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ABSTRACT 
 

Turning Back the Clock:  CGP55845 Reverses Mild Cognitive Impairment in Fischer 
344 Rats. (April 2009) 

 
 

Jeffrey Daniel Mayse 
Department of Psychology 

Texas A&M University 
 

Research Advisor: Dr. Barry Setlow 
Department of Psychology 

 
 

Mild cognitive impairment (MCI) is a rapidly growing problem, especially in light of the 

vast increase in the population of the elderly.  MCI is characterized by a lack of frank 

neural loss, unlike Alzheimer’s disease, yet the patient has behavioral impairments in 

memory, olfactory functioning, and information processing abilities.  This study 

examines the efficacy of CGP55845, a GABAB receptor antagonist, at reversing the 

effects of odor discrimination deficits in male aged (n = 8 impaired, n = 10 unimpaired) 

and young (n = 10) F344 rats.  Animals were given CGP55845 40 minutes prior to 

testing in the odor discrimination task.  This task is particularly useful for 

pharmacological studies, since it allows for a within subjects design. Although only a 

subset of aged rats were impaired on saline trials (trials-to-criterion with saline: aged-

impaired, 8.4833; aged-unimpaired, 18.023; control young, 10.15 SD 3.22), those aged-

impaired rats showed significant improvement in the task when injected with the drug 

compared to saline.  Performance deficits were not due to inability to detect odors.  This 
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study illustrates that CGP55845 is effective at treating age-related cognitive deficits and 

supports the hypothesis that the GABAergic system is involved in age-related changes in 

learning and memory. 
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NOMENCLATURE 

ACh     Acetylcholine 

AChe     Acetylcholinesterase 

AD     Alzheimer’s disease 

BF     Basal Forebrain 

CBF     Cholinergic Basal Forebrain 

GABA     γ-amino butyric acid 

GBF     GABAergic Basal Forebrain 

i.p.     Intraperitoneal 

MCI      Mild Cognitive Impairment 
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CHAPTER I 

INTRODUCTION 

 

Age-related cognitive disorders such as mild cognitive impairment (MCI) represent an 

increasingly dire problem in modern society.  Americans aged sixty-five years or older 

numbered thirty-five million as of the 2000 U.S. Census, comprising slightly over twelve 

percent of the total United States population. Additionally, with the baby-boom 

generation nearing retirement, the elderly population in America will experience its own 

boom in the next ten years.  The increased survival of aged individuals imposes a heavy 

social and financial toll on society, as the amount of people susceptible to MCI and other 

age-related cognitive disorders continues to rise.  MCI is characterized by loss of neuron 

density in several brain regions and by a progressive decline in cognitive functioning, 

working memory (memory for newly acquired information and the ability to distinguish 

this information from previously learned information), episodic memory (memory for 

people, places, and events), reference memory (memory for information which is 

constant over a specific time span) and memory retrieval (Whitwell et al. 2007).  

However, unlike neurodegenerative disorders such as Alzheimer’s disease (AD), MCI 

does not require frank neural loss as a diagnosis criterion.  One critical neuroanatomical 

region which contributes to MCI is the basal forebrain (located in the medial septum), 

specifically the nucleus basalis of Meynert and the diagonal band of Broca (Whitwell et 

 

This thesis follows the style of Psychopharmacology. 
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al., 2007).  This region is implicated in attention, learning, and memory and is densely 

populated with cholinergic and GABAergic cell bodies (Whitwell et al., 2007).  

Acetylcholine, one of the most diffuse modulatory neurotransmitters in the central 

nervous system, is generally excitatory.  Cholinergic cell bodies in the basal forebrain 

project to the CA1, CA3, and dentate gyrus regions of the hippocampus, providing 

modulatory innervation to the limbic system, a region integral for the formation and 

retrieval of memories (Lei, S. and McBain, C., 2003; Son, J. and Winzer-Serhan, U., 

2008).  γ-amino butyric acid, or GABA, is an inhibitory neurotransmitter that also 

projects from the BF to the limbic system, inhibiting neurons in this region.  In the 

septalhippocampal pathway, GABA assists with cognition and memory formation 

(Mufson et al., 2003; Son, J. and Winzer-Serhan, U., 2008).  Together, the GABA-ACh 

interactions in the limbic system play a crucial role in the formation of and retrieval of 

memories.  A marked loss in neuron density and size (but not overall number per se) in 

both the cholinergic and GABAergic neuron populations in the basal forebrain is 

observed in MCI (Whitwell et al. 2007).  These neuroanatomical changes are 

hypothesized to contribute many of the symptoms of MCI, including memory loss and 

cognitive decline.  

