES and the HOWS of hundreds of problems which confront operators of farms and ranches, and the many industries depending on or serving agriculture. Workers of the Main Station and the field units of the Texas Agricultural Experiment Station seek diligently to find solutions to these problems.

Joday's Research Is Jomorrow's Progress