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Abstract: Dynamic changes in circulating and tissue metabolites and lipids occur in response to
exercise-induced cellular and whole-body energy demands to maintain metabolic homeostasis. The
metabolome and lipidome in a given biological system provides a molecular snapshot of these rapid
and complex metabolic perturbations. The application of metabolomics and lipidomics to map the
metabolic responses to an acute bout of aerobic/endurance or resistance exercise has dramatically
expanded over the past decade thanks to major analytical advancements, with most exercise-related
studies to date focused on analyzing human biofluids and tissues. Experimental and analytical
considerations, as well as complementary studies using animal model systems, are warranted to
help overcome challenges associated with large human interindividual variability and decipher the
breadth of molecular mechanisms underlying the metabolic health-promoting effects of exercise.
In this review, we provide a guide for exercise researchers regarding analytical techniques and
experimental workflows commonly used in metabolomics and lipidomics. Furthermore, we discuss
advancements in human and mammalian exercise research utilizing metabolomic and lipidomic
approaches in the last decade, as well as highlight key technical considerations and remaining
knowledge gaps to continue expanding the molecular landscape of exercise biology.

Keywords: exercise; metabolism; omics; metabolomics; metabolome; lipidomics; lipidome; mass
spectrometry; nuclear magnetic resonance

1. Introduction

Living systems maintain metabolic homeostasis thanks to countless chemical reac-
tions that continuously change the molecular landscape within these biological systems,
including biofluids and tissues throughout the body. The term metabolism—derived from
the Greek word “metabole” meaning “change”—defines all the chemical reactions that
change molecules within living systems. Exercise represents a major challenge to whole-
body and cellular energy homeostasis, and a multitude of molecular responses to acute
exercise (i.e., a single exercise bout) are engaged to combat energy stress at the cellular
and whole-body level [1]. During an intense acute exercise bout, the cellular turnover of
adenosine triphosphate (ATP)—the energy “currency” of the cell—can increase 100-fold
relative to the resting state, while at the whole-body level, the metabolic rate can increase
up to 20-fold [2]. Given the small concentrations of readily available ATP in skeletal muscle
cells (~8 mmol/kg wet weight) [3], ATP-resynthesizing pathways are rapidly activated in
response to exercise to help maintain ATP concentrations within the working muscle and
facilitate muscle contraction [4]. These cellular pathways responsible for ATP generation
include: (1) the ATP-phosphocreatine (ATP-PCr) system whereby the breakdown of PCr
produces free Cr and inorganic phosphate (Pi) that is subsequently transferred to ADP
to resynthesize ATP; (2) “anaerobic” glycolysis where glucose units mainly derived from
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intramuscular glycogen and circulating glucose are catabolized to pyruvate and reduced to
lactate, generating ATP by substrate phosphorylation; and (3) carbohydrate and lipid break-
down (glycolysis and β-oxidation, respectively) producing acetyl-CoA which subsequently
enters the tricarboxylic acid (TCA) cycle in the mitochondria and produces electrons that
are transferred through the electron transport chain, resulting in ATP generation [5]. The
relative contribution of these different pathways and the related substrates utilized to help
fuel working skeletal muscle are mainly dictated by exercise intensity and duration [2,6–8].
The metabolic perturbations provoked by exercise are however not restricted to working
muscles and engage numerous cell types and organs throughout the body to help meet the
metabolic demands of exercise [1].

Although tremendous progress in the understanding of the cellular and molecular
mechanisms involved in the responses to acute exercise has occurred over the past decades
through traditional “reductionist” approaches, these approaches are limited to studying
a biochemical pathway or molecular target of interest in isolation. As a result, further
insight into the complex integrative nature of exercise-regulated molecular metabolic
networks has been limited, and critical knowledge gaps remain [1,9]. Fortunately, the
growing application of global “omics” approaches to unravel metabolite and lipid network
responses to exercise in the last decade has marked an important turning point in this
research area. These omics-based approaches have introduced new opportunities to better
decipher the complexity and interconnection of exercise molecular transducers and their
potential contributions to exercise’s wide range of health benefits. In this review, we
introduce these omics-based approaches to exercise researchers and provide a critical
overview of the last decade of metabolomic and lipidomic applications, two of the most
recently introduced omics-based approaches, to studying the molecular responses to acute
exercise in humans and other mammalian species. Furthermore, we discuss key technical
considerations, remaining knowledge gaps and hurdles associated with metabolomics
and lipidomics, as well as highlight future research directions to continue expanding the
molecular landscape of exercise biology.

2. Metabolomics and Lipidomics Guide for Exercise Researchers
2.1. What Are Metabolomics and Lipidomics?

Metabolomics is defined as the comprehensive study of metabolites present in a given
biological system (e.g., biofluid, tissue) [10,11]. The metabolome—a term first coined by
Oliver and colleagues in 1998—represents the entire collection of metabolites within a
biological system [12]. Metabolites are defined as low molecular weight (<1500 Daltons)
chemical substrates, intermediates or end products of enzyme-mediated reactions [10]. The
study of the metabolome is also commonly referred to as “metabonomics”, which was
first defined as “the quantitative measurement of the dynamic multiparametric metabolic
response of living systems to pathophysiological stimuli or genetic modification” [13]. This
definition was later expanded to include the “particular emphasis on the elucidation of
differences in population groups due to genetic modification, disease, and environmental
(including nutritional) stress” [14]. Although differently defined, the terms metabolomics
and metabonomics are often used interchangeably [15].

Metabolites are heterogeneous compounds that possess various physicochemical
properties, but are generally classified as either hydrophilic polar molecules (e.g., amino
acids, carbohydrates, organic acids and phosphorylated compounds) or hydrophobic non-
polar molecules (e.g., fatty acids and membrane lipids) [16]. The human metabolome is
comprised of thousands of metabolites, with the latest report from the Human Metabolome
Database (HMDB) in December 2020 indicating no less than 8000 endogenous metabolites
detected [17], while almost 35,000 exogenous metabolites from sources such as foods, drugs,
toxins and microbes have been detected and/or expected [18].

Lipidomics, considered a subfield of metabolomics [16,19], is the study of the lipidome,
i.e., the total lipid content within a cell, organ or biological system [20]. Lipids are often
simply defined as hydrophobic biological substances generally soluble in organic sol-
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vents [21]. However, lipids can be more accurately characterized based on structural or
biosynthetic criteria [22]. The LIPID MAPS® consortium has provided a lipid classification
system including a comprehensive list of lipid categories (e.g., fatty acyls, glycerolipids,
sphingolipids, sterol lipids), classes and subclasses [22]. As of December 2020, the LIPID
MAPS® Structure Database contains more than 45,000 unique lipid structures [23].

Emerging only at the start of the new millennium, metabolomics and lipidomics rep-
resent the newest applications among global omics-based approaches (i.e., genomics, tran-
scriptomics, proteomics, phosphoproteomics). The rapidly growing fields of metabolomics
and lipidomics have dramatically expanded over the past 15–20 years, thanks to major
advancements in analytical instrument technologies and bioinformatic analysis platforms.
As a result, there has been a substantial increase in the application of metabolomics and
lipidomics across a wide range of research fields, including health and disease [24], toxi-
cology [25], nutrition [26] and exercise physiology [27]. The growing application of these
omics-based technologies therefore represents a promising avenue to continue improving
our understanding of the complexity and interconnection of exercise-regulated metabolic
reactions within biological systems, which were previously limited by the application
of traditional reductionist approaches only studying targeted metabolite(s) of interest in
isolation [10].

2.2. Advantages to Studying the Metabolome and Lipidome in Biological Systems

Studying the metabolome (including the lipidome) is appealing for expanding our
understanding of complex biological systems in the context of exercise, as metabolites lie
downstream of all other layers of biological regulation. Therefore, the metabolome reflects
the cumulative changes resulting from processes involving the genome, transcriptome and
the proteome, as well as their interactions with the environment (Figure 1). The metabolome
thus directly reflects the phenotype of a given biological system at the molecular metabolic
level [10]. Put differently, while genomics, transcriptomics and proteomics altogether
provide a program of what might occur within a biological system, metabolomics provides
a snapshot of phenotypic traits (i.e., phenome), revealing what is currently occurring or
has happened as a result of these other layers of biological regulation [28,29]. Considering
rapid metabolite turnover, which can be detected in seconds versus minutes to hours for
transcriptomic and proteomic responses to a stimulus such as an acute exercise bout, the
metabolome serves as a rapid indicator of metabolic perturbations and chemical reactions
occurring as a result of post-translational regulation (e.g., protein phosphorylation) in
response to a given stimulus or environmental exposure.

Another advantage of studying the metabolome/lipidome is that the central reactions
and pathways essential to energy metabolism, growth and nutrient supply are highly
conserved across mammalian species, meaning that metabolite measurements obtained
from other mammalian species such as rodents may be relevant and translational to
humans [10,30]. In addition, the transferability of analytical methods across distinct biolog-
ical systems (e.g., biofluids, tissues) makes metabolomic/lipidomic approaches attractive
by dramatically reducing labour and time associated with optimization, and providing
high-throughput data at relatively low cost per sample compared with other omics-based
approaches such as transcriptomics and proteomics [10]. Another advantage is the small
sample volumes (typically 10–100 µL) required for compound detection, identification
and quantification, which in turn makes collection of multiple samples in relatively short
periods of time feasible (e.g., serial blood sampling at close intervals during/after exercise).
Finally, when using an untargeted approach as detailed below, metabolomics/lipidomics
permits the detection of changes in previously unknown, uncharacterized or rarely re-
ported metabolites [31]. This approach allows for potential hypothesis generation and can
facilitate retrospective data analysis to unlock potential mechanisms linked to disease or
intervention strategy.
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Figure 1. The complex interrelations between biological layers (from the genome/epigenome, tran-
scriptome and proteome to the metabolome) and other individual factors (sex and age, environment
and lifestyle including exposure to toxins and pollutants (symbolized by skull and crossbones),
medication use, dietary habits, . . . ) and exercise variables, and how these biological networks and
variables contribute to the overall phenotype. Environmental exposures and lifestyle, including diet
and medication, as well as exercise and its associated variables (exercise type, intensity, duration and
frequency) can affect all layers of biological regulation and lead to distinct phenotypic signatures in
mammalian systems that reflect health, disease and responses to exercise. Adapted from [10].

2.3. Types of Metabolomic and Lipidomic Approaches

Omics-based approaches such as metabolomics and lipidomics are generally described
as unbiased, global experimental strategies to identify and/or quantify as many compounds
as possible within a biological system. However, different approaches to investigating
metabolites and/or lipids within a biological system are currently available, as briefly
outlined below and reviewed elsewhere in more detail [10,32]:

2.3.1. Untargeted Approach

This approach aims to reproducibly measure as many metabolites/lipids as possible
in a given biological sample. Depending on the platform utilized, the untargeted strat-
egy generally yields a metabolite detection coverage in the hundreds to low thousands
using a combination of different separation and detection modes (described below). This
approach provides semi-quantitative data, meaning that peak areas are reported for each
metabolite instead of absolute concentrations. These peak areas allow the assessment of
the relative abundance of detected metabolites between experimental groups. Of note,
metabolite identities are usually unknown prior to data acquisition and analysis when
using this approach.

2.3.2. Targeted Approach

As opposed to the untargeted strategy, the targeted approach aims to provide absolute
concentrations of a set of known metabolites (ranging from one to 100 metabolites, typically
a few dozen, depending on the number of compounds of interest) by using authentic chemi-
cal standards and calibration curves for each pre-selected metabolite. Recent developments
in commercially available targeted metabolomics kits now facilitate the identification of up
to 188 metabolites, and up to 1184 different lipids for lipidomics [19].
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2.3.3. Semi-Targeted Approach

This third approach is less common. However, it is gaining popularity amongst many
metabolomics research groups. This approach represents an intermediate strategy between
untargeted and targeted approaches where a higher number of known metabolites (i.e.,
low hundreds) are investigated using a single chemical standard and ad hoc calibration
curve for multiple metabolites, thus providing approximate metabolite concentrations.

The untargeted approach is primarily used as a hypothesis-generating method where
the research question is generally unbiased with respect to metabolite identification. In
contrast, the targeted approach can be used as a hypothesis-testing and experimental
validation method, as it provides much higher sensitivity and specificity in comparison to
the untargeted approach, but with reduced metabolite coverage. Therefore, the untargeted
approach permits the identification of new potential biomarkers and pathways, which can
be further validated and more accurately quantified via the targeted approach. Although
these approaches are complementary, the targeted strategy provides the most quantitative
insights into metabolite dynamics in response to stimuli such as exercise [16].

2.4. Commonly Used Metabolomic and Lipidomic Analytical Platforms

Regardless of the type of metabolomic approach utilized, the main analytical platforms
used in metabolomic studies are mass spectrometry (MS) and nuclear magnetic resonance
(NMR) spectroscopy [16,19]. We provide a brief overview of NMR spectroscopy and MS
principles below, and readers are referred to the following review articles for further details
of these analytical techniques [33–36].

Briefly, NMR spectroscopy is a technique based on the interaction of an applied mag-
netic field with the nuclei of atoms which possess an odd number of protons or neutrons,
including 1H, 13C, 15N, conferring their magnetic properties. The magnetic orientations
of these atoms, which have random directions, become aligned when a magnetic field is
applied. Then, a pulse of electromagnetic radiation at a specific “resonance” frequency
(dependent on the atom and magnetic field) is applied, causing nuclei “excitation” and sub-
sequent “relaxation” when the radiation pulse stops. During relaxation, nuclei emit the ra-
diofrequency waves absorbed during the excitation phase, thus generating radiofrequency
peaks in a frequency spectrum (also called NMR spectrum) after Fourier’s transformation.

NMR spectroscopy is used as a non-destructive technique and allows the measure-
ment of chemical and physical properties of molecules, therefore helping identify and/or
quantify molecules of interest. In theory, this can be performed in solid, liquid and gas
states from frozen to very high temperature materials, although researchers typically focus
on only one aggregation state based on practicality and feasibility. Numerous applications
using “pulse sequence” have been developed to expand the capability of NMR techniques.
Pulse sequence is analogous to music scores for an orchestra to create the right harmony,
which is the spectrum in NMR. Application of the right pulse sequence can enable sample
information such as chemical structure, molecular shape, size and molecular aggregation to
be obtained. Since NMR is non-destructive, the sample can be reused to gain more informa-
tion using different pulse sequences, unless the sample condition has changed during the
experiment (e.g., heat application, temperature change). The major limitation of the NMR
technique is low sensitivity compared to MS, resulting in reduced metabolite coverage
(typically 50–200 metabolites detected and identified) with NMR [37,38]. Compared to MS,
NMR also requires more sample volume (~0.28–0.5 mL) to obtain measurements. However,
advantages of NMR over MS include the ability to analyze living samples (e.g., magnetic
resonance imaging) and the ease in distinguishing compounds of identical molecular
weight with NMR [38].

In MS-based techniques, the compounds present in a biological sample are converted
to ions (with either a positive or negative charge) through the use of an ion source. The
formed ions then enter the MS instrument which detects ions and their abundance, pro-
viding a mass spectrum displaying mass-to-charge ratio (m/z) and peak intensity (i.e., ion
abundance). Further information can be collected through tandem MS (MS/MS or MS2) in
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which either intact “precursor” ions are fragmented into “product” ions, or ions already
fragmented during MS undergo further fragmentation, providing additional structural in-
formation about a given compound detected and thus enhancing compound identification
capacity. MS2 is particularly useful for compounds with identical m/z values [34,36].

