
CONCURRENCY IN A SYSTEM FOR

SYMBOLIC AND ALGEBRAIC COMPUTATIONS

A Senior Scholars Thesis

by

STEFAN MAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the designation of

UNDERGRADUATE RESEARCH SCHOLAR

April 2009

Major: Computer Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/4274557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCURRENCY IN A SYSTEM FOR

SYMBOLIC AND ALGEBRAIC COMPUTATIONS

A Senior Scholars Thesis

by

STEFAN MAI

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the designation of

UNDERGRADUATE RESEARCH SCHOLAR

Approved by:

Research Advisor: Gabriel Dos Reis
Associate Dean for Undergraduate Research: Robert C. Webb

April 2009

Major: Computer Engineering

iii

ABSTRACT

Concurrency in a System for Symbolic and Algebraic Computations. (April 2009)

Stefan Mai
Department of Computer Science and Engineering

Texas A&M University

Research Advisor: Dr. Gabriel Dos Reis
Department of Computer Science and Engineering

As miniaturization of computer components is approaching the limits of physics, researchers

in computer architecture are looking for less conventionalmeans to perpetuate Moore’s law.

Recent trends in hardware ve been adding more cores. Consequently multicore machines

are now commodity. To help programmers benefit from Moore’s dividend, researchers

in programming techniques, tools and languages have been exploring several venues. A

dominant theme is the design and implementation of parallelalgorithms. Several program-

ming models have been proposed, but none at the moment seem tobe substantially better

than others. Whilegeneral parallel programming is a distinctively challenging task,we

believe that scientific computation algorithms display algebraic structures, thanks to the

rich mathematical objects they manipulate. The present work aims at exploring the extent

to which algebraic properties displayed by computer algebra algorithms may be automati-

cally exploited to take advantage of parallelism in the OpenAxiom scientific computation

platform. We designed a runtime system that exploits the ubiquitous parallelism of mod-

ern CPUs; the system is also scaled to many-system clusters. Bytaking advantage of the

existingInputForm domain in OpenAxiom and connecting of the standard input channel

to sockets, we were able to minimize potentially hazardous modifications to the OpenAx-

iom source while still implementing desired functionality. Additionally, we designed and

implemented FFI extensions to the OpenAxiom core to take advantage of SIMD instruc-

iv

tions, particularly SSE2 (SIMD Streaming Extensions). Theextension allowed us to nearly

double the speed of common operations such as multiplying arrays of doubles. We also

defined and implemented a foreign function interface for theOpenAxiom system. All of

these additions were benchmarked using Berlekamp’s algorithm for factorization of poly-

nomials over integers. While much still remains to be done in parallelizing the algebra to

work over many calculation nodes, mathematical annotations remain viable in unloading

the burden of parallelizing code from the programmer by substituting a simpler activity.

v

DEDICATION

This thesis is dedicated to all those who I sacrificed time with for the sake of finishing this

thesis, and all the people with excitement for the field that made it worthwhile. Thank you.

vi

NOMENCLATURE

FFI Foreign Function Interface - Used to interface a Lisp system or other language
with native binaries or other languages.

ALU Arithmetic Logic Unit - A module of most processors that accepts commands to
do simple arithmetic operations like addition.

SIMD Single Instruction Multiple Data - An architecture where a single instruction is
applied to multiple streams of data.

MIMD Multiple Instruction Multiple Data - An architecture where many instructions are
applied to many streams of data.

Spad The algebra language of OpenAxiom

SBCL Steele Bank Common Lisp

GCL GNU Common Lisp

CLISP GNU CLISP – An ANSI Common Lisp Implemnentation

ECL Embeddable Common Lisp

vii

TABLE OF CONTENTS

Page

ABSTRACT . iii

DEDICATION . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . viii

CHAPTER

I INTRODUCTION . 1

SIMD . 2
Parallelization server . 3
Annotations . 3

II IMPLEMENTATION OVERVIEW 6

SIMD . 6
FFI . 7
SIMD implementation . 7
Parallel server . 10
Berlekamp’s algorithm . 13
Pre-existing loops in OpenAxiom 15

III RESULTS . 21

FFI . 21
SIMD . 21
Parallelization server . 22
Berlekamp’s benchmark . 29

IV CONCLUSION . 32

FFI . 32
SIMD . 32

viii

Page

Future work . 33

REFERENCES . 34

CONTACT INFORMATION . 35

ix

LIST OF FIGURES

FIGURE Page

1 Ilustration of SIMD . 5

2 C Prototype for a Function the Multiplies Arrays of Doubles. 9

3 Spad Function For Multiplying Arrays of Doubles. 9

4 Intel Intrinsic Code for Multiplying Two Arrays of Doubles. 11

5 Optimized Aligned SIMD Operation Benchmark. 23

6 Optimized Unaligned SIMD Operation Benchmark. 23

7 Unoptimized Aligned SIMD Operation Benchmark. 24

8 Unoptimized Unaligned SIMD Operation Benchmark. 24

9 SIMD Function Example with Fallback. 25

10 OpenAxiom Process Layout. 27

11 OA-Serv Topology. 27

12 OA-Serv Commands. 31

1

CHAPTER I

INTRODUCTION

Everyone in the field of computer science is aware of the impending halt of performance

gains stemming from Moore’s law, the observation that the number of transistors in an

integrated circuit doubles every two years. The failure of these steady gains comes from a

combination of the limitations of manufacturing techniques and the speed of light, which

only permits signals to travel a finite length in one clock tick.1 This observation and the

exploration of its solution is the main thrust of the field of parallel computing, which seeks

to make use of multiple processing units to solve a single problem.

