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RESEARCH Open Access

Process development and safety evaluation
of ABCB5+ limbal stem cells as advanced-
therapy medicinal product to treat limbal
stem cell deficiency
Alexandra Norrick1†, Jasmina Esterlechner1†, Elke Niebergall-Roth1†, Ulf Dehio2, Samar Sadeghi1,
Hannes M. Schröder2, Seda Ballikaya1, Nicole Stemler1, Christoph Ganss1,2, Kathrin Dieter2, Ann-Kathrin Dachtler2,
Patrick Merz3,4, Saadettin Sel4, James Chodosh5, Claus Cursiefen6,7, Natasha Y. Frank8,9,10,11, Gerd U. Auffarth3,4,
Bruce Ksander12, Markus H. Frank10,11,13,14† and Mark A. Kluth1,2*†

Abstract

Background: While therapeutic success of the limbal tissue or cell transplantation to treat severe cases of limbal
stem cell (LSC) deficiency (LSCD) strongly depends on the percentage of LSCs within the transplanted cells,
prospective LSC enrichment has been hampered by the intranuclear localization of the previously reported LSC
marker p63. The recent identification of the ATP-binding cassette transporter ABCB5 as a plasma membrane-
spanning marker of LSCs that are capable of restoring the cornea and the development of an antibody directed
against an extracellular loop of the ABCB5 molecule stimulated us to develop a novel treatment strategy based on
the utilization of in vitro expanded allogeneic ABCB5+ LSCs derived from human cadaveric limbal tissue.

Methods: We developed and validated a Good Manufacturing Practice- and European Pharmacopeia-conform
production and quality-control process, by which ABCB5+ LSCs are derived from human corneal rims, expanded
ex vivo, isolated as homogenous cell population, and manufactured as an advanced-therapy medicinal product
(ATMP). This product was tested in a preclinical study program investigating the cells’ engraftment potential,
biodistribution behavior, and safety.

(Continued on next page)
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Results: ABCB5+ LSCs were reliably expanded and manufactured as an ATMP that contains comparably high
percentages of cells expressing transcription factors critical for LSC stemness maintenance (p63) and corneal
epithelial differentiation (PAX6). Preclinical studies confirmed local engraftment potential of the cells and gave no
signals of toxicity and tumorgenicity. These findings were sufficient for the product to be approved by the German
Paul Ehrlich Institute and the U.S. Food & Drug Administration to be tested in an international multicenter phase I/
IIa clinical trial (NCT03549299) to evaluate the safety and therapeutic efficacy in patients with LSCD.

Conclusion: Building upon these data in conjunction with the previously shown cornea-restoring capacity of
human ABCB5+ LSCs in animal models of LSCD, we provide an advanced allogeneic LSC-based treatment strategy
that shows promise for replenishment of the patient’s LSC pool, recreation of a functional barrier against invading
conjunctival cells and restoration of a transparent, avascular cornea.

Keywords: Advanced-therapy medicinal product, ABCB5, GMP manufacturing, Limbal stem cell deficiency, Limbal
stem cells, p63, PAX6

Introduction
The cornea maintains its transparency partly by con-
tinuously replacing aged or damaged epithelial cells.
Physiological regular renewal of the corneal epithe-
lium is guaranteed by stem cells residing in the lim-
bal region. These limbal stem cells (LSCs) are crucial
for corneal epithelial turnover and maintenance of a
barrier between the clear, avascular cornea and the
vascularized conjunctiva. Accordingly, LSC deficiency
(LSCD), either due to congenital or, more frequently,
acquired aplasia or depletion of LSCs by intrinsic or
extrinsic insults of various etiologies [1], is character-
ized by compromised corneal epithelial regeneration
and an impaired barrier function of the limbus. Under
such circumstances, conjunctival epithelial cells can
invade and successively replace corneal epithelial cells.
As a result, corneal neovascularization, chronic in-
flammation, and stromal scarring can occur, which
may contribute to discomfort, corneal opacification,
vision loss, and even blindness [1–4]. According to a
bulletin of the WHO, corneal disease is a major cause
of blindness worldwide, second only to cataract [5].
Therapeutic options for LSCD depend on the etiology,

severity of symptoms, extent (partial vs. total), and lat-
erality (uni- vs. bilateral) of the disease [3, 4, 6, 7]. Treat-
ment of mild and moderate cases aims at the control of
symptoms. In these cases, recovery requires the presence
of at least certain numbers of remaining LSCs that can
restore the corneal epithelium. In severe LSCD, where
no or insufficient amounts of LSCs are present, the LSC
pool needs to be restored [4, 7]. Earlier procedures in-
volved transplantation of limbal tissue, either from the
patient’s healthy or less affected contralateral eye or, in
cases of bilateral LSCD, from a living or deceased donor
[8–10]. Newer, tissue-sparing techniques are based on
transplantation of corneal grafts prepared from ex vivo
cultured limbal cells (cultivated limbal epithelial trans-
plantation) [11, 12] or transplantation of a limbal biopsy

sample from the unaffected eye cut into small tissue
pieces that are evenly distributed over an amniotic mem-
brane scaffold attached to the affected eye’s corneal sur-
face (simple limbal epithelial transplantation) [13–15].
These techniques have reduced the amount of donor tis-
sue required and thus decreased the risk of harming the
donor eye.
However, as LSCs comprise only a small population

among heterogenous cell populations present in the
limbus [16, 17] and transplantation success highly
depends on the percentage of LSCs within the trans-
planted cells [18], a major challenge in the further devel-
opment of transplantation techniques has remained: the
prospective identification of LSCs, which would permit
enrichment of the stem cell content of the transplant.
Over decades, LSCs could only be identified retrospect-
ively by indirect or functional characteristics including
label retention; lack of expression of corneal differenti-
ation markers such as cytokeratin (CK)3, CK12, and
CK19; ability to generate holoclones; and corneal epithe-
lial regeneration capacity after transplantation [19]. Fur-
thermore, although the nuclear transcription factor
tumor protein 63 (p63), specifically its N-terminally
truncated alpha isoform ΔNp63α, had been shown to
identify LSCs and was thus proposed as a direct LSC
marker [20, 21], prospective cell sorting-based enrich-
ment of limbal grafts for p63+ cells is not feasible, given
its nuclear localization.
More recently, the membrane-bound ATP-binding

cassette transporter, subfamily B, member 5 (ABCB5),
originally described as a marker for dermal progenitor
cells [22], was found to be expressed on label-retaining
(slow-cycling), p63α+ CK12− cells located in the basal
limbal epithelium of mice and humans, respectively [23].
This discovery identified ABCB5 as the first molecular
surface marker for prospective LSC enrichment by
antibody-based cell sorting. Furthermore, Abcb5 gene
loss of function in Abcb5-knockout mice was associated
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with defective corneal differentiation and regeneration,
indicating that ABCB5, beyond representing an LSC
marker [24–27], is required for LSC function and
corneal epithelial regeneration [23]. Purified CK12−

ABCB5+ LSCs could, in vitro, be induced to differentiate
into CK12+ epithelial cells [28]. Moreover, in NSG
mouse and New Zealand White rabbit models of surgi-
cally induced LSCD, grafts containing prospectively iso-
lated human ABCB5+ limbal cells were able to restore
corneal transparency and to provide a stratified, well-
differentiated CK12+ corneal epithelium [23, 29].
Both the cell-surface localization of ABCB5 and the

considerable cornea-restoring capacity of human
ABCB5+ limbal cells suggest this cell population as a
promising candidate for LSCD therapy. This stimulated
us to develop a novel treatment strategy based on the
utilization of allogeneic ABCB5+ LSCs that were derived
from cadaveric ocular tissue, expanded in vitro and man-
ufactured as an advanced-therapy medicinal product
(ATMP). Here, we describe our Good Manufacturing
Practice (GMP)-compliant manufacturing process,
report on the preclinical safety testing of our LSC-based
ATMP and present the treatment strategy that is
currently being tested in a first-in-human clinical trial.

