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Abstract

Turbulent negatively buoyant jets occur when the buoyancy of a jet directly opposes

its momentum, and will decelerate until its mean momentum is reduced to zero.

Here the flow reverses direction and, for an axisymmetric flow originating from a

round inlet, returns annularly towards the source, mixing with the opposing fluid

and forming a fountain. The initial stage, before the return flow forms, is referred to

as the ‘negatively buoyant jet’ (NBJ) stage. Once the return flow has established,

it is referred to as the fully developed ‘fountain’ (F) stage. This study investigates

both the initial and final stages of this flow experimentally, using two-dimensional

particle image velocimetry (PIV) and planar laser induced fluorescence (PLIF). Data

is obtained at a range of axial locations for source Froude numbers, 10 ≤ Fro ≤ 30,

and Reynolds numbers, 5500 ≤ Re ≤ 5800.

Analysing the mean statistics of the NBJ stage reveals several important differ-

ences with neutral jets. Although the mean velocity and scalar profiles are found

to take similar Gaussian shapes at a wide range of axial locations, the widths of

these profiles do not grow at the same rate. This can be seen in the ratio of widths

of the scalar and velocity profiles, which is larger than in neutral jets and plumes

and increases with axial distance. The turbulence intensity and Reynolds stress do

not decrease at the same rate as the mean flow in NBJs, and a new turbulence

scale is defined that can collapse these profiles onto approximately a single curve.

The entrainment coefficient, α, is estimated for negatively buoyant jets, where it

is found to decrease with axial distance, or equivalently, increasingly negative local

Richardson number, Ri. Eventually, α < 0 for Ri . −0.2, indicating there is a net

radial outflow from the NBJ to the environment. Using a linear fit of the α data,

an integral model was solved for the NBJ with predictions in reasonable agreement

with the present data for z/D . 30.

Fully developed fountains are explored alongside NBJs, allowing the effect of the

return flow on the inner core to be investigated. The mean and turbulence profiles

in fountains are generally not self-similar along the flow. This is most evident in the

outer flow region of the mean velocity and scalar profiles, and across the full width of
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the turbulence profiles, such as the Reynolds stress and scalar fluxes. Entrainment

between the inner and outer flow of fountains is investigated using two alternative

approaches, both finding that radial flow is predominantly from the inner to the

outer flow for the majority of the fountains height. An alternative interpretation

of entrainment in NBJs and fountains is presented, which decomposes the radial

flow into inflow and outflow components. The inflow component can be related to

the inner flow velocity scale by an approximately constant entrainment coefficient,

similar to the classical description of entrainment in pure jets and plumes developed

by Morton et al. (1956). The outflow component can be interpreted as capturing the

effect of negative buoyancy on entrainment, in addition to complex interactions with

the outer flow in the fountain case. This term varies with local Richardson number

along the flow, and is present in both negatively buoyant jets and fountains.
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Chapter 1

Introduction

1.1 Background

In typical day-to-day conversation, the word ‘fountain’ is usually reserved for the

decorative water features found in parks or town squares, or to describe naturally

occurring phenomena such as geothermal geysers (as in figure 1.1), where water

travels upwards from a source below and then falls back down due to gravity. From

a fluid mechanics perspective, this can be thought of as a dense fluid (water) entering

a less dense ambient (air) in a direction opposing its buoyancy. In this case, the

density difference between the source and ambient fluid is very large (orders of

magnitude) and so the fluids do not mix. There are many other cases where the

density difference is much smaller and mixing between the fountain flow and the

ambient fluid is significant, such as when a jet of cold air enters a warm room from

below (or hotter air from above), which can be found in many building ventilation

systems. Other applications often discussed in literature include brine discharge in

desalination plants, stratification of water reservoirs, and natural processes such as

magma chambers and explosive volcanic jets (Pincince and List 1973; Larson and

Jönsson 1996; Roberts et al. 1997; Campbell and Turner 1989).

Consider a turbulent jet entering a homogeneous environment with buoyancy

opposed to its momentum, such as a dense fluid entering lighter ambient vertically

from below (or vice versa). This jet is considered ‘negatively buoyant’, and will con-

tinually decelerate upon entry until its mean momentum is reduced to zero, reaching

a stagnation point. Here the fluid reverses direction and, for an axisymmetric flow

originating from a round inlet, returns annularly towards the source, mixing with

the opposing fluid and forming a fountain. Some time after the initial rise of a neg-

atively buoyant jet, the flow reaches a quasi-steady state where it oscillates around

a height, zss, which is typically lower than the maximum height reached during the

1



1.1. BACKGROUND

Figure 1.1: Strokkur, a natural fountain-type geyser located in southwest Iceland
(photograph taken January 23, 2017).

jets initial rise, zi (Turner 1966; Burridge and Hunt 2012). These locations may be

formally defined as where the characteristic axial velocity is equal to zero, which

occurs immediately before the flow reverses direction. This quasi-steady state stage

of the flow will referred to as the ‘fully developed fountain’ (F) stage, with a struc-

ture consisting of an inner flow (IF) surrounded by an opposing annular outer flow

(OF), as illustrated in figures 1.2(c) and (d). Prior to the fully developed fountain

forming, during the initial rise to zi, there is no OF and the flow structure resembles

a turbulent jet or plume. This will be referred to as the ‘negatively buoyant jet’

(NBJ) stage of the flow, and is shown in figures 1.2(a) and (b).

For a round inlet, zi and zss are governed by the source Froude or Richardson

numbers,

Fro =
wo

(−robo)1/2
=

1

(−Rio)1/2
(1.1)

where wo and ro are the initial average axial velocity and source radius, and bo =

g∆ρo/ρe is the source buoyancy (often referred to as the ‘reduced gravity’). Here

g is the gravitational acceleration and ∆ρo is the difference between the density of

the source fluid, ρo, and the environment, ρe. Flows will be considered negatively

buoyant if ∆ρo < 0 and hence bo < 0, such as a dense fluid entering a lighter en-

vironment from below, where we would define ∆ρo = ρe − ρo < 0. For the reverse

case, where light fluid enters a dense ambient from above, the flow is still considered

2



CHAPTER 1. INTRODUCTION

Figure 1.2: Images and illustrations of a negatively buoyant jet and fully developed
fountain. Figures (a) and (b) show the initial negatively buoyant jet (NBJ) stage
before a return flow has formed, and (c) and (d) show a fountain in a quasi-steady
state with an inner flow (IF) surrounded by an opposing outer flow (OF) and ambient
fluid (AF). The images have been rotated 180◦, and were taken while testing the
experiment set-up with food dye added to the source fluid.

‘negatively buoyant’ since the buoyancy is opposing the initial momentum, but we

would instead define ∆ρo = ρo − ρe < 0. For fountains where the density differ-

ence is relatively small (|∆ρo/ρe| . 0.05), these two cases of upward and downward

fountains are opposite but equivalent, reaching the same zi and zss for the same Fro

(Turner 1966; Burridge and Hunt 2012; Cresswell and Szczepura 1993; Papanicolaou

et al. 2008). However, recent research has reported that for large density differences

(|∆ρo/ρe| & 0.2), the rise height scaling is different for upward and downward foun-

tains (Vaux et al. 2019). In the present investigation, the flow will be restricted to

the small, |∆ρo/ρe| . 0.05, regime, and measurements are obtained for downward

fountains.

The source Froude number is used to classify fountains into different categories,

ranging from ‘very weak’ to ‘highly forced’, where weaker fountains have a low

source momentum flux relative to the opposing buoyancy flux (thus a low Fro),

and vice versa for forced fountains. Figure 1.3 shows some representative images of

fountains from different classes reaching their initial rise height, where the different

structures can be seen. There are Froude number relations for different classes to

predict the steady state height, such as zss/ro = 2.46Fro for forced and highly forced

fountains (Fro & 2.8) (Turner 1966; Burridge and Hunt 2012). The ratio between

the initial and steady-state rise height, while constant for highly forced fountains

3
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Figure 1.3: Experimentally obtained images of fountains during their initial rise,
with superimposed lines indicating the initial and steady state heights, as well as
the height that a detaching vortex reaches if present. The images show fountains
of increasing Fro from (a) to (e). A classification by Burridge & Hunt (2012) has
grouped very weak fountains as Fr0 . 1 up to highly forced Fr & 5.5. Figure
reproduced from Hunt and Burridge (2015) with permission.

(zi/zss = 1.45), has been found to vary in the lower Fro classes. For weak fountains,

1.0 . Fro . 1.7, the initial rise height is actually lower than the steady state height,

zi . zss, and a different Fro relation is followed (Burridge and Hunt 2012). However,

these are not considered in the present investigation, which is primarily focused on

the high Fro regime.

1.2 Motivation

Despite the relative success of predicting the bulk properties of fountain flow, such as

the rise heights, there has been considerably less progress in describing their detailed

internal structure, or the entrainment between the different layers (e.g. IF/OF).

Many of the existing models are extensions of Morton’s (1959) plume theory de-

rived from the governing conservation equations, which assume self-similar flow and

come in the form of integral models (McDougall 1981; Bloomfield and Kerr 2000;

Hunt and Debugne 2016). Other studies have cast doubt on the validity of some of
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these assumptions, such as the direct numerical simulations (DNS) by Williamson

et al. (2011), who found that for Fro = 2.1, 4, and 7, the fountain flow continues

to develop over most of its height and is not self-similar. A similar result was also

obtained experimentally by Mizushina et al. (1982) and Cresswell and Szczepura

(1993). These integral models typically also depend on simple entrainment relations

based on the model by Morton et al. (1956), which was originally applied to a simple

jet or plume with no return flow. This related the fluid entrained across the edge

of a plume/jet to a characteristic vertical velocity at that height by a single (con-

stant) entrainment coefficient, α (Morton et al. 1956). Bloomfield and Kerr (2000)

developed a more sophisticated relation specifically for fountains, which included

three entrainment coefficients to describe entrainment between the IF, OF, and am-

bient fluid (AF). They developed four formulations of their model and compared

them to existing experimental data, and although they predicted initial rise heights

within the error margins observed, none of their models were clearly supported by

the results at the steady-state.

Aside from measurements of zi, there has also been very limited research into

the initial negatively buoyant jet stage, before the return flow develops. This case is

simpler than the fully developed fountain from a theoretical perspective, since there

is no OF and it may be possible to apply the same integral models originally applied

to jets and plumes except with the direction of buoyancy reversed. Solutions have

been obtained for simplified cases (Morton 1959; Abraham 1967). To the best of

the authors knowledge, there has yet been no experimental data published on the

internal velocity or buoyancy fields during this initial stage of the flow. Obtaining

such data would aid in better understanding the effect of negative buoyancy on these

‘jet-like’ flows, and particularly the consequences it has for entrainment.

The present research will investigate the validity of some of the underlining as-

sumptions prevalent in existing literature, which are critical to the accuracy of the

various integral models. By taking high resolution measurements using particle im-

age velocimetry (PIV) and planar laser induced fluorescence (PLIF), the internal

structure of fountains can by studied with more detail and accuracy than previous

attempts, and over a larger range of source Froude numbers than DNS can provide.

Obtaining a better understanding of the underlining physics of turbulent negatively

buoyant jets and fountains will also allow for better predictions of the larger scale

flow parameters, such as rise heights or total entrainment, which are important in

practical applications such as building ventilation and desalination plants. Further-

more, an improved description of turbulent entrainment in NBJs/fountains will be

useful in a range of other areas that involve shear flows, as well answering the more
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fundamental question of how entrainment is affected by negative buoyancy.

1.3 Thesis aims and structure

This investigation broadly aims to contribute to an improved understanding of the

internal physics of both the initial and quasi-steady stages of high Fro fountain flow.

A particular focus will be given to how negative buoyancy affects entrainment and

the development of the flow more generally, which will be discussed in the context

of an integral model framework. Several specific objectives, and the corresponding

sections of the thesis where they are pursued, are given below.

(i) Review previous literature on negatively buoyant jets and fountains, and the

application of existing integral models to these and other similar flows (chapter

2).

(ii) Design and construct an experimental set-up and procedure capable of obtain-

ing high resolution velocity and density measurements of negatively buoyant

jets and fountains (chapters 3-4).

(iii) Examine the effect of negative buoyancy on the internal velocity and scalar

fields of negatively buoyant jets, and how they differ to neutral jets (chapter

5).

(iv) Investigate the effect of negative buoyancy on turbulent entrainment in nega-

tively buoyant jets and fountains (chapters 5, 7).

(v) Determine the extent to which negatively buoyant jets and fountains can be

considered self-similar (chapters 5-7).

(vi) Investigate the effect of the return flow by identifying key differences between

the inner flow of fully developed fountains and the initial negatively buoyant

jet stage (chapters 6-7).
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Chapter 2

Literature review

2.1 Bulk flow

Turner (1966) used dimensional arguments to derive a linear Fro scaling for the

steady state rise height of a fountain,

zss
ro

= constant× Fro, (2.1)

and experimentally determined the value of the constant to be 2.46. This value was

later supported by Baines et al. (1990). Turner’s (1966) experiments also suggested

that the ratio between the initial and steady state rise heights of fountains was

constant,

Λ =
zi
zss
, (2.2)

with Λ = 1.43. However, both of these results have since been re-examined, with

Kaye and Hunt (2006) showing that (2.1) only holds for large Fro, with different,

non-linear, zi scaling relations for lower Fro fountains. Burridge and Hunt (2012)

additionally found that Λ is only constant for highly forced fountains, where Fro &

5.5 and Λ = 1.45. A summary of these classifications based on previous literature

is given in table 2.1 (Burridge and Hunt 2012; Turner 1966; Kaye and Hunt 2006).

From table 2.1, we see that forced and highly forced fountains follow the same

zss/ro scaling law, yet have a different Λ behaviour. This difference has been at-

tributed to the behaviour of a vortex that forms at the top of the NBJ during its

initial rise (Burridge and Hunt 2012). A series of images taken from the present ex-

perimental set-up are given in figure 2.1, showing the initial rise of a Fro ∼= 30 NBJ.

This is in the highly forced regime (Fro & 5.5), with the images showing a vortex

visibly forming and then detaching in (a)-(d). In forced fountains (2.8 . Fro . 5.5),

this vortex is unable to detach from the main jet, which has the effect of reducing its

7



2.2. LOCAL FLOW

Class Fro range Λ variation Scaling law (zss/ro)

Very weak 0.4− 1.0 1.1→ 1.0 0.81Fr
2/3
o

Weak 1.0− 1.7 1.0→ 0.5 0.86Fr2o
Intermediate 1.7− 2.8 1.4→ 1.0→ 1.3

Forced 2.8− 5.5 1.0→ 1.45 2.46Fro
Highly forced & 5.5 1.45

Table 2.1: Summary of fountain classifications, including rise height scaling and
behaviour of the generally non-constant Λ in different Fro ranges (Burridge and
Hunt 2012; Kaye and Hunt 2006; Turner 1966).

Figure 2.1: Photographs of the initial rise of an NBJ using the present experimental
set up, showing a vortex forming and then detaching from the top of the jet. Images
(a)-(d) were captured within the first 3 s of the flow exiting the pipe, and have been
rotated 180◦.

initial height zi, although does not noticeably influence the steady state height, zss.

This is the reason for the lower Λ in the forced regime in table 2.1, and serves as the

feature that distinguishes forced and highly forced fountains (Burridge and Hunt

2012). The present study focuses on the highly forced regime, with experiments

investigating Fro & 10 fountains and negatively buoyant jets.

2.2 Local flow

Studies relying on bulk measurements, such as zi and zss, are unable to provide de-

tailed information about the internal structure of negatively buoyant jets/fountains.

There have been several studies to have obtained local velocity and density mea-

surements of fully developed fountains, although there is limited data available. For

the negatively buoyant jet stage, there does not appear to be any internal veloc-
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ity/density data available.

Mizushina et al. (1982) used constant temperature and current anemometry to

obtain velocity and temperature measurements inside of high Fro fountains, finding

temperature profiles similar to a neutral jet, and that the inner velocity profile was

similar but wider. Mizushina et al. (1982) also found that the mean velocity and

temperature profiles, and the turbulence intensities, were not self-similar. That

is, that the profiles measured at different axial locations along the fountain did

not collapse onto a single curve when normalised by simple local quantities. The

contrasts to neutral jets, for example, which have velocity and scalar profiles that

have approximately Gaussian shapes once they are fully developed (Hussein et al.

1994; Papanicolaou and List 1988; Wang and Law 2002).

Cresswell and Szczepura (1993) investigated fully developed fountains with Fro ∼=
3.2 using laser Doppler anemometry (LDA) and thermocouples to obtain velocity

and temperature measurements. They reported high shear stresses at the IF/OF

boundary and in the cap region, and found that velocity-temperature correlations in

the OF were similar to those in pure plumes. They also found that the flow in gen-

eral could not be described by self-similar profiles. More recently, Williamson et al.

(2011) undertook direct numerical simulations (DNS) for Fro = 4 and 7 fountains,

also finding that the profiles were not generally self-similar.