 

Pharmacologically reversing cognitive impairment 

CGP55845, a GABAB receptor antagonist, and Donepezil (trade name Aricept), an 

acetylcholinesterase (AChe) inhibitor, have been shown previously to enhance cognition 

in aged-impaired rats when administered separately (Hernandez et al. 2006, LaSarge, et 
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al. 2007).  The mechanism of action for CGP55845 involves decreasing the GABAergic 

tone in the BF and the structures it projects to, most prominently by preventing the 

action of GABA at the synapse by occupying the GABAB receptor on the postsynaptic 

neuron.  GABAB receptors are metabotropic (that is, coupled to an internal G-protein 

complex) and produce many long-lasting changes in neurons, generally through 

activation of the Gαi protein complex, which results in the inhibition of adenylyl cyclase 

and decrease in cyclic adenosine monophosphate (a second-messenger) production.   

Donepezil enhances cognition by increasing the overall levels of ACh in the synapse via 

inhibition of AChE, the primary enzyme involved in destruction of ACh.  AChE is a 

synaptic enzyme which decomposes ACh into acetate and choline, which are then taken 

back up into the presynaptic neuron and re-synthesized into ACh.  By inhibiting the 

function of AChE, Donepezil increases the time ACh spends in the synapse, therefore 

increasing the effective concentration of ACh and increasing its duration of action. 

 

The basal forebrain and MCI 

The BF and the limbic system, notably the hippocampus, are linked via a bundle of 

neural fibers called the fimbria-fornix.  The fimbria-fornix, BF, and hippocampus form 

part of the septalhippocampal circuit (Packard and McGaugh, 1992).  The BF receives 

input from the hippocampus and sends information back to the hippocampus through the 

fornix.  In MCI, the BF is diminished in volume and neuron density, and, as such, the 

hippocampus receives diminished input from the BF.  However, selective damage to 

cholinergic basal forebrain neurons has not been shown to be sufficient for causing the 
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deficits seen in MCI (Baxter et al., 1995; Frick et al., 2004).  Similarly, selective lesions 

of GABAergic basal forebrain neurons have not been shown to cause deficits of the 

severity observed in MCI (Pang et al., 2001).  However, lesions of both the GABAergic 

and cholinergic outputs of the basal forebrain have been shown to elicit severe deficits in 

cognition and memory formation (Pang and Nocera, 1999; Pang et al., 2001; Yoder and 

Pang, 2005).  Also, several studies have implicated BF degeneration in cognitive 

dysfunction and learning impairments (Eichenbaum and Mathews, 1989; Packard and 

McGaugh, 1992).  This dysfunction may be tested through an odor discrimination task in 

which rats learn to distinguish between a reward-paired odor and a non-reward paired 

odor, and through the Morris Water Maze task, a test of spatial memory (Eichenbaum 

and Mathews 1989, LaSarge et al. 2007).   

 

Research aims 

This study examines the efficacy of CGP55845 and donepezil at reversing MCI.  This 

aim has two benefits:  first, the clinical applications are immediately evident.  The 

results of this study could used to justify the implementation of human drug trials for 

CGP55845 in treating MCI and donepezil for treating non-Alzheimer’s dementia.  