Materials and methods
Manufacturing of human ABCB5+ LSCs
Tissue procurement and processing
Cornea rims from human deceased donors were ob-
tained from the Lions Eye Bank of the University Eye
Clinic of Heidelberg, Germany, in cooperation with the
German Society for Tissue Transplantation (DGFG), as
leftover tissue from cornea transplantations. Tissues
must fulfill the requirements laid down in the tissue
regulation amending the German transplantation act
(TPG-GewV). Donors who tested positive (serological
and nucleic acid testing using pre- or postmortal blood)
for HIV1/2, HBV, HCV, HTLV (if required), and/or
Treponema pallidum were excluded. The manufacturing
process took place in an EU-GMP grade A cabinet in a
grade B clean room facility under laminar air flow (“A in
B”) and followed GMP requirements. Tissue was disin-
fected, washed, freed from residual corneal and scleral
tissue, dissected into fragments, and enzymatically disso-
ciated via collagenase (Collagenase NB6, Nordmark,
Uetersen, Germany) for 1.5–6 h at 37 °C in collagenase/
PBSCa/Mg/penicillin/streptomycin solution (containing 1
U/ml collagenase). Cells were centrifuged and cultured
as unsegregated cell culture in a feeder cell-free stem
cell-selecting medium (Dulbecco’s modified Eagle’s
medium/Ham’s F-12 supplemented with fetal calf serum,
L-glutamine, hydrocortisone, insulin, and recombinant
human epidermal growth factor) on an uncoated 12-well

plate in a cell culture incubator (5% CO2, 90% humidity,
37 °C).

Assessment of cell confluence and morphology
During cell expansion and isolation, cell confluence and
morphology were assessed visually using phase-contrast
microscopy by comprehensively trained lab assistants
strictly employing the four eyes principle (i.e., cross-
checked by the Head of Production).

Cell expansion and isolation
All expansion steps occurred in uncoated culture
dishes using the medium described above. When
≥70% confluence was reached, cells were harvested
using non-animal recombinant trypsin (TrypZean®,
Sigma-Aldrich, Taufkirchen, Germany) and cultured
on a 6-well plate. After subsequent expansion in a
T25 flask and thereafter in T175 flasks for up to 10
passages in total (Fig. 1; representative morphological
images of cultures at early and late passages see
Figure S1 (Additional file 2)), ABCB5+ LSCs were iso-
lated using magnetic polystyrene beads (micromer®-M,
Micromod, Rostock, Germany) coated with a mouse
anti-human monoclonal antibody directed against the
16-mer amino acid sequence 493–508 (RFGAYLIQAG
RMTPEG) of the ABCB5 extracellular loop 3 [22]
(bulk production: Maine Biotechnology Services,
Portland, ME, USA; GMP purification: Bibitec,
Bielefeld, Germany; virus depletion and safety study
according to ICH Q5 [30]: Charles River, Erkrath,
Germany). Briefly, cells were harvested by incubation
with 0.02% EDTA in PBS, because trypsin harvest
causes a transient loss of the epitope targeted by the
antibody. After incubation of the cell suspension with
the antibody-coated beads for 20–25 min, the ABCB5+

LSCS bound to the beads were magnetically separated
from the unbound, ABCB5− cells. Following enzym-
atic (TrypZean®) detachment of the beads from the
cell surface, the isolated ABCB5+ LSCs were cryo-
preserved in freeze medium containing 10% dimethyl
sulfoxide as cryoprotectant (CryoStor® CS10, BioLife
Solutions, Bothell, WA, USA) in polypropylene
cryovials (1–2 × 106 cells/cryovial) and stored in the
vapor phase of liquid nitrogen at temperatures below
− 130 °C. To maximize the yield of ABCB5+ LSCs
from one corneal rim, up to four isolation cycles can
be performed, provided that no changes in cell
morphology or growth behavior (as assessed by
phase-contrast microscopical inspection and conflu-
ence determination) occur (Fig. 1, Table 1). Several
in-process controls (Table 1) and release controls
(Table 2, Fig. 1) are performed to guarantee the
quality of the isolated cells even after freezing/thaw-
ing (Table S1 (Additional file 1)).
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Fig. 1 Flow chart summarizing the manufacturing process of human ABCB5+ limbal stem cells. In-process controls (IPCs) are colored in light
green, release controls in orange. Due to lack of space, not all IPCs are shown (but given in Table 1). BC barcoded cryovial, mCcP microbiological
control of cellular products
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Table 1 In-process controls during manufacturing of human ABCB5+ LSCs

Process step Parameter Criterion

Incoming good
inspectiona

Storage time of cornea before transplantation ≤ 34 days

Storage time of the corneal rim in transport medium ≤ 4 days

Size of the corneal rim ≥ ¾ of the rim

Endothelial cell density of the cornea ≥ 2000 cells/mm2

Donor serology (pre- or postmortal): HIV1/2, HBV, HCV, HTLV (if required), and
Treponema pallidum

Negative

Microbiological load of the transport medium ≤ 5 CFU/10ml

Tissue dissociation Dissociation efficiency after collagenase incubation > 80%, 1.5–6 h

Cell expansion First assessment of cell confluence 1–4 days

Mycoplasma testing of medium supernatant (only on T75) Not detectable (< 10 CFU/ml)

Confluence before passaging ≥ 70%

Cultivation time until passaging (12-well) ≤ 16 days

Cultivation time until passaging (6-well, T25, T75, T175) ≤ 7 days

Digestion efficacy after trypsin incubation > 90%, 5–7 min

Cell morphology Undifferentiated cells, LSC morphology

Isolation of ABCB5+

LSCs
Confluence 70–95%

Passage number ≤ 10

Cultivation time since last passaging (last trypsin harvest) ≥ 3 days (to ensure presence of ABCB5 on
cell surface)

Efficacy of cell detachment from the culture vessel after incubation with
Versene® (0.02% EDTA in PBS)

> 90%, 20–30 min

Cell cycle profile (proportions of cells in G1, S, and G2/M phase Determined and declared

Cell count n.a.

Cell morphology Undifferentiated cells, LSC morphology

n.a. not applicable
aOnly corneal rims that fulfilled the requirements for transplantation (according to the tissue regulation amending the German tranplantation act (TPG-GewV)
were used

Table 2 Specifications and results from GMP batch analysis (n = 13)

Parameter Test method Specification Mean Deviations from
specification

Absolute Percentage

ABCB5+ cell content Flow cytometry ≥ 90% 96.4% 0 0%

Mycoplasma Nucleic acid test-based assay (2.6.7 Ph. Eur.) not detectable (< 10 CFU/ml) < 10 CFU/ml 0 0%

Endotoxin level LAL-Test (2.6.14 Ph. Eur.) ≤ 2 EU/ml ≤ 2 EU/ml 0 0%

Cell vitality Flow cytometry (2.7.29 Ph. Eur.) ≥ 90% 97.5% 1 7.7%

Cell viability Flow cytometry (2.7.29 Ph. Eur.) ≥ 90% 99.2% 0 0%

Bead residues Flow cytometry ≤ 0.5% 0.04% 0 0%

Microbiological control
(n = 12)a)

BacT/ALERT® System (adapted to 2.6.27 Ph. Eur.) no growth n.a. 0 0%

p63+ cell content Immunofluorescence ≥ 20% 76,7% 0 0%

PAX6+ cell content
(n = 8)b)

Immunofluorescence ≥ 50% 71.3% 0 0%

Ph. Eur. European Pharmacopeia, LAL Limulus amebocyte lysate, n.a. not applicable
aOne batch could not be evaluated due to sample size error and was therefore not released
bFive batches could not be evaluated due to staining problems and were therefore not released
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Characterization of human ABCB5+ LSCs
Proliferation assay
Cells were labeled with carboxyfluorescein diacetate
succinimidyl ester (CFSE) using the Invitrogen™ Cell-
Trace™ CFSE proliferation kit (Thermo Fisher, Langen-
selbold, Germany) according to the manufacturer’s
instructions, and CFSE fluorescence was measured over
time by flow cytometry.

Immunofluorescence staining
Cryosections of the human limbal and corneal tissue
(4 μm) were fixed in 4% paraformaldehyde (PFA) and
stained for ΔNp63, p63α, or CD1a (for antibodies see
Table S2 (Additional file 1); incubation time 40–50min
for primary and 30–35 min for secondary antibodies).
Prior to p63 staining, sections were permeabilized using
1% Triton™ X-100 (Sigma-Aldrich) in phosphate-
buffered saline (PBS) (10 min). Nuclei were counter-
stained with 4′,6-diamidino-2-phenylindole (DAPI) (10–
12min) and stains microscopically evaluated.
Cells were seeded or centrifuged (Cytospin™; Thermo

Fisher) onto microscope slides, fixed (4% PFA) and
stained for ΔNp63, CK3/CK12, CK19, paired box protein
6 (PAX6), vimentin, connexin 43, melanoma antigen
recognized by T cells (MART-1) and CD1a, respectively
(for antibodies see Table S2 (Additional file 1); incuba-
tion time 40–50 min for primary and 30–35min for sec-
ondary antibodies). Prior to staining of intracellular
proteins, cells were permeabilized with 1% Triton™ X-
100/PBS (10 min). Nuclei were counterstained with
DAPI (10–12min). For positive control, human corneal
epithelial cells (Life Technologies, Darmstadt, Germany;
for ΔNp63, CK3/CK12, PAX6), human skin-derived
mesenchymal stem cells (TICEBA [31]; for vimentin,
connexin 43) and human skin malignant melanoma cells
(SK-MEL-28, ATCC® HTB-72™, LGC Standards, Wesel,
Germany; for MART-1) were used. Stains were evalu-
ated microscopically (Leica DMi8 microscope, Leica
Microsystems, Wetzlar, Germany; or Floid™ cell imaging
station, Life Technologies, Darmstadt, Germany).

