View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Texas A&M Repository

CONCURRENCY IN A SYSTEM FOR

SYMBOLIC AND ALGEBRAIC COMPUTATIONS

A Senior Scholars Thesis

by
STEFAN MAI

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the desigoatof

UNDERGRADUATE RESEARCH SCHOLAR

April 2009

Major: Computer Engineering

https://core.ac.uk/display/4274557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONCURRENCY IN A SYSTEM FOR

SYMBOLIC AND ALGEBRAIC COMPUTATIONS

A Senior Scholars Thesis

by
STEFAN MAI

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the desigoatof

UNDERGRADUATE RESEARCH SCHOLAR

Approved by:

Research Advisor: Gabriel Dos Reis
Associate Dean for Undergraduate Research: Robert C. Webb

April 2009

Major: Computer Engineering

ABSTRACT

Concurrency in a System for Symbolic and Algebraic Computati¢April 2009)

Stefan Mai
Department of Computer Science and Engineering
Texas A&M University

Research Advisor: Dr. Gabriel Dos Reis
Department of Computer Science and Engineering

As miniaturization of computer components is approachueditnits of physics, researchers
in computer architecture are looking for less conventiomens to perpetuate Moore’s law.
Recent trends in hardware ve been adding more cores. Con$igqueiticore machines
are now commodity. To help programmers benefit from Moor&/gldnd, researchers
in programming techniques, tools and languages have bg#arieg several venues. A
dominant theme is the design and implementation of parlgrithms. Several program-
ming models have been proposed, but none at the moment sdmstdstantially better
than others. Whilegeneral parallel programming is a distinctively challenging tasle
believe that scientific computation algorithms displayeblgic structures, thanks to the
rich mathematical objects they manipulate. The presenk aions at exploring the extent
to which algebraic properties displayed by computer alg@tgorithms may be automati-
cally exploited to take advantage of parallelism in the Gfoeom scientific computation
platform. We designed a runtime system that exploits thquitnus parallelism of mod-
ern CPUs; the system is also scaled to many-system clustersakBy advantage of the
existing InputForm domain in OpenAxiom and connecting of the standard inpubcih
to sockets, we were able to minimize potentially hazardoadifications to the OpenAx-
iom source while still implementing desired functionali#dditionally, we designed and

implemented FFI extensions to the OpenAxiom core to takeuatdge of SIMD instruc-

tions, particularly SSE2 (SIMD Streaming Extensions). €kension allowed us to nearly
double the speed of common operations such as multiplyiraysiof doubles. We also
defined and implemented a foreign function interface for@penAxiom system. All of
these additions were benchmarked using Berlekamp’s atgofior factorization of poly-
nomials over integers. While much still remains to be doneairaltelizing the algebra to
work over many calculation nodes, mathematical annotatremain viable in unloading

the burden of parallelizing code from the programmer by suhigg a simpler activity.

DEDICATION

This thesis is dedicated to all those who | sacrificed timéat the sake of finishing this

thesis, and all the people with excitement for the field thatlenit worthwhile. Thank you.

FFI

ALU

SIMD

MIMD

Spad
SBCL
GCL
CLISP
ECL

Vi

NOMENCLATURE

Foreign Function Interface - Used to interface a Lispgesysor other language
with native binaries or other languages.

Arithmetic Logic Unit - A module of most processors thatapts commands to
do simple arithmetic operations like addition.

Single Instruction Multiple Data - An architecture wkea single instruction is
applied to multiple streams of data.

Multiple Instruction Multiple Data - An architecture mere many instructions are
applied to many streams of data.

The algebra language of OpenAxiom

Steele Bank Common Lisp

GNU Common Lisp

GNU CLISP — An ANSI Common Lisp Implemnentation

Embeddable Common Lisp

TABLE OF CONTENTS
Page
ABSTRACT e iii
DEDICATION e %
NOMENCLATURE e Vi
TABLE OF CONTENTS e Vii
LISTOFFIGURES e e viii
CHAPTER
I INTRODUCTION 1
SIMD . . . e 2
Parallelizationserver
Annotations e 3
Il IMPLEMENTATION OVERVIEW 6
SIMD . . . e 6
FEL 7
SIMD implementation L. 7
Parallelserver. 10
Berlekamp’s algorithm 13
Pre-existing loops in OpenAxiom 15
1] RESULTS 21
FRL 21
SIMD . . . 21
Parallelizationserver o oo 22
Berlekamp’s benchmark L. 29
\Y CONCLUSION e 32
FEL 32

vii

REFERENCES

viii

Futurework

CONTACT INFORMATION o e 35

LIST OF FIGURES

FIGURE Page
1 llustrationof SIMD 5
2 C Prototype for a Function the Multiplies Arrays of Doubles. 9
3 Spad Function For Multiplying Arrays of Doubles. 9
4 Intel Intrinsic Code for Multiplying Two Arrays of Doubles. 11
5 Optimized Aligned SIMD Operation Benchmark 23
6 Optimized Unaligned SIMD Operation Benchmark. 23
7 Unoptimized Aligned SIMD Operation Benchmark. 24
8 Unoptimized Unaligned SIMD Operation Benchmark 24
9 SIMD Function Example with Fallback 25
10 OpenAxiom Process Layout. 27
11 OA-ServTopology. 27

12 OA-ServCommands 31

CHAPTERII
INTRODUCTION

Everyone in the field of computer science is aware of the irdpgnhalt of performance
gains stemming from Moore’s law, the observation that thelmer of transistors in an
integrated circuit doubles every two years. The failurenese steady gains comes from a
combination of the limitations of manufacturing techniguend the speed of light, which
only permits signals to travel a finite length in one cloclk#ic This observation and the
exploration of its solution is the main thrust of the field afrallel computing, which seeks

to make use of multiple processing units to solve a singlélpro.