Secondly, we hypothesize that CGP55845 and donepezil both modify the functioning of 

the BF.  Therefore, simultaneously decreasing the GABAergic tone and increasing the 

cholinergic tone of the BF and the structures it projects to should reverse the cognitive 

deficits observed in MCI. Observation of this effect strengthens the hypothesis that BF 

degeneration contributes significantly to MCI.  Understanding the role of the BF in MCI 
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and other age-related disorders may potentially lead to a clearer understanding of what 

causes these disorders, how to treat them, and how to prevent them.  Future benefits of 

this study will include possible clinical relevance and application of CGP55845 and 

donepezil and a greater understanding of the mechanisms, both on a systems-level and a 

molecular-level, which contribute to MCI and other age-related disorders. 
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CHAPTER II 

METHODS 

 

Young (Exp. 1: n=10; aged 6 months; Exp 2: n=4; aged 6 months; Exp 3:  n=20; aged 6 

months) and aged (Exp 1: n=17; aged 24 months; Exp 22: n=4; aged 24 months) male 

Fischer 344 rats were obtained from the National Institute of Aging.  Rats were housed 

individually in the Psychology Department vivarium (Texas A&M University, College 

Station, TX).  The vivarium was maintained at 25° Celsius with a 12:12h light/dark 

cycle.  All testing occurred during the light cycle.  Rats were trained on a two-choice 

odor discrimination task and the Morris water maze task.  The rats were food deprived to 

85% of their free-feeding weight during the odor discrimination task and given ad 

libidum access to water.  All animals were screened daily for health problems and 

sentinel rats were kept in the vivarium and further screened for diseases.   

 

Water maze testing 

Apparatus 

Young and aged rats were assessed for spatial learning abilities on the Morris water 

maze task using a protocol modified from Gallagher et al. The maze consisted of a 

circular tank (diameter 183 cm, wall height 58 cm) painted white and filled with water 

(27 ◦C) made opaque with the addition of non-toxic white tempera paint. A retractable 

white escape platform (12 cm diameter, HVS Image, UK) was submerged 2 cm below 

the water’s surface near the center of the southwest quadrant of the maze. The maze was 
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surrounded by black curtains, to which were affixed large white geometric designs that 

provided extramaze cues. Data were analyzed using a computer-based video tracking 

system (Water 2020, HVS Image, UK).  

 

Procedure 

Rats received three trials a day over eight consecutive days with a 60 s intertrial interval. 

On each training trial, rats were placed in the water facing the wall and permitted to 

swim until finding the escape platform or until 90 s elapsed, at which time they were 

guided to the platform by the experimenter. Rats remained on the platform for 30 s 

before removal from the maze and the start of the intertrial interval. The starting position 

for each trial varied pseudorandomly among four equally spaced positions around the 

perimeter of the maze (north, south, east, or west). Every sixth trial was a probe trial on 

which the escape platform was retracted to the bottom of the tank for the first 30 s of the 

90 s trial. Training and probe trials assessed spatial acquisition and search strategy, 

respectively.  To assess rats’ sensorimotor abilities and motivation to escape the water 

independent of spatial learning ability, rats received one session with six trials of cue 

training after the last day of spatial training. In this session, rats were trained to escape to 

a visible black platform that protruded 2 cm above the water surface and that was moved 

to a different maze quadrant on each trial. On each trial, rats were given 30 s to reach the 

platform and were allowed to remain there briefly before a 30 s intertrial interval.  In the 

hidden platform task, accuracy of performance was assessed using two proximity 

measurements. A cumulative search error measurement was computed from training 
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trials, and a learning index score was calculated from probe trials. For both measures, 

the distance of the rat from the platform was sampled 10 times/s during each trial and 

these distances were averaged into 1 s bins. Cumulative search error is the sum of these 

1 s averages across training trials minus the optimal path from the start position to 

platform location. The spatial learning index score was calculated from the average 

proximity (cumulative search error divided by the length of the probe trial) on the 

second, third and fourth probe trials. Scores from these probe trials were weighted and 

summed to provide an overall measure of spatial learning ability. Lower spatial learning 

indices indicate a more accurate search. More traditional measurements of escape 

latency and swim path length during both hidden and visible platform training were also 

recorded. A one-way ANOVA was used to compare spatial learning indices from probe 

trials and mean platform latency averaged across cue training trials. In all cases, p < 0.05 

was considered significant.  

 

Classification of impairment 

In this study, rats are referred to as “spatially unimpaired” or “spatially impaired”. 