Although MS can be used as standalone instrumentation for metabolite detection and
identification, i.e., direct infusion MS (DIMS), it is typically but not exclusively combined
with chromatographic separation techniques such as gas chromatography (GC) and liquid
chromatography (LC). Chromatography columns contain a stationary phase that interacts
with the sample and uses the affinity of molecules to separate them within complex matri-
ces. As molecules flow along the column, their different affinities for the stationary phase
result in different retention times in the column and thus sequential introduction into the
MS instrument, therefore enhancing sensitivity and identification capacity [34,37]. Due
to major technological advances over the past two decades, LC-MS is currently the most
widely used technique in metabolic profiling. Indeed, LC-MS provides high metabolite
coverage, reproducibility, specificity and sensitivity [37]. Similar to LC-MS, GC-MS has a
strong capacity for separation, sensitivity, selectivity and reproducibility. However, GC-MS
can only be used for the separation and identification of volatile compounds and low
molecular weight compounds (50–600 Da) [39], and such chemicals must be volatile or
amenable to chemical derivatization to render them volatile. Each analytical platform has
its own advantages and limitations and should therefore be considered complementary
rather than opposing analytical techniques to provide comprehensive metabolomic anal-
yses. No single platform can yield detection, identification and quantification of the full
range of metabolites within a given biological sample and as such, multiple separation
techniques and analytical platforms may be used in combination to increase metabolite
coverage [19,37]. More detailed information about specific methods, advantages and limita-
tions regarding the use of GC-MS, LC-MS (including MS/MS) and NMR for metabolomics
have been extensively reviewed elsewhere [37–39].

Lipidomics shares similar analytical techniques with metabolomics [20,40]. Although
NMR spectroscopy is considered a powerful tool for lipid identification [41], the lipidomics
field has predominantly applied MS-based techniques with numerous potential experimen-
tal and sample preparation variations. The most commonly used MS techniques can be
divided into two categories: (1) direct analysis from a biological matrix; and (2) analysis
following lipid extraction, with or without subsequent separation [20,40].

Direct analysis from biological matrices is mainly performed by MS imaging. An
appealing characteristic of this method is its ability to determine the spatial distribution
of thousands of lipid species in tissue sections without any labelling [42]. The principle
of MS imaging is similar to classical MS in that compounds from the sample (i.e., tissue
section) are ionized, for example using matrix-assisted laser desorption ionization (MALDI)
or desorption electrospray ionization (DESI) and analyzed by MS. The main distinction
between MS imaging and classical MS is that a tissue section is divided into squares or
pixels with MS imaging, and compounds within each pixel are subject to ionization and
MS, pixel by pixel. Mass spectra are acquired for each pixel and specific m/z values can
be individually selected to visualize their signal intensity (thus abundance) within the
tissue section. By merging the different colour-coded m/z signals, spatial distribution
and abundance of different lipid species can be visualized throughout the tissue [43,44].
Another interesting characteristic of MS imaging is that this approach requires minimal
sample preparation (with MALDI-MS imaging) or no preparation (DESI-MS imaging) other
than tissue sectioning [20].

The analysis of lipid extracts without separation is often referred to as “shotgun”
lipidomics or direct infusion-based lipidomics, whereby a given lipid extract is continu-
ously injected in the MS instrument, generally after selective ionization by an ion source,
which provides some lipid separation [20]. Despite various advantages, limitations as-
sociated with shotgun lipidomics include ambiguous identification of lipid isomers and
ion suppression [45]. Ion suppression is a phenomenon that results from the presence
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of less ionizable/volatile compounds which affects the efficiency of droplet formation or
evaporation, thus leading to a reduction in charged ions in the gas phase that enter the mass
spectrometer [46]. Most limitations of shotgun lipidomics are overcome by multidimen-
sional MS-based shotgun lipidomics (MDMS-SL), which integrates a full mass scan (first
dimension) and all MS/MS scans (second dimension) for head groups and acyl chains, thus
allowing the identification of individual lipid species (including isomers) and providing
accurate quantification but with relatively low throughput [20]. Lipid annotations are
then based on accurate mass and fragmentation patterns, which is facilitated by reference
databases [47,48]. In contrast, separation methods prior to MS analysis allow minimal ion
suppression. Among these separation methods, LC-MS is the most widely used for these
same reasons, among others, as detailed above [20,40,45]. Nestled between LC and MS is
a very fast separation technique called ion mobility spectrometry (IMS), which is used to
provide an additional dimension of separation based on ions’ shape and size, known as
collisional cross section (CCS). This technique is becoming particularly important for lipids
as it allows the separation of isomers using trapped ion mobility spectrometry (TIMS) and
a gas flow which facilitates lipid identification [49].

2.5. Overall Metabolomic and Lipidomic Workflow

A typical untargeted metabolomics/lipidomics workflow is composed of several ex-
perimental and analysis steps (Figure 2). The first step of this workflow is establishing the
experimental question and optimizing the study design. A robust study design is crucial
to ensure minimal investigator-induced variation in the biological sample and subsequent
reduction of noise within the metabolomic/lipidomic dataset, which can eventually hinder
confidence of data interpretation [31,32]. The following step includes performing the
experimentation and the resulting sample collection, storage and preparation. These steps
are also critical since many biases may be introduced, potentially altering the metabo-
lite/lipid composition of the biological sample [50]. Consistency of experimental methods
(e.g., timing of collection, materials and reagents, storage temperature) is paramount to
enable acquisition of accurate and reproducible results [36]. Sample preparation methods
and reagent selection will mainly depend on the sample type (e.g., blood, urine, saliva),
platforms being utilized (e.g., NMR versus MS), and compounds of interest (lipid classes
versus all metabolites). Whereas NMR only requires minimal and non-sophisticated sam-
ple preparation [19], MS-based platforms can require additional preparative steps for the
inclusion of quality control (QC) samples and internal standards (IS) for the generation of
calibration curves and accuracy check. However, both instruments will typically use QC
samples within the analysis to check for reproducibility and, for MS, to monitor/correct
potential shifts in mass accuracy and retention times [31,32].

Next, data acquisition refers to the detection and characterization (e.g., m/z ratio
and peak intensity in MS; and chemical shift in NMR, i.e., resonance frequency of a
nucleus relative to a standard with a value of 0) of the compounds present in samples
through the use of one (and sometimes several) of the analytical platforms mentioned
above. Once acquired, raw peak intensity data are processed to permit further analysis. In
MS, data processing comprises many steps including conversion of raw peaks into data
matrices, noise filtering, retention time correction, chromatogram alignment, peak detection,
data normalization, and eventually, compound “putative” identification by matching
metabolite/lipid spectra against in-house libraries and available databases such as HMDB,
METLIN or LIPID MAPS. Putatively identified compounds are then benchmarked by the
investigator, and the relative levels of identification confidence are assigned and reported
according to the Metabolomics Standard Initiative (MSI). The (MSI), and more recently,
the Lipidomics Standards Initiative (LSI), have notably been created to standardize the
confidence levels for metabolite and lipid identification [41,51]. In NMR, different steps
precede compound identification/annotation including: spectral pre-processing consisting
of noise reduction and baseline correction; sub-spectral selection where only areas of the
spectra containing peaks are kept; spectral alignment; spectra division into sections (i.e.,
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bins) that can fit one or more peaks; followed by calculation of bin intensities and statistical
tests to assign bins to a specific metabolite. Data normalization, scaling and transformation
are also performed prior to data analysis and interpretation [52].

Figure 2. Typical metabolomics/lipidomics workflow: (1) After establishing a given biological question, appropriate and
optimized study design is a critical step to answer this biological question with minimal bias and noise (i.e., investigation-
induced variability). (2) Sample collection before/during/after the experiment also requires particular attention and care
to avoid introducing potential biases. Therefore, consistency of collection timing, materials and reagents is important.
Metabolic reactions are rapid and must be stopped as soon as possible following collection by snap freezing or placing the
sample on ice. (3) Samples are then prepared accordingly (e.g., centrifugation of whole blood to collect plasma or serum)
for storage until planned sample preparation or direct data acquisition. (4) Sample preparation depends on the analytical
platforms utilized and the molecular species to be extracted (e.g., lipids or other metabolites). During this step, QC samples
are usually prepared and IS added to all aliquots to screen and correct platform-related shifts and enhance reproducibility.
(5) Samples are analyzed and data are acquired using one or multiple analytical platforms. (6) Acquired raw data are
then processed through multiple steps to eventually allow accurate compound identification/annotation. (7) Multiple
statistical tests are performed on the identified/annotated compounds to determine potential differences between samples
and/or groups in line with the biological question and experimental design. (8) Finally, data are placed into biological
context using pathway/enrichment analysis and visualization tools, which also help inform future biological research
questions and experimental designs, therefore leading back to step one of the workflow. Alternatively, targeted validation
of metabolites/lipids of interest within the dataset may be performed following data integration.

Following identification (regardless of the analytical platform used), a broad range
of statistical analyses is performed to determine potential differences between samples
and/or experimental groups. Commonly used statistical methods include univariate
and multivariate analysis, either in an unsupervised or supervised manner. ANOVA
and t-test or nonparametric equivalents are widely used univariate analysis methods,
whereas principal component analysis (PCA) and partial least square-discriminant analysis
(PLS-DA) are common examples of unsupervised and supervised multivariate methods,
respectively [53]. Briefly, the use of PCA can reveal patterns or signatures within the sample
set and show sample reproducibility through clustering of quality control samples within
and between batches. PLS-DA is a predictive and descriptive modelling technique used
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for classification between different groups of samples and optimizes separation between
these groups of samples [53,54]. A plethora of statistical methods are available, but there is
no one size fits all approach. The choice of suitable statistical methods will depend on the
biological question and study design, and consulting experienced bioinformaticians and
biostatisticians prior to data collection is highly recommended to ensure appropriate data
handling and analysis.

The last step of the workflow is data integration and interpretation, which allows
the investigator to link detected compounds with their biological context using publicly
available software tools and databases that further enable pathway and enrichment analysis,
metabolite/lipid mapping and visualization. Among these available databases, the Kyoto
Encyclopedia of Genes and Genomes (KEGG), LIPID MAPS and MetaboAnalyst are widely
used in applications of metabolomics and/or lipidomics [48,55]. However, it is important to
note that, as highlighted by Schwaiger et al., the specifics of each step within metabolomics
and lipidomics workflows can vary significantly [56]. It is also important to emphasize
that data integration and interpretation is a step where the investigator’s knowledge of
the research field and existing principles, along with deduction skills and deep analysis of
the available literature are critical to converting algorithm-generated data into biochemical
and physiological insights.

3. Metabolomic and Lipidomic Analyses of Acute Exercise-Regulated
Biological Networks

Following the introduction of metabolomic and lipidomic approaches, analytical plat-
forms and experimental workflows above, we overview in this section metabolomic and
lipidomic findings made over the last decade in the context of acute exercise. We selected
25 primary research articles and one systematic review specifically focusing on molecular
metabolic responses to a single bout of exercise (i.e., acute exercise) within the first min-
utes/hours and up to 72 h following this single exercise bout, in healthy subjects. Articles
that exclusively investigate the effects of acute exercise on the metabolome/lipidome in
subjects with disease states (e.g., obese and/or insulin resistant), as well as articles investi-
gating the effects of repeated exercise bouts (i.e., exercise training), were not included in this
review. We discuss metabolomic/lipidomic findings related to both acute aerobic and acute
resistance exercise bouts, with the term “endurance” used to define an aerobic exercise
bout of 30 min or longer duration. As opposed to aerobic exercise which typically consists
of repetitive physical activity against relatively low loads and requires the use of oxygen for
energy conversion, resistance exercise consists of muscle contractions performed against
relatively high loads [57,58]. Findings from both humans and other mammalian species are
described, with the aim of highlighting how metabolic networks are affected by exercise in
several biological fluids and tissues (mainly skeletal muscle and liver) and setting the stage
for future expansion of exercise’s molecular landscape. Collectively, these findings emerge
from the use of multiple analytical strategies (i.e., targeted and untargeted) and platforms,
with MS-based analytical platforms predominantly being used. See Tables S1 and S2 for
further experimental details and summaries of findings from each study discussed below
involving metabolomics and lipidomics, respectively.

3.1. Metabolomic Analyses of Acute Exercise
3.1.1. Humans
Biofluid Analyses

An acute bout of exercise dynamically impacts the human metabolome in a range
of biological fluids including blood, plasma/serum, urine and sweat, amongst others.
The high variability between existing human studies in terms of age, sex, BMI, exercise
type (resistance versus aerobic/endurance), modes (duration, intensity, interval versus
continuous), sample types, collection time points, as well as analytical platforms used,
presents challenges in distilling these large datasets into a consensus molecular metabolic
signature of exercise.
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Blood is considered an integrative biofluid given that it contains metabolites ex-
changed between organs and is therefore suitable for relatively comprehensive metabolic
profiling [10]. Blood collection is relatively non-invasive and available in sufficient amounts
for metabolomics/lipidomic purposes in humans. Compared to blood, the urinary metabo
lome is less comprehensive and complex (i.e., lower metabolite coverage, mostly hy-
drophilic compounds) since it is a filtrate of wastes from the bloodstream [59]. However,
urine is an attractive biological matrix since it can be collected non-invasively in large vol-
umes, and is under no homeostatic control mechanisms, meaning that urine may magnify
some metabolite changes occurring in blood. Urine is therefore often used as a matrix
for dietary intake biomarker discovery and drug or doping testing [59,60]. Similar to
urine, sweat, which is made of ~99% water, mainly contains hydrophilic compounds in
addition to electrolytes. Compounds such as proteins, peptides and amino acids, but
also urea, lactate and pyruvate can be found in sweat, as well as xenometabolites such
as drugs and cosmetics [60]. Researchers should consider which biofluid is practical and
ensure developed standard operating procedures exist in order to minimize the wide
variety of artifacts which can influence metabolite measurement. The choice of a suitable
biological matrix to investigate in the context of exercise will therefore come down to the
nature of compounds of interest (hydrophilic and/or hydrophobic compounds), research
question (e.g., comprehensive profiling versus specific submetabolome characterization,
drug and doping testing), feasibility and experimental setting (e.g., multiple sampling,
required volumes, risks of contamination, sample handling, field or sport setting versus
laboratory-based). Future advancements in analytical methods may promote development
of technologies which can be routinely deployed to capture metabolites from biofluids such
as sweat and saliva, for example in an elite sport setting, which will ultimately complement
gold standard measures of metabolites from plasma and serum.

Following a qualitative systemic review of human exercise metabolomics studies by
Sakaguchi et al. [61], Schranner et al. conducted a recent systematic review of human
metabolomic analyses assessing metabolite trajectories following acute endurance and
resistance exercise interventions with a duration ranging from 30 min to ~9 h [62]. This
systematic review addressed some of these challenges by analyzing a total of 27 studies
meeting eligibility criteria, revealing significant changes in up to 196 metabolites in the
first 24 h following a single exercise bout. These changes in metabolite concentrations
were summarized in the early (0–30 min), intermediate (>30 min–3 h) and late (>3–24 h)
stages post-exercise, and divided into classes including: carbohydrates and TCA cycle
intermediates; fatty acids (FA), acylcarnitines, ketone bodies, membrane lipids; amino acids
and derivatives; and nucleotides, vitamins and co-factors.