2.3 Entrainment

Entrainment can be described as the process where fluid is transported from a non-

turbulent to turbulent region across a turbulent/non-turbulent interface (TNTI),

such as from a quiescence ambient into a turbulent jet (Mistry et al. 2016). The

term entrainment has also been used to describe fluid transport of between two

turbulent regions, such as between coaxial turbulent jets (Morton 1962), or across

the IF/OF boundary of a fountain (McDougall 1981; Bloomfield and Kerr 2000; Hunt

and Debugne 2016). In a mean description of the flow, this complicated turbulent

process can be characterised by the entrainment coefficient, α, and has been used

extensively in previous studies into jets and plumes (Morton 1959; Fox 1970; Wang

and Law 2002; Ezzamel et al. 2015). The simplest form of this relation was used in

the pioneering integral model by Morton et al. (1956),

ûe = αŵ (2.3)

where ûe is the radial velocity of entrained fluid and ŵ is a characteristic axial

velocity of the flow. Morton et al. (1956) originally applied this to self-similar pure
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plumes with a constant α at all axial locations. Alternative formulations, such as

by Fox (1970) based on the model by Priestley and Ball (1955), have also been

developed where α is no longer a constant. Here α may change along the length of

the jet/plume subject to local conditions through the local Froude or Richardson

numbers, Fr and Ri, which are defined in (2.11). More recent studies have extended

these further, omitting assumptions about the shape of the profiles and whether they

are self-similar (Kaminski et al. 2005; van Reeuwijk and Craske 2015). These models,

and their application to negatively buoyant jets are discussed in more detail in §2.4.

2.3.1 Jet-like flows

In general, the assumption of a constant α is suitable for pure jets (Ri = 0) and

pure plumes (Ri = constant) (Fox 1970; van Reeuwijk and Craske 2015). Despite

some scatter in the literature, a robust result is that entertainment is lower in

jets (0.065 . αj . 0.080) than plumes (0.10 . αp . 0.16) (Hussein et al. 1994;

Carazzo et al. 2006; Ezzamel et al. 2015; van Reeuwijk et al. 2016). For buoyant

jets or ‘forced plumes’ (positive initial momentum and buoyancy), a non-constant

α is more realistic, taking asymptotic values between αj and αp (Priestley and Ball

1955; Fox 1970; van Reeuwijk and Craske 2015; Wang and Law 2002; Ezzamel et al.

2015). Theoretical studies, such as by Abraham (1967) and a Lagrangian analysis by

Lee and Chu (2012), have predicted that there is a region of ‘negative entrainment’

(α < 0) in the upper region of a negatively buoyant jet without a return flow.

Other than simply comparing model predictions to bulk flow measurements such

as rise height, these entrainment relations have not been rigorously assessed against

experimental data for negatively buoyant jets. The attempts to estimate α in NBJs

by matching zi observations to model predictions have typically required signifi-

cantly reducing the value of α below that of a neutral jet (Carazzo et al. 2006;

Kaminski et al. 2005; Papanicolaou et al. 2008). The entrainment coefficient is then

estimated as the value of α that results in the best model predictions. Kaminski

et al. (2005) took a slightly different approach by calculating ‘bulk entrainment’

in collapsing ethanol and ethylene glycol (EEG) jets, also finding that a reduced

value was required (α = 0.057). The present investigation will obtain measurements

of the internal velocity and buoyancy fields of the flow, allowing the entrainment

coefficient to be measured more directly and without some of the assumptions that

underline the models, such as that the flow is self-similar. This will also allow local

predictions of the integral models to be assessed, rather than relying solely on bulk

values such as zi.
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2.3.2 Fountains

Several previous studies have sought to use entrainment coefficients to describe the

flow between the IF/OF and OF/AF of fully developed fountains. These models

are more complex than the NBJ case since they generally require a set of conser-

vation equations for both the inner and outer flows, with most previous attempts

assuming constant entrainment coefficients (McDougall 1981; Bloomfield and Kerr

2000; Hunt and Debugne 2016). Bloomfield and Kerr (2000) produced four different

models based on alternative formulations of the buoyancy force and description of

entrainment between the IF/OF. They found that all models underestimated the

steady state rise height, zss, reported in previous literature, differing by approxi-

mately 15%− 40% depending on the model choice. They also noted that although

their results were not significantly sensitive to the chosen entrainment coefficients

between the IF/OF, reducing entrainment between the OF/AF significantly reduced

zss predictions.

Hunt and Debugne (2016) developed a modified version of the model by Bloom-

field and Kerr (2000) for the main body of the fountain, but additionally allowed

for entrainment into the cap region where the fluid reverses direction. This model

slightly underpredicted the zss reported in the literature, although no attempt was

made to adjust the constant entrainment coefficients used to improve predictions.

This model assumed constant entrainment from the OF to IF, and from the AF

to OF. Although this simple characterisation of the internal dynamics between the

IF/OF layers did give a reasonable prediction of zss, there has been evidence that

the radial flow in fountains is actually primarily in the opposite direction, instead

moving from the IF to the OF. This includes a direct numerical simulation (DNS)

study by Williamson et al. (2011), who found that other than in a short region near

the source, fluid is primarily ejected from the inner to the outer flow for Fro = 7

fountains. As similar observation was also made in experiments by Cresswell and

Szczepura (1993), after an axial distance of 1.3ro for a Fro ∼= 3.2 fountain. Obtaining

additional detailed measurements of fully developed fountains at larger Fro would

be useful in better understanding their internal dynamics, and aid the development

of models that better represent the true underlying physics.

2.4 Integral models

Existing NBJ and fountain models have predominantly been developed by building

on earlier integral models applied to simpler flows such as pure jets and plumes.

Early work in this area was pioneered by Morton et al. (1956) and Priestley and
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Ball (1955) who derived a system of ordinary differential equations (ODEs) that will

be refereed to as the MTT and PB models, respectively. Both models can be derived

from equations for the conservation of axial momentum and buoyancy, with the MTT

model additionally using the conservation of volume, and the PB model instead

using the conservation of mean kinetic energy. Fox (1970) further developed the PB

model by invoking the conservation of volume, and showed how it is equivalent to

the MTT model under certain situations (e.g. a pure momentum jet). Both models

make use of the Boussinesq approximation, which assumes that local variations in

density are small compared to the reference (ambient) density (Morton et al. 1956;

Priestley and Ball 1955). That is, density differences are ignored other than when

they contribute to the fluids buoyancy. Analytical solutions to these models have

be obtained by assuming fully self-similar velocity and buoyancy profiles in the flow,

where the shape of the profiles are assumed to be Gaussian or ‘top-hat’ (constant

inside the plume/jet, zero outside it) (Morton et al. 1956; Morton 1959; Priestley

and Ball 1955).

More recent studies have developed these models further, by omitting assump-

tions about the shape or self-similarity of the profiles (Kaminski et al. 2005; van

Reeuwijk and Craske 2015). In the following sections, the equations will be pre-

sented starting in their most general form with minimal assumptions (van Reeuwijk

and Craske 2015), followed by a discussion of the key assumptions and simplifi-

cations needed to obtain the classical PB and MTT models (Morton et al. 1956;

Priestley and Ball 1955). One of the aims of the present investigation is to deter-

mine the extent to which these assumptions are valid for negatively buoyant jets,

and consider how this integral model approach can be applied to fully developed

fountains.

2.4.1 Governing equations

For a high Reo, axisymmetric flow in a homogeneous environment, and after invoking

the Boussinesq approximation and neglecting pressure contributions, the equations

for conservation of volume, momentum, buoyancy and kinetic energy may be written
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as (van Reeuwijk et al. 2016; Kaminski et al. 2005),

∂

∂r
(ru) +

∂

∂z
(rw) = 0, (2.4)

∂

∂r

(
ruw + ru′w′

)
+

∂

∂z

(
rw2 + rw′2

)
= rb, (2.5)

∂

∂r

(
rub+ ru′b′

)
+

∂

∂z

(
rwb+ rw′b′

)
= 0, (2.6)

∂

∂r

(
ruw2 + 2ru′w′w

)
+

∂

∂z

(
rw3 + 2rw′2w

)
= 2ru′w′

∂w

∂r
+ 2rw′2

∂w

∂z
+ 2rwb.

(2.7)

Here w and u are the axial and radial velocities, corresponding to the vertical and

radial coordinates z and r, respectively, and b = g∆ρ/ρe is the buoyancy. The

difference between the local and environment density is given by ∆ρ, where ∆ρ < 0

in the case of negative buoyancy. These are each decomposed into their mean and

fluctuating components, w = w+w′, u = u+u′ and b = b+b′. Here the overline, e.g.

w, denotes the ensemble average of the quantity obtained from multiple statistically

independent samples. The source Reynolds number is defined as,

Reo =
woD

νo
, (2.8)

where νo is the kinematic viscosity of the source fluid and D = 2ro is the inlet

diameter.

These equations can be integrated from r = 0 to infinity to obtain a set of ordi-

nary differential equations (ODEs) consistent with the MTT and PB models (Morton

et al. 1956; Priestley and Ball 1955; van Reeuwijk and Craske 2015; Kaminski et al.

2005). These can be expressed in terms of the fluxes of volume, momentum and

buoyancy, Q, M and F , and the integral buoyancy, B,

Q = 2

∫ r̃

0

wrdr, M = 2

∫ r̃

0

w2rdr, F = 2

∫ r̃

0

wbrdr, B = 2

∫ r̃

0

brdr,

(2.9a − d)

where r̃ = ∞, and which have been scaled to remove a factor of π, for simplicity.

At the source, these would be denoted Qo, Mo, Fo and Bo, where Fo > 0 and Fo < 0

correspond to positively and negatively buoyant flows, respectively. These integral

quantities can be used to define the following characteristic velocity, radius and

buoyancy for the jet,

wm =
M

Q
, rm =

Q

M1/2
, bm =

BM

Q2
=

F

θmQ
, (2.10a − c)
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where θm is defined in (2.16). These allow local Froude and Richardson numbers to

be defined, Fr and Ri, which depend on the local scales at any given z, and so may

change along the length of the jet,

Fr =
wm

(−rmbm)1/2
=

1

(−Ri)1/2
. (2.11)

After integrating (2.5)-(2.7) from zero to infinity with respect to r, the following

system of ODEs are obtained,

dQ

dz
= 2αM1/2, (2.12)

d

dz
(βgM) =

FQ

θmM
= B, (2.13)

d

dz

(
θg
θm
F

)
= 0, (2.14)

d

dz

(
γg
M2

Q

)
= δg

M5/2

Q2
+ 2F. (2.15)

where β, γ, δ and θ are the ‘profile coefficients’ defined in (2.16) (van Reeuwijk

and Craske 2015). Here subscripts m and f correspond to the mean and turbulent

components respectively, and g indicates the sum of them both,

βm =
M

w2
mr

2
m

= 1, βf =
2

w2
mr

2
m

∫ r̃

0

w′2rdr,

γm =
2

w3
mr

2
m

∫ r̃

0

w3rdr, γf =
4

w3
mr

2
m

∫ r̃

0

ww′2rdr,

δm =
4

w3
mrm

∫ r̃

0

w′u′
∂w

∂r
rdr, δf =

4

w3
mrm

∫ r̃

0

w′2
∂w

∂z
rdr

θm =
F

wmbmr2m
, θf =

2

wmbmr2m

∫ r̃

0

w′b′rdr.

βg = βm + βf , γg = γm + γf , δg = δm + δf , θg = θm + θf ,



(2.16)

where r̃ = ∞. By observing the definitions of these profile coefficients, and their

role in (2.13)-(2.15), we see that β, γ, δ and θ are the dimensionless momentum

flux, mean energy flux, turbulence production and buoyancy flux (van Reeuwijk

and Craske 2015).
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The entrainment assumption, which relates the radial velocity of entrained fluid

to a characteristic vertical velocity at that height by the entrainment coefficient, α,

is defined in (2.12) as (Morton et al. 1956; van Reeuwijk and Craske 2015),

(ru)r=r̃ = −αrmwm. (2.17)

where r̃ = ∞. The earlier definition of α given in (2.3) is valid for simplified

models, such as those that assume top-hat velocity/buoyancy profiles, while (2.17)

is the generalised case that is valid for arbitrary profiles. Unless specified otherwise,

the generalised definition in (2.17) will be used when referring to α.

By combining (2.12), (2.13) and (2.15), the following expression for the entrain-

ment coefficient may be derived (van Reeuwijk and Craske 2015),

α = − δg
2γg

+

(
1

βg
− θm
γg

)
Ri+

Q

2M1/2

d

dz

(
ln
γg
β2
g

)
. (2.18)

This makes no additional assumptions about the flow, and can be considered a con-

sistency requirement for the conservation of volume, momentum and mean kinetic

energy equations. It is valid for jets/plumes with arbitrary buoyancy, and by invok-

ing certain additional assumption that will be discussed in the following sections,

can be shown to describe entrainment in both the MTT and PB model frameworks

(Priestley and Ball 1955; Morton et al. 1956; van Reeuwijk and Craske 2015). Dis-

cussion of the individual terms and their interpretation is given in §5.5, where a

version of this equation is used to estimate entrainment in negatively buoyant jets.

Mean contributions

Both the MTT and PB models consider only the mean contributions to the flow,

neglecting second-order turbulence terms in the conservation equations. This is

equivalent to assuming that turbulence components of the profile coefficients, sub-

script f in (2.16), are negligible. This assumption leads to the following simplified

version of (2.12)-(2.15),

dQ

dz
= 2αM1/2, (2.19)

dM

dz
= B =

FQ

θmM
, (2.20)

dF

dz
= 0, (2.21)

d

dz

(
γm

M2

Q

)
= δm

M5/2

Q2
+ 2F. (2.22)
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and a simplified expression for α (van Reeuwijk and Craske 2015),

α = − δm
2γm

+

(
1− θm

γm

)
Ri+

Q

2M1/2

d

dz
(ln γm). (2.23)

This is valid for velocity/buoyancy profiles of arbitrary shapes that may vary with

z, provided the second order turbulence terms may be neglected.

Self-similarity

Another common assumption made in applying integral models is that the flow is

self-similar. This can be initially understood as assuming that the mean profiles, w

and b, have similar shapes along z. This can be expressed as,

w (r, z) = w̃(z)f (r, z) , (2.24)

b (r, z) = b̃(z)h (r, z) , (2.25)

where w̃ and b̃ are velocity and buoyancy scales, and f(r, z) and h(r, z) are shape

functions. If Gaussian profiles are assumed, as is common for neutral/positively

buoyant jets and plume analysis (Morton 1959; Hussein et al. 1994; Ezzamel et al.

2015), then we may set,

f(r, z) = exp (−r2/r2w), (2.26)

h(r, z) = exp (−r2/r2b ), (2.27)

(2.28)

where rw and rb are the 1/e widths of the velocity and buoyancy profiles, respectively.

These correspond to the radial locations where w/wc = 1/e and b/bc = 1/e, where

wc and bc are the centreline values of the velocity and buoyancy profiles. We would

then have, for Gaussian profiles, w̃ = wc = 2wm and b̃ = bc = 2bm/λ
2, where,

λ =
rb
rw
. (2.29)

It also follows from the definitions in (2.16) that θm = 2/(λ2 + 1) and γm = 4/3 in

this case. If ‘top-hat’ profiles were assumed instead, as was done in the original MTT

model, then θm = γm = 1. If λ remains constant with z, as is typically reported in

pure jets and plumes, for example (Fischer et al. 1979), then the mean profiles will

be regarded as being self-similar. This was the assumption made by Priestley and

Ball (1955) in their original model, as well as in an expanded version of the MTT
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model in Morton (1959) that assumed Gaussian profiles. Due to the current lack

of experimental data, it is an open question whether negatively buoyant jets can be

described by Gaussian profiles, and if they can, the value and behaviour of λ. The

present study will obtain measurements of the mean velocity and buoyancy profiles

in NBJs, allowing this to be investigated.

There is a second important sense in which a flow can be considered self-similar,

which is the development of other turbulence profiles, such as the Reynolds stress,

w′u′. If w′u′ also maintains a similar shape along z, and scales with the mean

velocity, we would have,

w′u′ (r, z) = w̃(z)2j (r, z) , (2.30)

where j(r, z) is a shape function. In this case, δm, the dimensionless turbulent

production, is constant with a value dependent on the shape function, j. For self-

similar velocity and buoyancy profiles, and a Reynolds stress that scales with the

mean flow, the α relation in (2.23) simplifies to,

α = − δm
2γm

+

(
1− θm

γm

)
Ri, (2.31)

where δm, γm and θm are constant.