Meanwhile, during the past four decades, symbolic and atgemanipulation has increas-
ingly complemented numerical computation. Symbolic cotapon not only offers more

accurate results compared with the typical numerical appration techniques, but has
the potential to provide insight into the relationships thvaderly the problems it describes
(see Fateman (1972)). Additionally, solutions derived lsghcally can be reused for large
data sets, rather than having to perform redundant cailontat The description of these
problems in symbolical form opens up the potential to penfearious transformations
of the problem into equivalent representations with id=itsolutions. For instance, one
way to solve integrals is by translation into a form that isreneasily looked up in a table
of integrals. Similar procedures can be applied to more ¢exnproblems provided the

translations do not alter the nature of the problem.

This thesis follows the style of Journal of Symbolic Compiotat

For instance, the speed of light limits the travel of a sighaing one clock of a 3 Ghz
processor to less than 10 cm

For this thesis, we look into the convergence of parallel syrdbolic computation in the
extension of OpenAxiom, an open-source computer algelstasy(Dos Reis (2009)). One
of OpenAxiom’s primary advantages over the variety of cotapalgebra systems that are
in use is its typeful nature, which provides an ideal fouraator performing provably
correct transformations of sequential programs into thamallel equivalents. Thus, this

thesis will take on three parts:

1. The exploration of using the SIMD capabilities of most modprocessors to take

advantage of a ‘free’ performance gain.

2. The creation of a server for use in the translation of egstequential programs so

that they can make use of multiple cores and multiple servers

3. Using annotation information specified by the user pnognar to make use of the

added SIMD and parallelization facilities.

The goal of this thesis is not automatic parallelizationjchtwould require more exhaus-
tive research than the limited time permits, but semi-aatisyparallelization based on the
additional information of annotations provided by the peagmer. Altogether, we seek
to take advantage of all levels of parallelism, from vectargessing instructions (SIMD)
to node-level distributed parallelism within the OpenAxi@latform using mathematical

annotations to guide the process.

SIMD

SIMD stands for single-instruction-multiple-data and engral usage refers to processor
extensions like SSE, SSE2, SSE3 and MMX. All modern x86 meaes include SSE sup-
port and the instructions have become the standard for SIpHDations on desktop PCs.

A lot of very common operations like scalar multiplicatiohroatrixes involve repeating

an operation on each element of a large array (see Fig. 1% odaurrence is especially
prevalent in computer graphics where large arrays of piastsoperated on. Hardware
manufacturers have taken this as an opportunity to desiga mstructions and data paths
that perform the operations in less cycles than by indiMigiyzerforming them on each
element. OpenAxiom does not currently have any SIMD cajisilwhich makes this a

straightforward performance benefit that can be compiléd the binaries.

Par allelization server

Taking advantage of multiple cores and multiple CPUs (onieg@ble machines) is another
area for potential parallelization. The mathematical fitation that underlies most scien-
tific computations exhibits many instances of coarse-gaparallelism that lends well to
multi-core operation. Where SIMD takes simple operationtaoye data sets, paralleliza-
tion among cores, CPUs, or servers is an example of MIMD meHipstruction-multiple-
data parallism (see Bogong and Grishman (1982)). By idengfgalculations that exhibit
high degrees of symmetry or that operate with a small amduddta and instructions in an

expensive computation, the commonplace multi-core achites can be better utilized.

Annotations

As it stands currently, most programs written in low-levahdguages lack the structural
information concerning dependencies and side-effectessaey to perform the necessary
transformations to parallel. The manual transformatioralinowledgable programmer
involves the injection of additional insight about the desh into the program that was not
in the source code initially. The absence of this informapoecludes attempts to have the
compiler do this processing on its own. By adding features lemguage to fill in these
holes in information, this approach obviates the difficldfydiscerning these properties
from the program’s tree itself, which is expensive compatstlly (see Rabhi and Gorlatch

(2002)).

These annotations ideally will provide the missing infotimia required to make trivial

parallelizations of the code. For example,

for x in 1..5 repeat

b.x := gcd(a.x,poly)

is trivially parallelized if we can be certain that the fuioctgcd has no externally visible

side effects. Spad provides an ideal testbed for thesetopesas its feet are firmly planted
in symbolic computation and its rigid structure allows fanch easier transformations. By
exploiting the additional information provided by the atatmns, the compiler is able to
transform the program to take advantage of areas that megbktibcessfully parallelized.
The SIMD extensions and parallelization server providewvtigicle for these paralleliza-

tions to be turned into tangible performance benefit.

8*7, 7*4,4%2 2%9

A\ 4 A\ 4 \4 A\ 4

* * * * | «<—SIMD ALUs

A\ 4 A\ 4 A\ 4 A\ 4

32+6+54+5

Fig. 1. llustration of SIMD

CHAPTER I
IMPLEMENTATION OVERVIEW

One of the traditional ways optimizing a program in a segaéptogramming framework
is to take a certain body of code and profile its execution tomeunning it in such a way
as to approximate its most general use. By gathering the tiakes to execute various
function calls, the bottlenecks of code can be tweaked agetedNith parallelization, the
process is different because the goal is greater utilimadgfidhe CPU resources, and only
indirectly an increase in speed. This increase is most @témeved through a flattening
of execution across computation units like processingsorecompute nodes rather than
reducing the number of instructions required to arrive atlaten. Profiling the execution
is useful in finding the bottlenecks that would be most valeiat execution time, but the
modifications are not nearly as simple. One of the most tnvays of stretching execution
across more computational units is by delegating iteratiohloops, which can take a

number of forms.