Spatially impaired rats had learning indices outside the range of young rat performance 

(>250), whereas spatially unimpaired rats had indices within the range of young rats 

(<250). A two-way ANOVA (spatial learning group × trial block) confirmed that the 

spatially impaired and spatially unimpaired subgroups were different with respect to 

spatial learning. 
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Odor discrimination 

These methods are identical to those described in LaSarge et al.   

 

Apparatus  

The discrimination task was conducted in an open translucent plastic box (measurements 

49 cm x 33 cm x 28 cm).  The front and side walls were covered with black paper 

affixed to the exterior surface of the box so as to make them opaque.  A video camera 

mounted externally and connected to a TV monitor and a DVD recorder recorded the 

trials and allowed for observation through the remaining translucent wall without 

disturbing the animals.  An opaque white Plexiglas square (33 cm x 28 cm) separated the 

test chamber (33 cm) from the start compartment (16 cm).  Two terra cotta flower pots 

(11 cm diameter at top, 10 cm high) were placed side-by-side against the back 

(translucent) wall and affixed to the box floor with Velcro pads. 

 

Procedure 

Shaping 

Rats were first food-restricted to 85% of their free-feeding weight over 5 days.  Pots 

identical to those in the test apparatus were filled with clean home cage bedding and 

placed in the rats’ home cages with two quartered Froot Loops (Kellogg’s, Battle Creek, 

MI) buried in the bedding in each pot.  The pots were left in the cage overnight to reduce 

neophobia for the food reward and the pots and to prime the rats for digging to retrieve a 

reward.  Shaping took place in the test apparatus and consisted of training the rats to dig 
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in two pots, each filled with clean home cage bedding and a food reward (1/4 of a Froot 

Loop) buried at varying depths and with or without bedding over it.  On each trial, the 

rat was placed in the start compartment and the barrier was raised to allow access to the 

test compartment.  Rats were considered shaped when they would reliably retrieve both 

rewards in less than one minute.   

 

Odor discrimination 

On the day following shaping, rats began discrimination problems.  For each problem, 

only one pot contains a reward.  Crushed Froot Loops were sprinkled over both pots so 

as to disguise the scent of the reward.  The position of the reward pot was varied 

pseudorandomly across trials.  For the first four trials of every new discrimination 

problem, the rats were allowed to dig in both pots until the obtained the reward.  On 

these self-correcting trials, only the rats’ first choice was scored.  On every trial 

thereafter, rats were removed from the test chamber after their initial dig (either correct 

or incorrect).  A dig was scored if the rat displaced the digging medium with either its 

paws or nose.  For the odor discrimination problems, a small drop of odorant (approx. 20 

μl) was applied to the rim of each pot, and the reward was consistently associated with 

one odor.  The odorants were oils obtained from The Bath Junkie and The Body Shop.  

On non-olfactory discrimination problems, rats were trained to discriminate between two 

different substances (digging media) filling the pots.  Reward was consistently 

associated with only one media (see fig. 1).  The following discrimination pairs were 

used for each rat:  odor:  rose and citrus, hazelnut and peppermint; digging medium:  
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Styrofoam and sequins, shredded latex gloves and shredded tissue paper.  The positive 

and negative stimulus in each pair of discriminanda and the sequence of discrimination 

problems were randomized across rats, although each rat received alternating odor- and 

medium discrimination problems (either odor-medium-odor-medium or medium-odor-

medium-odor). Rats were considered to have acquired a discrimination problem when 

they achieved six consecutive choices of the correct (baited) pot, after which they 

immediately began the next problem in the sequence.  Both the numbers of trials and the 

number of errors to criterion were recorded and used as measures of performance.   

 

 

 

 

 

Figure 1. – A diagram of the odor discrimination 
apparatus.  The pot with the rose odorant contains 
the reward, indicated by the “+” and the pot with 
the citrus odorant contains no reward. 
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Pharmaceutical injections 

All injections were intraperitoneal (i.p.).  After the rats completed all four simple 

discrimination problems, drug trials began. Rats were injected with saline or CGP55845 

(.01 or .1 mg/kg). After injection, rats were left for 40 minutes to allow acclimation to 

the room and to allow time for the injected drug to effectively circulate. After 40 

minutes, rats were then tested with two more discrimination problems and their scores 

on each of the discriminations were recorded. The odor pairs used for these 

discriminations were sandalwood vs. cucumber and red apple vs. thyme. Rats were given 

at least 48 hours for the drug to completely wash out of their systems before injection 

and testing with other drugs was performed.  