Measurement of VEGF secretion
ABCB5+ LSCs were cultured for 48 h under hypoxic
conditions (1% O2, 4% CO2, 95% N2) or in fibrin gel
(Tisseel®; Baxter, Unterschleißheim, Germany). Vascular
endothelial growth factor (VEGF) concentration in cell
culture supernatant was measured using the Invitrogen™
VEGF Human ELISA Kit (Thermo Fisher) according to
the manufacturer’s instructions.

Batch analyses
Batch analyses followed validated GMP-compliant proce-
dures according (where applicable) to the requirements of

the European Pharmacopeia. For an overview and specifi-
cations see Fig. 1 and Table 2, respectively.

Determination of ABCB5+ cell content
After the isolation of the ABCB5+ cells, but before the
enzymatic detachment of the microbeads (which leads to
transient loss of ABCB5 from the cell surface), ABCB5+

cell content was determined following incubation (20–
30min) with an Alexa Fluor® 647-coupled donkey anti-
mouse secondary antibody (Invitrogen/Thermo Fisher,
Cat. # A-31571) targeting the anti-ABCB5 antibody used
for cell isolation. To discriminate between ABCB5+ cells
and free bead-antibody complexes, calcein acetoxy-
methylester was added to the cell suspension before in-
cubation. Calcein and Alexa Fluor® 647 fluorescence was
measured using a BD Accuri™ C6 Flow Cytometer
(Becton Dickinson, Heidelberg, Germany). By gating
only events with high calcein fluorescence (indicative of
viable cells), unbound bead-antibody complexes were
excluded from the ABCB5+ cell content calculation (for
gating strategy see Figure S2 (Additional file 2)).

Mycoplasma testing
Cell suspension samples were spiked with internal con-
trol DNA, and genomic DNA was isolated using the
Microsart® AMP Extraction Kit (Minerva Biolabs, Berlin,
Germany). Isolated DNA was subjected to TaqMan®
qPCR using the Microsart® ATMP Mycoplasma qPCR
Kit (Minerva Biolabs), which includes positive and nega-
tive controls and 10CFU™ Sensitivity Standards for
Mycoplasma (M.) orale, M. fermentans and M.
pneumoniae.

Endotoxin testing
After the ABCB5+ cell isolation, microbead detachment
and washing/centrifugation of the cell suspension, super-
natant was diluted 1:10 with Endosafe® (Charles River,
Charleston, SC, USA) Limulus Amebocyte Lysate
Reagent Water and transferred into an Endosafe® PTS™
cartridge, which was loaded into an Endosafe® PTS™
reader. The endotoxin level was calculated based on the
change in optical density analyzed against an internal
standard curve.

Determination of cell count and vitality
To stain dead cells, propidium iodide solution (1 mg/ml)
was added to cell suspension samples in PBS containing
2 mM ethylenediaminetetraacetic acid (EDTA) and 1%
human serum albumin and incubated for 2 min. Fluores-
cence was measured using a BD Accuri™ C6 flow
cytometer, and cell count and vitality were calculated.
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Determination of cell viability and bead residues
Viability and microbead residues, which might result
from insufficient bead detachment or cell washing, were
analyzed in parallel. Cell suspension samples were incu-
bated for 20–30 min at 37 °C with calcein acetoxymethy-
lester to stain metabolically active cells. Calcein
fluorescence was measured by flow cytometry (BD
Accuri™ C6) and viability was calculated. For detection
of residual microbeads, a cell-free solution of ABCB5
antibody-conjugated beads was used to define a gate in
the FSC/SSC dot plot. To exclude false-positive signals
from viable cells, only calcein-negative events in that
gate were counted for calculation of bead residues.

Microbiological examination
Microbiological examination was performed by a certi-
fied academic contract laboratory. Cell suspension sam-
ples were diluted with NaCl-peptone buffer solution,
inoculated in BacT/ALERT® (bioMérieux, Nürtingen,
Germany) BPN (anaerobic) and BPA (aerobic) culture
bottles, and incubated in the BacT/Alert 3D60 auto-
mated microbial contamination detection system. Posi-
tive samples were seeded onto solid culture medium
immediately after detection. After 7 days of incubation,
all negative samples were seeded onto solid culture
medium.

Determination of p63+ and PAX6+ cell content (potency
assays)
Cells (5 × 103) were either centrifuged (Cytospin™) onto
microscope slides or cultured for several hours on cover-
slips, fixed (4% PFA), permeabilized (1% Triton™ X-100/
PBS, 10 min), and stained for ΔNp63 or PAX6, using
antibodies as specified in Table S2 (Additional file 1)
(incubation times 40–50min for primary and 30–35 min
for secondary antibodies). Nuclei were counterstained
with DAPI (10–12min) and slides mounted with Vecta-
shield® (Vector Laboratories, Peterborough, UK). Images
were captured using a Leica DMi8 microscope or a
Floid™ cell imaging station and percentages of ΔNp63+

and PAX6+ cells among DAPI-positive cells calculated.
For positive and negative control, cryosections of human
corneal rim samples were stained accordingly. Assays
were considered valid if the limbal tissue exhibited ≥20
DAPI+ cells per field of view that were also p63+ and
PAX+, respectively, while the scleral tissue exhibited
≤5% p63+ and PAX6+ cells, respectively, among DAPI+

cells.

Control for melanocyte contamination
Cells (5 × 103) were centrifuged (Cytospin™) onto micro-
scope slides, fixed (4% PFA), permeabilized (1% Triton™
X-100/PBS, 10 min), and stained for MART-1 (for anti-
bodies see Table S2 (Additional file 1); incubation times

40–50min for primary and 30–35min for secondary
antibody). Nuclei were counterstained with DAPI (10–
12min) and slides mounted with Vectashield®. Images
were captured using a Leica DMi8 microscope or a
Floid™ cell imaging station. SK-MEL-28 cells (5 × 103),
stained accordingly, served as positive control.

Animal studies
Animals
NSG (NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ) mice were sup-
plied by Charles River (Saint-Germain-Nuelles, France;
local biodistribution and toxicity study) or Jackson (Bar
Harbor, ME, USA; systemic biodistribution and toxicity/
tumorigenicity studies). At initiation of treatment, ani-
mals were 6–8 weeks old. Mice were housed individually
under special hygienic conditions with 12-h/12-h light-
dark cycle, fed ad libitum with a rodent complete diet
and had free access to drinking water. All animal experi-
ments were performed by specialized contract research
organizations in France (local biodistribution and tox-
icity study), meeting the animal protection requirements
defined in the European [32] and French animal welfare
legislations, and the USA (systemic biodistribution and
toxicity/tumorigenicity studies), meeting all relevant ani-
mal welfare regulation and strictly adhering to the ani-
mal welfare standards defined by the U.S. Department of
Agriculture (USDA) [33], National Research Council
[34], Office for Laboratory Animal Welfare (OLAW)
[35], ISO 10993-2 [36], and Association for the Assess-
ment and Accreditation of Laboratory Animal Care
(AAALAC). All experimentation procedures had been
approved by the competent national authorities and in-
stitutional boards, as applicable. For an overview over all
animal studies see Table 3.