SIMD

SIMD architectures focus on building hardware with vectmmputation units and are typ-
ically geared toward graphics and simulations. The cerdied is to speed up simple
operations of lots of data by multiplying the amount of haadsvavailable and pushing all
the data through in one pass. Technologies such as SSE, BIBEQ,and others take ad-
vantage of arrays of arithmetic pipelines in order to insesthhe computational throughput
of a single processor. Looping structures and operatiorari@y-like data structures are
the most obvious targets of SIMD solutions. Given that matrultiplication is a very big
part of numerical computation and a lot of the practical egaplons of computer algebra,

these optimizations can lead to considerable, practic&bpeance gains.

Yet, getting SIMD functionality into OpenAxiom brought sl challenges with it. The
first obstacle was finding SIMD functions for each of the Ligptems supported by Ope-

nAxiom.

FFI

OpenAxiom, like many computer algebra systems, is run onatfop Lisp subsystem,
though this is not theoretically essential as languagesdpad operate on top of the Lisp
system and are the primary languages. In particular, OpemAsupports many different
Lisp implementations, such as GCL, SBCL, ECL, and Clisp (see Das (26D9)). Each
Lisp implementation brings its own peculiarities, and Ofa€ipm operates on a subset of
the Lisp functionality common to them all with extra funct®that operate as abstractions
of functionalities that differ per Lisp system. Additiohalsome Lisp systems depend on
the operating system they are compiled for, with specificesgsfunctionality differing
greatly between Windows and Linux or B&DAnother area where the Lisp systems differ
significantly is in their FFI or foreign function interfac&n FFI allows a Lisp system to
interface with code written in other languages. This is ulsidr the vast library of sci-
entific computation libraries written in Fortran or C butalsecause, for our purposes,
it's easier to write a C library that provides SIMD functidibathan to write SIMD code
for each Lisp system and choose it at runtime. The actualemehtation of our FFI for

OpenAxiom is detailed in a technical report (Dos Reis and Ma0Q)).

SIMD implementation
While SIMD extensions do exist for some Lisp systems (seeihtg(R008)), our decision
was to write a C library that took advantage of the FFI we addé€penAxiom. In addition

to this C library, we wrote an Axiom domain that used the fioret provided by the library.

2For instance, Windows’ path names tsehile Linux systems use /

The domain eases the requirements of the underlying C yib€ne simple example is to
automatically pass the length of an array, since the FFlatpprrays but makes no explicit
declaration of their length and the C function needs thetlemgorder to do the operation.
Thus, where the C function prototype might look like Fig. Re tSpad function can be

simpler without an explicit declaration of length as in Fyg.

Writing the fastest C library to be compiled with GCC was alsoghbject of investigation.
There are several ways to write SSE code from within GCC. Tooegplhich would result
in the fastest code for our purposes, a trivial example oftiplying two variable length
arrays and placing the result in a third was created. Thee @@t written in ‘naive’ C
to use as a control for the SIMD instructions. The tests wesated by applying GCC’s
native optimizations+03), taking advantage of Intel Intrinsics for GCC, and by writing
GCC inline assembly. Afterwards, integration testing wasedfsom within OpenAxiom,
where it was revealed that the Lisp systems did not providbyié aligned data. Without
aligned data, the number of possibilities for our SIMD Ilyrevas quickly cut down, but the
benchmarks provided a basis for making the best decisioa.r@s$ults of the benchmarks

are explained in Chapter lll.

Native optimizations

GCC'’s native optimizations are enabled by compiling with £08 option in addition to

alerting GCC to the presence of SSE instructions withse -msse2. In spite of being a
remarkably easy way to optimize programs, GCC'’s native ogaitions actually performed

well in comparison to the other options we explored.

Intel intrinsics
Although termed Intel intrinsics, GCC’s implementation i®ss platform in that it will

work equally well with AMD processors or any other platforimat supports the SSE assem-

int simdMultiplyDoubleArrays(int len, double* a, double* b, double*

dest);

Fig. 2. C Prototype for a Function the Multiplies Arrays of ilbes

import simdMultiplyDoubleArrays : (Singlelnteger,
ReadOnly PrimitiveArray DoubleFloat,
ReadOnly PrimitiveArray DoubleFloat,
WriteOnly PrimitiveArray DoubleFloat)

-> SingleInteger from Foreign C

multiplyDoubleArrays (a,b,dest) ==
(#a "= #b) or (#b "= #dest) =>
error "Array sizes must be the same."
simdMultiplyDoubleArrays(#a::SingleInteger,a,b,dest)

return dest

Fig. 3. Spad Function For Multiplying Arrays of Doubles

10

bly instructions. Intel intrinsics alleviate the duty ofaating the 128 bit XMM registers
for the purpose of SSE instructions. Additionally, by spgng the type of the data stored
in a register, the compiler can do type-checking on the tane&rd instructions. Intel in-
trinsics essentially allow the programmer to type-safehped a subset of SSE asssembler
instructions into their code without actually writing asgdy. A sample of Intel intrinsic

code is included in Fig. 4.

GCC inline assembly

C’s primary purpose is writing operating systems, and GCCmenhssembly feature
makes this obvious. It provides the capability to write adsly code inside a C program,
specifying which registers will need to be replaced afterdbde runs and what local vari-
ables to put the result registers into. This option gave as#pability to write optimized

assembly instructions for the test benchmark. Unfortupads powerful as it is, assembly
isn’t portable and while code written for x86 architectuvéf work across systems, on
any other system it will not. The assembly capability freesdta use certain unaligned
instructions, which show up in the benchmarks because atheners of writing the SSE

instructions do not allow for non 16-byte aligned data.