Despite some metabolite classes such as amino acids and derivatives showed mixed re-
sponses (i.e., both increased and decreased relative abundance) between exercise types (i.e.,
resistance versus endurance) as well as differences between endurance studies amongst
the 27 studies analyzed [62], other metabolites exhibited robust unidirectional changes fol-
lowing a single exercise bout. Among these, lactate and pyruvate—two well-documented
end products of glycolysis—expectedly increased to various extents in the early stages
after both acute endurance and resistance exercise. Likewise, several components of the
TCA cycle were commonly increased in blood and urine in the early and intermediate
post-exercise phases. Among the observed increases in metabolite abundance following
exercise, some nucleotides and their degradation products such as hypoxanthine and
inosine were also commonly detected. However, the most robust changes in response to
exercise involved fat metabolism. Indeed, no less than 37 FA and 17 acylcarnitines were
consistently reported to be increased following acute endurance exercise. Acylcarnitines
are FA bound to carnitine, an amino acid derivative which allows the transport of FA into
the mitochondria where they can be oxidized and contribute to cellular energy conversion.
However, acylcarnitines can also accumulate and be released by cells into the bloodstream.
Most studies (predominantly endurance exercise studies) reported in this systematic review
showed increased levels of several ketone bodies, along with reduced levels of ketogenic
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amino acids such as leucine, isoleucine and lysine, and increased levels of degradation
products from these three amino acids. Conversely, membrane lipids and bile acids were
mainly observed to be decreased following acute endurance exercise. Mixed responses
were observed for other metabolite classes such as steroid hormones, some vitamins, co-
factors and exogenous compounds in addition to amino acids and derivatives following
endurance exercise.

The mixed responses observed in amino acid levels following an acute exercise
bout [62] may be explained by the fact that a wide range of exercise types, durations
and intensities (Figure 1) and various biofluids with varying sample collection time points
are often analyzed together in such systematic reviews to compare exercise with a con-
trol resting condition. Amino acid responses can vary in multiple ways, depending on
these exercise variables. For instance, if a strenuous endurance exercise bout exceeds the
carbohydrate store of an individual, or if the individual’s maximal FA oxidation capacity
is reached, a shift towards protein catabolism and amino acid utilization to sustain en-
ergy requirements during the prolonged exercise bout will eventually result in reduced
circulating amino acid levels [63,64]. Similarly, circulating levels of amino acids can also
decrease in the recovery phase following resistance exercise, characterized by an increased
utilization of amino acids for protein synthesis. Indeed, all amino acids measured in blood
following acute resistance exercise in this systematic review were decreased, except for
alanine which was increased. These metabolite changes during the recovery phase may
not be observed following less intense and/or shorter exercise bouts. Additionally, a wide
range of blood collection timings during and/or following an exercise bout may represent
different fasting/feeding periods (often not controlled for in human studies) that will
have a major impact on relative circulating amino acid concentrations observed between
studies. Furthermore, the fact that amino acids are involved in various metabolic reactions
represents another potential reason for mixed amino acid responses to different exercise
stimuli. For example, amino acids are involved in protein synthesis, ATP synthesis, gluco-
neogenesis and ketogenesis. While these reactions will lead to reduced circulating amino
acid levels, other reactions such as protein breakdown or dietary protein intake will con-
versely increase circulating amino acid levels. Intake of carbohydrates will impact amino
acid metabolism, as increased carbohydrate availability will inhibit gluconeogenesis and
ketogenesis, therefore reducing the utilization of ketogenic and gluconeogenic amino acids
to facilitate these metabolic processes [65,66]. From this seminal systematic review [62],
depicting differences in metabolomic behaviors between resistance and endurance exercise
is limited given the current scarcity of studies investigating the metabolomic responses
to a single bout of resistance exercise. Therefore, the only reported metabolite with a
clear opposite behavior between acute endurance versus resistance exercise reported is
the ketone body acetoacetate, which is increased after endurance exercise while decreased
after resistance exercise. The reader should however be aware that differential responses
between exercise types, intensities and durations may also lie in the magnitude of metabo-
lite responses rather than directionality. In summary, nutritional status, exercise types and
modes represent important confounding factors between studies, introducing challenges
and potentially limiting the interpretation of metabolomic responses to acute exercise. This
warrants further efforts to characterize amino acid metabolism in response to different
exercise types and modes, with particular attention to these common confounders.

• Blood

Overall findings from this systematic review [62] are supported by previous work
investigating the human serum metabolome in male and female athletes in response to
marathon running. Stander and colleagues reported increased serum FA, ketone bodies and
TCA cycle intermediates, along with decreased levels of amino acids following marathon
running [64]. Increased concentrations of carbohydrates and associated metabolites, as
well as elevated alpha-hydroxy acids and odd-chain fatty acids (OCFA) were also observed
following acute endurance exercise [62,64]. The presence of elevated alpha-hydroxy acids
and OCFA levels are indicative of an increased utilization of α-oxidation—the process
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resulting in removal of the carboxyl group (the first carbon atom) in a FA— resulting in
the generation of OCFA, though OCFA can also be provided through the diet (e.g., dairy
products) [67]. In this study [64], FA α-oxidation was suggested as a potential alternative
pathway for energy conversion when β-oxidation reaches saturation, indicated by the
accumulation of 3-hydroxy acids (β-hydroxyhexanoic acid) and 3-keto acids (β-hydroxy-α,
β-didehydrosebacic acid). Although the peroxisome—the site of α-oxidation—does not
contain a TCA cycle nor an electron transport system and is therefore unable to directly
produce ATP, the α-oxidation of FA generates alpha-hydroxy acids which can be further
subjected to β-oxidation in the peroxisome [68]. These products of the peroxisomal β-
oxidation could potentially be taken up by mitochondria for complete oxidation in humans,
similar to what has been demonstrated in rodent skeletal muscle [69].

In contrast to some of the above findings, other studies have identified elevated serum
levels of amino acids including alanine, tyrosine and phenylalanine in males following
marathon running, whereas alterations of cholesterol and steroid metabolism following
a marathon were consistently reported in these two studies [64,70], as elevated levels
of squalene and pregnenolone are indicative of cholesterol breakdown. Pregnenolone is
notably a precursor of cortisol, a known steroid stimulator of lipolysis, protein breakdown
and gluconeogenesis [71]. In addition, marathon running in these males also provoked
decreased serum levels of glucosamine [70]. Glucosamine is a compound involved in joint
and cartilage structures, and commonly used as a dietary supplement to combat joint
inflammation [72]. Next, caffeine metabolism was also shown to be increased by marathon
running, indicated by increased levels of compounds including theophylline, theobromine
and xanthine [70]. It is plausible that the increased levels of caffeine and associated
derivatives are due to dietary caffeine intake in the hours preceding the marathon, since
diets between baseline blood collection (day preceding the race) and the race day were not
controlled in this study.

Metabolomic responses to exercise in blood have also been shown to be influenced by
an individual’s level of fitness. For instance, in a study by Schader and colleagues [73], male
amateur marathon runners were divided into top (n = 18), average (n = 40) and low (n = 18)
performers, based on VO2max (~63, 50 and 42 mL × min−1 × kg−1, respectively) and race
completion time (~175, 225 and 277 min, respectively). Blood samples from these three
groups were examined for potential differences in metabolomic responses to marathon
running. Immediately post-race, the low performers exhibited a significant increase in a
wide range of acylcarnitines (from short to medium- and long-chain) in plasma compared
to the average and top performers groups. One possible explanation for these differences
in acylcarnitine levels between top/average and low performers is that low performers
may have a reduced capacity to oxidize lipids, which may in turn lead to an accumulation
of acylcarnitines. Differences in arginine metabolism and urea cycle related-metabolites
between low and top performers have also been reported [73]. Arginine is an amino acid
central to the urea cycle, which is activated during protein breakdown when nitrogen is
liberated from amino acids. Ornithine, a co-product of urea production from arginine,
was shown to be lower in the top versus low marathon performance group, whereas
citrulline—an alternative product of arginine metabolism—increased in the top performers
group. A potential explanation for the reduced plasma levels of ornithine in top versus
low performers may be the greater lactate production in these faster runners; lactate being
an inhibitor of urea (and ornithine) synthesis [74]. Furthermore, it is plausible that reduced
citrulline levels in low versus top runners can result from increased nitric oxide (NO)
production due to longer race duration. NO has been shown to exert a negative feedback
regulation of NO synthase, an enzyme that catalyses the production of citrulline and NO
from arginine [75]. Another possible reason for reduced levels in citrulline observed in the
low performers group may be the potential decrease in asymmetric dimethylarginine—a
substrate for citrulline synthesis—that occurs during strenuous and prolonged exercise [76].
These overall differences in the urea cycle and arginine related-metabolites indicate a
higher reliance on protein catabolism in low compared to top marathon performers [73].
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However, given the complexity and multiple possible reactions leading to the production of
arginine and urea cycle related-metabolites, further investigations are required to confirm
the potential underlying mechanisms suggested above.

Another recent metabolomics analysis of plasma from young active men performing
an acute time-to-exhaustion cycling trial allowed the separation of metabolomic profiles in
a 20-min window, and the identification of biomarkers at the onset of fatigue [77]. One key
finding from this study was that several metabolites permitted the discrimination between
the pre- and post-fatigue states. In this study, Manaf et al. also revealed FA were among the
strongest metabolomic responses to exhaustive exercise and progressively increased over
time throughout the cycling trial. Particularly, robust increases in oleic and palmitic acids,
as well as their carnitine-bound form, were observed while tryptophan concomitantly
decreased. This supports the central fatigue hypothesis proposed by Newsholme et al.
which suggests that increases in FA levels induce a displacement of tryptophan from
albumin, resulting in enhanced availability of free tryptophan. The latter can thus enter
the central nervous system to produce serotonin, a neurotransmitter associated with
fatigue when it accumulates in the central nervous system [78]. This hypothesis is further
supported by the observed increased levels of the end product of serotonin metabolism, 5-
methoxy-3-indoleacetic acid. Other potential mechanisms implicating the aforementioned
FA and acylcarnitine in the onset of fatigue have also been suggested, including inhibitory
effects on adenine nucleotide translocase, responsible for the transport of ATP from the
mitochondria to the other cellular compartments requiring energy [77,79].

Recently, Contrepois et al. investigated metabolic responses to acute aerobic exercise
(i.e., ~8–12 min of treadmill running following warm-up) using multi-omics (including
proteome, transcriptome, metabolome and lipidome) blood profiling [27]. The study investi-
gated multiple biological layers before exercise and at four time points (2, 15, 30 and 60 min)
following a single exercise bout. Plasma was collected from healthy older participants (i.e.,
average age 59 years) with wide ranges of insulin sensitivity and metabolic health status.
In line with the recent systematic review discussed above [62], these metabolomic data
showed robust lipolysis and FA tissue uptake in response to exercise, indicated by large
increases in various FA and acylcarnitines. However, distinct trajectories were observed
depending on FA and acylcarnitine carbon chain length and the number of unsaturated
bonds. While most saturated medium-chain acylcarnitine (C6:0 to C12:0) levels increased
immediately post exercise to return to pre-exercise levels within 15–30 min, several monoun-
saturated medium- to long-chain acylcarnitines (C6:1, C8:1 and C16:1) and one saturated
medium-chain acylcarnitine (C14:0) showed a more modest accumulation with exercise,
but returned to pre-exercise levels after 30 to 60 min of recovery. Increased circulating levels
of medium-chain acylcarnitines likely suggest incomplete FA oxidation within tissues such
as skeletal muscle. Expectedly, free carnitine levels exhibited inverse trajectories, as free
carnitine binds to FA to form acylcarnitines. Three main trajectories were observed for FA.
While C10 and C12 FA increased two min post-exercise, C14 to C18 FA peaked at 15 min
post-exercise, whereas C20 to C24 FA rapidly decreased post-exercise. In this context, the
rapid drop of circulating long-chain FA likely indicates increased skeletal muscle uptake of
these specific FA during exercise for subsequent oxidation. Distinctively, increased circulat-
ing levels of C10 to C18 FA in the first 15 min of recovery may potentially be explained by
FA uptake and oxidation switching off more rapidly than exercise-induced lipolysis [80].
As opposed to FA, most amino acids such as glutamic acid, cystine, tryptophan, serine,
threonine and glycine decreased within two min of recovery with a return to basal levels
by 60 min of recovery. Alternatively, circulating BCAA levels exhibited a delayed decrease
following exercise and remained reduced at 60 min of recovery. However, increases in
alanine and tyrosine, in line with previous work [70], as well as increases in glutamine and
proline were observed, with a return to basal levels within 60 min [27]. The precise reasons
for these mixed amino acid responses in blood remain to be elucidated, although increased
plasma alanine and glutamine levels indicate ammonia detoxification [27,63].
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Interestingly, metabolomics analyses of blood samples have also proven useful in
studying the role of liver in exercise metabolism. Indeed, Hu et al. recently highlighted
liver-skeletal muscle crosstalk during acute exercise by analyzing arterio-venous differences
of metabolites in: (1) the hepato-splanchnic bed; and (2) the exercising and resting leg, in
young men [81]. These data indicated only minor changes in saturated long- and very
long-chain FA, whereas C6:0 and C8:0 FA, as well as TCA cycle intermediates (succinate
and malate), were released by the exercising leg and taken up by the liver through the
hepato-splanchnic bed. Blood analyses from the hepato-splanchnic bed therefore represent
a means to study liver metabolism in humans while avoiding challenges associated with
the invasive nature of liver biopsy collection.

• Urine

Although blood is the most commonly studied biofluid in the research area of exercise
metabolomics, an increasing body of work in the field of exercise involves analysis of other
biofluids including urine, saliva and sweat. After blood, urine is seemingly the most com-
monly analyzed biofluid in the context of exercise metabolomics. In humans, metabolite
profiling of urine samples is appealing since it has proven to be more stable, under less
homeostatic regulation than other biofluids [59], and collected non-invasively and in larger
volumes compared to other biofluids. It has been suggested that the urinary metabolome
can be considered complementary to the blood metabolome, since urine contains numerous
end-products derived from food and drug metabolism [50]. Recent publications support the
utility of urine analysis to reflect metabolomic changes following acute exercise, as analysis
of urine permits confirmation of well-appreciated exercise-induced changes in metabolites
related to several pathways including glycolysis (e.g., pyruvate and lactate), TCA cycle
(e.g., citrate and succinate) and amino acid metabolism (e.g., alanine, taurine) [82–86]. In
one of the earliest urinary metabolomic papers published, Kistner et al. reported that
within 15–30 min following an incremental cycling test, significant increases in urinary
carnitine and novel urinary exercise-responsive metabolites could be observed; notably
including increases in leucine derivatives methylsuccinate and 3-hydroxyisovalerate, and
valine derivative 3-aminoisobutyrate. Increased urinary levels of these derivatives indicate
branched-chain amino acid (BCAA) degradation and excretion in urine following exhaus-
tive exercise [82]. However, an often-reported downside of metabolomic analyses in urine
is that metabolite concentrations are highly influenced by hydration status and thus require
normalization for water content. Several pre-acquisition normalization methods have been
developed to address these issues. The most popular methods, each presenting advantages
and drawbacks, include the assessment of relative concentration to a reference compound
such as creatinine, measurement of osmolality, and the assessment of urine specific gravity
(i.e., urine to pure water density ratio) [50].