Meanwhile, during the past four decades, symbolic and algebraic manipulation has increas-

ingly complemented numerical computation. Symbolic computation not only offers more

accurate results compared with the typical numerical approximation techniques, but has

the potential to provide insight into the relationships that underly the problems it describes

(see Fateman (1972)). Additionally, solutions derived symbolically can be reused for large

data sets, rather than having to perform redundant calculations. The description of these

problems in symbolical form opens up the potential to perform various transformations

of the problem into equivalent representations with identical solutions. For instance, one

way to solve integrals is by translation into a form that is more easily looked up in a table

of integrals. Similar procedures can be applied to more complex problems provided the

translations do not alter the nature of the problem.

This thesis follows the style of Journal of Symbolic Computation.

1For instance, the speed of light limits the travel of a signalduring one clock of a 3 Ghz
processor to less than 10 cm

2

For this thesis, we look into the convergence of parallel andsymbolic computation in the

extension of OpenAxiom, an open-source computer algebra system (Dos Reis (2009)). One

of OpenAxiom’s primary advantages over the variety of computer algebra systems that are

in use is its typeful nature, which provides an ideal foundation for performing provably

correct transformations of sequential programs into theirparallel equivalents. Thus, this

thesis will take on three parts:

1. The exploration of using the SIMD capabilities of most modern processors to take

advantage of a ‘free’ performance gain.

2. The creation of a server for use in the translation of existing sequential programs so

that they can make use of multiple cores and multiple servers.

3. Using annotation information specified by the user programmer to make use of the

added SIMD and parallelization facilities.

The goal of this thesis is not automatic parallelization, which would require more exhaus-

tive research than the limited time permits, but semi-automatic parallelization based on the

additional information of annotations provided by the programmer. Altogether, we seek

to take advantage of all levels of parallelism, from vector processing instructions (SIMD)

to node-level distributed parallelism within the OpenAxiom platform using mathematical

annotations to guide the process.

SIMD

SIMD stands for single-instruction-multiple-data and in general usage refers to processor

extensions like SSE, SSE2, SSE3 and MMX. All modern x86 processors include SSE sup-

port and the instructions have become the standard for SIMD operations on desktop PCs.

A lot of very common operations like scalar multiplication of matrixes involve repeating

3

an operation on each element of a large array (see Fig. 1). This occurrence is especially

prevalent in computer graphics where large arrays of pixelsare operated on. Hardware

manufacturers have taken this as an opportunity to design extra instructions and data paths

that perform the operations in less cycles than by individually performing them on each

element. OpenAxiom does not currently have any SIMD capabilities which makes this a

straightforward performance benefit that can be compiled into the binaries.

Parallelization server

Taking advantage of multiple cores and multiple CPUs (on applicable machines) is another

area for potential parallelization. The mathematical foundation that underlies most scien-

tific computations exhibits many instances of coarse-grained parallelism that lends well to

multi-core operation. Where SIMD takes simple operations onlarge data sets, paralleliza-

tion among cores, CPUs, or servers is an example of MIMD multiple-instruction-multiple-

data parallism (see Bogong and Grishman (1982)). By identifying calculations that exhibit

high degrees of symmetry or that operate with a small amount of data and instructions in an

expensive computation, the commonplace multi-core architectures can be better utilized.

Annotations

As it stands currently, most programs written in low-level languages lack the structural

information concerning dependencies and side-effects necessary to perform the necessary

transformations to parallel. The manual transformation bya knowledgable programmer

involves the injection of additional insight about the problem into the program that was not

in the source code initially. The absence of this information precludes attempts to have the

compiler do this processing on its own. By adding features to alanguage to fill in these

holes in information, this approach obviates the difficultyof discerning these properties

from the program’s tree itself, which is expensive computationally (see Rabhi and Gorlatch

(2002)).

4

These annotations ideally will provide the missing information required to make trivial

parallelizations of the code. For example,

for x in 1..5 repeat

b.x := gcd(a.x,poly)

is trivially parallelized if we can be certain that the function gcd has no externally visible

side effects. Spad provides an ideal testbed for these operations as its feet are firmly planted

in symbolic computation and its rigid structure allows for much easier transformations. By

exploiting the additional information provided by the annotations, the compiler is able to

transform the program to take advantage of areas that might be successfully parallelized.

The SIMD extensions and parallelization server provide thevehicle for these paralleliza-

tions to be turned into tangible performance benefit.

5

Fig. 1. Ilustration of SIMD

6

CHAPTER II

IMPLEMENTATION OVERVIEW

One of the traditional ways optimizing a program in a sequential programming framework

is to take a certain body of code and profile its execution timeby running it in such a way

as to approximate its most general use. By gathering the timestaken to execute various

function calls, the bottlenecks of code can be tweaked as needed. With parallelization, the

process is different because the goal is greater utilization of the CPU resources, and only

indirectly an increase in speed. This increase is most oftenachieved through a flattening

of execution across computation units like processing cores or compute nodes rather than

reducing the number of instructions required to arrive at a solution. Profiling the execution

is useful in finding the bottlenecks that would be most valuable in execution time, but the

modifications are not nearly as simple. One of the most trivial ways of stretching execution

across more computational units is by delegating iterations of loops, which can take a

number of forms.