Parallel server

The primary goal for the server architecture that servesfagradation for this new system
is to manage a number of OpenAxiom kernels with low latency @rerhead while maxi-

mizing the utilization of all systems designated for use réaptimization can be achieved
at runtime by allowing information concerning the speed>afaaition to be recorded that
can inform future passes. The server needs to be able to tkkmtage of any number
of CPUs on the host system, other available systems on theorietand the architec-

tures of these systems to exploit SIMD opportunities. Olutgm involves creating server

instances (hereafter called OAServs) that can interconoatento determine network la-

11

//This is a function using the GCC "Intel Intrinsics", the

//loop is unrolled such that 4 doubles are multiplied for each

//run through the loop

void intel_intrinsics_4(double* a,double* b,double* c,int arraysize){
__ml128d alr, blr, clr, a2r, b2r, c2r;
unsigned int x=0;
for(x=0;x<arraysize;x+=4){

alr

_mm_load_pd(a+x);
blr = _mm_load_pd(b+x);
a2r = _mm_load_pd(a+x+2);
b2r = _mm_load_pd(b+x+2);
_mm_store_pd(c+x,_mm_mul_pd(alr,blr));
_mm_store_pd(c+x+2,_mm_mul_pd(a2r,b2r));
}
//This ensures that odd sized arrays are completely multiplied
for(x=1;x<arraysize%4+1;++x){

clarraysize-x] = al[arraysize-x]*b[arraysize-x];

Fig. 4. Intel Intrinsic Code for Multiplying Two Arrays of Ddales

12

tencies and the shortest path to execution.

Kernel management

Each OAServ will maintain an optimal number of kernel preass(usually equal to the
number of cores times the number of cpus) as well as infoomaggarding their avail-

ability, response times, and historical information aktibetexcution of blocks of code. In
addition, the OAServ keeps connections to other OAServga®es on the network with
“remote” kernels that are available if the local kernelsdime saturated. OpenAxiom
processes can connect to the OAServ to dispatch commankageatwith data. These
packets are delegated to the nearest and/or most readilgddgacomputation kernel, with

local kernels favored over remote kernels. If it is estirddtet all of the local kernels will

finish their tasks in 10ms, then it doesn’'t make sense to pushatsk to another server
50ms away that has free kernels. Meanwhile, if the localsasight take 500ms, then the

trip becomes more economical.

Client-side library

A parallelization library will be written for OpenAxiom thadakes in a syntax tree and
outputs a functionally equivalent tree with built in comnzation to the OAServ. As each
task is dispatched in the source from OpenAxiom, they arergavunique identifier to allow

the OAServ to profile the operations. Moving averages shioetkept as to the computation
time required to complete the tasks which will allow the sete dynamically adapt to (or

reject) jobs as they arrive.

Serialization facilities
The process of serialization is currently accomplishedugh the InputForm facilities in
OpenAxiom. This domain models objects in textual form sut they can be accurately

recreated on another process. This works well for simple éisad symbols but fails utterly

13

when extended to more complicated structures, partigweith cycles. Additional work

will need to be done into establishing and implementing aqua for the communica-
tion of mathematical structures between OpenAxiom and #nellelization server. There
already exist a few protocols such as MathML that may work,rbsearch will have to
be conducted into the overhead of packing and unpacking Mlasttructures (as well as
the time expense of developing a compatible implementatear something closer to the

OpenAxiom native representation.

Pattern matching

One of the primary strengths of OpenAxiom is the typing fties that are built in. By
serializing data and instructions to be pushed to remotesidtie resulting data does not
always have an easily assumable type. Many functions in &gem will return a string
detailing their failure or the correct result. Pattern rhatg allows us to recreate the type

at compile time in the destination.

case r is
i@Integer => -- Do operations on i as an Integer
d@oubleFloat => -- Do operations on d as a DoubleFloat

otherwise => error "r is not of a prepared type."

The pattern matching serves two purposes. The first is tlexieitutes different code de-
pending on the type of the incoming data. The second is theltatvs the compiler to
assume the type of the data following its assertion by thiee@ase statement. This fea-
ture lets OpenAxiom maintain type safety within the unaerenvironment of executing

code on a remote host where the result is not of a definite type.

Berlekamp’salgorithm

Berlekamp’s algorithm (see Berlekamp (1967)) serves as thigaiag example for all the

14

parallelization work. At present, only SIMD functionalityas been added. An approximate

overview of Berlekamp’s algorithm is as follows:

1. Make sure that the polynomial is squarefree by taking th®@f the polynomial
against its derivative. If the result is not one, you will dege remove the squared

roots first.

2. Create a Berlekam® matrix for the polynomial, of siz8l x N whereN is the degree
of the polynomial to be factored. Each row is givenx§ modu(x) wheren is the
0-based index of the rovpg is the prime number of the field we are factorizing under

andu(x) is the polynomial being factorized.

3. Take theQ matrix and subtract the corresponding identity matrixntfied the null

space basis of the result.

4. For each vector in the basis, calculate (@€g), v(x) — s) wheresis all integers be-
tween 0 and the prime number representing the field. Therfaatmn is the product

of all nonzero results.

For conceptualization purposes, the algorithm can be brdken into three main sections
(see Schreiner (2001)):

1. Create th&) Matrix

2. Find the Null Space Basis

3. Test All Possible Factors

Much work has been done relating to the generation ofQhmeatrixGeddes et al. (1992)

as well as heuristics to find thosé&x) — s that are mostly likely to be factors. While these

15

findings are both significant and yield substantial perforceagains, for the purposes of

our testing we sought optimizations related to the mactatiger than the algorithm itself.