Corneal and limbal debridement
Animals were anesthetized by intraperitoneal injection
of ketamine (Imalgene® 500, Merial, Lyon, France; 50 μl/
male, 40 μl/female) and xylazine (Rompun® 2%, Bayer,
Lyon, France; 50 μl/male, 40 μl/female). For analgesia,
mice received meloxicam (Mobic® 15 mg/1.5 ml, Boeh-
ringer Ingelheim, Paris, France; 100 μl/animal subcutane-
ously) and tetracaine 1% (TVM, Lempdes, France; 1
drop into the right eye). The limbal and corneal epithe-
lium of the right eye was removed with an Algerbrush II
rust ring remover, working in a circular motion starting
at the central cornea. After debridement, the eye was
rinsed with 35% ethanol followed immediately by normal
saline. A neomycin- and polymyxin B-containing eye
ointment (Cebemyxine®, Bausch & Lomb, Montpellier,
France) was applied for local antibiotherapy. For post-
surgery pain relief, mice received subcutaneous injec-
tions of buprenorphine (Buprecare® 0.3 mg/ml, Axience,
Pantin, France; 100 μl twice daily for 2 days) and

Norrick et al. Stem Cell Research & Therapy          (2021) 12:194 Page 7 of 21



meloxicam (Mobic® 15 mg/1.5 ml; 100 μl/animal at 48 h
post-debridement).

LSC transplantation
Transplantation of ABCB5+ LSCs was carried out using
Tisseel® fibrin sealant kit. Both, the fibrinogen and
thrombin components were thawed and 500 μl of each
solution diluted by adding 250 μl normal saline. ABCB5+

LSCs were thawed, washed, and suspended in HRG solu-
tion (Ringer’s lactate solution containing 2.5% human
serum albumin and 0.4% glucose) at a concentration of
2 × 105 cells/ml. Cell suspension (500 μl, containing 1 ×
105 ABCB5+ LSCs) was centrifuged, the supernatant re-
moved, and the cells suspended in 20 μl of the fibrino-
gen/saline solution, yielding a concentration of 5000
cells/μl.
Matrix graft application was performed 2 days after

corneal debridement under anesthesia and analgesia as
described above. The right eye was proptosed and 1.5 μl
of the thrombin/saline solution applied to the central
cornea using a pipette and gently spread to the limbus
using the pipette tip. Then, 1 μl fibrinogen/saline solu-
tion (containing 5000 ABCB5+ LSCs; control animals:
without cells) was dropped onto the central cornea. After
polymerization, tarsorrhaphy (8–0 suture) was performed.
Post-transplantation treatment included local anti-
inflammatory (dexamethasone; Maxidex® eye drops, Alcon,
Rueil-Malmaison, France) and antibiotic (neomycin/

polymyxin B; Cebemyxine®) care immediately after trans-
plantation and on the day thereafter and pain relief (meloxi-
cam; Mobic® 15mg/1.5ml; 100 μl/animal 24 h post-
transplantation). Tarsorrhaphy suture was removed at 6–7
days after graft application under anesthesia as described
above.

Subconjunctival cell injections
ABCB5+ LSCs were thawed, washed, and suspended in
HRG solution at a concentration of 2 × 107 cells/ml.
HeLa cells (ATCC CCL-2) were cultured in Eagle’s mini-
mum essential medium containing 10% fetal bovine
serum, 2 mM glutamine, 1 mM sodium pyruvate, 100 U/
ml penicillin, and 100 μg/ml streptomycin and passaged
at least twice. On the day of application, HeLa cells were
harvested using trypsin/ETDA solution, pelleted by cen-
trifugation, and then rinsed in balanced salt solution
(BSS) before being resuspended in BSS at a concentra-
tion of 0.5 × 106 cells/ml. The injection volume (25 μl)
was drawn up into a sterile 25-μl Hamilton syringe con-
nected to a sterile 26G needle, and the syringe gently
inverted several times to ensure homogenous
suspension.
For injection, mice were anesthetized (1–3% isoflur-

ane) and received topical anesthesia of the right eyeball
surface by one drop of proparacaine hydrochloride oph-
thalmic solution. Cell suspension was injected subcon-
junctivally at the inferior conjunctival sac at a rate of

Table 3 Overview over the preclinical in-vivo safety studies of ABCB5+ LSCs

Mouse
strain

Number of animals Model Cell dose Route and time of
application

Observation
period

Local biodistribution study

NSG 10 (5 males, 5 females) Corneal and limbal debridement
[23]

5000 ABCB5+ LSCs in fibrin gel Topical, day 0 8 weeks

Systemic biodistribution study

NSG 30 (15 males, 15 females) healthy 0.5 × 106 ABCB5+ LSCs in HRG
solution

Subconjunctival,
day 0

1 week
(n = 10)

12 weeks
(n = 10)

20 weeks
(n = 10)

Single-dose local toxicity study

NSG 20 (10 males, 10 females) Corneal and limbal
debridement [23]

5000 ABCB5+ LSCs in fibrin gel
(n = 10)

Topical, day 0 8 weeks

Carrier (fibrin gel) only (n = 10)

Systemic repeated-dose toxicity and tumorigenicity study

NSG 50 (25 males, 25 females) healthy 0.5 × 106 ABCB5+ LSCs in HRG solution
(n = 20)

Subconjunctival,
days 0, 14, 28

20 weeks

Vehicle (HRG solution) only (n = 20) Subconjunctival,
days 0, 14, 28

1.25 × 104 HeLa cells in BSS solution
(n = 10)

Subconjunctival,
day 0

LSC limbal stem cell, LSCD limbal stem cell deficiency, HRG Ringer’s lactate solution human serum albumin and glucose, BSS balanced salt solution
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10 μl/s. After injection, erythromycin 0.5% ophthalmic
ointment or BSS was applied to the surface of both cor-
neas to maintain moisture. For pain relief, animals re-
ceived 0.01–0.05 mg/kg buprenorphine hydrochloride
(Buprenex®, Reckitt Benckiser) before and after subcon-
junctival injection.

Ophthalmic examinations
Ophthalmic examinations were carried out under gen-
eral anesthesia (1–3% isoflurane). Examinations included
assessment of the corneal surface using fluorescein stain-
ing (local toxicity study only), assessment of the cornea,
conjunctiva, iris, anterior chamber and lens using slit
lamp examination, and examination of adnexa, optic
media, and fundus using indirect ophthalmoscopy. To
facilitate the fundus examination, the pupils were dilated
by instillation of tropicamide 0.5% or 1%.

Histopathology
In the local toxicity study, histopathological examina-
tions were performed on the eyes with the eyelids at-
tached, optic nerves, Haderian glands with intra-orbital
lacrimal glands, extra-orbital lacrimal glands, nasal cav-
ity, and brain. Tissues were fixed and preserved in modi-
fied Davidson’s fixative (nasal cavity and brain: 10%
neutral-buffered formalin) for 48–72 h and then trans-
ferred to ethanol 70% or embedded or decalcified. The
nasal cavity was sectioned at two levels as described by
Uraih and Maronpot [37], including the nasolacrimal
ducts. Each eye was sectioned at 12 levels. In the sys-
temic toxicity/tumorgenicity study, all organs and tissues
designated for histopathological assessment (see
“Results” section) were harvested, fixed in 10% neutral-
buffered formalin, and embedded in paraffin.
Sections were stained with hematoxylin/eosin.

Additionally, sections from the debrided eyes were
stained with Alcian Blue/Periodic acid–Schiff. Stained
sections were examined by light microscopy. The obser-
vations were semi-quantitatively quantified as grade 1
(minimal/very few/very small), 2 (slight/few/small), 3
(moderate/moderate number/moderate size), 4 (marked/
many/large), and 5 (massive/severe/very many/very
large).

Quantitative polymerase chain reaction (qPCR)
Human ABCB5+ LSCs in mouse tissues were detected
and quantified using a TaqMan®-based qPCR assay that
had been validated according to the bioanalytical
method validation guideline of the European Medicines
Agency [38]. The following tissues were collected: local
biodistribution study: anterior eye segment (cornea and
lens), posterior eye segment (retina, sclera, and optic
nerve), surrounding eye tissues (eyelids, lacrimal canals,
and extra-orbital lacrimal glands), and muzzle with nasal

cavities and naso-lacrimal duct; systemic biodistribution
study: the blood, the femur bone with the bone marrow,
brain, kidneys, liver, lungs, lymph nodes near to the in-
jection site, ovaries or testes, skeletal muscle, skin/sub-
cutis, spleen, thymus, thyroid/parathyroid gland, muzzle
with nasal cavities and nasolacrimal duct, treated eye,
untreated eye, surrounding ocular tissue (eyelid, lacrimal
canals, extraorbital glands) of the treated eye, and sur-
rounding ocular tissue of the untreated eye.
Assays were performed by a specialized contract re-

search service provider. Tissues were homogenized using
the Precellys® Evolution homogenizer (Bertin Technolo-
gies, Frankfurt, Germany) at 6800 rpm for at least two
cycles (20 s each) at room temperature with at least 30 s
pause between cycles. DNA was extracted using
NucleoSpin® 96 Tissue kit (Macherey-Nagel, Düren,
Germany). For primers and probes used for detection of
human and mouse (to control for quality of the isolated
DNA) DNA sequences see Table S3 (Additional file 1).
Amplifications were performed on an Applied Biosys-
tems™ ViiA™ 7 Dx Real-Time PCR instrument.