• Saliva

Saliva has gained attention over the past few years in the study of exercise metabolomic
biomarkers. Like urine collection, saliva is collected non-invasively and does not require
specialized laboratory facilities or skilled healthcare professionals. However, only few
metabolomics-based studies investigating the effects of exercise in saliva have been con-
ducted to date (e.g., [87–91]), and several potential pitfalls have been underscored. The
salivary metabolome contains both metabolites from the body and oral bacteria, as well
as ingestion-related compounds. It has also been observed that some metabolites such
as lactate return to basal states much faster in saliva versus blood [92]. Similar to urine,
metabolite concentrations are substantially affected by hydration status, therefore also
requiring normalization for water content. Normalization based on total protein con-
centration of whole saliva (TPWS) and total observed metabolite concentration (TOMC)
have been suggested to address this issue. However, normalization for water content in
metabolomics studies in saliva has not been systematically performed to date [89]. Addi-
tional efforts are therefore needed to use saliva as a reliable source of biological information
in the exercise research field.
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• Sweat

Sweat also represents an understudied biofluid in the field of exercise metabolomics,
partly due to its relatively low metabolite concentrations. However, sweat metabolomics
has proven useful in other contexts such as cancer diagnostics [93]. Among metabolomics-
based exercise studies performed in sweat (e.g., [94–96]), in a pilot study Harshman and
colleagues [95] identified dozens of metabolites following a treadmill march with 22-kg
tactical gear until perceived exhaustion, either at low (4.8 km/h, 3% incline), moderate
(5.1 km/h, 4% incline) or high intensity (5.6 km/h, 6% incline), in active duty military
volunteers. Consistent with previous findings, amino acids were the predominant detected
compounds [94,96]. However, the authors failed to observe any significant changes in
metabolite concentrations between conditions, and no correlations could be drawn between
metabolite concentrations and aerobic capacity (VO2max) or the rate of perceived fatigue.
Several confounding factors and current pitfalls of sweat-based metabolomics studies have
been reported, including the absence of localized sweat rate measure; normalization meth-
ods of analyte concentrations; sweat collection devices utilized, which can also constitute a
great source of interindividual and inter-study variability; and the presence of skin bacteria
and cosmetics that may interact with sweat metabolites [95]. This, in combination with the
frequent lack of statistical power in these human studies, limits the full potential of sweat
metabolomics and questions whether sweat is a reliable biofluid for exercise biomarker
discovery purposes.

3.1.2. Other Mammals and Tissues

Overall, metabolomics studies analyzing human biofluids in the context of exercise
are far more common than human studies investigating tissues. One of the main reasons
for the currently limited tissue metabolomics studies involves the more invasive nature of
human tissue biopsies (e.g., skeletal muscle and liver) compared to routine blood sampling
or sweat, urine and saliva collection. However, it has been demonstrated that blood and
skeletal muscle metabolomes have very little overlap, thus suggesting an overall limited
ability to potentially identify muscle tissue-specific metabolites from blood samples [97].
Mammalian animal models have therefore helped expand our understanding of metabolic
networks affected by acute exercise by allowing easier access to metabolically active tissues
such as skeletal muscle and liver.

As opposed to human studies, other mammalian studies (e.g., mice, rats) assessing the
effects of a single bout of exercise on the metabolome have predominantly analyzed tissues
relative to biofluids. These biofluids including saliva, sweat and urine are not collected as
easily and not available in sufficient volumes in small mammals such as rodents. Several
metabolomics studies in rodents have analyzed skeletal muscle following an acute bout
of exercise. Building upon the results in human biofluids demonstrating differential
responses to exercise depending on fitness level and performance, it has been shown in
mouse hindlimb skeletal muscle that metabolic responses to exercise are dependent on
the time of the day during which exercise is performed [98]. In a study from Sato et al.,
mice were subjected to a treadmill running bout either in the early active phase or the early
rest phase (equivalent to early morning and late evening in humans, respectively), and
their hindlimb skeletal muscles were subjected to metabolomics analysis. These results
suggested an increased glucose utilization, along with increased use of other fuel sources
such as lipids, amino acids and ketone bodies, when mice exercised in the early active
compared to the early rest phase [98].

Furthermore, metabolomic analysis of both plasma and hindlimb skeletal muscle
from rats with high and low running capacities has provided insights into substrate
utilization during and following an exhaustive running bout [99]. Following a 10-min
run (i.e., exhaustion for low-performance rats), only marginal increases in skeletal muscle
long-chain acylcarnitines were observed in low-performance running rats, with very little
changes observed in plasma FA. Conversely, high-performance rats exhibited significantly
increased muscle levels of these long-chain acylcarnitines together with reduced plasma FA,
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indicating enhanced FA muscle uptake. Only following exhaustion in high-performance
rats (45 min) were medium- and long-chain acylcarnitines increased both in muscle and
blood. While increased long-chain acylcarnitines in muscle and blood potentially indicate
that FA oxidation capacities were reached, increased circulating levels of medium-chain
acylcarnitines likely indicate incomplete FA oxidation [80]. Decreased plasma and muscle
levels of BCAAs in high- versus low-performance rats were also observed at 10 min,
suggesting increased BCAA uptake and breakdown within the skeletal muscle. The
data from this study overall showed enhanced FA and BCAA utilization capacities in
high- versus low-performance rats. While the increased FA oxidation capacities in high-
performance rats are in line with findings from human marathon runners [73] described
above, the amino acid results between these studies seem contradictory. However, the
absence of significant changes in both plasma and muscle amino acids in low-performance
rats may be due to the relatively short exercise bout (10 min) that may have been insufficient
to induce protein breakdown as opposed to the 45-min run in high-performance rats. Of
note, the mechanisms of exhaustion were similar between low and high capacity running
rats, with exhaustion only being delayed in high capacity running rats.

In addition to rodents, tissue metabolomic responses to acute exercise have also been
studied in other mammalian species. For instance, the skeletal muscle metabolome in
horses was recently investigated after a single incremental exercise test to exhaustion, in
both an untrained and trained status [100]. Only 31 of all identified metabolites were
changed 3 h following the treadmill race in untrained horses, while 142 metabolites sig-
nificantly changed in the trained horses. Regardless of training status, the predominant
exercise-induced response to acute exercise involved changes in amino acid (including
BCAAs) and lipid metabolism. Nucleotides and xenometabolites also showed altered
levels in horse skeletal muscle following the exercise bout. Given the increased number of
metabolites significantly altered in the trained state, the authors suggested that interindi-
vidual variability can be attenuated by training. This may also reflect the enhanced ability
of trained horses to run at higher intensities for a longer amount of time. However, it is
important to note that post-exercise muscle biopsies were collected 3 and 24 h following
the exercise test. Although food was only allowed after the 3-h post-exercise biopsy, the
sample collection delay represents a limitation to this study that may have hindered obser-
vation of additional exercise-induced metabolite changes in both trained and untrained
horses. Moreover, a noteworthy point raised by Zhang and colleagues [101] is that muscle
biopsies do not allow distinction between extra- and intra-muscular metabolites. To do so,
investigating skeletal muscle interstitial fluids is a promising, yet rarely practiced avenue
in metabolomics research that has the potential to provide more accurate insights into
mammalian muscle metabolism. For example, a recent study assessed both plasma and
muscle interstitial fluids in rats following a short treadmill running bout at moderate inten-
sity. Out of 299 detected metabolites, only 43% were common to both biofluids. Among
the 204 metabolites changed by exercise, only 20% were shared, therefore underscoring
the limited ability of circulating metabolites to reflect the full range of muscle metabolic
changes induced by exercise [101]. Additional pilot data from human muscle interstitial
fluid was also collected in this study and, in line with rat data, reported increased TCA
cycle intermediates following exercise, possibly induced by increased FA oxidation. Like-
wise, increased levels of amino acids and markers of purine catabolism were observed,
among others, following the exercise bout. Of note, differential FA responses were observed
between rats and human data, potentially resulting from differences in sample collection
timing. Taken together, these results warrant further mammalian metabolomics-based
investigations in multiple tissues and/or biofluids to potentially capture a more detailed
molecular blueprint of acute exercise metabolism.

The liver, which is crucial to whole-body energy supply and maintenance of metabolic
homeostasis during exercise, has also been studied using metabolomic approaches. In 2010,
Huang and colleagues were the first to use metabolomics to investigate changes in liver
metabolic profile induced by exhaustive treadmill running in rats [102]. Increased hepatic
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levels of xanthine, hypoxanthine, and creatinine—a degradation product of creatine—
point to increased energy conversion, while decreased hepatic levels of carbohydrates and
lactate suggest glycogen depletion, to help meet exercise-induced energy requirements.
Increased FA and ketone bodies further support an increased reliance on fat metabolism
during prolonged exhaustive exercise. Additionally, this was accompanied by increased
urea concentrations. Exhaustive exercise was associated with hepatic inflammation, as
elevated levels of inflammatory precursors such as arachidonic, linoleic and oleic acids
were detected and associated with the accumulation of macrophages detected by liver
immunochemistry [102]. As previously discussed, Hu and colleagues who observed that
FA (C6:0, C8:0) and TCA cycle intermediates (succinate and malate) were released by the
exercising leg and taken up by the liver [81], conducted complementary analyses on liver
transcriptome data obtained from mice following a 60-min treadmill running bout [103].
Findings indicated exercise-induced activation of HIF-, NRF2- and cAMP-dependent gene
transcription, potentially indicating that metabolites released from the exercising muscle
can also act as signaling molecules in the liver [81,103], although it cannot be excluded
that activation of liver gene transcription may be driven by the liver’s own amplified
metabolism and signaling molecules. It was speculated that these circulating metabolites
may be involved in metabolic adaptations to exercise, though it was acknowledged that
further research is needed to validate this hypothesis [81]. Although inter-organ crosstalk
during exercise is still overall poorly understood and requires further investigations, it is
important to note that feasibility of liver metabolomic investigations in humans is very
limited, given the invasiveness of liver biopsy sampling. Assessing hepato-splanchnic
fluxes by collecting blood from hepatic veins and peripheral arteries may help partially
address this issue in future human studies [81,104].

3.2. Lipidomic Analyses of Acute Exercise
3.2.1. Humans
Blood Analyses

The release of vasoactive metabolites from the working skeletal muscle and vascu-
lar endothelium during exercise is well documented [105]. These numerous vasoactive
substances comprise lipid species, including epoxides (also named epoxy FA) derived
from arachidonic acid (AA) such as 5,6-, 8,9-, 11,12-, 14,15- epoxyeicosatrienoic acid
(EET) isomers, are produced by the action of cytochrome P450 (CYP) mono-oxygenase
(Figure S1) [106]. EETs can in turn induce hyperpolarization of smooth muscle cells, leading
to vascular relaxation, which has been suggested to contribute to enhanced skeletal muscle
blood flow during exercise [107]. Recently, it was demonstrated that vasoactive lipids de-
rived from the n-3 and n-6 polyunsaturated FA (PUFA) and metabolized by CYP were also
released into the bloodstream following an acute maximal treadmill test using the Bruce
protocol [108] in healthy adults [106]; and 12,13- epoxyoctadecenoic acids (12,13-EpOME)—
an epoxide originating from linoleic acid (LA)—exhibited significantly increased levels in
plasma following the maximal exercise bout. Epoxides can be further metabolized to diols
by soluble epoxide hydrolase (sEH) (Figure S1). As such, increased plasma levels of diols
were reported post-exercise; 5,6-dihydroxyeicosatrienoic acids (5,6-DHET), derived from
AA; as well as 5,6- and 17,18- dihydroxyeicosatetraenoic acids (5,6- and 17,18-DiHETE),
derived from EPA [106]. Diols such as DHETs, although initially thought to be inactiva-
tion products of EETs, also exhibit vasodilation properties [109], potentially counteracting
vasoconstrictive substances concurrently released during exercise. In contrast to EETs and
DHETs, EpOMEs (especially 12,13-EpOME) have been shown to have cardiac depressant
and vasoconstrictive properties [110]. The physiological roles of 5,6- and 17,18-DiHETE are
largely uncharacterized, although its upstream epoxide 17,18-epoxyeicosatetraenoic acid
(17,18-EEQ) is another vasodilator [111].

While no significant changes in plasma levels of other detected epoxides and diols
were observed following maximal exercise in humans, Stanford and colleagues recently
showed substantially increased levels of circulating 12,13-dihydroxyoctadecanoic acid
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(12,13-DiHOME)—the downstream product of 12,13-EpOME—after a moderate-intensity
exercise bout (cycling and running at 70 and 75% VO2max, respectively) in healthy humans,
regardless of sex, age and physical activity level [112]. In this same study, the authors
also showed that exercise increases circulating 12,13-DiHOME in male mice and that this
increase was negated by the surgical removal of brown adipose tissue (BAT), indicating that
in mice, 12,13-DiHOME is released from BAT during exercise. Furthermore, mice injected
with 12,13-DiHOME had higher skeletal muscle FA uptake compared to mice injected with
vehicle control, and mouse myotubes incubated with 12,13-DiHOME displayed increased
FA uptake and oxidation [112]. These lipidomic findings highlight a crosstalk between
adipose tissue and skeletal muscle during acute exercise and identify potential factors
that may contribute to some metabolic health benefits of exercise [112]. However, a wide
range of functions have been attributed to 12,13-DiHOME including detrimental effects on
both cardiac [113] and mitochondrial function [114]. The biological meaning of increased
DiHOMEs thus remains unclear, warranting further investigation.

Increased plasma levels of 12,13-DiHOME and other lipid mediators have also been
observed in plasma collected from trained male cyclists. In this study, cyclists completed
a 75-km cycling bout at moderate intensity (~70% of VO2max) [115]. Increases in plasma
concentrations of 9,10-DiHOME as well as 9- and 13-hydroxy-octadecadienoic acid (9- and
13-HODE) were observed. HODEs are peroxidation products of the n-6 LA (Figure S1) that
have been linked to oxidative stress, inflammation, physiological and pathological states
including atherosclerosis [116]. Although not associated with increased inflammation
markers in this study, 9- and 13-HODE were significantly correlated with F2-isoprostanes,
indicators of oxidative stress (although in much lower abundance), supporting the inclusion
of 9- and 13-HODE as oxidative stress biomarkers [115].