SIMD

SIMD architectures focus on building hardware with vector computation units and are typ-

ically geared toward graphics and simulations. The centralidea is to speed up simple

operations of lots of data by multiplying the amount of hardware available and pushing all

the data through in one pass. Technologies such as SSE, SSE3,MMX, and others take ad-

vantage of arrays of arithmetic pipelines in order to increase the computational throughput

of a single processor. Looping structures and operations onarray-like data structures are

the most obvious targets of SIMD solutions. Given that matrix multiplication is a very big

part of numerical computation and a lot of the practical applications of computer algebra,

these optimizations can lead to considerable, practical performance gains.

7

Yet, getting SIMD functionality into OpenAxiom brought several challenges with it. The

first obstacle was finding SIMD functions for each of the Lisp systems supported by Ope-

nAxiom.

FFI

OpenAxiom, like many computer algebra systems, is run on topof a Lisp subsystem,

though this is not theoretically essential as languages like spad operate on top of the Lisp

system and are the primary languages. In particular, OpenAxiom supports many different

Lisp implementations, such as GCL, SBCL, ECL, and Clisp (see Dos Reis (2009)). Each

Lisp implementation brings its own peculiarities, and OpenAxiom operates on a subset of

the Lisp functionality common to them all with extra functions that operate as abstractions

of functionalities that differ per Lisp system. Additionally, some Lisp systems depend on

the operating system they are compiled for, with specific system functionality differing

greatly between Windows and Linux or BSD2. Another area where the Lisp systems differ

significantly is in their FFI or foreign function interface.An FFI allows a Lisp system to

interface with code written in other languages. This is useful for the vast library of sci-

entific computation libraries written in Fortran or C but also because, for our purposes,

it’s easier to write a C library that provides SIMD functionality than to write SIMD code

for each Lisp system and choose it at runtime. The actual implementation of our FFI for

OpenAxiom is detailed in a technical report (Dos Reis and Mai (2009)).

SIMD implementation

While SIMD extensions do exist for some Lisp systems (see Herring (2008)), our decision

was to write a C library that took advantage of the FFI we addedto OpenAxiom. In addition

to this C library, we wrote an Axiom domain that used the functions provided by the library.

2For instance, Windows’ path names use\ while Linux systems use /

8

The domain eases the requirements of the underlying C library. One simple example is to

automatically pass the length of an array, since the FFI supports arrays but makes no explicit

declaration of their length and the C function needs the length in order to do the operation.

Thus, where the C function prototype might look like Fig. 2, the Spad function can be

simpler without an explicit declaration of length as in Fig.3.

Writing the fastest C library to be compiled with GCC was also the subject of investigation.

There are several ways to write SSE code from within GCC. To explore which would result

in the fastest code for our purposes, a trivial example of multiplying two variable length

arrays and placing the result in a third was created. Then code was written in ‘naive’ C

to use as a control for the SIMD instructions. The tests were created by applying GCC’s

native optimizations (-O3), taking advantage of Intel Intrinsics for GCC, and by writing

GCC inline assembly. Afterwards, integration testing was done from within OpenAxiom,

where it was revealed that the Lisp systems did not provide 16-byte aligned data. Without

aligned data, the number of possibilities for our SIMD library was quickly cut down, but the

benchmarks provided a basis for making the best decision. The results of the benchmarks

are explained in Chapter III.

Native optimizations

GCC’s native optimizations are enabled by compiling with the-O3 option in addition to

alerting GCC to the presence of SSE instructions with-msse -msse2. In spite of being a

remarkably easy way to optimize programs, GCC’s native optimizations actually performed

well in comparison to the other options we explored.

Intel intrinsics

Although termed Intel intrinsics, GCC’s implementation is cross platform in that it will

work equally well with AMD processors or any other platform that supports the SSE assem-

9

int simdMultiplyDoubleArrays(int len, double* a, double* b, double*

dest);

Fig. 2. C Prototype for a Function the Multiplies Arrays of Doubles

import simdMultiplyDoubleArrays : (SingleInteger,

ReadOnly PrimitiveArray DoubleFloat,

ReadOnly PrimitiveArray DoubleFloat,

WriteOnly PrimitiveArray DoubleFloat)

-> SingleInteger from Foreign C

multiplyDoubleArrays (a,b,dest) ==

(#a ˜= #b) or (#b ˜= #dest) =>

error "Array sizes must be the same."

simdMultiplyDoubleArrays(#a::SingleInteger,a,b,dest)

return dest

Fig. 3. Spad Function For Multiplying Arrays of Doubles

10

bly instructions. Intel intrinsics alleviate the duty of allocating the 128 bit XMM registers

for the purpose of SSE instructions. Additionally, by specifying the type of the data stored

in a register, the compiler can do type-checking on the non-standard instructions. Intel in-

trinsics essentially allow the programmer to type-safely embed a subset of SSE asssembler

instructions into their code without actually writing assembly. A sample of Intel intrinsic

code is included in Fig. 4.

GCC inline assembly

C’s primary purpose is writing operating systems, and GCC’s inline assembly feature

makes this obvious. It provides the capability to write assembly code inside a C program,

specifying which registers will need to be replaced after the code runs and what local vari-

ables to put the result registers into. This option gave us the capability to write optimized

assembly instructions for the test benchmark. Unfortunately, as powerful as it is, assembly

isn’t portable and while code written for x86 architectureswill work across systems, on

any other system it will not. The assembly capability freed us to use certain unaligned

instructions, which show up in the benchmarks because othermanners of writing the SSE

instructions do not allow for non 16-byte aligned data.