Statistics
Data acquisition and analysis were carried out using the
Provantis® Version 9 preclinical software suite (Instem,
Conshohocken, PA, USA). In the local biodistribution
and toxicity studies, data transformation (none, log, or
rank) was based on the kurtosis of the data, and the re-
sults of a Bartlett’s test for variance homogeneity and
similarity of group sizes. Non- or log-transformed data
were analyzed by parametric, rank-transformed data by
non-parametric methods. Homogeneity of means was
assessed by analysis of variance (ANOVA). Groups were
compared using the two-sample t test (for parametric
data) or the Mann-Whitney U test (for non-parametric
data). In the systemic biodistribution and toxicity/
tumorgenicity studies, quantitative, continuous data
were analyzed using one-way ANOVA. Differences be-
tween groups were considered statistically significant if
p ≤ 0.05.

Clinical trial
Study design
A non-controlled, international, multicenter phase I/IIa
clinical trial (ClinicalTrials.gov NCT03549299) was de-
signed to evaluate the safety and efficacy of ascending
doses of allogeneic ABCB5+ LSCs for the treatment of
LSCD. Main inclusion and exclusion criteria are given in
Table S4 (Additional file 1). It is planned to treat 16 pa-
tients at several sites in Germany and the USA. The trial
was approved by the relevant independent ethics commit-
tees/institutional review boards and by the Paul Ehrlich
Institute and the U.S. Food and Drug Administration,
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respectively, as the competent national regulatory
authorities.

Interventions
Following surgical dissection of conjunctival pannus tis-
sue from the corneal surface, 300 μl HRG solution con-
taining 7.5 × 104, 3 × 105, 8 × 105, or 1.2 × 106 allogeneic
ABCB5+ LSCs is evenly applied onto the entire corneal
and limbal area. Cells are immediately fixed by means of
a fibrin gel (Tisseel®), which has been successfully used
as a glue fixative in limbal stem cell transplantation [12,
39–41]. After polymerization of the fibrin gel, the eye is
covered with a bandage contact lens and a symblepharon
shell to hold the graft in place and then bandaged using
a perforated plastic shield.
For pre- and post-operative local anti-angiogenic ther-

apy, patients receive subconjunctival injections of 75 μl
(25 mg/ml) anti-VEGF antibody bevacizumab (Avastin®,
Roche) at each quadrant 1 week before, directly after,
and 2, 4 and 6 weeks following LSC transplantation.
Concomitant immunosuppressive medication includes
topical and systemic corticosteroids and long-term
ciclosporin (months 1–6: orally, Sandimmun® Optoral/
Sandimmune® soft gelatin capsules, Novartis; months 7–
12: topically, Ikervis® eye drops, Santen/Restasis®
ophthalmic emulsion, Allergan).

Outcome measures
Each patient will be followed up for 24 months. Primary
efficacy endpoint of the clinical trial is defined as the re-
sponse rate at 12 months after LSC transplantation, with
response defined as no or mild corneal neovasculariza-
tion and no or mild epithelial defects. Secondary efficacy
measures include the response rate at 3 months after
LSC transplantation and neovascularization, epithelial
defects, ocular symptoms (pain, photophobia, burning),
ocular inflammation, corneal opacity, visual acuity, and
quality of life (as per visual function questionnaire-25)
measured at various pre-defined time points throughout
12 months after LSC transplantation. Primary safety
measures are adverse events throughout 24 months after
LSC transplantation. Secondary safety measures include
physical examinations, vital signs, and tonometry.

Results
Process validation
Tissue processing
Dissociation of corneal rim fragments via collagenase di-
gestion was superior over dispase digestion or no enzym-
atic treatment (not shown). Collagenase digestion (1.5–6 h
at 37 °C in collagenase/PBSCa/Mg/penicillin/streptomycin
solution containing 1 U/ml collagenase) resulted in cell
yields between 7.5 × 104 and 1.06 × 106 cells (Figure S3a,
left (Additional file 2)). Mean cell adhesion rate after

collagenase digestion was about 30% (Figure S3a, right
(Additional file 2)). Both cell count and adhesion rate after
collagenase digestion were not dependent on donor age
and tissue storage time (i.e., time between death of the
donor and digestion of the corneal rim), respectively
(Figure S3b (Additional file 2)).

Percentage of ABCB5+ cells throughout cell expansion
process
Percentage of ABCB5high cells, as determined by flow cy-
tometry, within cultured unsegregated cells of different
passages from 9 donors (n = 19 samples in total) was
about 17.5% on average (Figure S3c (Additional file 2)).
After passage 10, a decrease in the percentage of
ABCB5+ (ABCB5med/high) cells became significant obvi-
ous (n = 1–10 donors; Figure S3d (Additional file 2)). As
a consequence, the maximum passage number was set
to 10.

Characterization of cultured ABCB5+ LSCs
Growth behavior of cultured ABCB5+ LSCs
LSCs from four donors were labeled with CFSE and
fluorescence measured during 9–11 days of culture. In
parallel, cell confluence was visually evaluated under a
phase contrast microscope, and cell count was deter-
mined. As shown in Figure S4 (Additional file 2),
ABCB5+ LSCs slowed down proliferation when having
reached confluence. No overgrowing potential could be
detected within this period.

Marker expression profile of unsegregated and ABCB5+

limbal cells
Immunofluorescence evaluation of unsegregated cul-
tured limbal cells (n = 6 cultures > 8 passages) revealed
homogenous expression of PAX6, heterogenous expres-
sion of ΔNp63, slight expression of vimentin, connexin
43, negligible expression of CK19, and total absence of
CK3/12 (Figure S5 (Additional file 2)). For validation of
the ΔNp63 antibody, sections of human limbus and cor-
nea were stained, showing positivity only in a small
population of cells in the basal layer of the limbus, but
not in the cornea (Figure S6 (Additional file 2)).
Since p63 expression was linked to clinical transplant

success [18], we investigated the correlation between ex-
pression of ABCB5 and p63 of LSCs from different do-
nors and different passages. Flow cytometric
determination of p63high cells among bead-isolated
ABCB5+ LSCs from 21 donors revealed a mean p63high

cell content of 50% (Fig. 2a). Within donors, the per-
centage of p63high cells was highly enriched in the
ABCB5+ population as compared to the ABCB5− popu-
lation and did, in general, not decrease with increasing
passage number (Fig. 2b). Quality control data from
GMP-compliantly manufactured cell batches, where the
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p63+ cell content was determined by immunofluores-
cence staining (i.e., without discriminating between high
and low expressing cells), show a mean p63+ cell content
of 77% (Table 2, Fig. 3).
To investigate whether the bead-isolated ABCB5+

LSCs express the p63 isoform ΔNp63α recognized as
LSC marker [21], for which, however, no specific anti-
body is commercially available, double-staining for N-
terminally truncated p63 (ΔNp63) and p63 alpha iso-
forms (p63α) was performed. In corneal tissue sections,
a cell population located in the limbal region stained
positive with both antibodies (Figure S7a-d (Additional
file 2)). Among bead-isolated ABCB5+ LSCs, 66%, 64%,
and 55% of nuclei stained positive for ΔNp63, p63α, and
both, respectively (Figure S7e-h (Additional file 2). Thus,
about 83% of the cells that stained positive for ΔNp63
were also positive for p63α.

Control for residual melanocytes cells and Langerhans cells
To detect potential impurities by residual melanocytes/
melanoma cells and Langerhans cells, the final drug
product (ABCB5+ LSCs) was evaluated by immunofluor-
escence staining for MART-1 (n = 4 batches) and CD1a
(n = 3 batches), respectively. Whereas SK-MEL cells as
positive control stained highly MART-1-positive,
MART-1 positivity could not be detected in the final
drug product. Likewise, no CD1a+ cells could be de-
tected, neither in cryosections of the corneal rim as the
starting material for LSC production nor in the final
drug product. Flow cytometric analysis of 4 batches of
the final drug product for CD1a+ cells revealed a mean
CD1a+ cell content of 0.2 ± 0.3% (not shown).