  

Odor detection threshold testing 

After completion of discrimination testing, rats were tested for their ability to detect and 

respond to decreasing concentrations of odorants.  The first discrimination problem in 

this task uses a new odor pair at full strength (20 μl) versus 20 μl of mineral oil applied 

directly to the rims of two pots filled with clean home cage bedding.  The food reward 

was in the pot with the odorant, and rats were trained until they reached criterion.  As in 

the odor discrimination problems, trials and errors to criterion were recorded. This data 

was analyzed using separate one-way ANOVAs.  Testing continued with three further 

discrimination problems using decreasing concentrations of the same odorant as the first 

problem (1:10, 1:100, and 1:1000 in mineral oil) versus mineral oil alone.  New pairs of 

pots were used for each problem.  Rats were given 16 trials at each dilution, and the 
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number of correct choices out of 16 was recorded.  A group x odorant concentration 

repeated measures ANOVA was used to compare performance of spatial learning groups 

and p<0.05 was considered significant. 

 

Correlational analyses 

Correlations were performed with an n = 20 (Exp 1: n = 10 aged, n = 10 young, Exp 3:  

n = 10 lesion, n = 10 sham) except experiment two (n = 4 young, n = 4 aged).  To assess 

test-retest reliability of performance on the odor discrimination task, Pearson’s 

correlations were performed on both trials and errors to criterion across the three odor 

discrimination problems in aged rats.  To directly compare performance on spatial 

learning and odor discrimination tasks, a Pearson’s partial correlation was conducted on 

corrected data (spatial learning index on the water maze task and trials and errors to 

criterion on the odor discrimination task).  For each rat in experiment three, performance 

values were zeroed to their respective group means (the group mean was subtracted from 

their individual value).  This controlled for the lesion differences present across groups.  

Correlations were performed on these corrected data.  Performance measures (errors and 

trials to criterion) of spatial learning groups were compared by two-way repeated 

measures ANOVAs (discrimination problem x spatial learning group).  Repeated 

measures ANOVAs were also used to compare trials and errors to criterion across odor 

and medium discrimination problems (to assess relative difficulty).  In all cases, p<0.05 

was considered significant. 
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CHAPTER III 

RESULTS 

 

Odor discrimination 

The trials-to-criterion for the two odor discrimination problems when rats were injected 

with saline were averaged. The young (n=10) had an average trials-to-criterion of 10.15 

and a standard deviation of 3.22. The rats labeled as aged odor-unimpaired were those 

that had an average of trials-to-criterion below the average of the young plus one 

standard deviation, 13.35; those aged rats with an average of saline trials-to-criterion 

above 13.35 were labeled as aged odor-impaired. The impairment groups were 

significantly different from each other (F(2,26) = 21.923, p < 0.001) with the odor-

impaired age group (n=7, average = 8.4833) significantly different from both the young 

(n=10, average = 10.150) and odor-unimpaired group (n=10, average = 18.023) , post 

hoc of p < 0.001, which were not significantly different from each other.  

Odor detection threshold testing 

Odor threshold testing was used to both ensure that none of the subjects were anosmic 

and to eliminate the possibility that the effect of drug administration was simply an 

improvement in olfactory rather than cognitive ability. There was no significant 

difference between the young and aged groups during anosmia testing when rats were 

injected with saline (F (1,8) = 4.325, n.s.) or CGP55845 (F (1,8) = 2.760, n.s.) and thus 

no rats exhibited general smelling impairments. Thus, age groups were grouped together 
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to compare saline to CGP55845 during anosmia testing. There were no difference 

between saline or CGP55845 (F (1,18) = 0.941, n.s.), demonstrating that the CGP55845 

did not affect rats’ ability to detect the odor, and that the group differences seen were 

due to the ability to perform an odor discrimination. Additionally, there was a significant 

difference in the dilution of the odorant (F (2,36) = 3.404, p<0.05; seen in Figure 2); and 

although rats did in fact get less of the 1:1000 dilution problems correct compared to the 

1:100 dilution (p < 0.05), all rats still performed above chance level indicating that they 

could indeed smell the odorant. 