Parallel server

The primary goal for the server architecture that serves as afoundation for this new system

is to manage a number of OpenAxiom kernels with low latency and overhead while maxi-

mizing the utilization of all systems designated for use. More optimization can be achieved

at runtime by allowing information concerning the speed of execution to be recorded that

can inform future passes. The server needs to be able to take advantage of any number

of CPUs on the host system, other available systems on the network, and the architec-

tures of these systems to exploit SIMD opportunities. Our solution involves creating server

instances (hereafter called OAServs) that can intercommunicate to determine network la-

11

//This is a function using the GCC "Intel Intrinsics", the

//loop is unrolled such that 4 doubles are multiplied for each

//run through the loop

void intel_intrinsics_4(double* a,double* b,double* c,int arraysize){

__m128d a1r, b1r, c1r, a2r, b2r, c2r;

unsigned int x=0;

for(x=0;x<arraysize;x+=4){

a1r = _mm_load_pd(a+x);

b1r = _mm_load_pd(b+x);

a2r = _mm_load_pd(a+x+2);

b2r = _mm_load_pd(b+x+2);

_mm_store_pd(c+x,_mm_mul_pd(a1r,b1r));

_mm_store_pd(c+x+2,_mm_mul_pd(a2r,b2r));

}

//This ensures that odd sized arrays are completely multiplied

for(x=1;x<arraysize%4+1;++x){

c[arraysize-x] = a[arraysize-x]*b[arraysize-x];

}

}

Fig. 4. Intel Intrinsic Code for Multiplying Two Arrays of Doubles

12

tencies and the shortest path to execution.

Kernel management

Each OAServ will maintain an optimal number of kernel processes (usually equal to the

number of cores times the number of cpus) as well as information regarding their avail-

ability, response times, and historical information aboutthe excution of blocks of code. In

addition, the OAServ keeps connections to other OAServ processes on the network with

“remote” kernels that are available if the local kernels become saturated. OpenAxiom

processes can connect to the OAServ to dispatch commands packaged with data. These

packets are delegated to the nearest and/or most readily available computation kernel, with

local kernels favored over remote kernels. If it is estimated that all of the local kernels will

finish their tasks in 10ms, then it doesn’t make sense to push the task to another server

50ms away that has free kernels. Meanwhile, if the local tasks might take 500ms, then the

trip becomes more economical.

Client-side library

A parallelization library will be written for OpenAxiom that takes in a syntax tree and

outputs a functionally equivalent tree with built in communication to the OAServ. As each

task is dispatched in the source from OpenAxiom, they are given a unique identifier to allow

the OAServ to profile the operations. Moving averages shouldbe kept as to the computation

time required to complete the tasks which will allow the server to dynamically adapt to (or

reject) jobs as they arrive.

Serialization facilities

The process of serialization is currently accomplished through the InputForm facilities in

OpenAxiom. This domain models objects in textual form such that they can be accurately

recreated on another process. This works well for simple lists and symbols but fails utterly

13

when extended to more complicated structures, particularly with cycles. Additional work

will need to be done into establishing and implementing a protocol for the communica-

tion of mathematical structures between OpenAxiom and the parallelization server. There

already exist a few protocols such as MathML that may work, but research will have to

be conducted into the overhead of packing and unpacking MathML structures (as well as

the time expense of developing a compatible implementation) over something closer to the

OpenAxiom native representation.

Pattern matching

One of the primary strengths of OpenAxiom is the typing facilities that are built in. By

serializing data and instructions to be pushed to remote nodes, the resulting data does not

always have an easily assumable type. Many functions in OpenAxiom will return a string

detailing their failure or the correct result. Pattern matching allows us to recreate the type

at compile time in the destination.

case r is

i@Integer => -- Do operations on i as an Integer

d@DoubleFloat => -- Do operations on d as a DoubleFloat

otherwise => error "r is not of a prepared type."

The pattern matching serves two purposes. The first is that itexecutes different code de-

pending on the type of the incoming data. The second is that itallows the compiler to

assume the type of the data following its assertion by the earlier case statement. This fea-

ture lets OpenAxiom maintain type safety within the uncertain environment of executing

code on a remote host where the result is not of a definite type.

Berlekamp’s algorithm

Berlekamp’s algorithm (see Berlekamp (1967)) serves as the motivating example for all the

14

parallelization work. At present, only SIMD functionalityhas been added. An approximate

overview of Berlekamp’s algorithm is as follows:

1. Make sure that the polynomial is squarefree by taking the GCD of the polynomial

against its derivative. If the result is not one, you will need to remove the squared

roots first.

2. Create a BerlekampQ matrix for the polynomial, of sizeN×N whereN is the degree

of the polynomial to be factored. Each row is given byxnp modu(x) wheren is the

0-based index of the row,p is the prime number of the field we are factorizing under

andu(x) is the polynomial being factorized.

3. Take theQ matrix and subtract the corresponding identity matrix, then find the null

space basis of the result.

4. For each vector in the basis, calculate gcd(u(x),v(x)− s) wheres is all integers be-

tween 0 and the prime number representing the field. The factorization is the product

of all nonzero results.

For conceptualization purposes, the algorithm can be broken down into three main sections

(see Schreiner (2001)):

1. Create theQ Matrix

2. Find the Null Space Basis

3. Test All Possible Factors

Much work has been done relating to the generation of theQ matrixGeddes et al. (1992)

as well as heuristics to find thosev(x)− s that are mostly likely to be factors. While these

15

findings are both significant and yield substantial performance gains, for the purposes of

our testing we sought optimizations related to the machine rather than the algorithm itself.