Gollash and colleagues have helped expand the understanding of metabolic responses
to acute maximal aerobic exercise by investigating changes in lipid profiles from red
blood cells (RBC), a constituent of blood largely overlooked in metabolomic/lipidomic
studies [117]. RBC represents a reservoir of lipid species including epoxides which can
regulate vascular capacity, as previously mentioned. Following maximal acute exercise
to exhaustion (see [106]) in healthy non trained adults, venous RBC exhibited increased
levels of epoxides including 9,10- and 12,13-EpOME; 5,6-EET, 11,12-EET and 14,15-EET;
but also epoxides derived from docosahexaenoic acid (DHA), 16,17- and 19,20- epoxy-
docosapentaenoic acids (16,17- and 19,20-EDP). These two DHA-derived epoxides have
shown vasodilating and cardioprotective properties [118]. All the aforementioned epox-
ide mediators are generated by CYP mono-oxygenase. In contrast, no changes in lipid
mediators generated by lipoxygenase (LOX) and cyclooxygenase (COX) were observed
(Figure S1). This suggests that CYP mono-oxygenase-derived epoxides accumulate in
RBCs and may, when released, contribute to cardiovascular responses to acute exhaustive
exercise [117]. However, no changes in RBC levels of the 20 quantified FA were found
following the same exercise protocol [119]. The omega-3 quotient—the percentage of EPA
+ DHA in FA from RBC membranes—was also unchanged. A low omega-3 quotient (or
index) represents an independent risk factor for cardiovascular diseases and increased
mortality [120,121]. While short duration maximal exercise was not able to elicit immediate
changes in plasma and RBC FA levels (including omega-3 quotient), RBC levels of lauric
acid (C12:0) significantly decreased between exhaustion and recovery, 10 min later. Lauric
acid may therefore regulate cardiovascular and metabolic functions, and further research is
warranted to address this possibility [119].

Efforts to characterize lipid mediators derived from COX, LOX and CYP pathways
responding to acute resistance exercise have also been performed [122]. Using targeted
lipidomics, 87 lipid species were detected in the serum of 16 young men who undertook
a single session of high intensity resistance exercise. The resistance exercise protocol
consisted of a circuit of three sets of 8–10 repetitions of leg press, bar squats and knee
extension performed at 80% of individual one-repetition maximum (1-RM). Serum was
collected before exercise and every 30 min within three hours post-exercise, and then
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at 24 h of recovery. A wide array of lipid mediators derived from COX, LOX, and CYP
pathways were dynamically changed following exercise, including AA-derived metabolites
such as prostaglandins (PGs), thromboxanes (TXs) and leukotrienes (LTs). PGs and TXs
are formed under the action of COX enzymes while LTs are produced via LOX enzymes
(Figure S1). TXs comprise TXA2 and its metabolites TXB2 and 12-hydroxyheptadecatrienoic
acid (12S HHTrE). TXB2 and 12S HHTrE are considered biomarkers of TXA2 biosynthesis
and are more easily detected since TXA2 is rapidly degraded into TXB2 or 12S HHTrE [123].
PGs comprise four primary compounds: PGD2, PGE2, PGF2α and PGI2. Likewise, PGs
are also rapidly converted to primary 6 or 15-keto and secondary 13,14-dihydro-15-keto
metabolites. Next, LTs are composed of LTA4 and derivatives including LTB4 and anti-
inflammatory/pro-resolving lipoxins LXA4 and LXB4.

Early resistance exercise responses (0–3 h of recovery following exercise) comprised
increased levels of (1) TXB2 and 12S HHTrE; (2) PGD2, PGE2 and its derivative 15-keto PGE2,
15-keto PGF2α, 6-keto PGF1α; (3) LTB4 and derivatives LXA4, LXB4; (4) pro-inflammatory
AA-derived 12-hydroxyeicosatetraenoic acid (12-HETE) and its byproduct tetranor 12-
HETE, along with the anti-inflammatory 15-HETE. Early responses to resistance exercise
were also marked with immediate increases in EPA-derived resolvins (RvE1) and DHA-
derived 10(S),17(S)-DiHDHA (protectin D1), which are generated by LOX enzymes and
exhibit anti-inflammatory properties. In contrast, LOX-mediated LA derivatives such as 9-
and 13-HODE and their degradation products 9- and 13-oxo-octadecadienoic acids (9- and
13-oxo-ODE) tended to decrease in the first half hour following exercise before significantly
increasing (compared to 30 min post-exercise) and peaking at 2–3 h of recovery. Similarly,
CYP-mediated LA metabolite 9,10-EpOME and downstream product 9,10-DiHOME were
also elevated at 2–3 h of recovery. Finally, elevations in 11,12- and 14,15-DHET-CYP-
mediated metabolites of AA-were also found in the early recovery phase. Most lipid
metabolites returned to basal levels within 24 h post exercise, except for a few metabolites
which peaked (13,14-dihydro-15-keto PGE2, 6-keto PGF1α, 15-HETE and byproduct 15-oxo-
ETE, and protectin D1) or remained significantly elevated (12(S) HHTrE). These findings
pinpoint the activation of pro-inflammatory and pro-resolving pathways following acute
resistance exercise, both in the early and later stages of exercise [122].

In addition to FA-derived lipid mediators involved in pro- and anti-inflammatory/pro-
resolving pathways induced by acute exercise, lipidomics has also helped recently uncover
other lipid species belonging to other categories and classes and playing potential roles in
exercise metabolism. Indeed, the lipidomics arm of Contrepois and colleagues’ work [27]
revealed large increases in circulating complex lipids within the early recovery phase
(2 min post treadmill run), with a rapid return to pre-exercise levels (15–30 min post). These
complex lipids included 23 phosphatidylcholines, 20 cholesteryl esters, 15 triacylglycerols
(TAGs), ten diacylglycerols (DAGs), nine ceramides and eight sphingomyelins. In addition,
exercise-induced changes in TAGs appeared to depend on carbon number and unsaturation
level. For instance, while plasma concentrations of most TAGs (those with shorter saturated
FA in particular) decreased at 30 and 60 min of recovery, those which rapidly increased post-
exercise (within 2 min) mostly comprised long-chain PUFA including AA, EPA and DHA.
Together with the observed early increases in ceramides and sphingomyelins, increased
long-chain PUFA suggest activation of both pro- and anti-inflammatory pathways, as
demonstrated in previous work [122,124]. In contrast, TAGs with shorter saturated FA may
be used as a preferential substrate for energy conversion [27].

Tissue Analyses

Similar to the blood analyses previously described, further lipidomics analyses of skele-
tal muscle have uncovered inflammatory responses to acute resistance exercise. Lipidomic
analyses of muscle biopsies from young active men during a single resistance exercise
session indicated augmented inflammatory response in the early recovery phase [124].
Two hours post-exercise, substantial increases in skeletal muscle concentrations of various
lipid mediators were observed, including COX-mediated TXs and PGs, derived from AA
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(Figure S1). The recovery period was also marked by increased intramuscular levels of
species from the LOX pathways, including derivatives from EPA: 12-hydroxyEPA (12-
HEPE); DHA: 7- and 14-hydroxyDHA (7- and 14-HDHA); and AA: 5- and 12- HETE, and
LTs. Finally, lipid mediators from the CYP pathway and derived from both AA (5,6-EET;
11,12- and 14,15-DHET) and LA (9,10- and 12,13-DiHOME) were also increased at this
timepoint. As mentioned earlier, while a wide range of AA-derived mediators produced
through COX and LOX pathways (e.g., TXs, PGs, LTs, 12-HETE) stimulate acute inflam-
mation, several lipid mediators metabolized through the LOX and CYP pathways, (e.g.,
AA-derived 5-HETE, EETs and DHETs, DHA-derived HDHAs) are potential precursors of
pro-resolving mediators that inhibit inflammatory signaling. From this study and consistent
with previous work from the same group conducted in serum [122], both pro-inflammatory
lipid mediators and lipid markers of pro-resolving mediator biosynthesis are stimulated
by resistance exercise simultaneously in skeletal muscle, 2 h post-exercise [124].

Lipidomic responses to acute resistance exercise are however influenced by an indi-
vidual’s age. Applying targeted lipidomics to skeletal muscle from both young (~22 years
old) and older (~74 years old) healthy men who undertook a single resistance exercise bout,
Rivas et al. observed significant differences in skeletal muscle ceramides between the two
cohorts [125]. Ceramides are a subclass of sphingolipids that have emerged as potential
modulators of diseases associated with lipotoxicity including IR, type 2 diabetes and cardio-
vascular disease [126]. Ceramides are also well-recognized activators of proinflammatory
signaling [127]. In this study, a relationship was found between intramuscular ceramide
levels and impaired exercise-induced anabolic signaling occurring in older men. Older
men had significantly higher palmitic (C16:0) and arachidic (C20:0) ceramides levels within
skeletal muscle, and a negative correlation between intramuscular C16:0 ceramide and
leg lean mass was also observed. Next, blunted anabolic signaling following the exercise
bout in older men was associated with increased activation of pro-inflammatory signaling
compared to young men. Intramuscular levels of specific ceramides may therefore nega-
tively impact anabolic signaling following a single bout of resistance exercise by promoting
inflammation [125].

3.2.2. Other Mammals
Blood Analyses

In other mammals, to date very few studies have been performed to investigate the
effects of acute exercise on the blood lipidome. To our knowledge, the only study aimed to
specifically characterize the lipidome following acute exercise in mammals to date is a pilot
study performed in Thoroughbred horses [128]. Four horses (3 males and 1 female) were
subjected to a supramaximal (115% VO2max) treadmill running bout to exhaustion. Of the
933 plasma lipid species detected, 130 were known lipids. Despite the lack of statistical
power in this pilot study, 13 lipid species were changed following exercise, including seven
FA and six phospholipids; three phosphatidylcholines (PCs), one lysophosphatidylcholine
(LPC) and two sphingolipids (SMs). Although not reaching statistical significance, five
TAGs decreased by more than 20% following exercise. While six identified phospholipids
(i.e., PC (P-34:1), (P-36:2), (P-36:4); LPC (18:0); SM (d36:1) and (d42:2)), along with several
FA such as LA, LNA (C18:3), and the n-6 11,14-eicosadienoic acid (C20:2), were increased by
supramaximal exercise, the remaining FA (C12:0, C14:0, C17:0 and C20:0) were decreased
post-exercise. The increase in plasma unsaturated FA may reflect lipolysis in the adipose
tissue, reported to contain a higher ratio of unsaturated/saturated TAGs compared to
plasma FA [129]. Phospholipids, which also increased immediately post-exercise, progres-
sively decreased over time. As PCs and SMs are major components of cell membranes,
the current findings may be explained by the increased cell membrane turnover due to
exercise-induced lipolysis and membrane damage. Phospholipids can then be mobilized as
energy substrates or for repair of cell membranes damaged during exercise [130,131]. Al-
though this pilot study has important limitations, supramaximal exercise in Thoroughbred
horses is shown to affect distinct lipid categories including FA and more complex lipids
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such as TAGs, SMs and PCs. In addition, these pilot findings will be useful for informing
power analyses and sample size requirements in future lipidomic studies [128].

Tissue Analyses

As stated previously, the feasibility of investigating liver biopsy responses to exercise
in humans is very low; therefore, utilizing other mammalian species has helped gain a
deeper understanding of tissue lipidomic responses to acute exercise. In 2010, Hu and
colleagues were one of the first to conduct a lipidomic study to uncover molecular responses
to acute treadmill running exercise in mouse liver [132]. Among 115 quantified lipid species,
PCs and TAGs were the most abundant lipid classes. Almost all detected TAGs tended to
increase in the liver immediately post-exercise compared to control rested mice, though
statistical significance was not reached. In contrast, a clear difference in hepatic lipid profile
was observed following three hours of recovery. The 21 lipid species mostly responsible
for lipid profile changes were predominantly TAGs (17), with the remaining lipids being
composed of three PCs and one LPC. While all four choline phospholipids decreased (PCs
and LPC), all hepatic TAGs increased three hours post-exercise. The significantly increased
lipid species included polyunsaturated TAGs (50:3; 54:5; 54:6; 54:7; 56:4; 58:6; and 58:10) and
decreased lipids included PCs (36:1; 38:3; 40:4) and DAG (34:1). Although increased TAG
concentrations in liver may have been due to refeeding post-exercise (i.e., mice had free
access to food during the first two hours of recovery), the authors tested this hypothesis via
a fasting/refeeding experiment and observed similar TAG levels in refed mice compared
to the rested control mice, while fasted mice had significantly increased hepatic TAGs. The
authors therefore concluded that increased hepatic TAGs following three hours of recovery
were unlikely caused by food intake. It was rather proposed that the accumulation of TAGs
in the liver may result from the large elevation in plasma FA following exercise-induced
lipolysis, which may exceed oxidative capacities of the working muscle. The FA in excess
may instead be delivered to the liver for transient storage. As opposed to liver, skeletal
muscle total TAG content significantly declined immediately post-exercise, suggesting
enhanced lipolysis for subsequent FA oxidation [132].

More recently, this same group used a similar endurance exercise protocol to study
the lipidomic responses to acute exercise in both liver and hindlimb skeletal muscles
(gastrocnemius and soleus) in mice [133]. Their targeted lipidomics data revealed that,
while most lipid species detected in mouse liver were unchanged by the single exercise
bout, several phospholipids including five LPCs (16:0; 18:2; 20:4; 22:5 and 22:6), four
lysophosphatidylethanolamines (LPEs) (16:0; 18:0; 18:1 and 20:4) and two plasmalogen
phosphoethanolamines (PE-P) (P-38:4 and P-40:4) increased. The reasons for most of these
changes remain to be elucidated. However, since plasmalogens are generally secreted by
the liver once synthesized [134], increased hepatic levels of plasmalogens may indicate
inhibited secretion with exercise. Free carnitine, acetylcarnitine and 39 acylcarnitines
with carbon chain length ranging from 3–20 were also detected in liver, gastrocnemius
and soleus muscles. Liver exhibited heightened concentrations of free and total carnitine
following treadmill exercise, while acetylcarnitine content was reduced. The detected
acylcarnitines were unchanged by the acute exercise bout. Conversely, acetylcarnitine,
short-chain acylcarnitines and hydroxy-acylcarnitines were increased following exercise
in both skeletal muscles, with acetylcarnitine and hydroxy-acylcarnitines showing much
greater increases in soleus (61%) compared to gastrocnemius (15%) muscle. While hydroxy-
carnitines are intermediates of incomplete FA oxidation, acetylcarnitine is the end product
of the catabolism of all fuels including FA, pyruvate and several amino acids [80]. Higher
levels of both acetylcarnitine and hydroxy-acylcarnitines following acute exercise can
therefore be explained by the higher FA oxidation rate [135] and the greater carnitine
uptake capacities in soleus compared to gastrocnemius muscle [136]. Next, the unchanged
levels of medium- and long-chain acylcarnitines after the treadmill run may indicate
that this exercise protocol was not sufficiently intense to affect muscle content of these
acylcarnitines. In contrast to liver, free and total carnitine in both muscles were not affected
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by exercise. Increased hepatic concentrations of free and total carnitine upon acute exercise
were likely due to enhanced uptake by the liver since the gene expression of the carnitine
transporter Slc22a5/OCTN2 was upregulated [133]. Finally, isotope-tracing of FA and
acylcarnitines showed that, consistent with previous findings [132], excess circulating FA
are taken up by the liver and incorporated into TAGs and phospholipids during recovery,
highlighting tissue-specific differences in FA uptake [133].

The extensive exercise metabolomics and lipidomics literature from the past decade
discussed above has helped build a strong foundation to continue expanding the molecular
landscape of exercise in the next decade. Figure 3 summarizes the current exercise molecu-
lar landscape by overviewing the dynamic changes in metabolites and lipids that occur
in response to acute aerobic and resistance exercise across species (i.e., humans and other
mammals) and biological systems (i.e., blood, other biofluids, liver and skeletal muscle).