The Priestley and Ball (1955) model can therefore be expressed as the system of

ODEs in (2.19)-(2.22), while using (2.31) to model α. The MTT model, which does

not invoke the conservation of mean kinetic energy equation required to derive (2.31),

instead assumes that α is constant. For pure neutral jets (Mo > 0, Fo = 0), Ri = 0

in (2.31) and the entrainment coefficient is constant. A constant α is also obtained

in the case of pure plumes (Mo = 0, Fo > 0), which have a constant Ri = Rip

everywhere (Fischer et al. 1979). In these two limiting cases, the PB and MTT

models are therefore equivalent. For buoyant jets, α follows the linear relationship

in (2.31), provided the profile coefficients can be assumed constant and turbulent

components ignored. Previous studies have supported this, such as van Reeuwijk

et al. (2016) who explicitly calculated δm, γm and θm for a buoyant jet from their

DNS simulations, finding they were reasonably constant for 0.25 . Ri/Rip . 0.75

(10 . z/D . 25). Wang and Law (2002) also estimated α in saline/freshwater

buoyant jets, with their results agreeing with a linear Ri relation. However, close

to the source before the flow is fully developed, the assumption of self-similar mean

profiles and constant profile coefficients are likely to no longer hold (van Reeuwijk

et al. 2016; Ezzamel et al. 2015; Carazzo et al. 2006). For negatively buoyant jets,

Ri < 0, and there is yet no available data on the value of δm and whether it is

constant in these flows. This has important consequences for the behaviour of α,
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and is a key subject of this investigation.

2.4.2 Morton’s (1959) analytical solution

By assuming self-similar Gaussian velocity/buoyancy profiles and a constant α, Mor-

ton (1959) derived an analytical solution to (2.19)-(2.21) for a negatively buoyant

jet originating from a point source (Fo < 0, Mo > 0). To interpret the solution, the

following new variables are first defined,

q = α−1/2θ−1/2m |Fo|1/2 |Mo|−5/4Q, (2.32)

m =
M

|Mo|
, (2.33)

ζ = 2α1/2θ−1/2m |Fo|1/2 |Mo|−3/4 z. (2.34)

New integral velocity, width and buoyancy scales can then be defined based on these

variables (Morton 1959),

ŵm =
m

q
, r̂m =

q

m1/2
, b̂m =

1

q
. (2.35a − c)

These allow new ‘scaled’ local Froude and Richardson numbers to be defined,

F̂ r =
ŵm(

r̂mb̂m

)1/2 =
1

R̂i
1/2
. (2.36)

The solution to (2.19)-(2.21) for a negatively buoyant jet originating from a point

source is plotted against ζ in figures 2.2(a) and (b) in terms of the integral scales

defined in (2.35) (Morton 1959). An additional term, Ĥ2 = −r̂m/(2ŵm)(dŵm/dζ),

is plotted in figure 2.2(c) and is discussed in more detail in §5.7. The velocity

scale, ŵm, decreases with ζ until it reaches its maximum height at ζi = 1.454 where

ŵm = 0 and F̂ r = 0. Here the width scale, r̂m, approaches infinity and the buoyancy

scale decreases to a finite value, b̂m = 0.791. Figure 2.2(b) reveals that 1/ŵm, 1/b̂m

and r̂m increase approximately linearly with ζ for ζ . 0.5 (F̂ r & 2), implying that

the velocity and buoyancy scales are nearly proportional to ζ−1 ∼ z−1, and radial

scale to ζ ∼ z, in the lower portion of the jet. Although ŵm, b̂m and r̂m all change

continuously along the negatively buoyant jet, the flow may still be characterised

as consisting of two separate regimes. A ‘forced regime’ where the scales may be

approximated as linear with ζ (for ζ . 0.5, F̂ r & 2), and a ‘buoyancy dominated’

regime where this approximation is no longer suitable. The F̂ r . 2 regime is
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Figure 2.2: The solution to the system of ordinary differential equations in (2.19)-
(2.21) for the case when Fo < 0 (i.e. a negatively buoyant jet, NBJ). The solution
assumes fully self-similar velocity and buoyancy profiles and a constant entrainment
coefficient, α, and is presented in terms of the integral buoyancy, velocity and width
scales defined in (2.35). Plots of b̂m, r̂m, ŵm, F̂ r and Ĥ2 = −r̂m/(2ŵm)(dŵm/dζ)
against ζ are shown in (a). The quantities 1/b̂m and 1/ŵm are additionally plotted
in (b), which, for relatively small ζ, are approximately proportional to ζ. The
quantities b̂m, 1/r̂m, ŵm and Ĥ2 are plotted against F̂ r in (c). For a neutral jet (J),
Ĥ2 = 0.5 everywhere, which is also plotted in (c) as a horizontal line.

characterised by the strong deceleration of the flow, which is captured by the non-

dimensional term Ĥ2. This is plotted in figure 2.2(c) against F̂ r for both a negatively

buoyant jet (NBJ) and neutral jet (J). For F̂ r & 2 in the NBJ, Ĥ2 is small and

similar to the neutral jet value of Ĥ2 = 0.5, corresponding to the ‘forced’ regime.

After this, for F̂ r . 2, Ĥ2 rapidly increases with decreasing F̂ r as the flow is strongly

decelerated, corresponding to the ‘buoyancy dominated’ regime.

In the analytical solution for high Reo self-similar neutral jets, which have

Fr = ∞, wm scales with z−1 exactly (Fischer et al. 1979), and so it may be ex-

pected that the velocity in self-similar, constant α, negatively buoyant jets scales in

approximately the same way for sufficiently high local Fr (i.e. in the forced regime).

Similarly, the scalar concentration and width scales in a neutral jet are also propor-

tional to z−1 and z respectively, just as is approximately true for b̂m and r̂m in the

forced regime. Figure 2.2(c) also shows how these scales change with F̂ r, with b̂m,

1/r̂m and ŵm all scaling approximately linearly for high F̂ r.

The present investigation will show that, even in the forced regime (ζ . 0.5, F̂ r &
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2), there are significant differences between the behaviour of negatively buoyant jets

and what is captured in this simplified model. These include turbulence intensities

and shear stress that scale differently to the mean flow, a non-constant entrainment

coefficient, and the spreading of the velocity and buoyancy profiles. These are all

discussed in chapter 5, which examines, in detail, the negatively buoyant jet stage

prior to a return flow forming.

2.5 Summary

The study of negatively buoyant jets and fountains is a natural extension of early

investigations into positively buoyant jets and plumes (Morton et al. 1956; Priestley

and Ball 1955), where something as simple as the direction of buoyancy has sub-

stantial effects on both the transient and steady state flow observed (Turner 1986;

Morton 1959). Several studies have sought to build on these models and apply them

to NBJs and fountains, with results showing that negative buoyancy can have a

significant effect on entrainment (Abraham 1967; Papanicolaou et al. 2008; Kamin-

ski et al. 2005). The development of these integral models have included efforts

to model fully developed fountains as an NBJ surrounded by a descending annu-

lar plume, and characterising entrainment between the IF, OF and AF with several

constant entrainment coefficients (McDougall 1981; Bloomfield and Kerr 2000; Hunt

and Debugne 2016). Although these models have had some success in predicting

bulk flow properties such as the steady state rise height, it is likely these simplified

models are not accurate representations of the underlying physics. For example, they

typically assume self similarity and constant entrainment coefficients, while other ex-

perimental and numeric studies have shed doubt on these assumptions (Williamson

et al. 2011; Cresswell and Szczepura 1993; Mizushina et al. 1982).

The application of integral model approaches to fountains, both for the initial

NBJ and fully developed fountain stage, has been hampered by a lack of data of

the inner flow structure. If these integral models are to be more successful, a better

understanding of the effect of negative buoyancy on turbulent jets (both with and

without a return flow) is a necessary and important step. In addition to assessing

these models and their assumptions, a key aim of this investigation is to contribute

to an improved understanding of how negative buoyancy affects entrainment and

the development of these flows more generally.

The present research will undertake simultaneous two-dimensional particle image

velocimetry (PIV) and planar laser induced fluorescence (PLIF) measurements of

NBJs and fountains to obtain instantaneous velocity and scalar concentration fields.
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Full details of the experimental method are discussed in chapter 3, followed by

a validation of the set-up on a neutral jet in chapter 4. An in-depth analysis of

negatively buoyant jets prior to the return flow forming is presented in chapter 5,

followed by the fully developed flow in chapter 6. Mean and turbulence statistics are

presented over a range of axial locations for NBJs and fountains, and the variation of

the entrainment coefficient, α, is investigated. Several important differences between

NBJs and neutral jets are discussed to highlight the effect of negative buoyancy, as

well as between NBJs and fountains to reveal the effect of the OF. These include

the extent to which the flows can be considered self-similar, and whether there is

a Fro dependence on certain quantities such as δm, both of which have important

consequences for theoretical modelling.
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Chapter 3

Experimental method

The following chapter details the experimental method designed and im-

plemented in the present investigation to obtain particle image velocime-

try (PIV) and planar laser induced fluorescence (PLIF) measurements.

The experimental procedure is outlined, including the development of a

laser power correction algorithm for the PLIF measurements. This algo-

rithm corrects for spatial variations in the shape of the laser profile, as

well as the overall power magnitude, for each instantaneous PLIF image

taken of the flow. A portion of the material appearing in this chapter

has been adapted from the published manuscript, Milton-McGurk et al.

(2020b).

3.1 Experimental rig

The flow was achieved by injecting a mixture of freshwater, ethanol and Rhodamine

6G vertically down into a 1m3 tank of salt-water through a round pipe. Since the

freshwater and ethanol mixture is lighter than the ambient saltwater, the injected

fluid descends into the tank until it reaches its maximum penetration depth, and then

returns towards the source, mixing with the opposing fluid and forming a fountain.

A graphical illustration of the experimental set up is given in figure 3.1, and a

schematic of the flow in the tank in figure 3.2. The flow was measured using planar

laser-induced fluorescence (PLIF) and particle image velocimetry (PIV), capturing

images using four cameras synchronised with a laser pulse using a MotionPro Timing

Hub. The specifics of these two measurement techniques will be discussed in §3.3

and §3.4.
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Figure 3.1: Graphical illustration of the present experimental set-up. The path of
the laser sheet is indicated by the green shade (optics not shown), which enters the
tank from the right and passes in front of the four pco.2000 cameras. The flow enters
the tank through the pipe inlet shown above the tank, which is suspended by the
dual axis traverse. During experiments, the walls of the tank and the frame holding
the laser/optics are covered in black sheets. This reduces the amount ambient light
in the tank, and provides an additional level of protection to lab occupants from the
laser.
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Figure 3.2: Schematic of a negatively buoyant jet prior to the return flow forming.
The region of interest is indicated by the green rectangle, and an example of a
processed experimental image with the velocity vectors and scalar field is shown.
The region of interest is captured by two pairs of PIV and PLIF cameras, with the
images stitched together to form a single image like shown.

3.1.1 Support frames

The core experimental apparatus available for the project included a 1 m3 tank, four

pco.2000 CCD cameras, a 145 mJ 532 nm Evergreen Nd:YAG laser, several optical

lenses, and an Ismatic MCP-Z gear pump. Two Aluminium frames were designed

and constructed using Maytech beams. One to hold the laser and optics, shown

in 3.1, and the other to hold the cameras pointing at the region of interest. Both

frames were designed so that the height of the platform holding the laser/cameras

could be manually adjusted so that the flow could be measured at different axial

distances.

3.1.2 Pipe set-up

To suspend the pipe above the rig, an additional beam was attached to the top of the

tank with two perpendicular adjustable Velmex sliders which allowed the pipe to be

finely adjusted in both the horizontal and vertical planes. Horizontally, so that the

pipe could be correctly aligned in the centre of the laser sheet, and vertically so that

the location of the flow inlet could be adjusted relative to the cameras, effectively

moving the region of interest up and down the flow. The pipe was attached to the

sliders using holders originally designed for optics, which steadily held the pipe in

place and allowed for it to be easily interchanged with pipes of different diameters.
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The present experiments used pipes with diameters from D = 5mm to 10mm with

entry lengths ≥ 75D, ensuring that the flow would be fully developed by the time

it exits the pipe. By changing the salinity of the ambient fluid, the diameter of the

pipe, or the flow rate of the gear pump, a range of Fro could be obtained at suitably

high Reo. The present study investigates fountains and NBJs with 10 . Fro . 30

and 4500 . Reo . 6000, at axial locations 18 . z/D . 39.

3.1.3 Laser optics

The Nd:YAG laser emits 532 nm light in the form of a circular, approximately

Gaussian, beam with a near-field diameter ≤ 6.35 mm. This beam must be re-

shaped into a thin rectangular sheet that will pass into the field of view of the

cameras and through the centre-plane of the flow. This is accomplished using a

cylindrical and spherical lens pair, separated by the correct distance so that the

beam expands to a width of approximately 60 mm (the approximate vertical field

of view of the cameras) and then remains at this width, converging to a minimum

thickness in the region of interest. In the present case, the required lenses were a 75

mm cylindrical lens and a 750 mm spherical lens (focal lengths). The beam exits the

laser, reflects of the mirror and passes through the cylindrical lens where it begins

expanding in the vertical direction. Once it expands to a width of approximately

60 mm, it passes through the spherical lens where it maintains its width and begins

to thin as it passes through the tank filled with ambient fluid. The thickness of the

laser sheet was measured to be less than 1 mm in the region of interest.

3.2 Experimental procedure

This section will detail the experimental procedure used to obtain raw images of the

flow for the PIV and PLIF measurements, which would later be processed to obtain

velocity and density fields through the algorithms discussed in §3.3 and §3.4.

3.2.1 Fluid preparation

Degassing

Initial testing of the flow set-up indicated that the presence of air bubbles in the

fluid could cause problems. Not only are bubbles buoyant and so can affect the flow

being measured, but if the laser sheet passes through one then high energy light

may reflect out towards the cameras, distorting results and potentially damaging

the sensors. An unexpected reflection of the laser sheet out of the tank is also a

25



3.2. EXPERIMENTAL PROCEDURE

safety issue, and so it is essential to minimise the probability of bubbles forming

in the flow. In preparing the source and ambient fluids, freshwater was taken from

the local water supply and passed through a ‘degassing’ system consisting of a heat

exchanger and hot water urn. The water, sourced from the mains supply, is passed

through the heat exchanger and then into the insulated hot water urn. Here the

water is heated to approximately 70◦C, which then flows out of the urn and back

through the heat exchanger (heating the incoming fluid), and then eventually out

of the degassing system and into a large storage tank. This process allowed most of

the air to escape the water, and was found to reduced the prevalence of bubbles in

the fluid. The water was then left to cool in the storage tank before being used in

any experiments.

Refractive index matching

The refractive index of a saline solution is affected by its salinity, and so if pure

freshwater was used as the source fluid, it would have a different refractive index

to the saltwater ambient. When the laser passes through the flow, it will refract

and change direction depending on the (varying) local density of the fluid. This will

result in the illuminated part of the flow no longer being the centre plane of the

NBJ/fountain, or in the focal plane of the cameras, leading to a measurement error

(Budwig 1994). To remedy this, ethanol is added to the freshwater solution, which

lowers the density of the water and increases its refractive index. Once the correct

amount of ethanol is added, the refractive indexes of the source and ambient fluid

are ‘matched’, thus negating the issue of refraction of the laser sheet. Based on fluid

property data for aqueous solutions (Haynes 2014), the salinity and ethanol content

of the ambient and source fluid required to obtain a desired density difference, while

simultaneously having the same refractive index, could be calculated. The required

amount of ethanol and salt was then added to freshwater to produce the source

and ambient fluids during preparation for a given experiment. A separate testing

apparatus, which involved shining a 532 nm laser beam through the two fluids, was

used to verify the refractive indexes were indeed the same.

Once matched, the density of the source and ambient fluids were measured using

a densitometer to an accuracy of 0.1 kg m−3. This then sets the source buoyancy

of the flow, and the desired Fro may be achieved by adjusting the gear pump flow

rate. At this stage, the required amount of Rhodamine 6G dye needed for the PLIF

measurements was also added to the source fluid. This was typically . 3 mL added

to & 60 L, and so had a negligible affect on the refractive index and density of the

source fluid. Additional details about the PLIF procedure are given in §3.4.
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3.2.2 Laser alignment and target images

Target images

In order to convert between the ‘pixel’ and ‘real world’ coordinates in a given image

of the flow, it was necessary to take a ‘target image’ prior to each experiment. This

was an image of a checker-board pattern, with squares of known dimensions and a

‘reference circle’, printed onto an object that was placed into the tank after it was

filled with the ambient fluid. Prior to an experiment, the target sheet was carefully

placed so that its face was in the plane of the laser sheet and the cameras adjusted

so that they are also focused on this plane. At this stage, the vertical location of the

pipe may be adjusted up and down using the sliders, effectively moving the region

of interest of the cameras relative to the pipe inlet. Images of the target sheet are

then taken from each camera, and the real world location of the reference circle

relative to the pipe inlet is recorded. An algorithm, written for a previous project

in MATLAB (Williamson et al. 2018; Bartos 2012), was used to take these images

and generate real world-coordinates based on the inputted location of the reference

circle and size of the squares on the checker-board pattern. This process allows lens

distortion effects, which would be the same in both images of the target sheet and

the flow, to be accounted for.

3.2.3 Data Acquisition

Camera and laser synchronisation

Images of the flow were captured using four pco.2000 CCD cameras synchronised

with pulses from the 532 nm Nd:YAG laser using a MotionPro timing tub. Ad-

ditional images used for a laser power correction algorithm, discussed further in

§3.4.2, were obtained from an IDS USB 3.0 uEye camera. The system was capable

of capturing pairs of images at a frequency of 7 Hz.