SIMD opportunities

For the generation of theQ matrix, each row is generated by a transformation of the pre-

vious row such thatak+1, j = ak, j−1− ak,n−1u j(from Knuth (1981)). Each successive row

can be generated by subtracting a scalar multiplication ofu by the previous row from the

previous element in the current row, generating the row fromthe lowest element to the

highest.

In taking the null space of theQ matrix, the matrix is column reduced by traversing each

row and pivoting on a non-zero column to eliminate other columns that have elements on

that row. In the resultant matrix, the nonzero rows describepolynomials to test in the

next section. Each column reduction is performed by subtracting the original value of the

column from a scalar multiple of the pivot column. Both scalarmultiplication and element-

wise subtraction can be performed using SSE instructions.

No SIMD optimizations were attempted in the testing of possible factors.

Pre-existing loops in OpenAxiom

The OpenAxiom software has a wide array of libraries that areshipped with the binaries

or can be readily obtained from the internet. Facilities exist to query the libraries that are

loaded to examine their code or the domains they provide, making it easy to get an idea as

to the nature of the loops that already exist. Specfically, the Syntax domain allows the user

(or programmer) to manipulate and inspect the code producedby a function. Static analysis

of these loops should give rudimentary information as to which can be broken into pieces

or parallelized as is. While annotations of functions have not yet made their way into the

OpenAxiom kernel, once they have been added it should be straightforward to write Spad

16

code using the Syntax domain to inspect loops and discover whether or not transformations

can be accomplished depending upon the properties of the function calls and assignments

made inside. This is future research work.

Mathematical optimizations

On of the easiest functions to do parallelization of is the GCDfunction. GCD is commu-

tative and associative, and has an identity element of 1 and aneutral element of 1. These

properties give us a number of distinct advantages:

Associativity and Commutativity Together these properties fulfil the requires for divide

and conquer. This allows us to spread out function exectionswithout concern for the

order in which they are taken apart or reassembled.

Identity Elements Operations performed on member elements of a set that are identity

elements are inconsequential to the aggregrate computation. By eliminating function

calls that should surely result in the same value as the input(5+ 0), it’s possible to

eliminate redundant calculations.

Annhilihators or Neutral Elements Neutral elements, once encountered, reveal the solu-

tion without calculation. The solution of gcd(5x2+2x+1,6x7−9x2
,8x4

,1) is clearly

1. These are the lowest hanging of optimization fruits.

Loop optimizations

The process of transforming loops at compile time is relatively straightforward for easily

conceptualized programs, but grows in difficulty as new concepts are brought in. The bur-

den of mental gymnastics involved can be mitigated through the use of careful abstractions,

a technique not far from anyone involved with computers. Part of the abstraction-forming

process is realizing the limitations of the underlying codethat need to be encompassed. By

17

dividing code into pieces that can be rearranged using certain rules if specific conditions

are met, the problem of parallelization can be reduced to that of symbolic manipulation.

This allows us to create analogs to mathematical concepts (like associativity of operators

and the rearrangements of equations) which creates a pathway for the reuse of algorithms

and concepts already researched in the field of computer algebra. Thus, the parallelization

and speed up of a computer algebra system is accomplished through information readily

available in the field of computer algebra.

Runtime unknowns

One such limitation on rearrangement is that of runtime unknowns. Compile-time opti-

mization is limited by the information present before execution. For instance, unrolling the

GCD of a set of number by hand is tedious and quickly grows into an unsolveable problem.

return gcd([11,75,34,87,45,23])

Becomes:

a = send(1,"gcd(11,75)")

b = send(2,"gcd(34,87)")

c = send(3,"gcd(45,23)")

d = send(4,"gcd("+a+","+b+")") -- depends on a and b?

e = send(5,"gcd("+d+","+c+")") -- depends on d (a nd b) and c?

return e

And if the literal set is replaced with a variable, the loop cannot be unrolled at compile-time.

Dependencies

Next, if any iteration is dependent upon a previous iteration, the process of parallelization

18

breaks down because subsequent calculations in the data path require results form earlier

steps.

Sometimes this dependency relationship, when appropriately mapped out, can be simpli-

fied. For instance, if a single invocation is always dependent on the previous invocation

(making it implicitly sequential), but a secondary function fuction is pure, then:

result := y

max_val := set.1

for x in 1..n repeat

result := gcd(set.x,result)

inv_set.x := (set.x)ˆ-1

Can be transformed to:

result = y

for x in 1..n repeat

result:= gcd(set.x,result)

for x in 1..n repeat

inv_set.x := (set.x)ˆ-1

The pure function loop can be trivially parallelized and thefootprint of the non-parallelizable

loop is reduced.

But this is only possible if we can be certain that the output ofgcd() in a single iteration

does not affect the input or execution of the inverse immediately afterwards. In effect, the

result can only be guaranteed functionally equivalent if wecan provide specific properties

on the functions involved.

19

Latency thresholds

If the latency of the network dominates the time of executionfor the loop body, then the

process of parallelizing the loop may actually increase execution time. While complete

compile-time estimation of the time required to complete a sequence of instructions degen-

erates to the halting problem, simple heuristics might suffice when paired with an intelligent

run-time system. Serializing and transmitting data structures brings its own problems (and

expenses), and finally typing the transaction is a nightmare.