 

 

Figure 2. Left hand graph: Aged-impaired rats (light purple) have significantly more 
trials to criterion than aged-unimpaired (dark purple) or young control (yellow) rats, 
indicating impairment in making odor discriminations.  Middle-graph:  All three cohorts 
required similar trials to criterion in a medium-discrimination task, indicating 
discrimination abilities are present.  Right-hand Graph:  All three cohorts responded 
similarly in an anosmia test, indicating equivalent odor-sensing abilities for each group. 
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Pharmacological testing 

Each of the aged subjects was tested on their odor discrimination learning ability after 

injection with either saline or the CGP55845 at 0.01 or 0.1 mg/kg doses. For CGP55845 

testing, the aged rats were sub-grouped by cognitive status into young, odor-unimpaired 

aged, and odor-impaired aged subjects. A repeated measures ANOVA revealed a 

significant interaction between the cognitive status and dose of CGP55845 (F(4,48) = 

3.263, p<0.05), as well as a main effect of cognitive status (F (2,24) = 4.066, p<0.05). 

Post hoc tests revealed a significant difference between odor-unimpaired and the odor-

impaired group, as well as a significant difference between the saline injection and the 

0.01 dose of CGP55845 (p’s<0.05). However, there was no difference between the 0.01 

and 0.1 dose of CGP55845, signifying the low dose as effective at ameliorating 

cognitive impairment in the odor-impaired group (p=n.s.). Furthermore, there was a clear 

improvement observed in the performance as measured by trials-to-criterion and errors-

to-criterion of aged odor-impaired subjects after administration of both .01 and .1 mg/kg 

doses of CGP5584, while the performance of their young and aged unimpaired cohorts 

was not significantly affected by administration of CGP5584. These results were also 

observed when using errors-to-criterion for both the interaction between dose and 

cognitive status (F (4,48) = 3.680, p < 0.05), as well as the main effect of cognitive 

status (F (2,24) = 6.458, p< 0.01); post hoc tests also showed a significant difference 

between odor-impaired and odor-unimpaired errors-to-criterion and a significant 

difference between saline and 0.01 mg/kg of CGP55845 (p’s < 0.05).  
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CHAPTER IV 

SUMMARY AND CONCLUSIONS 

 

The current study examined the efficacy of CGP55845 administrations in reversing 

cognitive deficits due to MCI.  First, the study established a strong correlation between 

two hippocampus-dependent tasks, the Morris Water Maze and a two-choice odor 

discrimination task.  This allows for the classification of rats into aged-impaired and 

aged-unimpaired, where impairment refers to dysfunction in the Morris Water maze and 

predicts performance in a two-choice odor discrimination task.  Secondly, the current 

study established that aged-impaired rats are impaired significantly when compared to 

aged-unimpaired and young controls in a two-choice odor discrimination task.  This 

effect was not due to an inability to form discriminations or to an inability to detect 

odors.  Third, the current study established that administration of CGP55845 would 

improve performance of the aged-impaired cohort to the level of the young and aged-

unimpaired cohorts in the odor discrimination task.  MCI as demonstrated in this 

experiment and others results in significant impairment in tasks requiring intact 

cognitive function, working memory, reference memory, and episodic memory 

(Eichenbaum and Mathews 1989, LaSarge, et al. 2007, Whitwell et al. 2007).  

Furthermore, this impairment correlates significantly with reduced cholinergic input to 

the hippocampus from the basal forebrain (Whitwell et al. 2007, Zhang et al. 2006).  

However, this impairment cannot be reproduced by selective cholinergic lesions of the 

basal forebrain alone, nor can it be reproduced by selective GABAergic lesions of the 
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basal forebrain alone (Baxter et al. 1995, Frick et al. 2004, Pang et al. 2001).  Lesions of 

both the GABAergic and cholinergic neurons in the BF will reproduce these deficits, 

however, implicating an interaction between the BF GABAergic, BF cholinergic, and 

hippocampal neurons (Pang and Nocera, 1999; Pang et al. 2001; Yoder and Pang, 2005).  