Figure 3. Summary of the current exercise molecular landscape of metabolomic and lipidomic findings discussed from
the past decade. Dynamic changes in metabolites and lipids (i.e., increased, decreased, or shown to be changed in both
directions) occurring in response to acute aerobic and resistance exercise are summarized across various biological systems
(i.e., blood and other biofluids including urine and sweat; and tissues such as liver and skeletal muscle) in humans and
other mammalian species. This figure focuses on early responses (0–30 min) following an acute exercise bout except for
data collected from horses within the first three hours post-exercise. Metabolomic responses can therefore show different
directionality based on timing and exercise variables, as mentioned previously. BCAAs: branched-chain amino acids, FA:
fatty acids, IF: interstitial fluid, OCFA: odd-chain fatty acids, TAGs: triacylglycerols, TCA: tricarboxylic acid. 1 Changes in
FA levels post-exercise may depend on carbon chain length and although circulating levels of most FA have been reported
to increase following an acute exercise bout, post-exercise decreases in some FA chain lengths (e.g., C20 to C24) have also
been observed. 2 Directionality of specific lipid mediators in human blood and skeletal muscle are not detailed in this
figure, and responses to exercise may vary depending on the specific lipid mediators within their broader classes. Refer
to Table S2 for information regarding the directionality of specific pro- and anti-inflammatory lipid precursors following
exercise. The metabolite directionalities of human liver 3 and human skeletal muscle 4 depicted in this figure are derived
from data analyzing hepato-splanchnic bed and arterio-venous differences, respectively, rather than from tissue biopsies.
Up arrow: increase; down arrow: decrease; bidirectional arrow: both increase and decrease.
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4. Current Challenges and Remaining Knowledge Gaps to Continue Expanding
Exercise’s Molecular Landscape
4.1. Metabolite Identification and Annotation

To continue expanding the exercise molecular landscape in the next decade, metabolite
and lipid identification/annotation still represents a main challenge and bottleneck of
untargeted metabolomics and lipidomics approaches, in contrast to protein identification in
proteomics, for example. Whereas proteins are composed of a finite and more manageable
combination of different amino acids that can be sequenced by matching experimental
peptides against in silico fragmentation spectra, metabolites (including lipid species) are a
highly heterogenous group of small molecules resulting from countless different chemical
structures and atomic combinations, although predominantly composed of the elements C,
H, N, O, P and S [137]. Despite recent technological advances in analytical instrumentation
that have enabled rapid and simultaneous detection of thousands of metabolites from
very low volumes of biological samples, a much smaller portion of these metabolites can
remain after stringent data processing and cleaning processes prior to any attempt at
identification/annotation [138]. These data processing and cleaning steps are essential
to generate more high-confidence metabolomic and lipidomic datasets, but the overall
trade-off is reduced metabolite coverage.

Next, metabolites and lipid features (such as mass-to-charge ratios and retention
times) that meet quality control criteria can still correspond to numerous molecular struc-
tures. Their identification—a term used when the highest level of confidence is reached;
level 1—or annotation (lower level of confidence in metabolite characterization, levels 2 to
3) [51] notably depends on an existing reference match in currently available databases,
and preferably an in-house generated database. This is important, as the vast majority
of features currently fail to match any metabolite from these databases and are therefore
assigned as “unknowns”. These unknowns may be true unknowns (i.e., compounds for
which no chemical structure, name, origin, and biological function has been described
to date), but some compounds may however be assigned as unknowns because the ref-
erence is missing from the available databases. Most existing databases are still largely
incomplete, and in the case of true unknown metabolites and/or lipids, extensive efforts in
analytical chemistry are required to characterize their molecular structure. However, these
characterization efforts are rarely undertaken given their challenging and time-consuming
nature [139]. As a result, unknowns within datasets are often disregarded, and attention is
instead focused on only putatively named metabolites. In the case of compounds that are
matched against a database, additional information is necessary to accurately identify and
validate a single candidate since basic features such as retention time and m/z may have
multiple candidates. MS2 (and sometimes MSn) is required to reach the highest level of
confidence, as fragmentation patterns help elucidate molecular structures and distinguish
metabolites with similar m/z and retention times by matching them with fragmentation
patterns of authentic chemical standards within metabolite libraries. Nevertheless, most
libraries are still largely incomplete, therefore the number of authentic chemical standards
available represents a current limiting factor to metabolite identification of the broader
metabolome. Additionally, compounds can exhibit different levels of confidence in identifi-
cation/annotation, making data integration and interpretation even more challenging since
most commonly used dedicated tools (e.g., KEGG, MetaboAnalyst 3.0) require metabolite
identification (i.e., level 1) to integrate the data into biological context [137].

Efforts to expand libraries with authentic standards in the next decade will help ex-
ploit the full potential of untargeted metabolomics by yielding a much higher coverage of
unequivocally identified metabolites. MS2 is however more time- and resource-consuming.
In addition, validation of metabolite identification/annotation still requires extensive hu-
man intervention, since this step is usually performed manually and requires expertise
in chemical structure and biochemistry. This hurdle may become a growing issue as the
number of metabolites to manually validate increases with the expansion of metabolite
libraries in the years to come. It is also important to note that MS2 is not always suffi-
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cient to distinguish structural isomers—compounds with identical molecular formula but
different chemical bond arrangements between atoms—and stereoisomers—compounds
with identical formula and chemical bond arrangements but different spatial orientation of
groups in the molecule [37,140,141]. In this case, additional separation methods (i.e., TIMS)
in conjunction with MSn may be required to validate the identification of a metabolite or
lipid species. Of note, NMR represents a quicker and cheaper alternative (in terms of cost
per sample) to MSn with regard to structural elucidation [142].

4.2. Human Interindividual Variability and Potential Confounding Factors

One of the main challenges encountered in human exercise studies is the high in-
terindividual variability in genetic background, sex, age, lifestyle, environmental exposure
and nutritional and health status (Figure 4), which represent important confounding factors
that are difficult to screen and control for in an experimental setting [10]. To overcome
these challenges and account for the potential high interindividual variability amongst
human participants, large-scale epidemiological studies are required [143]. Recruiting and
analyzing such large numbers of individuals for a given experiment will be challenging
(i.e., the appropriate sample size is variable depending on effect size, but hundreds of
participants are often needed in human studies), as human exercise studies are usually
performed using only small sample sizes (i.e., often less than one hundred). It should also
be noted that overcoming high interindividual variability may be possible in small study
groups through meticulous control of the above-mentioned confounding factors although
this may lead to increased cost, time and constraints. Parallel exercise interventions using
animal model systems is a complementary approach in which both genetic background
and environment can be controlled to a greater extent compared to human cohorts.

Figure 4. Summary of some of the main factors responsible for variance between metabolomics/lipidomics studies,
including intrinsic, extrinsic/environmental factors and experimental factors.

Human metabolomics studies to investigate the molecular mechanisms of acute
exercise are however starting to be performed at a larger scale. Indeed, a recent study
investigated blood metabolic profiles of over 400 middle-aged adults, uncovering metabolic
signatures associated with cardiometabolic health [144]. In addition, an ongoing initiative
in the United States called The Molecular Transducers of Physical Activity Consortium
(MoTrPAC) will address some of these remaining challenges in the decade ahead by exam-
ining the effects of acute and chronic exercise (including both endurance and resistance
exercise) across a wide range of biological systems. This multi-site MoTrPAC initiative aims
to analyze a large number of samples across pediatric, sedentary and highly active adult
male and female human populations and complementary animal models using multi-omic
approaches (including metabolomics/lipidomics), eventually establishing a comprehensive
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molecular map of exercise that will be made publicly available through the MoTrPAC Data
Hub: https://motrpac-data.org (accessed on 15 December 2020) [145,146].

Metabolomics/lipidomics studies in the fields of sport and exercise physiology to date
have mostly been conducted using only male participants, as highlighted in a recent human
exercise metabolomics review [147], with only a few recent studies investigating acute
exercise metabolomic/lipidomic patterns in obese and insulin resistant women [80,148,149].
The impacts of sex and hormonal variations (i.e., menstrual cycle phases) in females on
exercise-induced metabolomic and lipidomic responses are therefore poorly understood,
and more studies in female participants are warranted to begin to decipher these differ-
ences. These studies should take into account and report the use of hormonal contraception
(including type of hormonal contraception used) in addition to the menstrual cycle phase
during which the exercise is performed. This reporting is important as substantial dif-
ferences in metabolic patterns are observed depending on menstrual cycle phase [150].
Likewise, aging is also associated with alterations in exercise-induced metabolomic re-
sponses. Therefore, continued efforts to identify new exercise-regulated biomarkers as-
sociated with aging and age-related pathologies such as muscle loss in sarcopenia may
help personalize exercise interventions to prevent, delay or treat these age-related disor-
ders [9]. As highlighted in previous sections, sampling certain tissues such as liver, which
are relatively inaccessible in human exercise studies, can be more readily obtained using
animal model systems. Since exercise-induced adaptations do not just involve changes in
circulating, muscle and liver metabolites/lipids, animal models also provide more access
to less-studied tissues (e.g., heart, brain) involved in the whole-body molecular metabolic
responses to exercise.

4.3. Comparison and Reproducibility of Results Between Studies

Another major challenge in exercise-related metabolomics and lipidomics studies is
the ability to directly compare studies between independent studies and research groups.
The current lack of reproducibility and the common discrepancies observed within a
given research field may in part be attributed to intrinsic and extrinsic/environmental
confounding factors described in the previous section, as well as experimental factors
(see Figure 4). Study designs should report or control for these factors (e.g., reporting
dietary intake and timing and/or providing standardized meals at set times). Included
in these experimental factors is the use of a wide variety of analytical platforms and data
acquisition modes. Indeed, each analytical platform and detection mode is associated with
specific sample handling, metabolite extraction and data acquisition/processing proto-
cols and requirements. Although representing a valuable means to broaden metabolite
coverage, these differences in instrumentation and analytical workflows contribute to
substantial inter-study discrepancies that make reproducibility and data comparison be-
tween independent research groups a challenging and tedious process. Despite the fact
that instrumentation-induced variability between studies cannot likely be solved due to
differences in equipment between research facilities, harmonization in sample handling
and data acquisition/processing protocols, along with standardized metabolite reporting
are necessary to help overcome some inter-study discrepancies. This will allow more confi-
dent inter-study dataset comparisons, and subsequently improved data interpretation and
biological insights. In 2007, the MSI proposed a consensus regarding minimum reporting
standards for metabolite identification [51]. Similarly, the LSI also provides guidelines
for lipid species annotation [151,152]. However, efforts to enforce adequate use and con-
stant updates by the metabolomics community are necessary since, up until recently, the
use of these reporting standards allowing investigators to define the level of compound
identification/annotation confidence was suggested to be relatively low [141].

4.4. Bioinformatic Resources

To deal with the complexity and heterogeneity of metabolomics and lipidomics
datasets (e.g., wide concentration range suggested to be spread over 12 orders of mag-
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nitude [139]) and the large amount of data generated by untargeted approaches, robust
computational and bioinformatics resources and expertise are required. This is critical for
data processing, analysis, interpretation and visualization. Numerous open-source and
commercial data processing tools are available, but the overall lack of uniformity among
these tools can also hinder reproducibility of findings between independent studies and
research groups. Each tool has its own characteristics, but comparison of the performances
of different tools has rarely been performed. Although software packages such as XCMS
Online, SIEVE™ and Compound Discoverer™ provide reproducible and consistent data
processing results, they have shown differences in metabolite selection, for example as
candidate biomarkers for Alzheimer’s Disease [153]. Therefore, variations in data analysis
among these different software packages should be carefully considered, and ideally sys-
tematic comparison of all packages utilized in untargeted metabolomics/lipidomics should
be performed to help maximize data confidence, consistency in data handling, and relia-
bility and reproducibility of biological findings. Alternatively, utilizing multiple software
packages for data handling and only considering overlapping compounds for subsequent
analysis may help reduce false positive and false negative compounds in datasets [153]. In
addition, data analysis code should be provided as open access, as lack of transparency and
reporting standards has led to widespread concerns in the reproducibility and integrity
of results. Metabolomics researchers are encouraged to share their resources to provide
adequate evidence of reproducibility. Collaborative cloud computing and Jupyter Note-
books are becoming popular amongst many metabolomics research groups and seem to
be favored, as they provide added flexibility when compared to many of the online data
repositories [154]. Metabolomics users are encouraged to use open-source platforms and
adopt the FAIR data principles (Findable, Accessible, Interoperable, and Reusable) [155],
promoting the use of open data formats, online spectral libraries and data reproducibility.

5. Future Directions and Potential Value for Human Performance and Exercise
Metabolic Health Benefits

Untargeted metabolomics/lipidomics is a hypothesis generating method and as such,
future work should also focus on following up on these generated hypotheses, notably by
using targeted approaches to validate findings and provide more quantitative insight (i.e.,
absolute metabolite/lipid concentrations) into exercise-regulated metabolites/lipids and
biochemical pathways. Although metabolite and lipid concentrations provided by these tar-
geted approaches are crucial to enhancing the measurement accuracy of exercise-induced
metabolite changes, they alone only provide a snapshot of metabolic reactions that have
just occurred. Therefore, complementary analyses such as metabolic flux analysis, also
called fluxomics—a method that combines stable isotope tracing of metabolites with MS or
NMR spectroscopy—help depict metabolic reaction capacities, therefore allowing more
mechanistic insight into the dynamics of molecular metabolic reactions that may explain,
at least partially, observed differences in metabolite concentrations between and/or within
individuals over a certain time or exercise intervention [156]. In addition, the implementa-
tion of more multi-omics approaches in addition to metabolomics/lipidomics will enable
researchers to gain deeper understanding of the complexity and interconnected nature of
genetic, epigenetic, transcriptional, protein and post-translational networks underlying
metabolomic responses to exercise [9]. Finally, repeat sampling (i.e., longitudinal tracking)
is required to understand individuals at the systems level, and systems biology approaches
will help revolutionize the study of exercise physiology. Moving from the traditional
reactive approach, where an individual may experience fatigue through overtraining, or
fail to respond to a bout of exercise conditioning, the emergence of systems biology will
provide the ability to predict when an occurrence will occur. This in turn will facilitate
more personalized medicine. Personalized medicine or P4 medicine (Predictive, Preventive,
Personalized and Participatory) can provide new approaches for: developing personalized
treatment strategies [157] that may include personalized training interventions; deepen
our understanding of physiological processes; and ultimately expand our knowledge of
the health continuum.
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With respect to compound identification, the numerous and constantly evolving
technologies in the metabolomics and lipidomics fields also provide tremendous potential
for metabolomics and exercise research communities in the next decade. For example, the
combination of IMS with chromatography and MS methods will help increase metabolite
identification capacity. IMS-MS instruments are now available and implementation of IMS
to current analytical platforms used in the field of exercise will help improve coverage of
identified metabolites, therefore expanding capacity to map molecular responses to exercise.
Likewise, the implementation of multidimensional approaches—where several separation
methods are combined into a single analysis [37] to enhance compound separation and
structure characterization—are expected to lead to substantial improvements in compound
identification capacity in the next decade.