Present solutions

The present manner of dealing with these difficulties is to have the programmer perform the

tasks manually. But bookkeeping and micromanagement are generally fields that humans

make mistakes often, whereas computers shine. The most modern approaches ask the

programmer to instruct the compiler as to how the code can be parallelized. Typically, these

annotations are little more than macros that expand the codeinto a series of delegations.

For instance:

result = 1

for x in 1..n repeat -- %ASSOCIATIVE_PARALLELIZE

result := gcd(set.x,set.(x+1))

Might produce code for the parent node like:

for x in 1..n repeat

push(stack,set.x)

runstackop(stack,set,gcd)

And code for each node that resembles:

20

if size(stack)>2 then

lock(stack)

a := pop(stack)

b := pop(stack)

unlock(stack)

temp := gcd(a,b)

lock(stack)

push(stack,temp)

unlock(stack)

Macro systems such as these are available for some modern computer algebra systems (like

Schreiner (2009)). These systems significantly reduce the amount of code required by the

programmer, but fail to add any understanding of the underlying program by the compiler.

Our approach differs in what is annotated: while currently the emphasis is on instruct-

ing the compiler as the the location of potential improvement, our approach focuses on

describing the mathematical structure of functions such that the compiler can programmat-

ically determine the locations for improvement. This involves specifiying the properties

of functions, rather than places where their invocations are portable to other machines or

cores. If a function is pure (that is: it has no side effects),then the compiler can assume

independence of iterations and choose to trivially parallelize the loop without intervention

from the programmer. This presents a number of benefits, one obvious reason being that

old code doesn’t need to be rewritten to annotate parallelizable loops. Additionally, when

writing code the knowledge of how a function works and what itdoes is clearer during its

creation than its invocation.

21

CHAPTER III

RESULTS

FFI

One of OpenAxiom’s strengths is its ability to work across many different Lisp systems.

Supported Lisp systems include SBCL, ECL, GCL, and most versionsof CLisp (specifi-

cally those that have an FFI interface built in). The challenge of getting Lisp to emit the

assembly instructions required to take advantage of SIMD (notably SSE) had a number of

solutions, but the foremost aspect we were looking for was speed in implementation. Ope-

nAxiom already had in place an incomplete solution for interfacing Boot code with C code

that was compiled with the rest of the Axiom libraries. This was primarily used as a Lisp

system portable manner of interacting with the filesystem. It was extended to work with

Spad code through an addition to the grammar. The syntax allows for the import of func-

tions from shared libraries compiled with C (but can easily be extended to support other

languages). By implementing a SIMD library in C, we were able tomitigate the problem

of having the Lisp system emit assembly instructions for theSSE instructions.

The FFI in OpenAxiom allows the passing of arrays represented by thePrimitiveArray

domain as well as all of the primitive data types of the C language as their OpenAx-

iom domain equivalents. Meanwhile, many domains in OpenAxiom do not make use of

PrimitiveArray, instead opting forList or Vector. While these domains can be co-

erced intoPrimitiveArray and vice-versa, the computational overhead associated with

the conversion is expensive. This is not uncommon in SIMD conversions, and limits the

scope of the SIMD functionality until transformations can take place that might alter the

intermediate data structures of existing algorithms and routines.

22

SIMD

For the SIMD implementation, benchmarks were performed with both 16-byte aligned

arrays (Fig. 5 and 7) and unaligned arrays (Fig. 6 and 8), bothwith optimization on (gcc

-O3) and off against our test benchmark of multiplying arrays. Each benchmark was done

for applicable expressions, like inline assembly or Intel intrinsics.

Of particular note for the results: GCC optimizes C pretty well by emitting instructions

that use the floating point stack in a manner such that the processor is able to pipeline the

double multiplications across the floating point units. Itsspeed in aligned instructions very

nearly approaches the hand-worked assembly. While aligned operations have a much more

significant variety in the way you can produce code, unaligned operations are not quite so

resilient with many producing segfaults when fed unalignedinput. These benchmarks were

left out of the final data sets. Running sample code that makes an FFI call with a simple

PrimitiveArray in OpenAxiom shows that FFI calls are not guaranteed to be 16-byte

aligned. Furthermore, the IA-32 architecture actually dictates3 that SBCL’s implementation

of vector is not 16-byte aligned, forcing our SIMD library toassume unaligned arrays.

After running these benchmarks, several SIMD functions were put in the library each with

an SSE implementation and a ‘fallback’ implementation (Fig. 9). This design allows us

to tightly integrate OpenAxiom code with the library without fear of incompatibility in

systems where SSE or a similar architecture is not available.

Parallelization server

In order to avoid potentially hazardous modifications to theAxiom kernel, the choice was

made to develop a standalone server to support multi-core parallelism and multi-node dis-

tribution. Presently, OpenAxiom exists as a set of processes governed by a single ”sman”

3In structs, doubles are aligned on 4 byte boundaries rather than 8 byte boundaries as
elsewhere.