In fact, such a modulatory circuit has been identified and studied previously (Manseau, 

et al. 2005) and is outlined below (See Fig. 3): 

 

 

Figure 3.  A simplified neuron circuit diagram of the BF ACh/GABA and hippocampus interactions.  Both ACh and 
GABA neurons in the BF are stimulated by glutamate, an excitatory neurotransmitter.  This results in the BF 
GABAergic neurons inhibiting hippocampal GABAergic neurons.  The net effect of this Glu-GABA-GABA-
Pyramidal neuron circuit is disinhibition of the hippocampal pyramidal neurons.  The BF ACh neurons are then free to 
excite the hippocampal pyramidal neurons maximally.  Adapted from Manseau et al. 2005. 
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Finally, the current experiments show that pharmacological reversal of MCI is possible 

with CGP55845, a GABAB receptor antagonist.  This result may seem contradictory, as 

selective lesions of GABAergic BF neurons are not sufficient to produce the deficits 

observed in MCI (Pang et al. 2001).  However, it should be noted that in MCI, 

degeneration of cholinergic neurons in the BF has progressed, albeit in the absence of 

frank neural loss (Whitwell et al. 2007).  Furthermore, aged Fischer 344 rats have been 

shown to have an increased effect of GABA on single neurons in vitro (Griffith and 

Murchison 1995).  Combined, these two effects may result in increased inhibition of and 

decreased stimulation of hippocampal pyramidal neurons, resulting in a net decrease in 

activation.  To speculate further, this hypothetical decrease in hippocampal pyramidal 

neuron activation would contribute significantly many of the cognitive and memory 

deficits observed in MCI.  CGP55845 potentially alleviates this effect by blocking the 

GABAB receptor type, resulting in a net decrease in inhibition of GABAergic target 

neurons.  This net decrease in inhibition may allow the damaged BF cholinergic neurons 

in the aged-impaired population to more effectively stimulate hippocampal pyramidal 

neurons.  Compounding the fact that cholinergic neurons degenerate over time, evidence 

that post-synaptic receptors for acetylcholine, namely the M1-subclass of cholinergic 

metabotropic receptors, function less effectively in two rat strains, Fischer 344s and 

Long-Evans rats has been recently published (Zhang et al. 2007).  This effect has been 

observed in human prefrontal cortex, which may contribute to the cognitive deficits 

observed in MCI (Zhang et al. 2007).   
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Future research aims 

Direct pharmacological applications of this study are likely to involve coupling 

treatment with a CGP55845-like drug with a drug which affects the cholinergic system 

to utilize the ACh-GABA circuitry in the BF and hippocampus.  In fact, Donepezil, a 

cholinesterase inhibitor, would be a likely candidate.  The method of action of Donepezil 

involves inhibiting the enzymes which degrade ACh in the synapse, referred to as 

acetylcholinesterases (Hernandez et al. 2006).  By inhibiting the action of these 

enzymes, Donepezil increases the duration of action and effectiveness of ACh in the 

synapse (Hernandez et al. 2006).  This alleviates in part the diminished size and density 

of cholinergic neurons in the BF and the potential decreased efficiency of the post-

synaptic M1 receptors (Hernandez et al. 2006; Zhang et al. 2007).  Co-administration of 

a drug similar to CGP55845 and Donepezil would not only increase the effectiveness of 

both drugs, but would also allow for lower doses of Donepezil to be used.  Donepezil 

has been shown previously in clinical use, and also in laboratory settings, to be 

neurotoxic at high doses and patients quickly develop a tolerance to the drug, 

necessitating increasingly higher doses (Hernandez et al. 2006).  By administering 

CGP55845 with Donepezil, both drugs could be used for longer periods of time, 

extending the treatment window for MCI.  Future experiment in this vein will examine 

the efficacy of co-administering sub-threshold doses of CGP55845 and Donepezil in 

reversing the cognitive effects of MCI.    
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