Advancement in technologies will also aid how omics research of human exercise and
athletic performance will be taken from the “bench and into the community.” Considerable
interest in the use of dried blood spots (DBS and miniaturization technologies) in human
performance fields may offer several important advantages over conventional whole blood
sample collection. First, sample collection is less invasive compared to venepuncture and
easy to perform (e.g., finger prick for adults, and heel prick for infants). This is particularly
important for maximizing participant recruitment in the context of frequent repeated blood
sampling. Second, blood sampling can be performed by an individual and away from a
laboratory setting, such as the home of a clinical patient following only minimal training.
Third, the use of miniaturized devices allows for low volume of blood to be collected
(typically 10–200 µL), compared to standard venepuncture sampling which requires a
minimum of ~2 mL of whole blood. Finally, as the name implies, samples are air-dried
and can be shipped by mail to laboratories at minimal expense and without the need for
maintaining stable temperature environments. Such devices will benefit from discovery
research, where stable and quantifiable metabolites can be selected and developed for
measurement of metabolites collected via miniaturized technologies. Considerable work
is already occurring with DBS and dried urine spots, and companies are now developing
technologies which can provide users with live measurement of metabolite concentrations
which might be useful indicators of health or fitness phenotypes. These approaches will
facilitate personalized exercise interventions and provide sport and exercise scientists with
data that can inform decision making, health tracking and athlete phenotypes.

In other mammalian species, recent efforts to utilize mouse genetic diversity panels
and recombinant inbred mouse strains in metabolomics/lipidomics research have proven
valuable tools for genetic mapping (i.e., quantitative trait loci mapping) and investigating
environmental exposure, providing new insights into compound identification, as well
as the molecular basis of metabolic health and disease. For example, a recent large-scale
genome-lipid associated map and resource termed LipidGenie was generated by analysing
liver and plasma samples from diversity outbred mice, which permitted the identification
of unknown lipids from MS data by mapping molecular lipid features to genetic loci [158].
In addition, recombinant inbred mouse strains (e.g., ILSXISS) have been used to determine
skeletal muscle metabolomic signatures reflective of IR across different mouse strains and
diets [159]. Such determinations of molecular metabolite/lipid classifiers and predictors of
metabolic disease-related phenotypes can be leveraged in future studies to help predict
metabolic health status and potentially determine how an organisms’ metabolism may
benefit from specific diets and/or exercise interventions.

In the next decade the exercise biology and metabolism fields will continue to ben-
efit from these ongoing efforts in the metabolomics and lipidomics research community.
Metabolomics/lipidomic analyses may ultimately be capable of being performed as part
of routine health checks to assess an individual’s metabolic status (e.g., nutritional state,
training state, pathology) and responses to a given stimuli (e.g., food intake, exercise, drug
treatment) as well as predisposition to certain diseases. This will in turn enable highly
tailored and personalized exercise, diet, and/or medical interventions to prevent, delay
and combat metabolic disease [160].
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6. Conclusions

The unbiased global measurement of metabolomes and lipidomes from different
sources such as biological fluids and tissues are constantly improving. They represent
a promising avenue to unravel the complex and interconnected metabolite and lipid
networks underlying the molecular responses to exercise throughout the body. In the
context of exercise biology, the application of metabolomics and lipidomics as a hypothesis-
generating approach has dramatically increased the number of biological targets measured
simultaneously thanks to the major technological advances over the last decade. This has
allowed the measurement of hundreds to thousands of metabolites (including lipid species)
in a single run and subsequently revealed biomarkers of exercise intensity, training state and
exercise capacity, fatigue, among others. In summary, findings made over the past decade
have revealed numerous metabolites regulated by acute aerobic/endurance and resistance
exercise in various biofluids and tissues across mammalian species, including: glycolysis
end-products and TCA cycle intermediates; FA, acylcarnitines and TAGs; ketone bodies;
nucleotides and derivatives; amino acids and derivatives; vitamins; steroid hormones; as
well as less characterized complex lipids with various functions, pro- and anti-inflammatory
properties and vasoactive properties (Figure 3).

Although considered the closest reflection of an organism’s metabolic phenotype, the
metabolome and the lipidome alone will not be sufficient to understand to complexity of
exercise’s molecular landscape. Therefore, extensive efforts to integrate metabolomics and
lipidomics data with other layers of biological regulation such as the genome, proteome
and phosphoproteome will also be required. Importantly, expansion of metabolite and
lipid databases will convert a much higher proportion of data into useful information and
meaningful biological insights. In addition, continued advancements in instrumentation
and analytical platforms in the metabolomics and lipidomics field will help standardize and
harmonize experimental procedures from study design, sample handling, data acquisition,
processing and analysis, as well as reporting. Together these efforts in the next decade
will help maximize the utility of metabolomic and lipidomic profiling in exercise biology,
metabolic health and disease, and beyond.
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of exercise specifies the impact on muscle metabolic pathways and systemic energy homeostasis. Cell Metab. 2019, 30, 92–110.
[CrossRef]

99. Overmyer, K.A.; Evans, C.R.; Qi, N.R.; Minogue, C.E.; Carson, J.J.; Chermside-Scabbo, C.J.; Koch, L.G.; Britton, S.L.; Pagliarini,
D.J.; Coon, J.J.; et al. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic
changes in mitochondrial protein acetylation. Cell Metab. 2015, 21, 468–478. [CrossRef] [PubMed]

100. Klein, D.J.; McKeever, K.H.; Mirek, E.T.; Anthony, T.G. Metabolomic response of equine skeletal muscle to acute fatiguing exercise
and training. Front. Physiol. 2020, 11, 110. [CrossRef]

101. Zhang, J.; Bhattacharyya, S.; Hickner, R.C.; Light, A.R.; Lambert, C.J.; Gale, B.K.; Fiehn, O.; Adams, S.H. Skeletal muscle interstitial
fluid metabolomics at rest and associated with an exercise bout: Application in rats and humans. Am. J. Physiol. Metab. 2019, 316,
E43–E53. [CrossRef] [PubMed]

102. Huang, C.-C.; Lin, W.-T.; Hsu, F.-L.; Tsai, P.-W.; Hou, C.-C. Metabolomics investigation of exercise-modulated changes in
metabolism in rat liver after exhaustive and endurance exercises. Arch. Clin. Exp. Ophthalmol. 2009, 108, 557–566. [CrossRef]
[PubMed]

103. Hoene, M.; Irmler, M.; Beckers, J.; De Angelis, M.H.; Häring, H.-U.; Weigert, C. A Vitamin E-enriched antioxidant diet interferes
with the acute adaptation of the liver to physical exercise in mice. Nutrients 2018, 10, 547. [CrossRef] [PubMed]

104. Sobhi, H.F.; Zhao, X.; Plomgaard, P.; Hoene, M.; Hansen, J.S.; Karus, B.; Niess, A.M.; Häring, H.U.; Lehmann, R.; Adams, S.H.;
et al. Identification and regulation of the xenometabolite derivatives cis- and trans-3,4-methylene-heptanoylcarnitine in plasma
and skeletal muscle of exercising humans. Am. J. Physiol. Metab. 2020, 318, E701–E709. [CrossRef] [PubMed]

105. Clifford, P.S.; Hellsten, Y. Vasodilatory mechanisms in contracting skeletal muscle. J. Appl. Physiol. 2004, 97, 393–403. [CrossRef]
106. Gollasch, B.; Dogan, I.; Rothe, M.; Gollasch, M.; Luft, F.C. Maximal exercise and plasma cytochrome P450 and lipoxygenase

mediators: A lipidomics study. Physiol. Rep. 2019, 7, e14165. [CrossRef]
107. Spector, A.A. Arachidonic acid cytochrome P450 epoxygenase pathway. J. Lipid Res. 2009, 50, S52–S56. [CrossRef]
108. Bruce, R.; Cooper, M.; Gey, G.; Fisher, L.; Peterson, D. Variations in responses to maximal exercise in health and in cardiovascular

disease. Angiology 1973, 24, 691–702. [CrossRef]
109. Hercule, H.C.; Schunck, W.-H.; Gross, V.; Seringer, J.; Leung, F.P.; Weldon, S.M.; Goncalves, A.C.D.C.; Huang, Y.; Luft, F.C.;

Gollasch, M. Interaction between P450 eicosanoids and nitric oxide in the control of arterial tone in mice. Arter. Thromb. Vasc. Biol.
2009, 29, 54–60. [CrossRef] [PubMed]

110. Siegfried, M.R.; Aoki, N.; Lefer, A.M.; Elisseou, E.; Zipkin, R.E. Direct cardiovascular actions of two metabolites of linoleic acid.
Life Sci. 1990, 46, 427–433. [CrossRef]

111. Hercule, H.C.; Salanova, B.; Essin, K.; Honeck, H.; Falck, J.R.; Sausbier, M.; Ruth, P.; Schunck, W.-H.; Luft, F.C.; Gollasch, M. The
vasodilator 17,18-epoxyeicosatetraenoic acid targets the pore-forming BK α channel subunit in rodents. Exp. Physiol. 2007, 92,
1067–1076. [CrossRef]

112. Stanford, K.I.; Lynes, M.D.; Takahashi, H.; Baer, L.A.; Arts, P.J.; May, F.J.; Lehnig, A.C.; Middelbeek, R.J.; Richard, J.J.; So, K.; et al.
12,13-diHOME: An exercise-induced lipokine that increases skeletal muscle fatty acid uptake. Cell Metab. 2018, 27, 1111–1120.
[CrossRef] [PubMed]

113. Bannehr, M.; Löhr, L.; Gelep, J.; Haverkamp, W.; Schunck, W.-H.; Gollasch, M.; Wutzler, A. Linoleic acid metabolite DiHOME
decreases post-ischemic cardiac recovery in murine hearts. Cardiovasc. Toxicol. 2019, 19, 365–371. [CrossRef] [PubMed]

http://doi.org/10.3390/metabo9070141
http://www.ncbi.nlm.nih.gov/pubmed/31336760
http://doi.org/10.1139/apnm-2013-0546
http://doi.org/10.1016/j.jpba.2013.09.021
http://doi.org/10.1556/ABiol.63.2012.Suppl.1.9
http://www.ncbi.nlm.nih.gov/pubmed/22453744
http://doi.org/10.1007/s11306-016-1116-4
http://doi.org/10.1016/j.talanta.2017.09.028
http://www.ncbi.nlm.nih.gov/pubmed/29108583
http://doi.org/10.1371/journal.pone.0203133
http://www.ncbi.nlm.nih.gov/pubmed/30383773
http://doi.org/10.1021/acs.analchem.6b01930
http://www.ncbi.nlm.nih.gov/pubmed/27351466
http://doi.org/10.1021/acs.jproteome.5b00840
http://doi.org/10.1016/j.cmet.2019.03.013
http://doi.org/10.1016/j.cmet.2015.02.007
http://www.ncbi.nlm.nih.gov/pubmed/25738461
http://doi.org/10.3389/fphys.2020.00110
http://doi.org/10.1152/ajpendo.00156.2018
http://www.ncbi.nlm.nih.gov/pubmed/30398905
http://doi.org/10.1007/s00421-009-1247-7
http://www.ncbi.nlm.nih.gov/pubmed/19865828
http://doi.org/10.3390/nu10050547
http://www.ncbi.nlm.nih.gov/pubmed/29710765
http://doi.org/10.1152/ajpendo.00510.2019
http://www.ncbi.nlm.nih.gov/pubmed/32101032
http://doi.org/10.1152/japplphysiol.00179.2004
http://doi.org/10.14814/phy2.14165
http://doi.org/10.1194/jlr.R800038-JLR200
http://doi.org/10.1177/000331977302401105
http://doi.org/10.1161/ATVBAHA.108.171298
http://www.ncbi.nlm.nih.gov/pubmed/18927469
http://doi.org/10.1016/0024-3205(90)90086-7
http://doi.org/10.1113/expphysiol.2007.038166
http://doi.org/10.1016/j.cmet.2018.03.020
http://www.ncbi.nlm.nih.gov/pubmed/29719226
http://doi.org/10.1007/s12012-019-09508-x
http://www.ncbi.nlm.nih.gov/pubmed/30725262


Metabolites 2021, 11, 151 33 of 34

114. Sisemore, M.F.; Zheng, J.; Yang, J.C.; Thompson, D.A.; Plopper, C.G.; Cortopassi, G.A.; Hammock, B.D. Cellular characterization
of leukotoxin diol-induced mitochondrial dysfunction. Arch. Biochem. Biophys. 2001, 392, 32–37. [CrossRef] [PubMed]

115. Nieman, D.C.; Shanely, R.A.; Luo, B.; Meaney, M.P.; Dew, D.A.; Pappan, K.L. Metabolomics approach to assessing plasma 13- and
9-hydroxy-octadecadienoic acid and linoleic acid metabolite responses to 75-km cycling. Am. J. Physiol. Integr. Comp. Physiol.
2014, 307, R68–R74. [CrossRef] [PubMed]

116. Vangaveti, V.; Baune, B.T.; Kennedy, R.L. Review: Hydroxyoctadecadienoic acids: Novel regulators of macrophage differentiation
and atherogenesis. Adv. Endocrinol. Metab. 2010, 1, 51–60. [CrossRef]

117. Gollasch, B.; Wu, G.; Dogan, I.; Rothe, M.; Gollasch, M.; Luft, F.C. Maximal exercise and erythrocyte epoxy fatty acids: A
lipidomics study. Physiol. Rep. 2019, 7, e14275. [CrossRef]

118. Schunck, W.-H.; Konkel, A.; Fischer, R.; Weylandt, K.-H. Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in
cardiovascular and inflammatory diseases. Pharmacol. Ther. 2018, 183, 177–204. [CrossRef]

119. Gollasch, B.; Dogan, I.; Rothe, M.; Gollasch, M.; Luft, F.C. Maximal exercise and erythrocyte fatty-acid status: A lipidomics study.
Physiol. Rep. 2019, 7, e14040. [CrossRef]

120. Thuppal, S.V.; Von Schacky, C.; Harris, W.S.; Sherif, K.D.; Denby, N.; Steinbaum, S.R.; Haycock, B.; Bailey, R.L. Discrepancy
between knowledge and perceptions of dietary omega-3 fatty acid intake compared with the omega-3 index. Nutrients 2017, 9.
[CrossRef] [PubMed]

121. Von Schacky, C. Omega-3 fatty Acids in cardiovascular disease—An uphill battle. Prostaglandins Leukot. Essent. Fat. Acids 2015, 92,
41–47. [CrossRef]

122. Markworth, J.F.; Vella, L.; Lingard, B.S.; Tull, D.L.; Rupasinghe, T.W.; Sinclair, A.J.; Maddipati, K.R.; Cameron-Smith, D. Human
inflammatory and resolving lipid mediator responses to resistance exercise and ibuprofen treatment. Am. J. Physiol. Integr. Comp.
Physiol. 2013, 305, R1281–R1296. [CrossRef]

123. Nakahata, N. Thromboxane A2: Physiology/pathophysiology, cellular signal transduction and pharmacology. Pharmacol. Ther.
2008, 118, 18–35. [CrossRef] [PubMed]

124. Vella, L.; Markworth, J.F.; Farnfield, M.M.; Maddipati, K.R.; Russell, A.P.; Cameron-Smith, D. Intramuscular inflammatory and
resolving lipid profile responses to an acute bout of resistance exercise in men. Physiol. Rep. 2019, 7, e14108. [CrossRef]