23

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0.13

 0.14

 200 205 210 215 220 225 230 235 240 245 250

T
im

e
T

ak
en

 (
s)

Array Elements

Unaltered C
Unaligned SSE ASM (8)

Aligned SSE ASM (8)
Aligned SSE ASM (16)

Intel Intrinsics (2)
Intel Intrinsics (4)

Fig. 5. Optimized Aligned SIMD Operation Benchmark

 0.105

 0.11

 0.115

 0.12

 0.125

 0.13

 0.135

 0.14

 200 205 210 215 220 225 230 235 240 245 250

T
im

e
T

ak
en

 (
s)

Array Elements

Unaltered C
Unaligned SSE ASM (8)

Fig. 6. Optimized Unaligned SIMD Operation Benchmark

24

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200 205 210 215 220 225 230 235 240 245 250

T
im

e
T

ak
en

 (
s)

Array Elements

Unaltered C
Unaligned SSE ASM (8)

Aligned SSE ASM (8)
Aligned SSE ASM (16)

Intel Intrinsics (2)
Intel Intrinsics (4)

Fig. 7. Unoptimized Aligned SIMD Operation Benchmark

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 200 205 210 215 220 225 230 235 240 245 250

T
im

e
T

ak
en

 (
s)

Array Elements

Unaltered C
Unaligned SSE ASM (8)

Fig. 8. Unoptimized Unaligned SIMD Operation Benchmark

25

int simdMultiplyDoubleArrays(int len, double* a, double* b, double* dest) {

#ifdef __SSE2__

int x, end = len-len%4;

//We’re unrolling the operation into sets of 4 doubles

for(x=0;x<end;x+=4){

asm volatile(\

"movupd (%0), %%xmm0\n" //Move 0:(a+x) into register

"movupd 16(%0), %%xmm1\n"

"mulpd (%1), %%xmm0\n" //Multiply 1:(b+x) and register (a+x)

"mulpd 16(%1), %%xmm1\n"

"movupd %%xmm0, (%2)\n" //Store back out to 2:(c+x)

"movupd %%xmm1, 16(%2)\n"

:

: "r" (a+x), "r" (b+x), "r" (dest+x)

: "memory"

);

}

//We can’t use simd for these

for(x=1;x<len%4+1;++x)

dest[len-x] = a[len-x]*b[len-x];

#else

int x; //Fallback

for(x=0;x<len;++x)

dest[x] = a[x]*b[x];

#endif

}

Fig. 9. SIMD Function Example with Fallback

26

or superman process (see Fig. 10). The child processes include hyperdoc (a graphical X-

window process for documentation and examples), clef (a process for gathering user input

and offering rudimentary history operations), and AXIOMsys (the actual Axiom kernel for

computation).

OA-Serv architecture

Most of the overhead associated with hyperdoc, sman, and clef did not need to be loaded

for our parallelization server. Thus, we created a server which loads AXIOMsys processes

on sockets for use as calculation ‘kernels’. These servers,dubbed OA-Servs, each can

load a theoretically infinite number of kernels (though practically the number is best left

at the number of cores available). Additionally, OA-Servs are able to connect together to

form cluster-like networks (Fig. 11). This obviates the problems with firewalls as only

one machine needs to be network-facing and it can serve as theserver for all the machines

behind a firewall.

Each OA-Serv accepts commands (Fig. 12) delimited by newlines and returns results in

the order in which they finish. For most purposes, the clientsuse commands (like single)

that can associate the result with the command that was sent through the use of IDs.

The server can be extended easily to implement new executionplans or command types.

For instance, the AssociativeCommandBucket creates a stack which kernels can pull from

(if the stack has more than one element) and deposit the result. At start, all the elements

of the set are pushed onto the stack. As each kernel frees up and looks for a job, two

elements are popped off and when the job finishes a single result is pushed back on. With

the associativity property, this ensures correct results (and assuming uniform execution

time,O(log(n)) execution time, but could later be extended to select pairs of elements that

are most likely to run quickly together.

27

hyperdoc cle f

sman

AXIOMsys

Fig. 10. OpenAxiom Process Layout

OA−Serv

Kernel Kernel

OA−Serv

Kernel

OA−Serv

Kernel Kernel

Kernel

User

Fig. 11. OA-Serv Topology

28

Each server runs sequentially, using an event-based paradigm with the socket-multiplexing

select statement to handle incoming connections and network writes. In order to add dis-

tribution capability without additional threads, a simplehandshake was created. When

a server saturates all its own local nodes with calculations, it broadcasts a FREE com-

mand to all the connected nodes. Each node will accept the FREEcommand, examine its

command buffer and local node states, and respond with a GIMME if there is room for

more commands. The source node responds to GIMME by pushing out to the requesting

node a SINGLE command, that specifies a command to run and an IDto associate with

it. When this command finishes, it returns a SINGLERESPONSE command to the source

node which is then associated with the command sent and checked off of the queue.

Transport

One of the primary hurdles associated with parallelizationis the task of transporting data

between processes. There are many options, with various tradeoffs associated with network

latency, throughput, and the potential for missing data. By limiting our parallelization to the

exploitation of algebraic properties, all of the shipmentscan be characterized by defining

closures. For instance, in the example of Berlekamp’s algorithm, the factors can be found

by taking the GCD of the polynomial with a set of potential factors created from theQ

matrix’s null space basis. If this operation is described by

for v in basis

for s in 0..p-1

map(test+->GCD(polynomial,test),v-s)

Then each shipment can be described in two parts: the operation to be performed and the

variables required to perform it. In this case, if the function called by map is pure and

doesn’t depend on external environmental variables then all the necessary variables can be

29

found in the parameters to the function, GCD.

For our tests, the easiest way to create these shipments without extensive modifications to

OpenAxiom was to create OpenAxiom commands from within OpenAxiom to ship to each

server. Thus, our example might be written:

[GCD(polynomial,v.1),GCD(polynomial,v.2),...GCD(polynomial,v.n)]

By substituting the actual values for each element of v (sincev will not exist on the remote

servers to evaluate) and attaching type information, a simple protocol is established for

shipping calculations. Each server will receieve:

GCD((xˆ25+x+1)::Polynomial PrimeField 5,

(xˆ4+2xˆ3+4x+2)::Polynomial PrimeField 5)

The result is:

(xˆ4+2xˆ3+4x+2)::Polynomial PrimeField 5

By multiplying together all the results of this mapping, we’ve solved for all the factors of

the polynomial.