Batch quality control
Batch analyses including ABCB5+ cell content, myco-
plasma testing, endotoxin level, cell vitality and viability,
bead residues, microbiological examination, and PAX6+

and p63+ cell content were performed on 13 LSC
batches (except for microbiological examination, n = 12,
and PAX6+ cell content, n = 8). Except for one batch,
which failed the specification for vitality, all batches
fulfilled the specifications defined for batch release
(Table 2 and Fig. 3).

Behavior of ABCB5+ LSCs in fibrin gel
To rule out potential detrimental effects of the fibrin gel
intended as carrier for LSC transplantation, viability and
VEGF secretion of ABCB5+ LSCs cultured in fibrin gel
were investigated. Calcein staining confirmed viability of
ABCB5+ LSCs after 72 h of culture in fibrin gel (Fig. 4b).
Whereas hypoxic culture conditions stimulated ABCB5+

LSCs to secrete VEGF into the culture supernatant,
VEGF secretion was not stimulated after 24 h culture in
fibrin gel (Fig. 4c).

Biodistribution studies
Local biodistribution of ABCB5+ LSCs following topical
administration after corneal and limbal debridement
Ten (five male, five female) NSG mice with corneal and
limbal debridement at the right eye received 5000
ABCB5+ LSCs via cell-containing fibrin gel topically
onto the debrided cornea/limbus. After 8-week follow-
up, mice were necropsied, and local tissues subjected to
qPCR analysis for detection of human DNA fragments

Fig. 2 Correlation between ABCB5 and p63 expression in culture-expanded limbal stem cells. a Flow cytometric (rabbit anti-human p63, clone
H137, AB-653763; Santa Cruz Biotechnology, Heidelberg, Germany, Cat. No. sc-8343) measurement of the percentage of p63high cells within
magnetic bead-isolated ABCB5+ cells from different donors. b Percentage of p63high cells within ABCB5+ (blue) as compared to ABCB5− (red) cells
from various passages
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originating from the applied cells. Positive results are
summarized in Table S5 (Additional file 1).
In the application-site tissues, i.e., the right eye’s anter-

ior segment (cornea and lens), quantifiable levels of hu-
man cells were recorded in six out of ten samples. Mean
cell concentrations were 238 cells/mg tissue (range: 9–
876 cells/mg) in male and 66 cells/mg tissue (range: 77–
249 cells/mg) in female mice.
In most (57 out of 60) non-target tissue samples, i.e.,

left eye’s anterior segment, posterior segment and sur-
rounding tissue of both eyes, muzzle with nasal cavities,

and naso-lacrimal ducts, no quantifiable levels of human
cells were recorded. The positive results recorded in
three non-target tissue samples (1 left and 2 right eye’s
posterior segment samples) were considered accidental,
given the high contamination risk associated with qPCR
techniques including the challenging splitting of the eye
into anterior and posterior segment. This is supported
by the observation that the two quantifiable cell concen-
trations detected in right eye’s posterior segment sam-
ples correlated with the highest detected cell numbers in
the corresponding anterior eye segments.

Fig. 3 Release tests of 13 GMP-conform produced limbal stem cell batches. A batch that failed the specification for batch release is colored in
red. Please note that batches 9–13 could not be evaluated for PAX6+ cell content due to staining problems and were therefore not released
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Fig. 4 (See legend on next page.)
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Systemic biodistribution of ABCB5+ LSCs following
subconjunctival injection
Three groups of ten (five male, five female) NSG mice
received a subconjunctival injection of 0.5 × 106 ABCB5+

LSCs in 25 μl vehicle at the right eye. Mice were
followed up for 1, 12, and 20 weeks, respectively, after
which they were sacrificed following terminal blood
sampling. As control, a fourth group of ten mice was
injected with vehicle only and followed up for 20 weeks.
In the animals receiving subconjunctival injections of

ABCB5+ LSCs, quantifiable levels of human cells were
found in 2/30 samples of treated eye and 1/30 samples
of treated eye’s surrounding ocular tissue (12 weeks), 1/
30 lung samples (1 week), 4/30 skin/subcutis samples
(12 weeks, n = 1; 20 weeks, n = 3), and 1/15 testes sam-
ples (1 week) out of 540 tissue samples in total (Table S6
(Additional file 1)). As the cell level detected in the tes-
tes sample was very low (initial analysis: 9 cells/mg; elu-
ate re-analysis: below lower limit of quantification
(LLOQ); homogenate re-analysis: 5 cells/mg) and no fur-
ther testes sample at any time point after LSC applica-
tion tested positive, this result was attributed to
contamination during sample processing. In all other tis-
sues tested (see the “Methods” section), no quantifiable
levels of human cells were recorded. In the control
group, no clearly positive cell level (above LLOQ) was
detected in any of the tissues analyzed.

Toxicity and tumorigenicity studies
Single-dose local toxicity of ABCB5+ LSCs following topical
administration after corneal and limbal debridement
Two groups of ten (five male, five female) NSG mice
each with corneal and limbal debridement at the right
eye received 5000 ABCB5+ LSCs via cell-containing fi-
brin gel or fibrin gel without cells (control group) topic-
ally onto the debrided cornea/limbus. During an 8-week
follow-up period, mice were observed regarding mortal-
ity, clinical signs, body weight, food consumption, and
ophthalmology. Thereafter, mice were sacrificed and
subjected to pathological and local histopathological
evaluation.
With regard to the investigated parameters, the study

did not reveal any adverse effect related to ABCB5+

LSCs. One animal in the control group died on day 7
due to anesthesia for tarsorrhaphy suture removal.
Ophthalmological findings in the right eye of both
control and cell-treated animals included corneal

neovascularization and focal or diffuse corneal opacity,
which precluded examination of the fundus. Histopatho-
logical evaluation of ocular tissue sections revealed min-
imal or moderate incomplete regenerative changes,
sometimes with detachment of the corneal epithelium
and fibroblastic changes in the corneal stroma accom-
panied by stromal degeneration in the right eye. Mucous
(goblet) cells and minor subacute inflammatory changes
were noted in the corneal epithelium (Table S7
(Additional file 1)). As there were no differences in na-
ture, incidence or severity between LSC-treated and con-
trol group, the clinical and histopathological signs
observed were attributed to the technical procedures
(corneal debridement) and not to the applied cells.

Systemic repeated-dose toxicity and tumorigenicity of
ABCB5+ LSCs following subconjunctival administration
Three groups of NSG mice received either three doses
of 0.5 × 106 ABCB5+ LSCs in 25 μl HRG (n = 20) or 25 μl
HRG vehicle without cells (vehicle control, n = 20) on
days 0, 14, and 28, or 1.25 × 104 HeLa cells in 25 μl BSS
on day 0 (positive control, n = 10). During a 20-week
follow-up period, mice were observed regarding mortal-
ity, clinical signs, body weight food consumption, and
ophthalmology. Thereafter, animals were sacrificed, and
full necropsy and subsequent histopathological evalu-
ation performed.
During the study, vehicle-control mice gained more

weight (mean ± SD; males: 5.1 ± 1.5 g, females: 4.1 ± 0.9
g) than LSC-treated mice (males: 4.5 ± 1.4 g, females:
3.0 ± 1.1 g). These differences between groups reached
statistical significance only for the female, but not for
the male animals. One LSC-treated mouse died after
anesthesia for the second application (day 14). Ophthal-
mologic examinations, performed at days 14, 28, 35, 42,
and at week 20, revealed inflammation of the anterior
segment of both eyes in one LSC-treated animal on day
14, which had resolved on day 42. Since both, the
treated and the untreated eyes were affected, this finding
was assumed not related to LSC application. During
pathological evaluation, no LSC-related macroscopic and
microscopic findings were identified. All macroscopic
and microscopic findings in the vehicle- and LSC2 cell-
injected mice were considered spontaneous background
findings. Therefore, no evidence of any tumor formation
was observed. As a positive control to demonstrate our
ability to detect subconjunctival tumors, mice received

(See figure on previous page.)
Fig. 4 Effect of fibrin gel on ABCB5+ limbal stem cells (LSCs). a Fibrin gel is used as carrier for transplantation of ABCB5+ LSCs onto the debrided
cornea. b Calcein staining demonstrates viability of ABCB5+ LSCs after 72 h of culture in fibrin gel. c Fibrin gel does not create hypoxic conditions
capable of stimulating VEGF secretion by ABCB5+ LSCs in vitro as shown by VEGF secretion after cultivation under hypoxic conditions (as
compared to donor-matched ABCB5− limbal cells, left) and in fibrin gel (right). This experiment was performed on LSCs from three donors. Please
note different y-axes scales between hypoxia and fibrin gel
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subconjunctival injections of HeLa cells. Two of the
HeLa-treated mice died due to anesthesia for ocular
examinations on day 28. Six out of the remaining eight
animals (75%) developed moderate to extreme tumor
masses at the injection site (right eyes) and were prema-
turely euthanized around week 12. Histopathological
evaluation revealed small lung metastases in five of these
animals. One animal had also metastases in the brain.