125. Rivas, D.A.; Morris, E.P.; Haran, P.H.; Pasha, E.P.; Morais, M.D.S.; Dolnikowski, G.G.; Phillips, E.M.; Fielding, R.A. Increased
ceramide content and NFκB signaling may contribute to the attenuation of anabolic signaling after resistance exercise in aged
males. J. Appl. Physiol. 2012, 113, 1727–1736. [CrossRef] [PubMed]

126. Summers, S.A.; Nelson, D.H. A role for sphingolipids in producing the common features of Type 2 diabetes, metabolic syndrome
X, and cushing’s syndrome. Diabetes 2005, 54, 591–602. [CrossRef] [PubMed]

127. Engin, A.B. What Is Lipotoxicity? Adv. Exp. Med. Biol. 2017, 960, 197–220.
128. Sassot, L.N.; Villarino, N.F.; Dasgupta, N.; Morrison, J.J.; Bayly, W.M.; Gang, D.; Sanz, M.G. The lipidome of Thoroughbred

racehorses before and after supramaximal exercise. Equine Veter. J. 2019, 51, 696–700. [CrossRef]
129. Nikolaidis, M.G.; Mougios, V. Effects of exercise on the fatty-acid composition of blood and tissue lipids. Sports Med. 2004, 34,

1051–1076. [CrossRef]
130. Le Moyec, L.; Robert, C.; Triba, M.N.; Billat, V.L.; Mata, X.; Schibler, L.; Barrey, E. Protein catabolism and high lipid metabolism

associated with long-distance exercise are revealed by plasma NMR metabolomics in endurance horses. PLoS ONE 2014, 9, e90730.
[CrossRef] [PubMed]

131. Mach, N.; Ramayo-Caldas, Y.; Clark, A.; Moroldo, M.; Robert, C.; Barrey, E.; López, J.M.; Le Moyec, L. Understanding the response
to endurance exercise using a systems biology approach: Combining blood metabolomics, transcriptomics and miRNomics in
horses. BMC Genom. 2017, 18, 187. [CrossRef] [PubMed]

132. Hu, C.; Hoene, M.; Zhao, X.; Häring, H.U.; Schleicher, E.; Lehmann, R.; Han, X.; Xu, G.; Weigert, C. Lipidomics analysis reveals
efficient storage of hepatic triacylglycerides enriched in unsaturated fatty acids after one bout of exercise in mice. PLoS ONE 2010,
5, e13318. [CrossRef] [PubMed]

133. Hoene, M.; Li, J.; Li, Y.; Runge, H.; Zhao, X.; Häring, H.-U.; Lehmann, R.; Xu, G.; Weigert, C. Muscle and liver-specific alterations
in lipid and acylcarnitine metabolism after a single bout of exercise in mice. Sci. Rep. 2016, 6, 22218. [CrossRef]

134. Vance, J.E. Lipoproteins secreted by cultured rat hepatocytes contain the antioxidant 1-alk-1-enyl-2-acylglycerophosphoethanolamine.
Biochim. Biophys. Acta Lipids Lipid Metab. 1990, 1045, 128–134. [CrossRef]

135. Minokoshi, Y.; Kim, Y.-B.; Peroni, O.D.; Fryer, L.G.D.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by
activating AMP-activated protein kinase. Nat. Cell Biol. 2002, 415, 339–343. [CrossRef]

136. Furuichi, Y.; Sugiura, T.; Kato, Y.; Shimada, Y.; Masuda, K. OCTN2 is associated with carnitine transport capacity of rat skeletal
muscles. Acta Physiol. 2010, 200, 57–64. [CrossRef]

137. Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted metabolomics strategies—Challenges and
emerging directions. J. Am. Soc. Mass Spectrom. 2016, 27, 1897–1905. [CrossRef] [PubMed]

138. Dias, D.A.; Jones, O.A.; Beale, D.J.; Boughton, B.A.; Benheim, D.; Kouremenos, K.A.; Wolfender, J.-L.; Wishart, D.S. Current and
future perspectives on the structural identification of small molecules in biological systems. Metabolites 2016, 6, 46. [CrossRef]

139. Viant, M.R.; Kurland, I.J.; Jones, M.R.; Dunn, W.B. How close are we to complete annotation of metabolomes? Curr. Opin. Chem.
Biol. 2017, 36, 64–69. [CrossRef] [PubMed]

http://doi.org/10.1006/abbi.2001.2434
http://www.ncbi.nlm.nih.gov/pubmed/11469791
http://doi.org/10.1152/ajpregu.00092.2014
http://www.ncbi.nlm.nih.gov/pubmed/24760997
http://doi.org/10.1177/2042018810375656
http://doi.org/10.14814/phy2.14275
http://doi.org/10.1016/j.pharmthera.2017.10.016
http://doi.org/10.14814/phy2.14040
http://doi.org/10.3390/nu9090930
http://www.ncbi.nlm.nih.gov/pubmed/28837086
http://doi.org/10.1016/j.plefa.2014.05.004
http://doi.org/10.1152/ajpregu.00128.2013
http://doi.org/10.1016/j.pharmthera.2008.01.001
http://www.ncbi.nlm.nih.gov/pubmed/18374420
http://doi.org/10.14814/phy2.14108
http://doi.org/10.1152/japplphysiol.00412.2012
http://www.ncbi.nlm.nih.gov/pubmed/23042913
http://doi.org/10.2337/diabetes.54.3.591
http://www.ncbi.nlm.nih.gov/pubmed/15734832
http://doi.org/10.1111/evj.13064
http://doi.org/10.2165/00007256-200434150-00004
http://doi.org/10.1371/journal.pone.0090730
http://www.ncbi.nlm.nih.gov/pubmed/24658361
http://doi.org/10.1186/s12864-017-3571-3
http://www.ncbi.nlm.nih.gov/pubmed/28212624
http://doi.org/10.1371/journal.pone.0013318
http://www.ncbi.nlm.nih.gov/pubmed/20967198
http://doi.org/10.1038/srep22218
http://doi.org/10.1016/0005-2760(90)90141-J
http://doi.org/10.1038/415339a
http://doi.org/10.1111/j.1748-1716.2010.02101.x
http://doi.org/10.1007/s13361-016-1469-y
http://www.ncbi.nlm.nih.gov/pubmed/27624161
http://doi.org/10.3390/metabo6040046
http://doi.org/10.1016/j.cbpa.2017.01.001
http://www.ncbi.nlm.nih.gov/pubmed/28113135


Metabolites 2021, 11, 151 34 of 34

140. Dunn, W.B.; Erban, A.; Weber, R.J.M.; Creek, D.J.; Brown, M.; Breitling, R.; Hankemeier, T.; Goodacre, R.; Neumann, S.; Kopka, J.;
et al. Mass appeal: Metabolite identification in mass spectrometry-focused untargeted metabolomics. Metabolomics 2013, 9, 44–66.
[CrossRef]

141. Salek, R.M.; Steinbeck, C.; Viant, M.R.; Goodacre, R.; Dunn, W.B. The role of reporting standards for metabolite annotation and
identification in metabolomic studies. GigaScience 2013, 2, 1–3. [CrossRef]

142. Miggiels, P.; Wouters, B.; Van Westen, G.J.; Dubbelman, A.-C.; Hankemeier, T. Novel technologies for metabolomics: More for less.
TrAC Trends Anal. Chem. 2019, 120, 115323. [CrossRef]

143. Broadhurst, D.I.; Kell, D.B. Statistical strategies for avoiding false discoveries in metabolomics and related experiments.
Metabolomics 2006, 2, 171–196. [CrossRef]

144. Nayor, M.; Shah, R.V.; Miller, P.E.; Blodgett, J.B.; Tanguay, M.; Pico, A.R.; Murthy, V.L.; Malhotra, R.; Houstis, N.E.; Deik, A.;
et al. Metabolic architecture of acute exercise response in middle-aged adults in the community. Circulation 2020, 142, 1905–1924.
[CrossRef] [PubMed]

145. Sanford, J.A.; Nogiec, C.D.; Lindholm, M.E.; Adkins, J.N.; Amar, D.; Dasari, S.; Drugan, J.K.; Fernández, F.M.; Radom-Aizik, S.;
Schenk, S.; et al. Molecular transducers of physical activity consortium (MoTrPAC): Mapping the dynamic responses to exercise.
Cell 2020, 181, 1464–1474. [CrossRef] [PubMed]

146. MoTrPAC Data Hub. Available online: https://motrpac-data.org (accessed on 15 December 2020).
147. Kelly, R.S.; Kelly, M.P.; Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. Biochim.

Biophys. Acta Mol. Basis Dis. 2020, 1866, 165936. [CrossRef] [PubMed]
148. Grapov, D.; Fiehn, O.; Campbell, C.; Chandler, C.J.; Burnett, D.J.; Souza, E.C.; Casazza, G.A.; Keim, N.L.; Hunter, G.R.;

Fernandez, J.R.; et al. Impact of a weight loss and fitness intervention on exercise-associated plasma oxylipin patterns in obese,
insulin-resistant, sedentary women. Physiol. Rep. 2020, 8, e14547. [CrossRef]

149. Grapov, D.; Fiehn, O.; Campbell, C.; Chandler, C.J.; Burnett, D.J.; Souza, E.C.; Casazza, G.A.; Keim, N.L.; Newman, J.W.; Hunter,
G.R.; et al. Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: Impact of a fitness
and weight loss intervention. Am. J. Physiol. Metab. 2019, 317, E999–E1014. [CrossRef]

150. Draper, C.F.; Duisters, K.; Weger, B.; Chakrabarti, A.; Harms, A.C.; Brennan, L.; Hankemeier, T.; Goulet, L.; Konz, T.; Martin, F.P.;
et al. Menstrual cycle rhythmicity: Metabolic patterns in healthy women. Sci. Rep. 2018, 8, 14568. [CrossRef]

151. Liebisch, G.; Vizcaíno, J.A.; Köfeler, H.; Trötzmüller, M.; Griffiths, W.J.; Schmitz, G.; Spener, F.; Wakelam, M.J.O. Shorthand
notation for lipid structures derived from mass spectrometry. J. Lipid Res. 2013, 54, 1523–1530. [CrossRef]

152. Pauling, J.K.; Hermansson, M.; Hartler, J.; Christiansen, K.; Gallego, S.F.; Peng, B.; Ahrends, R.; Ejsing, C.S. Proposal for a common
nomenclature for fragment ions in mass spectra of lipids. PLoS ONE 2017, 12, e0188394. [CrossRef] [PubMed]

153. Hao, L.; Wang, J.; Page, D.; Asthana, S.; Zetterberg, H.; Carlsson, C.; Okonkwo, O.C.; Li, L. Comparative evaluation of MS-based
metabolomics software and its application to preclinical Alzheimer’s disease. Sci. Rep. 2018, 8, 1–10. [CrossRef]

154. Mendez, K.M.; Pritchard, L.; Reinke, S.N.; Broadhurst, D.I. Toward collaborative open data science in metabolomics using Jupyter
notebooks and cloud computing. Metabolomics 2019, 15, 125. [CrossRef]

155. Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.-W.; da Silva Santos,
L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018.
[CrossRef]

156. Xu, J.; Martien, J.; Gilbertson, C.; Ma, J.; Amador-Noguez, D.; Park, J.O. Metabolic flux analysis and fluxomics-driven determina-
tion of reaction free energy using multiple isotopes. Curr. Opin. Biotechnol. 2020, 64, 151–160. [CrossRef]

157. Li, B.; He, X.; Jia, W.; Li, H. Novel applications of metabolomics in personalized medicine: A mini-review. Molecules 2017, 22.
[CrossRef]

158. Linke, V.; Overmyer, K.A.; Miller, I.J.; Brademan, D.R.; Hutchins, P.D.; Trujillo, E.A.; Reddy, T.R.; Russell, J.D.; Cushing, E.M.;
Schueler, K.L.; et al. A large-scale genome–lipid association map guides lipid identification. Nat. Metab. 2020, 2, 1149–1162.
[CrossRef] [PubMed]

159. Stöckli, J.; Fisher-Wellman, K.H.; Chaudhuri, R.; Zeng, X.-Y.; Fazakerley, D.J.; Meoli, C.C.; Thomas, K.C.; Hoffman, N.J.;
Mangiafico, S.P.; Xirouchaki, C.E.; et al. Metabolomic analysis of insulin resistance across different mouse strains and diets. J. Biol.
Chem. 2017, 292, 19135–19145. [CrossRef] [PubMed]

160. Trivedi, D.K.; Hollywood, K.A.; Goodacre, R. Metabolomics for the masses: The future of metabolomics in a personalized world.
Eur. J. Mol. Clin. Med. 2017, 3, 294–305. [CrossRef]

http://doi.org/10.1007/s11306-012-0434-4
http://doi.org/10.1186/2047-217X-2-13
http://doi.org/10.1016/j.trac.2018.11.021
http://doi.org/10.1007/s11306-006-0037-z
http://doi.org/10.1161/CIRCULATIONAHA.120.050281
http://www.ncbi.nlm.nih.gov/pubmed/32927962
http://doi.org/10.1016/j.cell.2020.06.004
http://www.ncbi.nlm.nih.gov/pubmed/32589957
https://motrpac-data.org
http://doi.org/10.1016/j.bbadis.2020.165936
http://www.ncbi.nlm.nih.gov/pubmed/32827647
http://doi.org/10.14814/phy2.14547
http://doi.org/10.1152/ajpendo.00091.2019
http://doi.org/10.1038/s41598-018-32647-0
http://doi.org/10.1194/jlr.M033506
http://doi.org/10.1371/journal.pone.0188394
http://www.ncbi.nlm.nih.gov/pubmed/29161304
http://doi.org/10.1038/s41598-018-27031-x
http://doi.org/10.1007/s11306-019-1588-0
http://doi.org/10.1038/sdata.2016.18
http://doi.org/10.1016/j.copbio.2020.02.018
http://doi.org/10.3390/molecules22071173
http://doi.org/10.1038/s42255-020-00278-3
http://www.ncbi.nlm.nih.gov/pubmed/32958938
http://doi.org/10.1074/jbc.M117.818351
http://www.ncbi.nlm.nih.gov/pubmed/28982973
http://doi.org/10.1016/j.nhtm.2017.06.001

	Metabolomics and lipidomics: Expanding the molecular landscape of exercise biology
	Introduction 
	Metabolomics and Lipidomics Guide for Exercise Researchers 
	What Are Metabolomics and Lipidomics? 
	Advantages to Studying the Metabolome and Lipidome in Biological Systems 
	Types of Metabolomic and Lipidomic Approaches 
	Untargeted Approach 
	Targeted Approach 
	Semi-Targeted Approach 

	Commonly Used Metabolomic and Lipidomic Analytical Platforms 
	Overall Metabolomic and Lipidomic Workflow 

	Metabolomic and Lipidomic Analyses of Acute Exercise-RegulatedBiological Networks 
	Metabolomic Analyses of Acute Exercise 
	Humans 
	Other Mammals and Tissues 

	Lipidomic Analyses of Acute Exercise 
	Humans 
	Other Mammals 


	Current Challenges and Remaining Knowledge Gaps to Continue Expanding Exercise’s Molecular Landscape 
	Metabolite Identification and Annotation 
	Human Interindividual Variability and Potential Confounding Factors 
	Comparison and Reproducibility of Results Between Studies 
	Bioinformatic Resources 

	Future Directions and Potential Value for Human Performance and Exercise Metabolic Health Benefits 
	Conclusions 
	References