SMD opportunities

For the generation of th® matrix, each row is generated by a transformation of the pre-
vious row such thay 1 j = a j—1 — axn—1Uj(from Knuth (1981)). Each successive row
can be generated by subtracting a scalar multiplicatiom lmf the previous row from the
previous element in the current row, generating the row ftbenlowest element to the

highest.

In taking the null space of th®@ matrix, the matrix is column reduced by traversing each
row and pivoting on a non-zero column to eliminate other owia that have elements on
that row. In the resultant matrix, the nonzero rows descpblynomials to test in the
next section. Each column reduction is performed by subtrgithe original value of the
column from a scalar multiple of the pivot column. Both scafatiplication and element-

wise subtraction can be performed using SSE instructions.
No SIMD optimizations were attempted in the testing of polgsfactors.

Pre-existing loopsin OpenAxiom

The OpenAxiom software has a wide array of libraries thatshipped with the binaries

or can be readily obtained from the internet. Facilitieseto query the libraries that are
loaded to examine their code or the domains they providejngakeasy to get an idea as
to the nature of the loops that already exist. SpecficaleySintax domain allows the user
(or programmer) to manipulate and inspect the code prodogadunction. Static analysis

of these loops should give rudimentary information as toclitan be broken into pieces
or parallelized as is. While annotations of functions haveyed made their way into the

OpenAxiom kernel, once they have been added it should biglsti@award to write Spad

16

code using the Syntax domain to inspect loops and discovethehor not transformations
can be accomplished depending upon the properties of tletidarcalls and assignments

made inside. This is future research work.

Mathematical optimizations
On of the easiest functions to do parallelization of is the GGmxtion. GCD is commu-
tative and associative, and has an identity element of 1 arelitral element of 1. These

properties give us a number of distinct advantages:

Associativity and Commutativity Together these properties fulfil the requires for divide
and conquer. This allows us to spread out function exectigti®ut concern for the

order in which they are taken apart or reassembled.

Identity Elements Operations performed on member elements of a set that anétyde
elements are inconsequential to the aggregrate comput&yoeliminating function
calls that should surely result in the same value as the ifput0), it's possible to

eliminate redundant calculations.

Annhilihatorsor Neutral Elements Neutral elements, once encountered, reveal the solu-
tion without calculation. The solution of geak? +2x+ 1, 6x” — 9x2,8x*, 1) is clearly

1. These are the lowest hanging of optimization fruits.

Loop optimizations

The process of transforming loops at compile time is reddyistraightforward for easily
conceptualized programs, but grows in difficulty as new epig are brought in. The bur-
den of mental gymnastics involved can be mitigated throbgluse of careful abstractions,
a technique not far from anyone involved with computerst Bfthe abstraction-forming

process is realizing the limitations of the underlying ctui need to be encompassed. By

17

dividing code into pieces that can be rearranged usinginauiées if specific conditions
are met, the problem of parallelization can be reduced toadhaymbolic manipulation.
This allows us to create analogs to mathematical concdagésgssociativity of operators
and the rearrangements of equations) which creates a patbwtne reuse of algorithms
and concepts already researched in the field of computebralg&hus, the parallelization
and speed up of a computer algebra system is accomplishaagthinformation readily

available in the field of computer algebra.

Runtime unknowns
One such limitation on rearrangement is that of runtime omkrs. Compile-time opti-
mization is limited by the information present before exemu For instance, unrolling the

GCD of a set of number by hand is tedious and quickly grows intoresolveable problem.

return gcd([11,75,34,87,45,23])

Becomes:

a = send(1,"gcd(11,75)™)
b = send(2,"gcd(34,87)")
c = send(3,"gcd(45,23)")
d = send(4,"gcd("+a+","+b+")") -- depends on a and b?

e

send(5, "gcd("+d+","+c+")") -- depends on d (a nd b) and c?
return e
And if the literal set is replaced with a variable, the loopmat be unrolled at compile-time.

Dependencies

Next, if any iteration is dependent upon a previous iteration, the m®oé parallelization

18

breaks down because subsequent calculations in the datagoptire results form earlier

steps.

Sometimes this dependency relationship, when approfyriatapped out, can be simpli-
fied. For instance, if a single invocation is always depehdenthe previous invocation

(making it implicitly sequential), but a secondary functiuction is pure, then:

result := y
max_val := set.l
for x in 1..n repeat
result := gcd(set.x,result)

inv_set.x := (set.x) -1

Can be transformed to:

result =y

for x in 1..n repeat
result:= gcd(set.x,result)

for x in 1..n repeat

inv_set.x := (set.x) -1

The pure function loop can be trivially parallelized andfibatprint of the non-parallelizable

loop is reduced.

But this is only possible if we can be certain that the outpugaf() in a single iteration
does not affect the input or execution of the inverse imntetliafterwards. In effect, the
result can only be guaranteed functionally equivalent ifoae provide specific properties

on the functions involved.

19

Latency thresholds

If the latency of the network dominates the time of execufmmthe loop body, then the
process of parallelizing the loop may actually increasecetien time. While complete
compile-time estimation of the time required to completegugnce of instructions degen-
erates to the halting problem, simple heuristics mightsafithen paired with an intelligent
run-time system. Serializing and transmitting data stmas brings its own problems (and

expenses), and finally typing the transaction is a nightmare

Present solutions

The present manner of dealing with these difficulties is tehhe programmer perform the
tasks manually. But bookkeeping and micromanagement aergégnfields that humans
make mistakes often, whereas computers shine. The mostrmageroaches ask the
programmer to instruct the compiler as to how the code carmatalplized. Typically, these
annotations are little more than macros that expand the icwde series of delegations.