Discussion
While current LSC-based therapies have resulted in
long-term restoration of the corneal epithelium and im-
provement of visual acuity [11, 14, 18], they are predom-
inantly best suited to treat unilateral disease [42]. In
bilateral LSCD, where autologous LSCs are not available
for transplantation, allogeneic grafts are required. How-
ever, clinical studies using allogeneic limbal tissue trans-
plants have often provided only transient corneal
restoration [12, 15, 43], which was suspected to be
caused by immunogenic limbal cell subpopulations such
as Langerhans cells capable of inducting rejection re-
sponses in the recipient. Furthermore, current ap-
proaches are often associated with regulatory and
logistical obstacles, seeing that the grafts contain variable
numbers of LSCs and that the preparations have not
been shown to be (cryo-) preservable [42]. We hypothe-
sized that surface marker-based prospective isolation,
expansion, and purification of LSCs from deceased
donors might overcome these obstacles by precluding
the transfer of potentially highly immunogenic cell sub-
populations, ensuring defined composition and purity of
the cell product, and enabling storage and transportation
[4, 42]. In the light of this situation, we strived to de-
velop and validate a GMP-compliant manufacturing
process, by which ABCB5+ LSCs from cadaveric human
limbal tissue can be expanded in vitro, isolated as a
homogenous cell population and manufactured as a
clinical-grade ATMP (Fig. 1) [44].
Factors that have been suspected to impact on the

number or functional characteristics of LSCs isolated
from limbal donor tissue are donor age [45] and the
duration of tissue preservation until processing [46].
Notara et al. [45] have described age-related changes in
limbal stem cell niche topography with a significant re-
duction in the surface area occupied by LSC niche struc-
tures and flattening of the palisades of Vogt occurring
after the age of 60 years. However, donor age did not
seem to affect the limbal cell yield in our process, since
we did not observe a statistically significant correlation
between donor age (51–90 years) and cell count or cell
adhesion rate in primary cell culture (Figure S3b
(Additional file 2)). In line, Sasamoto et al. [47] could
not establish a statistically significant association be-
tween donor age (24–79 years) and yields of freshly

isolated ABCB5+ LSCs. Also, we did not find the tissue
storage time (normothermic preservation for up to 76
days) to be correlated with cell count or cell adhesion rate
in primary cell culture (Figure S3b (Additional file 2)).
This has also been described for hypothermic preservation
at 4 °C (which is commonly used in the USA and Asia to
store corneoscleral discs intended for corneal transplant-
ation [48, 49]), for which no significant association be-
tween storage time and the yield of freshly isolated
ABCB5+ LSCs was reported [47].
During expansion, the cultured cells exhibited normal

growth behavior without any signs of overgrowing po-
tential; i.e., once the cells had reached confluence, they
slowed down proliferation, which is indicative of physio-
logical contact inhibition (Figure S4 (Additional file 2)).
Immunofluorescence characterization of unsegregated
cultured limbal cells revealed a marker expression profile
that corresponded, for the very most part, to the profile
expected for LSCs. Specifically, we detected
heterogenous expression of the well-recognized LSC
marker p63 [20] and homogenous expression of PAX6,
which has been shown to play a critical role in limbal
stem cell fate determination [50–52]. Slight expression
of the conjunctival epithelium marker CK19 and of
vimentin is in line with reports that have detected these
proteins on limbal basal cells [17, 53]. Although both
proteins have been interpreted as additional limbal stem
cell markers [17, 53], we cannot, however, rule out that
the vimentin-positive cells in our primary cell cultures
instead represent a small proportion of mesenchymal-
origin limbal niche cells co-isolated from the limbal tis-
sue due to the use of collagenase instead of dispase di-
gestion [54].
The absence of the filament proteins CK3/12, which

are, due to their specific expression in corneal epithelial
cells and limbal suprabasal but not basal cells, regarded
as markers of corneal epithelial differentiation [17, 53,
55], indicates that the cultivated LSCs have maintained
their undifferentiated nature throughout the expansion
process. In contrast, the slight positivity for the gap
junction protein connexin 43 was unexpected, as this
protein was, similar to CK3/12, suggested as a putative
negative biomarker of LSCs [56]. As gap junction pro-
teins such as connexin 43 mediate intercellular commu-
nication of the human corneal epithelium, the absence
of these proteins is considered a prerequisite for LSCs to
maintain their stemness, whereas the expression of con-
nexin 43 was suggested to denote differentiation of LSCs
into transient amplifying cells [57]. Therefore, it cannot
be excluded that a small subpopulation within the cul-
tured limbal cells had undergone early stages of
differentiation.
In addition to their role as stem cell markers, the tran-

scription factors p63 and PAX6 served as surrogate
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parameters to predict the cells’ functional potency [58, 59].
As p63 is critical for LSC maintenance [20] and PAX6 is es-
sential for commitment of LSCs to the corneal epithelial
cell lineage [50, 51], these two factors reflect the two end-
points relevant in LSCD therapy; namely, restoration and
maintenance of the limbal barrier against invading conjunc-
tival cells and restoration and regular renewal of the corneal
epithelium, respectively. In large clinical observations, p63
expression of ex vivo cultured limbal grafts was directly
correlated with the therapeutic outcome, with a content of
3% p63+ cells appearing as threshold value for clinical
transplant success [18]. In our manufacturing process,
p63high cells were specifically enriched in the ABCB5+

population (Fig. 2b), amounting to a mean p63high cell con-
tent of 50% (Fig. 2a). As acceptance criterion for batch re-
lease, a p63+ cell content of ≥20% was specified (Table 2),
which is far above the threshold content for clinical trans-
plant success of 3% p63+ cells [18]. Noteworthy, about 83%
of the isolated ABCB5+ cells that we characterize as “p63+”
based on positivity for ΔNp63 stain also positive for p63α.
Quality control data of GMP-compliantly manufac-
tured cell batches show that 100% of the tested
batches exceeded the specifications for p63+ and
PAX6+ cell content (Table 2, Fig. 3).
To ensure safe usage of the final drug product it was

crucial to control for potential cellular impurities, most
importantly residual melanocytes and Langerhans cells.
Melanocytes reside as sporadic cells within the limbus
[60], where their proximity to LSCs has suggested a
physiological role for stemness maintenance of LSCs
[61]. However, melanocytes can transform into melan-
oma cells, and two recently published single-case reports
of donor-transmitted ocular melanoma occurring after
keratolimbal allograft transplantation [62, 63] might
raise concern of whether our LSC product might confer
a melanoma risk to the patient. Furthermore, as ABCB5
was found expressed on melanoma cells [64], one might
suspect that, if there indeed were melanoma cells
present in the primary culture, sorting for ABCB5+ cells
could even enrich them during the courses of cell expan-
sion and isolation. Thus, in addition to multiple in-
process controls to detect signs of tumorigenic trans-
formation, including control of growth behavior and cell
morphology (see Fig. 1 and Table 1), we evaluated the
final drug product for expression of the melanocyte anti-
gen MART-1. Whereas positive-control SK-MEL cells
stained highly positive for MART-1, no MART-1 could
be detected on the cells of the final drug product.
As the limbal region also contains Langerhans cells