NBJ and fountain runs

Each experiment would be optimised to gather data from either the initial negatively

buoyant jet stage of the flow, or the fully developed fountain stage. For the NBJ

experiments, there is a much shorter time frame where it is possible to obtain data,

and so in a single ‘run’, images are captured at the maximum frequency of the system

(7 Hz) and over a shorter overall time (e.g. 15 s), after which the flow is stopped.

This would be repeated several times (e.g. 10 ‘runs’) in order to obtain a sufficient

number of images of the flow. Since a fully developed fountain is quasi-steady, these
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may be imaged for much longer time periods that are only limited by the memory

and data transfer speed of the cameras. These runs were typically imaged at a

lower frequency (e.g. 3 Hz) and for longer time period (e.g 100 s), allowing for more

images to be captured overall per run.

3.3 Particle image velocimetry (PIV)

Particle image velocimetry (PIV) is an optical measurement technique that measures

the instantaneous velocity of fluid in some flow. The general principle involves using

pairs of images taken at two close instances in time and detecting the location

of visible particles present in the flow. If the flow is moving then the particles

will be in slightly different locations in each image, and it is possible to calculate

their displacement using various algorithms (Keane and Adrian 1992; Hart 2000;

Adrian and Westerweel 2011). If the time between the two images is known, then

the velocity of the particles can be estimated, and provided the particles are small

enough to follow the fluid motion, then this is an estimate of the fluid velocity. In

PIV, groups of particles within a specified ‘interrogation area’ are detected, rather

than individual particles, and the velocities obtained correspond to the average

velocity of the particles in each interrogation area (Adrian and Westerweel 2011).

There are several different PIV methods available that are capable of obtaining

either two or three dimensional velocity vectors of a flow. Two-dimensional (planar)

PIV requires a single camera to capture images of a plane, typically illuminated by

a thin light or laser sheet, in some flow. Computing the displacement of particles

in each image then allows a two dimensional velocity vector field to be estimated,

corresponding to flow in the plane of the illuminated sheet (Keane and Adrian 1992;

Westerweel 1994). There are also three-dimensional methods, such as stereographic

PIV, which requires a second camera also focused on a thin illuminated sheet, and is

capable of obtaining sufficient data to reconstruct the 3D vectors within that plane

(Willert 1997; Soloff et al. 1997). By using four cameras and an illuminated volume

it is possible to reconstruct the full 3D vector field within that volume, which is

referred to as tomographic PIV (Elsinga et al. 2006). This clearly provides the

most complete data set for velocity measurements in a three-dimensional flow, but

requires a more complex experimental set-up and computationally expensive image

processing procedure (Adrian and Westerweel 2011).

Fountains and negatively buoyant jets produced from a round source are statis-

tically axisymmetric flows, and so two-dimensional PIV measurements of a plane

through the centreline are sufficient to estimate many of key the radial profiles.
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This includes the terms appearing in the Reynolds averaged conservation of mass,

momentum, buoyancy and kinetic energy equations in (2.4)-(2.7), such as w and

w′u′. The scalar and mass flux terms, such as b and u′b′, similarly require only

two-dimensional scalar measurements. The broad aim of the present study is to

investigate the development of NBJs and fountains, with a particular focus on en-

trainment and self-similarity. Measuring the aforementioned mean and turbulent

profiles, which may be obtained from planar measurements, allows this to be pur-

sued. The circumferential velocity components could be obtained from stereographic

or tomographic PIV measurements, but these do not appear in the most relevant

conservation equations due to the axisymmetry, and significant progress towards the

present aims can be made without them. Two-dimensional PIV is therefore deemed

sufficient for the purposes of this investigation. This is simpler to set-up experimen-

tally and is less computationally intensive than the 3D methods. Another advantage

is that the additional cameras required for stereographic and tomographic PIV can

instead be used to widen the field of view in a 2D PIV system. Planar PIV will be

therefore be the method pursued for obtaining velocity measurements in the present

experimental investigation.

3.3.1 PIV algorithm

In the present experimental set-up, the flow was illuminated using a double pulsed

laser, which would rapidly fire two pulses separated by a short interval, dt, at a rate

set by the laser frequency. Each pulse would be accompanied by one image from

the PIV cameras, so if the laser frequency was 7 Hz, then there would be 7 ‘double

pulses’ per second, and 14 images per second taken from each PIV camera. The time

period, dt, was set so that the typical displacement calculated in a given image pair

was of the order of 5 pixels (Adrian and Westerweel 2011). The value of dt would

depend on the source velocity and location of the region of interest, but was typically

in the range 0.5 . dt . 2 ms. For the present measurements, a cross-correlation

based algorithm implemented by the open source MATLAB package, PIVsuite, was

used to calculate the particle displacement (Vejražka et al. 2018). This implements a

multi-pass, multi-grid interrogation scheme, where the displacement calculated from

each ‘pass’ is used to refine the computation in subsequent passes, as well as reducing

the size of the interrogation window. This reduces the amount of spurious vectors

arising due to a loss of correlation between images, allowing for a smaller window

size to be used in the final pass and hence better spatially resolved measurements

to be obtained (Adrian and Westerweel 2011; Westerweel et al. 1997; Westerweel

1994). For the present measurements, a final interrogation area of 24 × 24 pixels
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(0.78mm×0.78mm) with a 75% overlap between adjacent windows was used.

There were many natural impurities in the water supply for the experiments,

which were detectable by the PIV cameras and appeared as approximately 3−8 pixel

particles in the images. These natural particles provided sufficient particle density in

the PIV images for the cross-correlation algorithm, and additional artificial particles

were not needed. This also reduced the possibility of the light scattered off seeded

particles distorting the PLIF measurements. A 532±2mm band-pass filter was used

on the PIV cameras to filter out ambient light and fluorescence from the PLIF signal,

discussed further in §3.4.1, but allowing scattered light from the particles through

to the CCD sensor. Although the PIV package used to process the present images

has been used in other studies (Williamson et al. 2018; Vejražka et al. 2018; Tan

et al. 2015), it was still useful to validate its application to the current experimental

set-up and chosen settings. This is discussed in chapter 4.

3.4 Planar laser induced fluorescence (PLIF)

Planar laser induced fluorescence is an optical measurement technique capable of

measuring the scalar concentration, or density, of a flow. This is done by adding a

fluorescent dye to the source fluid, which, when excited by a laser, fluoresces with

an intensity proportional to the dye concentration at that point. Images are taken

of the illuminated flow and, with appropriate calibration, the pixel intensity of the

fluoresced fluid can be used to determine the dye concentration at that point, which

can then be used to infer the density (Crimaldi 2008; Shan et al. 2004; Ferrier et al.

1993). As with PIV, three dimensional laser induced fluorescence methods have also

been developed that can measure the scalar concentration in a volume (Medford et al.

2011; Wu et al. 2015), but as previously mentioned, obtaining planar measurements

is sufficient for the present investigation given the axisymmetry of the flow. The full

calibration and image processing procedure for the present PLIF measurements is

discussed in the following sections.

3.4.1 Fluorescent dye

Rhodamine 6G was chosen as the fluorescent dye to act as a scalar tracer in the

PLIF measurements. This has a high absorption near the laser wavelength of 532

nm and peak emission at approximately 560 nm (Zehentbauer et al. 2014). Since

the concentration of Rhodamine 6G used in the present experiments was so low,

a diluted solution of 0.5 g/mL of Rhodamine 6G in water was first made. This

diluted solution could then be added to the source fluid using a syringe, rather
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than directly adding pure Rhodamine 6G. The diluted Rhodamine 6G solution was

made by carefully placing the required amount of Rhodamine 6G (in the form of a

fine powder) in a container, and measuring its weight using an digital scale to the

accuracy of ±0.001 g. The required amount of water, measured using a volumetric

flask accurate to ±0.4 mL is then added to produce the diluted solution.

The Rhodamine 6G concentrations used in the sourced mixture were in the

range 20 ppb . K0 . 160 ppb, with the higher concentrations corresponding to

experiments where the region of interest was further downstream from the inlet,

after the jet had undergone considerable mixing/diluting. The concentration in the

region of interest was typically K . 10 ppb, well within the linear excitation range

reported by Zehentbauer et al. (2014), and confirmed by our own measurements.

A B+W Orange MRC 040M filter was used on the PLIF cameras to cut off light

below approximately 550 nm, allowing the fluorescence from the dye, but not the

scattered light from the particles, through to the CCD sensor.

3.4.2 Laser power correction

Although the present Nd:YAG laser is capable of operating at high frequency and

power, the power output and profile shape of the beam can vary up to 5% between

individual pulses. To account for this variation, the ‘laser camera’ (IDS USB 3.0

uEye camera) was used to capture the fluorescence of a uniform water and Rho-

damine 6G mixture before it reaches the region of interest. The mixture sits inside

the ‘laser calibration box’, shown in figure 3.3, which is fitted with anti-reflective

coated optical glass and placed in the path of the laser sheet outside of the main

tank. The box was made from acrylic, painted black to minimise reflections, and

designed so that the anti-reflective glass could be removed and cleaned as required.

The captured image from the laser camera of the fluoresced fluid is then a mea-

surement of the laser power profile of that pulse. Images captured of the fluid in

the laser calibration box will be denoted Ip, while images of the region of inter-

est denoted I. The box contained approximately 1L of the water with a typical

Rhodamine concentration of 15 ppb. It was observed that the pixel intensities in

Ip would gradually decrease after several hundred images/laser pulses, which was

attributed to some percentage of the dye particles in the box photobleaching and

losing their fluorescence, thus reducing the overall signal. This effect was negligible

within the maximum number of images of a single run (. 400), but could be detected

after several runs (e.g. & 1200 images). To prevent this effect, and thus maintain

reliable power measurements, the box was re-filled with a fresh (unbleached) Rho-
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Figure 3.3: Exploded schematic diagram of the ‘laser calibration box’

damine 6G mixture after each run. With a measurement of the power profile of the

laser sheet for any individual pulse, the corresponding PLIF images in the region of

interest could be corrected so that differences in the profile (in both magnitude and

shape) between pulses were accounted for. After this correction, the PLIF images

were filtered using a wavelet based denoising algorithm designed for CCD cameras

(Weinkauff et al. 2015).

3.4.3 Image processing algorithm

The PLIF image processing procedure can be summarised by (3.1)-(3.3), where c

is a measurement of the scalar concentration field corresponding to a given image.

Equation (3.3) corresponds to the final processing method used, and (3.1) and (3.2)

are methods that were tested for validation purposes.

(i) Standard method.

c =
I − Ib
Îc

(3.1)

(ii) Power profile corrected.

c =
(I − Ib)/P

Ĩc
(3.2)

(iii) Power profile corrected and images denoised with wavelet filter.

c =
D{(I − Ib)/P}
D{Ĩc}

(3.3)
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Here I corresponds to the raw PLIF image of the region of interest taken during

an experiment, Ib is a background image capturing any ambient light present, and

Îc and Ĩc are reference images corresponding to the maximum possible Rhodamine

concentration in the tank. Images Ib, Îc and Ĩc, and the procedures for generating

them, are discussed further in §3.4.4-3.4.5. These images can be used to calculate

the scalar concentration, c, in the region of interest through (3.1) (Shan et al. 2004;

Crimaldi 2008), which assumes variations in the laser power profile are negligible

between pulses. Equation (3.2) omits this assumption by including the laser power

profile, P , which corresponds to the PLIF images I. The third method, using (3.3),

additionally includes applying the wavelet-based denoising filter (Weinkauff et al.

2015), denoted here by D{·}. All three methods rely on weak absorption (valid for

low dye concentrations), and assume that light attenuation along the laser path is

similar in I, Îc and Ĩc (Shan et al. 2004), which is discussed further in §3.4.5. It

additionally assumes that lens vignetting effects are the same in I, Î and Ib (Ferrier

et al. 1993).

In order to obtain the one-dimensional power profile, P , the image taken of the

laser calibration box fluid, Ip, needed to be mapped to a one-dimensional vector

with matching vertical world-coordinates to the main PLIF image, I. Any small

misalignment of the laser optics could cause the laser sheet to widen/contract or shift

vertically between the laser calibration box and the region of interest in the tank,

which could result in I and P being vertically misaligned. This effect is negligible

within the region of interest of I (width . 120mm), but may not be in the distance

between the region of interest and the laser calibration box (approximately 800mm).

To account for this, and to ensure P is correctly aligned with I, an additional set

of reference images were taken where a small vertical section of the laser sheet was

temporarily deliberately obstructed by a cable. The location of the intensity dip in

Ip and I was then matched so that the one-dimensional power profile extracted from

Ip could be interpolated to exactly match the world-coordinates of the laser sheet

appearing in I. This procedure allows the laser power profile, P , to be calculated

from (3.4),

P =M
{
Ip
}
, (3.4)

where Ip denotes the mean column in image Ip, and M{·} represents mapping the

world-coordinates to ensure P and I are correctly aligned.

Validation

This PLIF processing procedure was validated by taking 100 images of the tank

containing fluid of a known concentration (defining this as C = 1), and running it

33



3.4. PLANAR LASER INDUCED FLUORESCENCE (PLIF)

through the three processing methods given in (3.1)-(3.3) to compute the concen-

tration field. The difference between the calculated concentration and the actual

concentration is then the error. The results of this validation are presented in figure

3.4, which shows the mean spectra of the error in a single column of the images.

This was computed by taking the Fourier transform of the error in this column in

every image, and then calculating the mean. The ◦ and M markers in figure 3.4 show

that the error at low to medium frequencies is reduced when the power correction

is applied (method (ii) versus (i)), but that there is little effect at high frequencies.

This corresponds to reducing the error due to variations in both the mean power

and the profile shape between pulses, without having a significant effect on the high

frequency noise. Conversely, when the denoising filter is applied, it does not signifi-

cantly affect the lower frequencies but reduces the error in the high frequency noise.

Method (iii), applying both the power profile correction and denoising filter, was

therefore used in calculating the concentration field from the PLIF measurements.

10
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Figure 3.4: The spectra of the error in scalar concentration measurements produced
from the three different PLIF processing methods described in (3.1)-(3.3). The ◦
markers correspond to the ‘standard’ method (i) without any laser profile correction
or denoising, the M to when only the profile correction is applied (ii), and the × for
when both the profile correction and denoiser is applied (iii).
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3.4.4 Background image

To account for the camera’s black level and any ambient background light present

in the experiments, a background image, Ib, without any flow present was taken

so that it could be subtracted from the experimental images, I. However, due to

the experimental procedure used in the present study, two background images were

taken, Ib,0 and Ib,end (one before the experiment and one at the end). This is because

in order to capture a sufficient number of images to obtain statistical convergence,

each experiment consisted of multiple ‘runs’ that would linearly increase the back-

ground signal. Each run involved operating the pump for a fixed length of time

(typically between 15 to 130 s) using the pump’s timing mode. This would add a

known volume of source fluid to the tank each run, slightly changing the ambient

fluid’s density and Rhodamine 6G concentration. Because of the short experimental

time and large tank volume relative to source fluid, after stirring around the tank

the ambient fluid density would change by . 0.008% and Rhodamine concentra-

tion by . 0.4 ppb each run. The change in density has a negligible effect on the

source Froude and Reynolds numbers, and so is assumed to have a negligible effect

on the flow dynamics. However, the increasing concentration of Rhodamine 6G dye

in the ambient can be detected as a linearly increasing background signal in the

PLIF images. This effect is accounted for by linearly interpolating between Ib,0 and

Ib,end to create an image, Ib, for each run in the experiment. This procedure was

validated during an experiment in which background images were taken prior to

each run so that the growing pixel intensity could be recorded and confirmed to be

linear. Figure 3.5 shows the value of both a single pixel and the mean of all the

pixels in these background images with each run, with a second axis also indicating

the Rhodamine 6G concentration in the tank at the time. The trend is linear, and

thus it was considered sufficient to take background images only at the start and

end of the experiment, Ib,0 and Ib,end, and interpolate between them to obtain Ib for

each run.

3.4.5 Calibration reference image

The PLIF algorithm described by (3.1)-(3.3) requires the reference images, Îc and

Ĩc, which are obtained by taking 100 images of the tank filled with fluid with a

constant Rhodamine 6G concentration, typically Kc
∼= 5 ppb, and applying (3.5)

and (3.6),

Îc = 〈Ic − Ib,0〉
K0

Kc

, (3.5)
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Figure 3.5: The intensity value (count) of a single pixel, and mean of all the pixels,
in several background images taken prior to each run during an experiment. A small,
fixed, amount of Rhodamine 6G is added to the ambient during each run, and so
the background signal grows linearly.

Ĩc = 〈(Ic − Ib,0)/Pc〉
K0

Kc

. (3.6)

Here Ic is a single image of the tank containing fluid with uniform Rhodamine

concentration Kc, the corresponding laser profile is Pc, and the angle brackets denote

averaging over all 100 images. The Rhodamine 6G concentration of the source

mixture, typically between 40 and 160 ppb, is denoted by K0. Images Îc and Ĩc are

then reference images that correspond to a maximum scalar concentration of c = 1,

where Ĩc employs the laser profile correction on each image in the ensemble and Îc

does not.