Berlekamp’s benchmark

In order to test the efficacy of annotations as a way to semi-automatically parallelize pro-

grams, we considered a generic implementation of Berlekamp’s algorithm for the factor-

ization of polynomials over finite fields.

The generation of theQ matrix can be done through binary powering, a process which

creates a tree of dependencies but can generate the matrix inOlogn time rather thanOn.

30

Unfortunately, this does not take advantage of annotationsand thus isn’t automatically

parallized.

Once theQ matrix is generated and the null space basis generated, the task degenerates

into a problem of testing by division all the possible factors from the basis. This process

can be accomplished by mapping the pure function that takes the GCD of an input and the

original polynomial to the basis set. This does not take advantage of the speedup associated

with using the reduced polynomial as factors are found, nor can it finish early once the

polynomial’s factors are all discovered. For this, extra information will have to be sent to

the server to signal an end-of-calculation condition.

31

list Prints the current status of the server and connected servers.

connect Connects one server unidirectionally to another.

seq Runs a group of commands sequentially across as many servers as possible.

assoc Runs an associative function across a set.

single Runs a single command with an identifier.

quit Kills the server and its kernels.

Fig. 12. OA-Serv Commands

32

CHAPTER IV

CONCLUSION

Our results show that performance gains are possible both through the use of SIMD instruc-

tions and by parallelizing code and distributing it among cores and nodes. While hand-

worked parallelization is not new, the potential for parallelization through static analysis

and annotations remains a viable step in the march toward programmer-aided compiler-

driven parallel transformations.

FFI

The FFI facilities of OpenAxiom were extended and hardened by testing with regard to

SIMD. By enabling developers to serparate their native code from the source of Ope-

nAxiom, it should speed development of extensions that require native functionality (like

SIMD) by removing the compilation of the kernel from the build process. The FFI of

OpenAxiom can easily be extended to support Fortran so that the vast library of scientific

libraries available in Fortan can be used, which will go a great way in progressing OpenAx-

iom toward becoming both a symbolic and numeric computationsystem. As a computer

algebra system that already operates in a heterogeny of languages, adding a FFI was a

natural, yet necessary extension.

SIMD

SIMD shows potential in the narrow example of Berlekamp’s algorithm and offers the

promise of performance gains for most modern computers without extensive configuration

of parallelization servers or access to clusters of servers. There may still be minor per-

formance gains to be had in writing more efficient assembly routines or by tweaking the

underlying Lisp system’s manner of allocating arrays, but most of these wins are dwarfed

33

by the time spent in arranging bytes and coercing data structures to be used by SIMD.

Future work

A lot of work remains with respect to static analysis and creating a protocol for the trans-

mission of OpenAxiom data structures in between servers andCPU cores. A means of

efficiently converting more complex structures like cyclical lists in such a way that they

are expressed fully without being overly verbose remains a challenge. Extensions must

be added to the OpenAxiom compiler to support annotation of functions before any static

analysis can start, but the Syntax domain provides a jump-start on the process by skipping

the lexing and parsing steps. When the static analysis is in place, many of the features such

as moving averages and execution profiling can be added.

34

REFERENCES

Berlekamp, E. R., 1967. Factoring polynomials over finite fields. Bell Systems Tech 46,
1853–1859.

Bogong, S., Grishman, R., 1982. Emulating an mimd architecture. In: MICRO 15: Pro-
ceedings of the 15th annual workshop on Microprogramming. IEEE Press, Piscataway,
NJ, USA, pp. 197–199.

Dos Reis, G., 2009. Openaxiom. Website, http://www.open-axiom.org/.

Dos Reis, G., Mai, S., April 2009. Foreign Function Interfacefor OpenAxiom. Tech. Rep.
TAMU-CSE-2009-4-2, Department of Computer Science & Engineering, Texas A&M
University, College Station.

Fateman, R. J., April 1972. Essays in Algebraic Simplification. Master’s thesis, Mas-
sachusetts Institute of Technology.

Geddes, K. O., Czapor, S. R., Labahn, G., 1992. Algorithms for Computer Algebra. Kluwer
Academic Publishers, Norwell, MA.

Herring, D., 2008. Sb-simd simd support for sbcl. Website, http://common-lisp.net/project/
sb-simd/.

Knuth, D. E., 10 Jan. 1981. Seminumerical Algorithms, 2nd Edition. Vol. 2 of The Art of
Computer Programming. Addison-Wesley, Reading, MA.

Rabhi, F., Gorlatch, S., 2002. Patterns and Skeletons for Parallel and Distributed Comput-
ing. Springer-Verlag, London, UK.

Schreiner, W., July 2001. Parallelizing the Big Prime Berlekamp Algorithm with Dis-
tributed Maple. Tech. Rep. 01-15, RISC Report Series, University of Linz, Austria.

Schreiner, W., 2009. Distributed maple. Website, http://www.risc.uni-linz.ac.at/software/
distmaple.

35

CONTACT INFORMATION

Name: Stefan Mai

Address: Parasol Lab
301 Harvey R. Bright Bldg, 3112 TAMU
College Station, TX

Email Address: stefan.mai@iamnafets.com

Education: B.S. Computer Engineering, Texas A & M University,May 2010