For instance:

result =1
for x in 1..n repeat -- %ASSOCIATIVE_PARALLELIZE

result := gcd(set.x,set.(x+1))

Might produce code for the parent node like:

for x in 1..n repeat
push(stack,set.x)

runstackop(stack,set,gcd)

And code for each node that resembles:

20

if size(stack)>2 then

lock(stack)

a := pop(stack)

b := pop(stack)
unlock(stack)

temp := gcd(a,b)
lock(stack)
push(stack, temp)

unlock(stack)

Macro systems such as these are available for some modeputamalgebra systems (like
Schreiner (2009)). These systems significantly reducertisuat of code required by the
programmer, but fail to add any understanding of the undeglprogram by the compiler.
Our approach differs in what is annotated: while currently Emphasis is on instruct-
ing the compiler as the the location of potential improvetenr approach focuses on
describing the mathematical structure of functions suahttie compiler can programmat-
ically determine the locations for improvement. This irmed specifiying the properties
of functions, rather than places where their invocatiomspartable to other machines or
cores. If a function is pure (that is: it has no side effedts¢n the compiler can assume
independence of iterations and choose to trivially paia#ehe loop without intervention
from the programmer. This presents a number of benefits, bmews reason being that
old code doesn't need to be rewritten to annotate paradleliézloops. Additionally, when
writing code the knowledge of how a function works and whaloies is clearer during its

creation than its invocation.

21

CHAPTER I11
RESULTS

FFI

One of OpenAxiom’s strengths is its ability to work acrossnyndifferent Lisp systems.
Supported Lisp systems include SBCL, ECL, GCL, and most vers6@.isp (specifi-
cally those that have an FFI interface built in). The chajkewof getting Lisp to emit the
assembly instructions required to take advantage of SIMilafily SSE) had a number of
solutions, but the foremost aspect we were looking for waggpn implementation. Ope-
nAxiom already had in place an incomplete solution for ifsteing Boot code with C code
that was compiled with the rest of the Axiom libraries. Thigsypprimarily used as a Lisp
system portable manner of interacting with the filesystenwals extended to work with
Spad code through an addition to the grammar. The syntawsfior the import of func-
tions from shared libraries compiled with C (but can easdyelxtended to support other
languages). By implementing a SIMD library in C, we were ablentbgate the problem

of having the Lisp system emit assembly instructions forSB& instructions.

The FFI in OpenAxiom allows the passing of arrays represebyethePrimitiveArray
domain as well as all of the primitive data types of the C laggias their OpenAx-
iom domain equivalents. Meanwhile, many domains in OpeoAxdo not make use of
PrimitiveArray, instead opting foList or Vector. While these domains can be co-
erced intoPrimitiveArray and vice-versa, the computational overhead associatéd wit
the conversion is expensive. This is not uncommon in SIMDvesions, and limits the
scope of the SIMD functionality until transformations cake place that might alter the

intermediate data structures of existing algorithms amndimes.

22

SIMD

For the SIMD implementation, benchmarks were performedh winth 16-byte aligned
arrays (Fig. 5 and 7) and unaligned arrays (Fig. 6 and 8), Wwathoptimization on gcc
-03) and off against our test benchmark of multiplying arrayactebenchmark was done

for applicable expressions, like inline assembly or Iméinsics.

Of particular note for the results: GCC optimizes C prettylvogl emitting instructions
that use the floating point stack in a manner such that theepsaot is able to pipeline the
double multiplications across the floating point units.sipged in aligned instructions very
nearly approaches the hand-worked assembly. While aligpexhtions have a much more
significant variety in the way you can produce code, unatigngerations are not quite so
resilient with many producing segfaults when fed unaligimpdit. These benchmarks were
left out of the final data sets. Running sample code that makég-acall with a simple
PrimitiveArray in OpenAxiom shows that FFI calls are not guaranteed to bbyi®-
aligned. Furthermore, the IA-32 architecture actuallyaties that SBCL’s implementation

of vector is not 16-byte aligned, forcing our SIMD librarydesume unaligned arrays.

After running these benchmarks, several SIMD functionsevgert in the library each with
an SSE implementation and a ‘fallback’ implementation (F3. This design allows us
to tightly integrate OpenAxiom code with the library withdiear of incompatibility in

systems where SSE or a similar architecture is not available

Par allelization server
In order to avoid potentially hazardous modifications toAx@m kernel, the choice was
made to develop a standalone server to support multi-coedl@izsm and multi-node dis-

tribution. Presently, OpenAxiom exists as a set of procegsgerned by a single "sman”

3In structs, doubles are aligned on 4 byte boundaries ralttaer 8 byte boundaries as
elsewhere.