During experiments, the PLIF cameras are focused near the centre of the 1 m3

tank where the flow is, meaning the laser sheet travels through approximately 500

mm of ambient fluid before it enters the region of interest. There will be some light

attenuation of the laser sheet along this path, so there will be less laser light in the

region of interest than in the laser calibration box. There will also be slightly less

laser light available in the left side of the images than than the right side as the

sheet attenuates light within the region of interest. This light attenuation in the

laser path is accounted for in the reference images, Îc and Ĩc, as they will be subject
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to a similar attenuation effect as the PLIF images, I. The attenuation will not

be exactly the same since in Îc and Ĩc the laser sheet travels through the ambient

with a uniform Rhodamine concentration of Kc
∼= 5 ppb, while during experiments

the Rhodamine concentration will not be uniform (it will be highest along the jet

centreline and low further from the jet). The difference in attenuation in these two

cases is assumed to be negligible, and so when the experimental images are divided

by Ĩc or Îc in (3.1)-(3.3), the intensity differences as a result of light attenuation

approximately cancel out (Crimaldi 2008; Shan et al. 2004).

Figure 3.6 shows the pixel count of a single horizontal row in two images, nor-

malised by the mean pixel count in that row and a reference image. The images

correspond to the mean of 100 images taken while the laser was firing into the tank

full of freshwater, with and without Rhodamine 6G added. Since they have been

divided by a reference image, where the tank contained an intermediate level of

Rhodamine (approximately 2 ppb), the effect of lens vignetting is accounted for

(Ferrier et al. 1993). If the light attenuation in the tank was strongly affected by

the Rhodamine concentration, then the overall shape of these two lines would be no-

tably different. For example, if the presence of Rhodamine increased the attenuation

then this would become increasingly prevalent from the right to left of the region

of interest as the laser passed through more Rhodamine solution. In this case, we

would expect the 5 ppb line in figure 3.6 to be significantly lower than the 0 ppb line

on the left hand side of the image. This is not observed, and instead both curves

are approximately horizontal. We therefore do not see a significant difference in

attenuation in this low Rhodamine concentration range (0 . K . 5 ppb), which is

similar to the range in the region of interest during the experiments. This supports

the assumption that attenuation in the reference images, Ĩc and Îc, will be similar to

the experimental images, I, and so the effect will approximately ‘cancel out’ when

computing c using (3.1)-(3.3).

3.5 Further data processing

The present experiments involved obtaining images from two ‘pairs’ of PIV and

PLIF cameras. Each pair consists of one PIV and one PLIF camera with overlapping

regions of interest, so that velocity and scalar concentration fields corresponding to

the same region in space are obtained. The two camera pairs are adjacent to each

other (with a small overlap) so that a wider field of view of the flow is obtained. Each

pair of PIV/PLIF images are interpolated onto a common grid and then ‘stitched’

together by matching the world-coordinates of the small overlapping region. An
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Figure 3.6: The pixel counts along a single horizontal row in two images that corre-
spond to the tank filled with freshwater with and without Rhodamine 6G solution
added. The images have been normalised by the mean pixel value in that row and
a reference image of the tank containing approximately 2 ppb of Rhodamine 6G (to
account for lens vignetting).

example of a pair of PLIF fields before interpolation/stitching, and after, is shown

in figure 3.7. A stitched image overlaid with velocity vectors was also shown in

figure 3.2.

3.6 Summary

An experimental set-up has been designed and constructed that allows for simulta-

neous PIV and PLIF measurement to be obtained for vertically aligned negatively

buoyant jets and fountains entering a tank from above. The same rig can also be

used to take measurements of neutral jets by simply using the same fluid as the

source and ambient, and ommiting the ‘refractive index matching’ stage discussed

in §3.2.1.

Figure 3.8 shows a flow chart of the experimental procedure. The ‘Fluid prepa-

ration’ and ‘Laser alignment and target images’ were discussed in §3.2.1-3.2.2. The

‘Pre-experimental PLIF calibration images’ stage corresponds to capturing images

for Ib,0, while ‘Post-experimental PLIF calibration images’ corresponds to capturing

images for Ib,end and Ic. These are needed to obtain a measurement of scalar con-

centration from the raw PLIF images, as was discussed in §3.4.3-3.4.5. The ‘Data
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Figure 3.7: Processed scalar concentration fields images taken from the left PLIF
camera (a), the right PLIF camera, (b), and after interpolating onto a common grid
and stitched together, (c).

acquisition (experimental runs)’ stage is when the flow is actually produced and

images captured.

The last stage in the figure 3.8 flow chart is the ‘PIV+PLIF image processing’,

which is broken down into more specific stages in figure 3.9. This figure indicates the

order required for processing the raw PIV and PLIF images to obtain velocity and

scalar concentration measurements. As indicated in the chart, the first stage is to

process the target images in order to obtain real world-coordinates for the PIV and

PLIF images. Using the world-coordinate data the PLIF calibration images, such as

Îc, may be calculated, as discussed in §3.4.5. With the necessary calibration images

obtained, all PIV and PLIF images may be processed using the algorithms discussed

in §3.3-3.4 to obtain instantaneous velocity and concentration fields corresponding

to each image. Once this is complete the fields are interpolated onto a common grid

and then stitched together using the world-coordinate data, and the processing is

complete.
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Figure 3.8: Flow chart summarising the steps required in the experimental procedure
to obtain velocity and scalar concentration measurements.

Figure 3.9: Flow chart detailing the order of steps in the image processing procedure
to obtain velocity and scalar fields from raw PIV and PLIF images.
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Validation

The following chapter will detail the validation undertaken for the exper-

imental method discussed in chapter 3. This is done by using the present

experimental set-up to obtain measurements of a neutrally buoyant tur-

bulent jet originating from a round source, a well understood flow with

an abundance of data available from previous studies. Several key el-

ements of the image processing procedure are examined, including the

PIV interrogation and the world-coordinate grid interpolation. The neu-

tral jet results obtained from both the PIV and PLIF measurements are

found to be consistent with existing literature. A portion of the ma-

terial appearing in this chapter has been adapted from the published

manuscript, Milton-McGurk et al. (2020b).

4.1 PIV algorithm

4.1.1 Interrogation area

A key parameter in the PIV algorithm is the size of the interrogation area (IA), the

square window measured in pixels (px2) that the cross-correlation algorithm uses to

detect the displacement of particles in an image pair. The smaller the IA, the higher

the spatial resolution of the velocity field obtained from each image pair. However,

if the area is too small then there may be insufficient particles in a given window

for the cross-correlation algorithm to detect, resulting in spurious, invalid vectors

that must be discarded and/or replaced (e.g. by interpolation) (Westerweel 1994;

Adrian and Westerweel 2011). Spurious vectors may also arise due to a out-of-plane

motion, where a particle moves outside of the plane of the laser sheet after the first

image, and so cannot be detected in the second. To determine the most appropriate
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IA to use with the present experimental set-up, the same set of PIV images taken

of a neutral jet was processed using different sized IAs. Additionally, the number of

passes in the multi-pass interrogation, and the percentage overlap between adjacent

windows, was also adjusted.

Table 4.1 summarises the results from these PIV processing tests, listing the

settings used and the overall percentage of valid vectors detected. The highest

percentage of valid vectors corresponds to the largest IA, 96% with a size of 32× 32

px2, while the lowest detection rate had the smallest IA, 80% with an 16 × 16 px2

area. It was also found that increasing the percentage overlap between adjacent

windows from 50% to 75% increased the percentage of valid vectors, while using

2 passes rather than 4 did not have a significant effect. It was found that with 2

passes, a 75% overlap and a final IA size of 24 × 24 px2, an acceptable detection

rate of 94% valid vectors is obtained (Keane and Adrian 1992; Westerweel 1994;

Adrian and Westerweel 2011). This is only slightly lower than the 32 × 32 px2 IA

but results in higher spatially resolved measurements, and was therefore used to

process the PIV images in the present experiments.

Settings # Final IA (px2) % overlap No. passes % valid vectors FPL

1 32× 32 50 4 96 0.27
2 24× 24 50 4 91 0.27
3 24× 24 50 2 91 0.28
4 24× 24 75 2 94 0.28
5 16× 16 50 4 80 0.26

Table 4.1: The summarised results of a PIV processing test, where the same PIV
images (taken of a neutral jet) were processed using different settings.

4.1.2 Pixel locking

In addition to obtaining a sufficient number of valid vectors from the PIV images,

it is also important to minimise the possibility of other bias affecting the measure-

ments. One such issue is referred to as ‘pixel locking’, which occurs if the size of

the particles are too small relative to the pixel size in a given image (e.g. 1 − 2

pixels in diameter). This results in computed displacements being biased towards

integer values (Overmars et al. 2010; Adrian and Westerweel 2011). Overmars et al.

(2010) proposed a method of quantifying the extent of pixel locking in given a set

of displacement vectors. This involves truncating the integer part of the displace-

ments so that only the fractional part remains (i.e. a value between −0.5 and +0.5

pixels), and considering a histogram of the result. If there is no pixel locking, then

the histogram should be relatively flat as the fractional displacements should be
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Figure 4.1: Histogram of the fractional displacements obtained from PIV images of
a neutral jet. The images were processed using settings no. 4 in table 4.1.

randomly distributed. The more ‘peaked’ the histogram is at 0 px, the more biased

the displacements are to integer values and the more significant the effect of pixel

locking. This may be quantified by a ‘pixel locking factor’, FPL,

FPL = 1− Nmin

Nmax

, (4.1)

where Nmin and Nmax are the minimum and maximum number of counts in the

histogram. If the histogram was approximately flat then Nmin
∼= Nmax and FPL

∼= 0,

indicating no pixel locking (Overmars et al. 2010).

A histogram of the fractional displacements obtained from the present data (pro-

cessed using settings #4 in table 4.1) is given in figure 4.1. This has a pixel locking

factor of FPL = 0.28, which lies within the acceptable ‘mild’ range proposed by

Overmars et al. (2010) of 0.2 < FPL < 0.4. They consider 0.4 < FPL < 0.6 and

FPL > 0.6 as ‘strong’ and ‘severe’ pixel locking. The pixel locking factor was also

calculated for displacements obtained using the other settings in table 4.1, and did

not show significant variation between them.
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4.2 Grid interpolation

As discussed in §3.5, physical limitation mean that the PIV and PLIF cameras do

not have identical fields of view. Therefore, if combined velocity and scalar statistics

are to be obtained, it is necessary to interpolate the images from each camera onto

a common grid.

To validate that the interpolation scheme did not produce any unexpected effects

or biases in the data, mean statistics for a neutral jet were calculated both before

and after the interpolation. These are shown in figures 4.2(a)-(d), where profiles for

w,
√
w′2, c and

√
c′2 are given at an axial location of z/D ∼= 20. All profiles are very

similar for both the original and interpolated data, implying that the interpolation is

not having any unexpected effects on the data. The w and
√
w′2 profiles calculated

from the interpolated data are slightly less noisy than the originals, although their

overall shapes and magnitudes are very similar. This is because the spurious vectors

were discarded when calculating the mean statistics from the original velocity data,

but were replaced and included in the calculation for the interpolated case. Since

the percentage of valid vectors in a given image is sufficiently high, as discussed

in §4.1, the interpolated vectors can be considered reasonable estimates of the true

vectors at those locations (Adrian and Westerweel 2011). For this reason, and given

that the difference between the original and interpolated profiles is still very subtle,

the present interpolation scheme is considered an appropriate method for replacing

spurious vectors and mapping the velocity and scalar fields onto a common grid.

4.3 Uncertainty

Errors in PIV measurements can be broadly separated into two categories, ‘bias’

and ‘random’ errors (Wilson and Smith 2013a,b; Adrian and Westerweel 2011).

Bias errors can arise due to pixel locking, for example, and dominates the error

when the particle size is small (. 1 pixel) (Adrian and Westerweel 2011). As

was discussed in the §4.1.2, pixel locking is sufficiently low in the present study

(particle size & 3 pixels) and so the bias error is assumed to be negligible. Random

error can arise in the sub-pixel interpolation step of the PIV algorithm, which in

the present case involves using a three-point Gaussian fit (Adrian and Westerweel

2011). Several studies have investigated this random error in PIV measurements,

such as the theoretic analysis by Westerweel (1993), who showed it depends on

the second and fourth order moments of the intensity probability density function.

Another study by Wilson and Smith (2013b) used Monte-Carlo simulations and a

Taylor series method to estimate time-varying bias and random errors. Typically,
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Figure 4.2: Mean and turbulence profiles for a neutral jet, showing both the original
and interpolated data. The mean velocity is shown in (a), axial velocity fluctuations
in (b), mean scalar concentration in (c), and scalar fluctuations in (d).

the random error in a given PIV displacement measurement is r̂e ∼= 0.1− 0.2 pixels

(Adrian and Westerweel 2011; Westerweel 1993).

In addition to the error from the PIV measurement itself, there is also a precision

uncertainty when an average is taken from a finite number of samples (i.e. images).

The uncertainty in the mean axial velocity, w, as obtained from PIV measurements,

is given by (Wilson and Smith 2013a,b),

Uw =

√
〈bwi
〉2 + p2w. (4.2)

Here 〈bwi
〉 is the average bias error and pw is the precision uncertainty,

pw = ±k sw√
N
, (4.3)

where sw is the standard deviation from the number of samples, N , and k is a

constant that determines the confidence interval. For a 95% confidence interval as-

suming a normally distributed error, k = 1.96 (Wilson and Smith 2013a,b; Coleman
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and Steele 2018). Based on data from the present experiments, the precision uncer-

tainty in estimated as pw ∼= 1.9%. By assuming a negligible bias error the overall

uncertainty in the mean velocity measurement is then Uw
∼= ±1.9%.

Wilson and Smith (2013b) derived an equation for the uncertainty of the fluctu-

ating quantities, such as the turbulence axial velocity fluctuations, w′2. For the case

of negligible bias error and normally distributed random error, this can be expressed

as,

Uw′2 =
√
r̂2e + p2

w′2 , (4.4)

where pw′2 is the precision uncertain of w′2 and is given by,

pw′2 = k
√

2
s2w√
N
. (4.5)

From the present experimental data, the uncertainty in the fluctuating quantity,

w′2, is estimated from (4.4) as Uw′2
∼= ±6.8%.

4.4 Neutral jet statistics

With appropriate processing procedures for the PIV and PLIF, the mean flow statis-

tics obtained from neutral jet measurements can be compared to the existing liter-

ature. This section will consider mean and turbulence profiles of the velocity and

scalar concentration, as well how the mean centreline values change with axial loca-

tion. The mean statistics were calculated from an ensemble average of images taken

from multiple experimental runs, and the profiles shown have been spatially aver-

aged over a vertical distance of half a diameter. Approximately 900 images were

taken to obtain the following statistics for the neutral jet, which was considered

sufficient for the purposes of comparing with existing literature. When obtaining

data for negatively buoyant jets and fountains, the main focus of this investigation,

a larger number of images where taken (up to 2400).

4.4.1 Mean profiles

Figure 4.3(a) shows the time-averaged axial velocity profile of a turbulent neutral

jet, w, normalised by the centreline velocity, wc, and half-width, r1/2,w. Here r1/2,w is

defined as the radial location where w/wc = 0.5. The z/D = 19 profile was obtained

from a jet with Reo ∼= 5900 using a D = 10 mm pipe, while the z/D = 75 case

had Reo ∼= 10000 from a D = 5 mm pipe. The profiles at both locations take the

expected Gaussian shape (Fischer et al. 1979; Hussein et al. 1994), and agree well
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with the data from experimental studies by Wang and Law (2002) and Darisse et al.

(2015). Similarly to the present experiments, Wang and Law (2002) used PIV+PLIF

measurements with freshwater to produce the flow, obtaining jets with Reo = 6000

from a D = 9.5 mm inlet, and Reo = 12700 from a D = 4.5 mm inlet. Darisse

et al. (2015) used a different approach, measuring air jets with Reo = 1.4× 105

using laser Doppler velocimetry (LDV), as well as cold-wire thermometry and a

thermistor probe.
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Figure 4.3: Mean axial velocity profile, (a), and scalar concentration profile, (b),
normalised by their centreline values and respective half-widths for a turbulent neu-
tral jet obtained from the current experimental set-up. Present measurements are
shown alongside shown alongside data obtained from several previous studies (Wang
and Law 2002; Darisse et al. 2015; Chevray and Tutu 1978).

The scalar concentration profiles of the present flow are given in figure 4.3(b),

normalised by the centreline value cc, as well as the ‘concentration half-width’, r1/2,c,

defined as the radially location where c/cc = 0.5. These are plotted with the data

from Wang and Law (2002), as well as hot-wire based air jet measurements from

Chevray and Tutu (1978) (Reo ∼= 3.7× 105). Just as with the velocity measure-

ments, the scalar profiles take Gaussian shapes and are in good agreement with the
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existing literature for both z/D locations shown.