[17, 65, 66], which have been thought to be associated
with graft failure in corneal transplantation [66], we
needed to ensure that the final drug product does not
contain Langerhans cells either. One may find it surpris-
ing that we could not detect any positivity for CD1a

already in the corneal rims that served as starting tissue.
However, whereas Langerhans cells are consistently ob-
served in fresh limbal tissue [65, 66], rapid depletion of
Langerhans cells in corneal and limbal tissue during
storage in various storage and culture media has been
described, which can lead to total absence already within
1–3 weeks of storage [65–67]. As expected from our
Langerhans cell-free starting material, Langerhans cells
could also not be detected in the final drug product.
Before being released, each batch of ABCB5+ LSCs is

subjected to a series of tests to verify conformity with
prespecified criteria (Table 2). Except for one batch,
which failed the specification for vitality, all batches
tested so far fulfilled the specifications defined for batch
release (Table 2, Fig. 3), which demonstrates robustness
of the entire LSC expansion and isolation process and
ensures homogeneity and reliable quality and safety of
the released batches.
The next step on the way to clinical in-human usage

of in vitro expanded ABCB5+ LSCs was to preclinically
investigate the engraftment potential and in vivo safety
of the cell product. First, we studied the local biodistri-
bution and engraftment behavior of topically adminis-
tered ABCB5+ LSCs to mice having undergone
mechanical removal of the entire corneal and limbal epi-
thelia. In the application-site tissues, i.e., the treated
eye’s anterior segment (cornea and lens), quantifiable
levels of human cells were recorded in six out of ten
mice at 8 weeks following cell application (Table S5
(Additional file 1)), indicating that the transplanted cells
had indeed engrafted, even in the xenogeneic setting.
This is in line with earlier observations using freshly iso-
lated ABCB5+ cells from the human limbal tissue in a
murine LSCD model [23]. In this study, human-specific
β2-microglobulin transcripts were detectable in the cor-
neal tissue of all recipient mice even 13 months after
transplantation [23]. Because that study aimed at investi-
gating the cells’ cornea-regenerative potential, the mice
had, in contrast to our safety study, received concomi-
tant topical anti-angiogenic therapy using the anti-VEGF
antibody bevacizumab. Pre- and post-operative anti-
angiogenic therapy has been reported to promote graft
survival and to improve therapeutic outcomes in high-
risk corneal transplantation and limbal stem cell trans-
plantation [68–70]. Thus, the observation that in our
preclinical study engraftment occurred only in six out of
ten mice may be attributed to the lack of any concomi-
tant anti-angiogenic therapy rather than to changes of
the LSCs’ engraftment potential during in vitro cell
expansion.
In contrast to the anterior segment of the treated eye

as the target tissue, in virtually none of the non-target
tissue samples any quantifiable levels of human cells
were recorded (with the 3 out of 60 positive samples
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being regarded as artifacts, as commented on in the
“Results” section). This indicates that no local migration
of the transplanted LSCs beyond the anterior eye
segment had occurred.
To evaluate the LSCs’ behavior in the worst-case situ-

ation, i.e., in the unexpected event that some of the ap-
plied cells enter the densely vascularized subconjunctival
tissue, we also assessed the systemic biodistribution and
persistence potential of our drug product. This study re-
vealed that ABCB5+ LSCs that, under worst-case condi-
tions, reach the bloodstream, can occasionally migrate
beyond the application-site tissues into the lung and the
skin (Table S6 (Additional file 1)). Notably, in the lungs,
which are basically considered as first-pass organ for
intravenously administered stem cells [71], LSCs were
found in one animal after 1 week, but in no animal at
later time points. The persistence of LSCs in the skin/
subcutis of four animals for up to 20 weeks is difficult to
explain, as the skin/subcutis is far different from the
physiological LSC niche. However, in total only 8 of 540
(1.5%) tissue samples from cell-treated animals tested
positive for human cells above LLOQ. Thus, the study
indicates that ABCB5+ LSCs would only rarely reside in
subconjunctival tissue or migrate to the lung or skin tis-
sue. Notably, this study has addressed a worst-case sce-
nario of subconjunctival cell application, which is
neither intended nor expected to occur in the setting of
LSC transplantation for LSCD therapy.
Potential toxicity of LCSs was also assessed after both

topical administration in the corneal/limbal debridement
model and repeated subconjunctival injections. Both
studies did not reveal any clinical, pathological, or histo-
pathological signal of cell treatment-related toxicity. A
major concern associated with stem cell-based therapies
is that the cells may bear a tumorigenic risk, given that
stem cells present some characteristics that are also seen
in cancer cells, such as long lifespan, self-renewal, and
high proliferation rate [72]. In addition, ABCB5 recently
was found upregulated in ocular surface squamous neo-
plasia, although limited sample size and varying ABCB5
expression patterns did not allow proper evaluation of
the relationship between ABCB5 expression and tumor
formation [73]. Regardless, tumor risk assessment is an
essential part in biosafety evaluation, particularly in view
of the concomitant immunosuppressive medication that
LSC-transplanted LSCD patients will receive. In our pre-
clinical tumorigenicity study, we did not detect any
macro- or micropathological signs of tumor formation
in NSG mice after repeated subconjunctival injections of
ABCB5+ LSCs up to 20 weeks. Positive-control mice re-
ceived a 40-fold lower number of HeLa cells (1.25 × 104

HeLa cells as compared to 0.5 × 106 ABCB5+ LSCs).
Even with this considerably lower cell dose, 75% of the
HeLa-treated animals had developed tumors at the

injection site by weeks 7 to 10. In addition, in previously
published studies, subconjunctival injection of 0.4 × 106

conjunctival melanoma cells (i.e., a dose similar to that
of the ABCB5+ LSCs in the present study) to NSG mice
resulted in ocular tumor development in 100% of the an-
imals [74, 75]. Together, these findings confirm the ocu-
lar tumor susceptibility of the animal model used,
which, in turn, counts against a tumor risk of treatment
with ABCB5+ LSCs. Taken together, the cell dose of
0.5 × 106 LSCs/eye applied in the systemic repeated-dose
toxicity/tumorigenicity study was considered as the No
observed adverse event level (NOAEL).
Dose calculation for the first-in-human trial of our

product was based on the following considerations:
Given, according to our product specifications, ≥ 90%
viability and ≥ 90% ABCB5+ cell content (Table 2), the
lowest intended dose of 7.5 × 104 cells/eye will supply at
least 565 viable ABCB5+ LSCs/mm2 corneal surface (as-
suming a mean human corneal diameter of 11.7 mm
[76], which corresponds to 107.5 mm2 corneal surface
area). This cell dose is more than 15-fold the amount of
36 viable ABCB5+ LSCs/mm2 corneal surface, corre-
sponding to the cell dose of 255 viable ABCB5+ LSCs
per mouse eye that was previously shown capable of re-
storing the cornea upon grafting to LSC-deficient mice
[23] (assuming a mean mouse corneal diameter of 3 mm
[77], which corresponds to 7.1 mm2 corneal surface). On
the other end, the highest intended dose of 1.2 × 106

cells per eye (corresponding to 1.1 × 104 cells/mm2) is
6.4-fold lower than the NOAEL of 0.5 × 106 cells per
mouse eye, which corresponds to 7 × 104 cells/mm2.
Finally, for therapeutic efficacy, it will be crucial that

the cells’ viability and biological activity are not detri-
mentally impacted by the fibrin gel used as carrier for
cell transplantation onto the debrided cornea. Calcein
staining of ABCB5+ LSCs after culture for 72 h in fibrin
gel confirmed that the viability of the cells is preserved
in the fibrin carrier (Fig. 4b). Regarding the cells’ bio-
logical activity, it had to be ruled out that the fibrin gel
could create a hypoxic environment that, in turn, would
stimulate the LSCs to secrete proangiogenic factors such
as VEGF, as is known, e.g., for ABCB5+ mesenchymal
stem cells [31]. Such adaptive secretion of proangiogenic
factors would facilitate angiogenesis and thus jeopardize
therapeutic success. However, the fibrin gel did not seem
to induce hypoxic conditions, as VEGF secretion by
ABCB5+ LSCs was not stimulated after 24 h culture in
fibrin gel (Fig. 4c).

Conclusions
Taken together, we demonstrate herein that human
ABCB5+ LSCs, derived from cadaveric corneal tissue,
can be reliably expanded, prospectively enriched, and
manufactured as a GMP-conform ATMP that contains
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comparably high percentages of cells expressing tran-
scription factors critical for LSC stemness maintenance
(p63 [20]) and corneal epithelial differentiation (PAX6
[50, 51]). In addition, our preclinical study program has
revealed a favorable biodistribution and safety profile of
the final product in view of its intended clinical use.
Building upon these data in conjunction with the previ-
ously shown cornea-restoring capacity of human
ABCB5+ LSCs in animal models of LSCD [22, 28], we
provide an advanced allogeneic LSC-based treatment
strategy that shows promise for replenishment of the pa-
tient’s LSC pool, recreation of a functional barrier
against invading conjunctival cells and restoration of a
transparent, avascular cornea. Recently, the ATMP has
received Orphan Drug designation from the U.S. Food
and Drug Administration (FDA) [78] and the European
Medicines Agency (EMA) [79] and was included in the
FDA Fast Track program. At present, it is being tested
in an international, multicentric clinical trial.
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