Time Taken (s)

Time Taken (s)

014 i T T T T T T T T
Unaltered C ———
Unaligned SSE ASM ey
T Tntrinsies (2) 7]
__Intef'In

0.12

0.11

0.09 |/

0.08 -

007 1 1 1 1 1 1 1 1 1

rinsics (4) -

200 205 210 215 220 225 230 235 240 245
Array Elements

Fig. 5. Optimized Aligned SIMD Operation Benchmark

250

0.14 T T T T T T T

0.135

0.13

0.125

0.115

0105 1 1 1 1 1 1 1 1 1

Un:altered C N
Unaligned SSE ASM (8) -----—-

200 205 210 215 220 225 230 235 240 245
Array Elements

Fig. 6. Optimized Unaligned SIMD Operation Benchmark

250

23

Time Taken (s)

Time Taken (s)

1 T T T T T T . ; . -
Unaltered C. —=—=
Unaligned.SSE ASM (8) -
09 - __.—-—-Aligned SSE ASM (8) -------- |
. Aligned SSE ASM (16) -
Intel Intrinsics (2) ————
Intel Intrinsics (4) ------
08 -7 |
0.7 |
0.6 |
05 | |
0.4 | |
0.3 |

Array Elements

Fig. 7. Unoptimized Aligned SIMD Operation Benchmark

1.1 T T T T T T

250

Unaligned

0.9

0.8 |

0.7 |

0.6 |

02 1 - 1 1 1 1 1 1 1 1

Array Elements

Fig. 8. Unoptimized Unaligned SIMD Operation Benchmark

250

24

25

int simdMultiplyDoubleArrays(int len, double* a, double* b, double* dest) {

#ifdef __SSE2__
int x, end = len-len%4;

//We’re unrolling the operation into sets of 4 doubles

for (x=0;x<end;x+=4) {
asm volatile(\

"movupd (%0), %%kxmm®\n" //Move 0:(a+x) into register

"movupd 16(%0), %%xmml\n"

"mulpd (%1), %%xmmO\n" //Multiply 1:(b+x) and register (a+x)

"mulpd 16(%1), %%xmml\n"

"movupd %%xmmo® , (%2)\n" //Store back out to 2:(c+x)

"movupd %%xmml, 16(%2)\n"

"r" (a+x), "r" (b+x), "r" (dest+x)
: "memory"
);
3
//We can’t use simd for these
for(x=1;x<len%4+1;++x)
dest[len-x] = al[len-x]*b[len-x];
#else
int x; //Fallback
for(x=0;x<len;++x)
dest[x] = a[x]*b[x];
#endif
}

Fig. 9. SIMD Function Example with Fallback

26

or superman process (see Fig. 10). The child processeslenblyperdoc (a graphical X-
window process for documentation and examples), clef (aga®for gathering user input
and offering rudimentary history operations), and AXIOMgthe actual Axiom kernel for

computation).

OA-Serv architecture

Most of the overhead associated with hyperdoc, sman, ahdidi@ot need to be loaded
for our parallelization server. Thus, we created a servechvoads AXIOMsys processes
on sockets for use as calculation ‘kernels’. These senderisbed OA-Servs, each can
load a theoretically infinite number of kernels (though ficadly the number is best left

at the number of cores available). Additionally, OA-Serus able to connect together to
form cluster-like networks (Fig. 11). This obviates the lgemns with firewalls as only

one machine needs to be network-facing and it can serve agiher for all the machines

behind a firewall.

Each OA-Serv accepts commands (Fig. 12) delimited by neswland returns results in
the order in which they finish. For most purposes, the cliesesscommands (like single)

that can associate the result with the command that wastsenigh the use of IDs.

The server can be extended easily to implement new execpldms or command types.
For instance, the AssociativeCommandBucket creates a staick wernels can pull from
(if the stack has more than one element) and deposit thet.resustart, all the elements
of the set are pushed onto the stack. As each kernel freesdippaks for a job, two
elements are popped off and when the job finishes a singlé regwshed back on. With
the associativity property, this ensures correct resaltgl (assuming uniform execution
time, O(log(n)) execution time, but could later be extended to select phietements that

are most likely to run quickly together.

27

Sman

hyperdoc AX10OMsys clef

Fig. 10. OpenAxiom Process Layout

Kernel Kernel
/ OA — Serv
s
Kerne
OA— Serv OA— Serv
Kernd Kernel Kernel

Fig. 11. OA-Serv Topology

28

Each server runs sequentially, using an event-based ganadih the socket-multiplexing
select statement to handle incoming connections and nketwadtes. In order to add dis-
tribution capability without additional threads, a simplandshake was created. When
a server saturates all its own local nodes with calculatignigroadcasts a FREE com-
mand to all the connected nodes. Each node will accept the FREnand, examine its
command buffer and local node states, and respond with a G@NNhere is room for
more commands. The source node responds to GIMME by pushintgp ¢he requesting
node a SINGLE command, that specifies a command to run and &m dBsociate with
it. When this command finishes, it returns a SINGLERESPONSEwand to the source

node which is then associated with the command sent and eti@tkof the queue.

Transport

One of the primary hurdles associated with parallelizaisothe task of transporting data
between processes. There are many options, with varialesdffs associated with network
latency, throughput, and the potential for missing data.ifiting our parallelization to the
exploitation of algebraic properties, all of the shipmerds be characterized by defining
closures. For instance, in the example of Berlekamp’s algorithe factors can be found
by taking the GCD of the polynomial with a set of potential tastcreated from th€

matrix’s null space basis. If this operation is described by

for v in basis
for s in 0..p-1

map (test+->GCD(polynomial,test),v-s)

Then each shipment can be described in two parts: the opetatibe performed and the
variables required to perform it. In this case, if the fuasticalled by map is pure and

doesn’t depend on external environmental variables tHeheahecessary variables can be

29

found in the parameters to the function, GCD.

For our tests, the easiest way to create these shipmensuvigiktensive modifications to
OpenAxiom was to create OpenAxiom commands from within @p@&wm to ship to each

server. Thus, our example might be written:

[GCD(polynomial,v.1),GCD(polynomial,v.2),...GCD(polynomial,v.n)]

By substituting the actual values for each element of v (sineél not exist on the remote
servers to evaluate) and attaching type information, a lsippmtocol is established for

shipping calculations. Each server will receieve:

GCD((x"25+x+1) ::Polynomial PrimeField 5,

(x"4+2x"3+4x+2) : :Polynomial PrimeField 5)

The resultis:

(x"4+2x"3+4x%+2) : :Polynomial PrimeField 5

By multiplying together all the results of this mapping, wee'solved for all the factors of

the polynomial.