4.4.2 Turbulence profiles

Normalised profiles for the axial and radial turbulence intensities, w′2/w2
c and u′2/w2

c ,

and Reynolds stress, w′u′/w2
c , are shown in figure 4.4 for a neutral jet. The z/D = 75

profiles from the present experiments are in good agreement with both Darisse et al.

(2015) and Wang and Law (2002) for the axial fluctuations and Reynolds stress,

shown in 4.4(a) and (c). The z/D = 75 radial fluctuations, shown in (b), are also

in close agreement with Darisse et al. (2015), although the Wang and Law (2002)

data is somewhat lower. The z/D = 19 data from the present experiments is lower

than the other profiles in all three plots, which is likely due to the jet having not

fully developed at this axial distance.

The scalar fluctuations,
√
c′2/cc, and axial/radial fluxes, w′c′/wccc and u′c′/wccc,

are given in figure 4.5. For
√
c′2/cc and w′c′/wccc, there is good agreement between

the present measurements and data from Wang and Law (2002) and Darisse et al.

(2015). There is some variation in the literature for the u′c′/wccc profiles, with the

present z/D = 75 data lying between them. Again the z/D = 19 profile from the

current data is slightly slower here, likely due to still being relatively close to the

source compared to the z/D = 75 case.

4.4.3 Centreline decay

It is well documented that both the centreline velocity and scalar concentration

in turbulent neutral jets scale with z−1, so that 1/wc ∼ z and 1/cc ∼ z. This

property can be derived from the conservation equations by assuming self-similar

velocity/scalar profiles and a constant entrainment coefficient. The relationship can

be expressed using the following linear equations,

wo

wc

= Kw

( z
D
− zo,w

D

)
, (4.6)

co
cc

= Kc

( z
D
− zo,c

D

)
, (4.7)

where Kw and Kc are constants, zo,w and zo,c are virtual origins unique to a particular

experimental set-up, and co is the scalar concentration at the source (defined as unity

in the present experiments). Previous studies have estimated values for the constants

in the ranges 0.14 . Kw . 0.16 and 0.18 . Kc . 0.20 (Kiser 1963; Becker et al.

1967; Fischer et al. 1979; Birch et al. 1978; Grandmaison et al. 1982; Papanicolaou

and List 1988; Webster et al. 2001).
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Figure 4.4: Profiles for the axial and radial turbulence intensities, w′2/w2
c and u′2/w2

c ,
and the Reynolds stress, w′u′/w2

c , for a neutral jet. Measurements obtained using
the present experimental set-up are shown alongside data obtained from previous
studies by Wang and Law (2002) and Darisse et al. (2015).
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Figure 4.5: Profiles of the turbulent scalar fluctuations,
√
c′2/cc, and the axial and

radial fluxes, w′c′/wccc and u′c′/wccc, for a neutral jet. Measurements obtained using
the present experimental set-up are shown alongside data obtained from previous
studies by Wang and Law (2002) and Darisse et al. (2015).
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Figure 4.6: Centreline quantities, wo/wc and co/cc, plotted with z/D for a neutral
jet obtained using the present experimental set-up.

Figure 4.6 shows both wo/wc and co/cc plotted with z/D for a neutral jet ob-

tained with the present experimental set-up. Both quantities are linear with axial

distance, with fits of the data also shown. These imply Kw = 0.14 and Kc = 0.19,

which both lie within the range of previously obtained values in the literature, and

virtual origins of zo,w/D = 0.7 and zo,c/D = −3.6. Although the location of the

virtual origins depend on the experimental set-up, they are typically . 5D from

the source and may be either positive or negative (downstream or upstream of the

source) (Becker et al. 1967; Grandmaison et al. 1982; Papanicolaou and List 1988).

4.5 Summary

The purpose of this chapter has been to validate the experimental procedure de-

signed for this study, which will be used to investigate turbulent negatively buoyant

jets and fountains. Before applying the method to such flows, a series of experiments

into neutrally buoyant axisymmetric turbulent jets were conducted using the present

experimental set-up, with the results obtained using the current image processing

procedure.

Suitable parameters for the PIV algorithm have been determined that result

in a valid vector detection rate of 94%, while maintaining an appropriate spatial

resolution. The effect of pixel locking, which is largely determined by the size of
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the particles in the flow (in pixels) as seen by the cameras, has been investigated

and found to lie within the acceptable ‘mild’ range (Overmars et al. 2010). Mean

and turbulence statistics are computed for the neutral jet and compared to several

previous studies, with the present measurements in good agreement with the existing

literature. The present experimental method is therefore considered suitable for

this investigation, and will be used to obtain velocity and scalar measurements

in negatively buoyant jets and fountains that will be discussed in the remaining

chapters.
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Chapter 5

Negatively buoyant jets

The following chapter investigates the initial ‘negatively buoyant jet’

(NBJ) stage of fountain flow, using data obtained experimentally us-

ing two-dimensional particle image velocimetry (PIV) and planar laser

induced fluorescence (PLIF). The development of the mean and turbu-

lence profiles with local Fr are investigated, and it is found that, unlike

neutral jets and plumes, the turbulence intensity in negatively buoyant

jets does not scale with the mean flow. Additionally, the ratio of widths

of the buoyancy and velocity profiles, λ, increases along the jet. The

entrainment coefficient, α, was estimated for a negatively buoyant jet,

and was found to decrease with local Fr, eventually becoming negative,

indicating fluid is being ejected from the jet. These observations differ

to neutral or buoyant jets and plumes, which approach a constant λ and

α in the far field. This different behaviour in negatively buoyant jets is a

natural consequence of the strongly decelerating mean flow as a result of

opposing buoyancy, which is demonstrated in the context of the integral

model framework developed by Morton et al. (1956). The contents of

this chapter have been adapted from an article accepted for publication

in the Journal of Fluid Mechanics, Milton-McGurk et al. (2020a).

5.1 Introduction

A turbulent jet is negatively buoyant when its buoyancy directly opposes its mo-

mentum. It will continually decelerate until its mean momentum is reduced to zero

and the fluid reverses direction, returning towards the source while mixing with the

opposing fluid. The initial stage of the flow, during its initial rise to zi and before

the return flow forms, is referred to as the ‘negatively buoyant jet’ (NBJ) stage. The
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quasi-steady stage consisting of an inner flow/outer flow structure (IF/OF) oscillat-

ing around its steady-state height, zss, is referred to as the ‘fully developed fountain’

(F) stage. This chapter is focused on the NBJ stage of the flow, where there is no

OF present and the flow resembles a neutral or positively buoyant jet/plume.

Many previous studies into NBJs/fountains have involved taking bulk measure-

ments of the flow, such as rise heights, zi and zss, to classify fountains and produce

Fro scaling relations (Turner 1966; Kaye and Hunt 2006; Burridge and Hunt 2012).

Other studies have obtained local measurements of the internal velocity/buoyancy

fields, although these have primarily been of the fully developed fountain stage

(Williamson et al. 2011; Mizushina et al. 1982; Cresswell and Szczepura 1993). There

is presently a lack of detailed experimental data available on the initial rise of an

NBJ prior to the return flow forming. Attempts to model NBJs have therefore

been evaluated primarily on their zi prediction, rather than the development of the

velocity, width and buoyancy scales (McDougall 1981; Bloomfield and Kerr 2000;

Papanicolaou et al. 2008; Hunt and Debugne 2016). There is also the open question

of whether NBJs can be assumed to be self-similar, and how α differs to that in

neutral or positively buoyant jets.

The current chapter used PIV and PLIF measurements to investigate negatively

buoyant jets prior to a return flow forming in an effort to tackle these questions.

The process for defining this initial stage based on the present experimental data

is described in §5.2. Mean statistics are presented in §5.3-5.4, including a discus-

sion regarding the scaling of the mean and turbulence profiles with axial distance.

Entrainment along the negatively buoyant jet is investigated in §5.5, followed by

integral model predictions in §2.4. The spreading rate of the velocity and buoyancy

profiles is discussed in §5.7.

5.2 Defining the NBJ stage

A turbulent negatively buoyant jet entering a homogeneous environment has an ini-

tial temporal development, referred to as the negatively buoyant jet stage (NBJ),

where decelerating fluid moves towards its initial height, zi, before it reverses direc-

tion and forms a return flow. The return flow then continues to develop, interacting

with the inner flow, until it reaches a quasi-steady state when it can be considered

a fully developed fountain (F), with its maximum height oscillating around zss. In

order to define the negatively buoyant jet stage of this inherently transient flow,

an ensemble average is taken across multiple experimental runs. These are each

produced with the same source conditions and are run for the same amount of time.
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For example, a Fro = 30 negatively buoyant jet may be imaged for 133.33s at 3Hz

(400 images) in a single run, which would then be repeated 6 times (2400 images

in total). An ensemble average for each time step would then be taken across the 6

runs so that there are 400 reasonably smooth ‘averaged images’ in time. This allows

for the transient development of the negatively buoyant jet into a fully developed

fountain to be investigated.

Since the region of interest of the cameras was relatively small compared to the

height of the jet/fountain (zi ∼= 535 mm), the different stages of flow development

were determined using velocity measurements of the inner structure. This involved

observing how the volume flux in the inner flow (QIF ) and outer flow (QOF ) regions

of the NBJ changed in time. These are defined as,

QIF = 2

∫ rio

0

w̃rdr, QOF = 2

∫ ∞
rio

w̃rdr, (5.1a − b)

where rio is the ‘boundary’ between the inner and outer flow and w̃ is the instan-

taneous axial velocity profile of the ‘averaged image’. Although the instantaneous

boundary is likely to change in time, for the purposes of calculating QIF and QOF ,

rio is taken as constant and defined as the first radial location where the mean

velocity (calculated using all the instantaneous velocity profiles) is equal to zero.

This IF/OF boundary is a local scale that may vary at different heights as the OF

develops, and so may not be well defined at the top where the velocity goes to zero.

However, for the purposes of the present investigation it is sufficient to compute QIF

and QOF prior to this region.

The ratio −QOF/QIF is plotted with time in figure 5.1 for a Fro = 30 negatively

buoyant jet at z/D ∼= 19. There are three distinct regions in figure 5.1, the first where

−QOF/QIF
∼= 0 and is approximately constant (since QOF � QIF ), then a second,

when the ratio rapidly increases then decreases, and a third region where it oscillates

around a value −QOF/QIF
∼= 2. The start/end of these regions, which indicate the

defined NBJ and fountain stages, are shown as vertical lines on the figure. Images

showing the velocity vectors and scalar concentration fields from these stages are

given in figures 5.2(a)-(c). The first stage, shown in (a), corresponds to the initial

rise of the jet before the return flow has developed, and thus the velocity vectors are

primarily orientated downwards (the positive z direction) inside the jet, and have

vertical components of approximately zero outside of it. The second stage, shown

in (b), corresponds to the intermediate transient period after the NBJ has reached

its maximum height as it begins collapsing back onto itself, but before it reaches

the quasi-steady state of a fully developed fountain. Here the axial velocity of the
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Figure 5.1: The ratio −QOF/QIF , defined using (5.1), is plotted against time, t
(s). The ratio is a measure of the instantaneous volume flux in the inner and outer
flow regions of a negatively buoyant jet/fountain, and is used to define the initial
negatively buoyant jet stage where QOF � QIF and is approximately constant.
Vertical lines indicating the different flow stages are also shown.

Figure 5.2: Three images showing the instantaneous velocity vectors and scalar
concentration field of a negatively buoyant jet as it developing into a fountain. With
respect to figure 5.1, image (a) was taken at approximately 5 s, (b) at 32 s and (c)
at 106 s. These images correspond to the axial location range 17 . z/D . 20 where
zi ∼= 54D, and are orientated such that that the jet core is flowing downwards (the
positive z direction).
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IF reduces and a significant return flow begins to form, evident from the velocity

vectors pointing towards the source (upwards in this figure) in the OF, where it

was previously a nearly quiescent environment in (a). The fully developed fountain

stage, shown in (c), does not look categorically different from the transient stage

in the instantaneous images observed, with both images showing downward and

upward flowing regions. However, as is shown in the −QOF/QIF plot in figure 5.1,

the volume flux in the inner and outer flow regions is much more steady in time

during the fully developed stage. The shape of this plot, and the location of the

three regions, are insensitive to the value of rio used in (5.1). For example, a similar

plot is obtained if the velocity profile half-width, defined as the radial location where

w/wc = 0.5, is used. In the first region, where−QOF/QIF is approximately constant,

time-averaged profiles were computed and were found not to vary systematically in

time, as will be discussed in §5.2.1. The flow could therefore be considered quasi-

steady in this range, and so this was used to define the negatively buoyant jet

stage for each experiment. All NBJ statistics discussed in the following sections

correspond to this initial stage.

The procedure of obtaining a plot of −QOF/QIF with time was repeated for NBJ

experiments at various different axial locations. Some of these experiments were run

at a higher frequency (7Hz) and for a shorter time period (45s), and so ended before

the quasi-steady stage was reached. Although this meant that the third region of

figure 5.1 was not always visible, the initial approximately steady region was always

present. This always preceded a sudden increase in −QOF/QIF as the flow started

to collapsed, and so was sufficient to define the NBJ region.

5.2.1 Mean profiles in time

After taking the ensemble average across multiple runs of the Fro = 30 negatively

buoyant jet (same as that shown in figure 5.1), time-averaged profiles over several

short time intervals (3.67s or 11 ‘images’) were calculated for both the velocity

and scalar measurements. These profiles are presented in figures 5.3(a) and (b) to

illustrate the initially steady and then transient behaviour of the negatively buoyant

jet as it develops into a fountain. The first three curves show averages taken over

images N = 10−20, 20−30 and 30−40, which are all within the defined negatively

buoyant jet range. The velocity and scalar profiles are all very si

milar here, with no clear systematic trend in time. There is no significant w < 0

region in this range, indicating there is no return flow present. Extensive sensitivity

testing was carried out for all other results within the defined NBJ range, which

similarly found no significant differences or systematic trends. Beyond this point,
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Figure 5.3: Mean axial velocity, (a), and scalar concentration profiles, (b), of a neg-
atively buoyant jet/fountain at various stages in time. The temporal time averages
are taken over 3.67 s increments (corresponding to 11 ‘images’ in time), in order to
show how the profiles change in time as the negatively buoyant jet develops into a
fountain.

for the profiles corresponding to images in the rangeN = 40−70, noticeable transient

effects are observed in both the velocity and scalar profiles. In the velocity profiles,

larger negative velocities are observed at the tail of the profile indicating a return

flow starting to form. The scalar profiles are also changing strongly with time in

this range, with an increasing peak concentration at the centreline, as well as higher

values at the tails.

5.3 Statistical description of the flow

5.3.1 Centreline decay

For a self-similar neutral jet with constant α, the decay of the centreline velocity

along the jet axis follows the scaling w−1c ∼ z. This was discussed in §4.4.3, where

the present experimental procedure was validated on a neutral jet. Figure 5.4 shows

wo/wc plotted against z/D for neutral and negatively buoyant jets where, just as in

figure 4.6, linear scaling for the neutral jet is observed. For the negatively buoyant

jet, the decay is not linear over the z/D range shown, and can be seen diverging
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Figure 5.4: The quantity wo/wc plotted against axial distance z/D, showing the
decay of the centreline velocity for a neutral and negatively buoyant jet. Each cluster
of points was obtained from a separate experiment with the same source Froude
number (Fro = 30 for the NBJ) and similar Reynolds numbers (5500 . Reo . 5900).
The prediction of Morton’s (1959) model for a constant α = 0.0714 and λ = 1.2 is
shown, as well as ‘model 2’, a linear model for α with Ri using coefficients based on
values found by Kaminski et al. (2005). Additionally, ‘model 1’, which assumes a
linear relationship for δm with Ri, is also shown. These models are discussed further
in §5.5.

from the neutral jet results for z/D & 18. Figure 5.4 also shows the predictions of

three integral models for the NBJ, which will be discussed in §5.5-5.6.

As z/D increases in an NBJ, the local Fr decreases towards zero (and Ri asymp-

totes to negative infinity) since the velocity approaches zero at the top. This may

be interpreted as negative buoyancy playing an increasingly important role in de-

celerating the flow. Despite the non-linear velocity decay, for the points closest to

the source, e.g. for z/D . 26 (Fr & 3.0, Ri & −0.11), wo/wc could be approxi-

mated as linear with z, although with a different slope to a neutral jet. This may be

considered the ‘forced’ regime where the flow is more similar to a neutral jet, and

is consistent with the arguments made in §2.4.2 regarding the solution to Morton’s

(1959) simplified model. Although this is a local regime based on local Fr, it may

be compared to the classification of fountains by source Froude number, Fro, such

as those suggested by Burridge and Hunt (2012). They classified 2.8 . Fro . 5.5

and Fro & 5.5 as ‘forced’ and ‘highly forced’ fountains, which is consistent with the

presently suggested local ‘forced’ regime of Fr & 3.0.
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5.3.2 Velocity and buoyancy profiles

Time-averaged profiles for axial velocity, w, and scalar concentration, c, are given

in figures 5.5(a) and (b), normalised by their centreline values and respective half-

widths. Dimensionless concentration (0 ≤ c ≤ 1) and buoyancy (mm s−2) are related

by a constant such that b = c(ρo − ρe)g/ρe. All negatively buoyant jets profiles are

close to Gaussian for the full range of local Fr investigated, 1.85 . Fr . 5.91,

and are similar to the profiles for neutral jets. This is despite the considerable

deceleration of the mean flow in the negatively buoyant jet compared to the neutral

jet, as demonstrated in figure 5.4, showing that the profiles maintain a Gaussian

shape even outside of the forced regime (Fr . 3.0).

The ratio of widths between the buoyancy/scalar and velocity profiles is given by

λ, which was defined in (2.29) in terms of the 1/e widths. For neutral jets, estimates

for λ in the literature typically lie in the range 1.15 . λ . 1.30 (Fischer et al. 1979;

Wang and Law 2002; Ezzamel et al. 2015), and is assumed to be constant in the

far field where the flow is self-similar. As pointed out by Ezzamel et al. (2015),

discrepancies in the literature may be attributed to the distance from the source

where the profiles were measured (e.g. if the jet has not fully developed), and that

it is likely that source conditions play a role.

Figures 5.6(a) and (b) show λ plotted with axial distance and local Ri for both

the neutral and negatively buoyant jets from the present experiments. The values

for the neutral jet are reasonably constant, and have an average value of λ = 1.181,

in good agreement with λj = 1.189 from Fischer et al. (1979). The slight decreasing

trend may be attributed to the jet still developing at this axial distance. For the

negatively buoyant jet, λ is higher than the neutral jet and increases with axial

distance over the range shown. From figure 5.6(b), λ can been seen increasing

almost immediately from Ri ∼= −0.04 (Fr ∼= 5.0) with more negative Ri, which is

within the previously suggested ‘forced’ regime of Ri & −0.11 (Fr & 3.0). So even

for relatively high local Fr, the velocity and buoyancy/scalar profile widths grow at

different rates compared to a neutral jet.

A varying λ can be interpreted as a type of ‘similarity drift’ of the velocity and

buoyancy profiles, which has also been reported in jets and plumes that have not

yet reached a state of full self-similarity (Carazzo et al. 2006; Kaminski et al. 2005;

Ezzamel et al. 2015). The mechanism causing the increasing λ with z for negatively

buoyant jets is discussed in §5.7.
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Figure 5.5: Time-averaged axial velocity and scalar concentration profiles, in (a)
and (b) respectively, of a negatively buoyant jet (NBJ) with different local Froude
numbers. Neutral jet (J) data from the present experimental set-up is also shown
(Reo = 5900), as well as by Webster et al. (2001), Wang and Law (2002) and Darisse
et al. (2015). The NBJ profiles were obtained using data from multiple experiments
using the same pipe, D = 10 mm, at the same source Froude number, Fro = 30,
and similar Reynolds number 5500 . Reo . 5900, while varying the location of
the region of interest relative to the source. All velocity and scalar concentration
points have been normalised by their respective centreline values, wc and cc, and
half-widths, r1/2,w and r1/2,c.
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Figure 5.6: The 1/e width ratio between the buoyancy (or scalar) and velocity
profiles, λ = rb/rw, for a negatively buoyant jet (NBJ) and neutral jet (J). The
data is plotted against axial distance normalised by source diameter, z/D, in (a),
and against the local Ri in (b). At the source, Fro = 30 (Rio = −0.0011), which
decreases towards Fr = 0 (Ri → −∞) at the top of the NBJ. In (b), the values
for a neutral jet, which have Ri = 0 everywhere, are shown as horizontal lines for
clarity.

5.3.3 Turbulence statistics

Figures 5.7 and 5.8 show the profiles of the axial turbulence intensity, w′2/w2
c , and

the normalised Reynolds stress, w′u′/w2
c . The profiles at z/D = 73 for the neutral

jet in figures 5.7(a) and (b) are in good agreement with both the best fit curve

from Wang and Law (2002) and data from Darisse et al. (2015). This experiment

used a smaller, D = 5 mm, pipe so that measurements could be taken at a larger

downstream distance relative to the source diameter, and a high Reo = 10700 could

be achieved. The flow in this experiment could therefore be expected to be fully

developed and self-similar and so could be compared to similar experiments in the
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Figure 5.7: Mean turbulent axial velocity fluctuations, (a), and Reynolds stress,
(b), for the neutral jet (J) at three different axial locations, normalised by the local
mean centreline velocity, w2

c . The z/D = 18, 23 and 27 profiles correspond to an
experiment with D = 10 mm and Reo = 5900. The z/D = 73 profiles were obtained
used D = 5 mm and Reo = 10700. The best fit curve from Wang and Law (2002)
(40 < z/D < 80) and the data from Darisse et al. (2015) (z/D = 30) for a neutral
jet is also shown.

literature, such as Wang and Law (2002) who had Reo = 12700 and 40 ≤ z/D ≤ 80.

The remaining J profiles in figure 5.7 correspond to experiments using a D = 10

mm pipe and have Reo = 5900 in order to closely match the source conditions of

the negatively buoyant jet experiments. These 18 ≤ z/D ≤ 27 profiles are generally

a little lower than the z/D = 73 case since they may not be completely developed

at this distance, but are nevertheless reasonably close and can be compared to a

negatively buoyant jet at the same axial location.

Figure 5.8(a) and (b) shows the normalised w′2 and w′u′ profiles of a negatively
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buoyant jet at some of the same axial distances as the neutral jet in figure 5.7, as

well as two additional further downstream locations. Despite some scatter in the

data, there is a clear upwards trend for both the axial turbulence intensity and

Reynolds stress relative to the centreline velocity with increasing axial distance, or

equivalently, decreasing local Fr. This is most evident for the Fr . 3.38 profiles as

the flow exits the ‘forced’ regime, and is particularly strong in the w′2/w2
c plot shown

in (a). This does not imply that the magnitude of w′2 or w′u′ is increasing with

distance, but is instead revealing that w′2 and w′u′ do not decrease at the same rate

as the mean flow. This is consistent with the qualitative description of a negatively

buoyant jet, where the mean velocity is reduced to zero at the top of the jet, zi, but

where we can still expect non-zero turbulence.

Cresswell and Szczepura (1993) also obtained w′2 and w′u′ profiles, but for a

fully developed fountain with Fro ∼= 3.2. When their data (originally presented

normalised by source conditions) is normalised by the centreline velocity, the peak

values also increase with axial distance from the source as the mean flow decelerates.

Near to the source, 0.03 . z/D . 1.7, their peak values for the inner flow cover the

range 0.05 . w′2/w2
c . 0.2 and 0.01 . w′u′/w2

c . 0.03, which are broadly similar to

the present values. However, the flow of Cresswell and Szczepura (1993) was at a

much lower Fro ∼= 3.2 and also included a return flow, and so is notably different to

the present case of Fro = 30 negatively buoyant jets. The phenomenon of increas-

ing turbulence intensities in a decelerating mean flow is not exclusive to negatively

buoyant jets/fountains. In a flow through a conical diffuser, for example, increasing

turbulence fluctuations and shear stresses, relative to the local centreline velocity,

can be seen with increasing axial distance as the flow expands and decelerates (Ok-

wuobi and Azad 1973; Singh and Azad 1995). Although such a flow is significantly

different to the present case, since the evolution of turbulence with axial distance is

affected by the velocity shear near the wall (even at the centreline (Singh and Azad

1995)), a decelerating mean flow will still work to increase the turbulence intensity

if it is normalised in this way.

Figures 5.9 and 5.10 show the turbulent scalar fluctuation and axial and radial

fluxes,
√
c′2, w′c′ and u′c′, normalised by the centreline values and scalar half-widths

for the neutral and negatively buoyant jet at different axial distances. The neutral

jet profiles in figure 5.9 generally all agree with Wang and Law (2002) and Webster

et al. (2001). The
√
c′2/cc data for z/D ≥ 23 is in very close agreement with

Webster et al. (2001), although the shortest axial location z/D = 18 is slightly

higher near the centreline. The
√
c′2/cc centreline value of the best fit by Wang

and Law (2002) (Reo = 12700, 40 < z/D < 80) is slightly lower than the present
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Figure 5.8: Mean turbulent axial velocity fluctuations, (a), and Reynolds stress,
(b), for a negatively buoyant jet (NBJ) at several axial locations, normalised by the
local mean centreline velocity, w2

c . The source conditions were Fro = 30 and 5500 .
Reo . 5900 using D = 10 mm, with data gathered across multiple experiments.

jet data (Reo ∼= 5700, 18 < z/D < 27). However this difference is small (. 0.5%)

when compared to the furthest jet experiment (Reo = 10700, z/D = 73), and so the

difference may be attributed to the larger z/D and Reo in the Wang and Law (2002)

experiments. The present axial flux data, w′c′/wccc, is close to both Wang and Law

(2002) and Webster et al. (2001) for 18 ≤ z/D ≤ 27 in the neutral jet, but here

the z/D = 73 profile is a little higher. The radial flux, u′c′/wccc, is in reasonable

agreement with both studies at all locations. The negatively buoyant profiles, given

in figure 5.10, are of similar shape and order to the neutral jet data in figure 5.9,

with no discernible trend with axial location evident. Although one might expect

to see an increasing trend in w′c′/wccc or u′c′/wccc with axial distance, due to the

decelerating mean flow, wc, this effect is not noticeable within the experimental
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Figure 5.9: The turbulent scalar fluctuations and axial/radial flux profiles,
√
c′2,

w′c′ and u′c′ are given in (a), (b) and (c), respectively, normalised by the centreline
values, wc and cc, and scalar half-width, r1/2,c for a neutral jet at various axial
locations. The data was obtained from the same experiments as figure 5.7. The
best fit curve from Wang and Law (2002) (30 < z/D < 80) and data from Webster
et al. (2001) (50 < z/D < 90) is also shown.

scatter. This is likely due to the fact that, unlike with the velocity fluctuations,

there is no clear relative increase of the scalar fluctuations compared to cc (which

does not go to zero at the top of the jet), and so the effect of a decreasing wc is

less significant. Cresswell and Szczepura (1993) also obtained these quantities for

their Fro = 3.2 fountain using temperature measurements. When normalised by

centreline quantities, and treating temperature as a passive scalar, their peak values

in the inner flow for 0.3 . z/D . 2.3 covered the range 0.12 .
√
c′2/cc . 0.3,

0.01 . w′c′/wccc . 0.02, and 0.004 . u′c′/wccc . 0.02. As with the turbulent

velocity fluctuations, these are broadly similar to the present range of negatively

buoyant jet values, despite the differences in the flow.
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Figure 5.10: The normalised turbulent scalar fluctuations and axial/radial flux pro-

files,
√
c′2, w′c′ and u′c′ are given in in (a), (b) and (c), respectively, for a negatively

buoyant jet at different axial locations. The data was obtained from the same ex-
periments as figure 5.8.
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5.4 Integral description of the flow

Figures 5.5(b) and 5.10(a)-(c) showed the development of the mean scalar concen-

tration, c, and the turbulent quantities,
√
c′2, w′c′ and u′c′, all scaling well with the

centreline, cc, for a negatively buoyant jet. Since b and c are related by a constant

such that b = c(ρo−ρe)g/ρe, this also shows that b,
√
b′2, w′b′ and u′b′ scale with bc.

However, this does not necessarily imply that they scale with bm, the integral buoy-

ancy scale. If the mean velocity and buoyancy profiles are assumed to be Gaussian,

as is reasonably demonstrated by figure 5.5, then at any given axial location they

may be expressed as w = wc exp (−r2/r2w) and b = bc exp (−r2/r2b ). By evaluating

(2.10a − c), the integral scales become wm = wc/2, rm =
√

2rw and bm = bcλ
2/2.

Note that for all definitions involving the integration limit r̃ in this chapter, we

set r̃ = ∞. We then see that w scales with wm, but b only scales with bm if λ is

constant (i.e. the flow is self-similar). From figure 5.6 we see that λ is not constant

in negatively buoyant jets, and instead increases with distance from the source. In

light of this, new integral quantities may be defined that scale with b independent

of the behaviour of λ,

G = 2

∫ r̃

0

b
2
rdr, gm =

G

B
, rmb = sgn(Bo)

B

G1/2
. (5.2a − c)

where G is the integral of the mean buoyancy squared and is analogous to M , and

gm and rmb are buoyancy and buoyancy-width scales. The sign function, sgn(·), is

used in the definition of rmb so that sgn(Bo) = 1 or −1 for positively and negatively

buoyant jets, respectively, ensuring that rmb > 0 and the length scale is physically

realistic. For neutral jets, B and G may be defined in terms of the scalar concentra-

tion, c, instead of b. With these definitions we have, for Gaussian w and b profiles,

gm =
bc
2
, rmb =

√
2rb, λ =

rmb

rm
. (5.3a − c)

That is, we have an integral quantity, gm, that scales with b without assuming a

constant λ. The b profiles normalised by bm, gm and the buoyancy profile half-width,

rb,1/2, for the negatively buoyant jet are shown in figure 5.11(a) and (b), respectively.

Figure 5.11(a) shows b/bm decreasing with increasing distance from the source, while

the b/gm profiles in (b) collapse reasonably well with no systematic trend with Fr.

This is a consequence of the increasing λ, which causes bm to grow faster than bc,

since bm ∼ bcλ
2 in Gaussian profiles. The b/gm profiles, however, collapse reasonably

well since gm ∼ bc independent of λ.
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Figure 5.11: Mean buoyancy profiles of a negatively buoyant jet at different local
Fr, with the vertical axis normalised by the integral quantities, bm, (a), and gm,
(b), and the horizontal axis by the buoyancy half-width, rb,1/2. The same data is
plotted here as in figure 5.5(b), but normalised differently.

We have also observed that the turbulence quantities w′2 and w′u′ increase rela-

tive to axial centreline velocity, and thus wm, in negatively buoyant jets from figure

5.8. It is therefore useful to define a new ‘turbulence velocity scale’, wf , that will

scale with these quantities since wm is no longer appropriate. This is defined in

terms of the ‘turbulent momentum flux’, Mf ,

Mf = 2

∫ r̃

0

w′2rdr = r2mw
2
f , (5.4)

which is analogous to the ‘mean’ momentum flux, M = r2mw
2
m. It also follows from

this definition that βf = Mf/M , relating it to the profile coefficient defined in (2.16).
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Figure 5.12: Mean turbulent axial velocity fluctuations, (a), and Reynolds stress,
(b), for a negatively buoyant jet (NBJ), normalised by the ‘turbulence velocity scale’,
w2

f , defined in (5.4). The same data is plotted here as in figure 5.8, but normalised
differently.

Figure 5.12 shows the w′2 and w′u′ profiles normalised by w2
f at several axial dis-

tances, which can be compared to figure 5.8 where the same profiles are normalised

by w2
c = (2wm)2 (for Gaussian w profiles). While figure 5.8 shows a clear increasing

trend for both w′2 and w′u′ relative to w2
m, in figure 5.12 the profiles collapse within

some experimental scatter, showing no systematic trend. The horizontal axis in

figure 5.12 is r1/2,w ∼ rm, showing that although the new turbulence velocity scale is

required for the magnitude of turbulence profiles, the same length scale as the mean

profiles may be used. The analysis in the following sections will assume that Mf is

small compared to M , or equivalently, that the profile coefficient βf is small. This

is reasonable in the high Fr region of the negatively buoyant jet where M is suffi-

ciently large, although may no longer be valid near the top where M → 0. Future
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work may seek to take into account Mf in this region, and a conservation equation

for Mf , derived from the w′2 budget, may be required in addition to (2.12)-(2.15).

5.5 Entrainment

5.5.1 Estimating α

An analytical expression for the entrainment coefficient, α, derived from the con-

servation of mass, momentum and mean kinetic energy was introduced in §2.4.1.

This is given again below, with the turbulence components of the profile coefficients

neglected (van Reeuwijk and Craske 2015),

αM = − δm
2γm

+

(
1− θm

γm

)
Ri+

Q

2M1/2

d

dz
(ln γm). (5.5)

The first term, −δm/2γm, is the ratio of turbulence production to mean energy

flux, and is the only non-zero term in a self-similar neutral jet where it is constant.

The second term shows the effect of buoyancy on entrainment through the local

Richardson number, and provides a mechanism for buoyancy-driven entrainment

associated with the mean flow, rather than by directly affecting turbulence (van

Reeuwijk and Craske 2015). The third term reflects how the profile coefficients γg

and βg change along the jet, and is zero if the flow is fully self-similar.

By assuming self-similar profiles, (5.5) becomes,

αMS = − δm
2γm

+

(
1− θm

γm

)
Ri, (5.6)

which, for constant δm, is equivalent to the PB model. Priestley and Ball (1955)

additionally assumed Gaussian profiles with λ = 1 when first solving their model for

positively buoyant jets/plumes. For the case of negatively buoyant jets, although

we have shown that an assumption of Gaussian profiles is realistic over the Fr range

observed, the non-constant λ indicates that the full self-similarity assumption is not.