Berlekamp’s benchmark
In order to test the efficacy of annotations as a way to senaraatically parallelize pro-
grams, we considered a generic implementation of Berlekaudgorithm for the factor-

ization of polynomials over finite fields.

The generation of th€ matrix can be done through binary powering, a process which

creates a tree of dependencies but can generate the ma@jygintime rather tharOn,.

30

Unfortunately, this does not take advantage of annotatamtsthus isn’t automatically

parallized.

Once theQ matrix is generated and the null space basis generatedaghalegenerates
into a problem of testing by division all the possible fasttmrom the basis. This process
can be accomplished by mapping the pure function that tddee&CD of an input and the
original polynomial to the basis set. This does not take atage of the speedup associated
with using the reduced polynomial as factors are found, @r it finish early once the
polynomial’s factors are all discovered. For this, extfmimation will have to be sent to

the server to signal an end-of-calculation condition.

list
connect
seq
assoc
single

quit

Prints the current status of the server and connected servers.
Connects one server unidirectionally to another.

Runs a group of commands sequentially across as many servers aseq
Runs an associative function across a set.
Runs a single command with an identifier.

Kills the server and its kernels.

Fig. 12. OA-Serv Commands

31

)ssib

32

CHAPTER IV
CONCLUSION

Our results show that performance gains are possible baihigh the use of SIMD instruc-
tions and by parallelizing code and distributing it amongesoand nodes. While hand-
worked parallelization is not new, the potential for paghdiation through static analysis
and annotations remains a viable step in the march towargrgmmer-aided compiler-

driven parallel transformations.

FFI

The FFI facilities of OpenAxiom were extended and hardengdebting with regard to
SIMD. By enabling developers to serparate their native codm fthe source of Ope-
nAxiom, it should speed development of extensions thatirequative functionality (like
SIMD) by removing the compilation of the kernel from the louprocess. The FFI of
OpenAxiom can easily be extended to support Fortran so hleatdst library of scientific
libraries available in Fortan can be used, which will go agveay in progressing OpenAx-
iom toward becoming both a symbolic and numeric computagisiem. As a computer
algebra system that already operates in a heterogeny ofidgeg, adding a FFI was a

natural, yet necessary extension.

SIMD

SIMD shows potential in the narrow example of Berlekamp’soatgm and offers the
promise of performance gains for most modern computersowitextensive configuration
of parallelization servers or access to clusters of servéhere may still be minor per-
formance gains to be had in writing more efficient assembligines or by tweaking the

underlying Lisp system’s manner of allocating arrays, basthof these wins are dwarfed

33

by the time spent in arranging bytes and coercing data stresto be used by SIMD.

Futurework

A lot of work remains with respect to static analysis and tingga protocol for the trans-

mission of OpenAxiom data structures in between serversGifld cores. A means of

efficiently converting more complex structures like cyalitists in such a way that they
are expressed fully without being overly verbose remainkalenge. Extensions must
be added to the OpenAxiom compiler to support annotatiomettions before any static

analysis can start, but the Syntax domain provides a juigp-@h the process by skipping
the lexing and parsing steps. When the static analysis i@oepmany of the features such

as moving averages and execution profiling can be added.

34

REFERENCES

Berlekamp, E. R., 1967. Factoring polynomials over finite 8eBell Systems Tech 46,
1853-1859.

Bogong, S., Grishman, R., 1982. Emulating an mimd architectux: MICRO 15: Pro-
ceedings of the 15th annual workshop on MicroprogrammiB&H8 Press, Piscataway,
NJ, USA, pp. 197-199.

Dos Reis, G., 2009. Openaxiom. Website, http://www.opeoraxorg/.

Dos Reis, G., Mai, S., April 2009. Foreign Function InterféfmeOpenAxiom. Tech. Rep.
TAMU-CSE-2009-4-2, Department of Computer Science & Engiinge Texas A&M
University, College Station.

Fateman, R. J., April 1972. Essays in Algebraic SimplifiaatiMaster’s thesis, Mas-
sachusetts Institute of Technology.

Geddes, K. O., Czapor, S. R., Labahn, G., 1992. Algorithms foniider Algebra. Kluwer
Academic Publishers, Norwell, MA.

Herring, D., 2008. Sb-simd simd support for sbcl. Websitga:Hcommon-lisp.net/project/
sb-simd/.

Knuth, D. E., 10 Jan. 1981. Seminumerical Algorithms, 2ndi&adl Vol. 2 of The Art of
Computer Programming. Addison-Wesley, Reading, MA.

Rabhi, F., Gorlatch, S., 2002. Patterns and Skeletons faillBlaand Distributed Comput-
ing. Springer-Verlag, London, UK.

Schreiner, W., July 2001. Parallelizing the Big Prime BertagaAlgorithm with Dis-
tributed Maple. Tech. Rep. 01-15, RISC Report Series, Uniyeo$iLinz, Austria.

Schreiner, W., 2009. Distributed maple. Website, httmMwrisc.uni-linz.ac.at/software/
distmaple.

CONTACT INFORMATION

Name: Stefan Mai

Address: Parasol Lab
301 Harvey R. Bright Bldg, 3112 TAMU
College Station, TX

Email Address: stefan.mai@iamnafets.com

Education: B.S. Computer Engineering, Texas A & M Universitay 2010

35