It is therefore useful to invoke the assumption of Gaussian velocity and buoyancy

profiles, yet allowing for a variable λ, to (5.5). The resulting expression is,

αMG = −3

8
δm︸ ︷︷ ︸

A1

+

(
1− 3

2(1 + λ2)

)
Ri︸ ︷︷ ︸

A2

, (5.7)

where θm = 2/(λ2 + 1), and the third term from (5.5) vanishes since γm = 4/3 is
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constant, for Gaussian profiles.

To calculate δm from (2.16), the derivative ∂w/∂r must be estimated from the

experimental data. To avoid scatter in the derivative due to the spatially discrete

velocity data, a two-dimensional Gaussian filter of width 100 pixels (approximately

4 times the width of a PIV interrogation window) was first applied to w, and then

the derivative estimated using a second order accurate finite difference stencil. A

similar procedure was used to calculate the other derivatives present in the profile

coefficient definitions. In calculating δm, as well as other quantities such as Q, it is

also necessary to approximate an integral defined from r = 0 to infinity using data

from a finite region. In obtaining Q for the NBJ, for example, the integral was first

calculated using the trapezoidal rule over the full r range captured in the region of

interest. This was compared to the values obtained if the integral was calculated

only up to the point where the mean axial velocity first equals zero. The latter

gives Q typically around 3% lower than using the full range, since there are small

w . 0 values in the outer region. This difference is considered negligible, and given

these negative velocities are much lower than inside the jet (. 0.01wc), this region

is regarded as part of an approximately quiescent ambient. Integrating from r = 0

to the edge of the region of interest was therefore used in computing all integral

quantities.

5.5.2 The entrainment coefficient in NBJs

Figure 5.13 shows the average value of αMG = A1 = 0.0714 as a horizontal line

calculated from the present neutral jet data, assuming self-similar Gaussian profiles.

This is in reasonable agreement with the ‘mean self-similar’ value calculated in van

Reeuwijk and Craske (2015) of α = 0.073, and their direct estimate (from the

conservation of volume (2.12)) of α = 0.069.

For the negatively buoyant jet, neither term in (5.7) is necessarily constant, and

both are plotted against local Ri in figure 5.13. We see that the first term, A1,

which corresponds to the ratio −δm/2γm, increases with more negative Ri. This is

a consequence of the profile coefficient δm, which increases in magnitude with axial

distance primarily due to w′u′ remaining high relative to wm, as discussed in §5.3.3

and §5.4. However, the overall value of αMG decreases for more negative Ri due to

the second term, A2, which reflects the effect of negative buoyancy on entrainment

through the factor of Ri. This can also be seen by considering linear fits with Ri of
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Figure 5.13: The entrainment coefficient in the neutral and negatively buoyant jets
from the present experiments, as calculated from (5.7), which assumes Gaussian
velocity and buoyancy profiles, and for the NBJ case, allows for non-constant λ. For
the neutral jet, which has Ri = 0 everywhere, α is shown as a horizontal line for
clarity. The prediction of α from (5.7), using the constant values δm = −0.216 and
λ = 1.05 obtained from Kaminski et al. (2005), is also shown, as well as linear fits
of the terms A1, A2, and A1 + A2.

the terms A1, A2, and their summation to give α,

A1 = 0.075− 0.227Ri

A2 = 0.520Ri

α = 0.075 + 0.292Ri.

 (5.8)

This empirical α relation can be expressed as,

α = − δj
2γm

+

(
1− θm

γm
− δ̃

2γm

)
Ri, (5.9)

which is equivalent to (5.6) with δm = δj + δ̃Ri. The coefficients of the empirical

fits of A1 and A2 in (5.8) imply δj ∼= −0.200, δ̃ ∼= 0.604 and a constant θm ∼= 0.640

(λ ∼= 1.46 for Gaussian profiles). The value for δj can be interpreted as the ‘neutral

jet value’ implied by the model, which agrees with the jet values reported in van

Reeuwijk and Craske (2015) of 0.19 . −δm . 0.21 (Panchapakesan and Lumley

1993; Wang and Law 2002; Ezzamel et al. 2015). The entrainment relation in (5.7)

is derived from the conservation equations (2.12), (2.13) and (2.15). In (5.9), we

make the ad hoc addition of the δ̃ term motivated by the approximately linear δm
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trend observed from the data in figure 5.13. The inclusion of δ̃ is ad hoc since there

has not yet been an analysis of the governing equations to show the necessity of

this term. Nevertheless, its inclusion is supported by the data in figure 5.13, which

raises the open question for potential future research to explain the apparent need

for it. The linear α relation in (5.9) is then a semi-empirical description of the flow

based on fits of the present experimental data, rather than a direct derivation from

the conservation equations, and will be henceforth referred to as ‘model 1’.

The α relation given in (5.8) has a similar form to the linear relationship for

positively buoyant jets/plumes, which have Ri > 0 (Priestley and Ball 1955; Fox

1970). However, (5.8) is only proposed valid for Ri < 0, where we have observed the

linear relationship between δm and Ri. It is not intended as a universal relation for

both positively and negatively buoyant jets. In the far field, buoyant jets approach

a state of self-similarity where they become indistinguishable from pure plumes,

approaching a constant Ri = Rip > 0 (Fischer et al. 1979; Papanicolaou and List

1988). For these self-preserving flows, δm is constant and hence the linear α relation

with Ri in the form of (5.7), where A1 is constant, is obtained. It has been reported

that δm is approximately the same pure jets (Ri = 0) and plumes (Ri = Rip) (van

Reeuwijk and Craske 2015; Wang and Law 2002; Ezzamel et al. 2015; van Reeuwijk

et al. 2016), and an approximately constant δm has been reported in buoyant jets for

0.25 . Ri/Rip . 0.75 (van Reeuwijk et al. 2016). However, this buoyant jet value

was slightly lower than the jet and plume values, and also varied near the source

before the flow had developed (van Reeuwijk et al. 2016).

Kaminski et al. (2005) derived an equation for α equivalent to (5.5), but in terms

of the coefficients Ã and C̃ (denoted A and C in their equation (3.33)). These can

be related to the profile coefficients in (5.5) by (Kaminski et al. 2005; van Reeuwijk

and Craske 2015),

C̃ = −δm/(
√

2θmγm), Ã = γm/θm. (5.10a − b)

In this formulation, C̃ is related to the ratio of turbulent production to the mean

energy flux, but is also influenced by the shape of w and b through θm. The parameter

Ã is related to the mean energy flux and is also influenced by the shape of the mean

profiles. Using (5.10), (5.6) may then be written in terms of these parameters,

αMS =
γmC̃
√

2

2Ã
+

(
1− 1

Ã

)
Ri. (5.11)

Kaminski et al. (2005) calculated these parameters based on literature for positively

buoyant jets/plumes (see their table 3), with average values of C̃ = 0.12 and Ã = 1.4.

Although limited data was available, Carazzo et al. (2008) later found similar values
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in negatively buoyant jets. Using (5.10), these correspond to δm ∼= −0.216 and

λ ∼= 1.05 (θm ∼= 0.952) for Gaussian velocity/buoyancy profiles. When substituted

into (5.7), these give the linear relationship,

α = 0.081 + 0.286Ri. (5.12)

This relationship will be referred to as ‘model 2’, and is a reformulation of the linear

entrainment relation derived by Fox (1970) based on the work by Priestley and Ball

(1955), and uses constants based on values reported in Kaminski et al. (2005). This

is very similar to model 1 given in (5.8) and based on empirical fits for an NBJ,

which can been seen in figure 5.13 where both models are shown.

Model 2 gives good predictions of α in negatively buoyant jets, but assumes a

constant δm ∼= −0.216 and λ ∼= 1.05 that are not consistent with the increasing A1

and λ observed in figures 5.13 and 5.6, respectively. Model 2 can also be described

by (5.9), but where δj = δm ∼= −0.216 and δ̃ = 0. It can then be seen that the

similarity between the models is partly due to the δj ∼= −0.200 assumed by model 1

being similar to δj ∼= −0.216 in model 2 (i.e. the ‘neutral jet value’), which results in

the first term of the linear α relations in (5.8) and (5.12) being similar. The second

term (the Ri coefficient) of the relations are also similar, but for different reasons.

In model 2, the value is determined by λ ∼= 1.01 (θm ∼= 0.952) only, since δ̃ = 0

(and γm = 4/3) with respect to (5.9). For model 1, we have δ̃ ∼= 0.604 and λ ∼= 1.46

(θm ∼= 0.640), which give a similar Ri coefficient when inserted into (5.9). Model 1

appears to provide a representation of α in an NBJs that is more consistent with

the observed δm and λ in the present data.

5.5.3 Mean radial outflow

For Ri & −0.11 (Fr & 3.0), in the forced regime, αMG in the NBJ is positive but

generally lower than it is for the neutral jet. For Ri . −0.25 (Fr . 2.0), αMG

becomes negative, implying there is a mean radial outflow of fluid from the jet to

the ambient. This phenomenon has also been reported in the literature on fully de-

veloped fountains, where a mean outflow is observed from the IF to OF (Cresswell

and Szczepura 1993; Williamson et al. 2011). In a general sense, entrainment may

be considered the process where fluid is transported from a non-turbulent to turbu-

lent region across some interface (e.g. Mistry et al. (2016)). The α given by (5.5),

however, is simply a consistency requirement for the conservation of mass, momen-

tum, buoyancy and mean kinetic energy equations. This expression, and subsequent

simplifications such as (5.7), are therefore not necessarily describing entrainment in
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this general sense, but instead reflecting what the radial mean flow must be in order

to satisfy the conservation equations. An NBJ with a mean radial outflow could still

be subject to instantaneous ‘entrainment’ (flow from a non-turbulent to turbulent

region) at some times, while ejecting fluid into the ambient at others. The α < 0

observed in the present NBJ indicates this net radial outflow, and means that on

average there is more fluid ejected outwards than flowing into the jet in this re-

gion. This can be observed directly by examining the mean radial velocity profiles

across the jet, where the net outflow of fluid corresponds to u > 0 outside of the

jet. This can be seen on the left axis of figure 5.14, which shows u/wc plotted for

the negatively buoyant jet at Fr = 3.00 (Ri = −0.11) and Fr = 1.86 (Ri = −0.29),

within the α > 0 and α < 0 regions respectively. The right axis shows the axial

velocity profiles, w/wc, at the same locations as a reference. The Fr = 3.00 curve

has u/wc < 0 for r/rw,1/2 & 1.2, indicating net entrainment of fluid into the edge

of the jet where w/wc → 0. The Fr = 1.86 curve, however, has u/wc > 0 in this

region, indicating there is a net radial outflow of fluid into the ambient.

Although this mean radial outflow does not typically occur in neutral or posi-

tively buoyant jets and plumes, which have α > 0 everywhere, in negatively buoyant

jets, a negative α towards the top of the jet is a natural consequence of (5.7), rather

than any fundamentally different physics. This comes from the negative buoyancy

and a decelerating mean flow resulting in Ri → −∞ at the top of the jet. This

causes the second term, A2, to become increasingly negative, dominating (5.7) until

α < 0 and there is a net radial outflow of fluid from the jet.

In chapter 6 we will seek to incorporate the traditional notion of entrainment (an

inflow across a turbulent/non-turbulent interface), into the description of an NBJ

with a net outflow. This is pursued by splitting up the mean radial velocity into

‘entrainment’ and ‘outflow’ components, where only the inflowing fluid is assumed

to be proportional to the mean flow by an entrainment coefficient. This description

will provide an alternative notion of ‘entrainment’ that is conceptually similar to

that used in the traditional integral models (Morton et al. 1956; Morton 1959), and

that can occur simultaneously with a mean outflow.

5.6 Integral model predictions

In §2.10, the system of ODEs describing positively or negatively buoyant turbulent

jet in homogeneous environment, neglecting second order turbulence contributions,

were discussed. These are given in (2.19)-(2.21), and are now solved numerically

using models 1 and 2 discussed in §5.5.2. Model 1 corresponds to using the α
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Figure 5.14: The left axis and solid lines show the normalised radial velocity profiles,
u/wc of a negatively buoyant jet at two different axial locations. The right axis and
dashed lines show the corresponding axial velocity profiles, w/wc. The right and
left arrows are shown to indicate the axis each profile corresponds to.

relation defined in (5.8), which assumes a linear δm relationship with Ri and constant

λ ∼= 1.46. Although we observed from figure 5.6 that λ is not constant in NBJs,

λ ∼= 1.46 lies within the range of observed values and so, when solving (2.19)-(2.21),

we take it to be constant to simplify the model. When solving model 2, the α relation

in (5.12) is used, which assumes a constant δm ∼= −0.216 and λ ∼= 1.05 (Kaminski

et al. 2005; Carazzo et al. 2008). By assuming a constant δm, model 2 is simply a

reformulation of the PB model (Priestley and Ball 1955; Fox 1970), and although

these δm and λ values are not consistent with those observed from our NBJ data,

this model provides a useful reference case for comparison. The system of equations

is also solved using the Morton (1959) model (constant α = 0.0714 and λ = 1.2) as

an additional comparison.

The predictions for wo/wc obtained by solving (2.19)-(2.21) with these models

have been presented in figure 5.4 alongside the experimental data. The Morton

(1959) model gives similar predictions to both model 1 and 2 for z/D . 27, where

there is also reasonably good agreement with our NBJ data. Models 1 and 2 continue

to agree with each other and the NBJ data until z/D ∼= 30. For 30 . z/D . 38,

model 2 actually gives better predictions than model 1 based on the empirical data,

despite assuming values for δm and λ that are not consistent with the present NBJ

results. Part of the reason that two similar α models can give significantly different

predictions for wc is due to λ. Firstly, this is due to the fact that in addition to the

α relation, λ appears in the momentum equation (2.20) through θm. Additionally,
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λ appears in the definition of Ri through θm, which further complicates its influence

on the flow.

Neither model 1 or 2 accurately predict the flow over the full Ri range observed

while simultaneously maintaining consistency with the present δm and λ observa-

tions. This suggests that neither model is complete. The λ ∼= 1.46 used in model 1

is closer to the observed experimental data in figure 5.6 than model 2, although has

poorer agreement for z/D & 27. Although the wo/wc agreement of model 2 is very

good, it is not consistent with the observed λ and δm in the present data, and we

leave this apparent discrepancy as an open question.

Mizushina et al. (1982) found in their experimental study of fully developed

fountains (3 . Fro . 258), that the radius of the fountain was approximately

constant and given by rf/D ∼= 0.26Fro. If the cap region of the fountain was

hemispherical, then this would also be equal to the radius and vertical thickness

of the cap. The cap region would then extend from z = zss − rf to the top of

the fountain, z = zss. If the top of a negatively buoyant jet resembles the cap of a

fully developed fountain, then this region would not be well described by the present

integral model, which was derived for jet-like flows. The present Fro = 30 negatively

buoyant jet, which has zi/D ∼= 53.5, would have rf/D ∼= 7.8. The end of the ‘jet-

like’ region where the models are applicable would then occur at z/D ∼= 45.7. This

is somewhat further than z/D ∼= 30 where model 1 departs from the data, possibly

due to the limitations of the model discussed above, but is nevertheless broadly

consistent.

5.7 Velocity and buoyancy spreading rates

To investigate the mechanism behind the increasing λ observed in figure 5.6, we

consider an expression for drm/dz, the spreading rate of the velocity width, based on

the conservation of volume, momentum, and kinetic energy equations (van Reeuwijk

and Craske 2015),

drm
dz

= − δg
γg

+
3

2

(
1

βg
− 4

3

θm
γg

)
Ri+ rm

d

dz

(
ln

γg

β
3/2
g

)
, (5.13)

and neglecting the turbulence transport by omitting the turbulence components of

the profile coefficients,

drm
dz

= − δm
γm

+
3

2

(
1− 4

3

θm
γm

)
Ri+ rm

d

dz
(ln γm) . (5.14)
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The first term, −δm/γm, corresponds to the ratio of dimensionless turbulent produc-

tion to dimensionless energy flux, and the second term reflects the effect of buoyancy

on the spreading rate through Ri (van Reeuwijk and Craske 2015). We now con-

sider the case where w and b take Gaussian profiles, but allowing for a variable λ.

If only the mean components of the profile coefficients are considered, the resulting

expression is,
drm
dz

= −3

4
δm︸ ︷︷ ︸

T1

+
3

2

(
1− 2

1 + λ2

)
Ri︸ ︷︷ ︸

T2

, (5.15)

where, similarly to (5.7), the third term from (5.14) vanishes since γm = 4/3 is

constant for Gaussian profiles. For a self-similar neutral jet, Ri = 0 and δm is

constant, and so drm/dz is constant. For a negatively buoyant jet with variable λ

and Ri < 0, drm/dz need not be constant.

To examine the behaviour of the ratio λ, it is useful to also consider the spread-

ing rate of the buoyancy width, rmb defined in (5.2), since we have λ = rmb/rm

for Gaussian profiles. In this case we consider the conservation of buoyancy and

an equation for ‘squared mean buoyancy’, with the second order turbulence terms

neglected (Craske et al. 2017),

∂

∂r

(
rub+ ru′b′

)
+

∂

∂z

(
rwb

)
= 0, (5.16)

∂

∂r

(
rub

2
+ 2ru′b′ b

)
+

∂

∂z

(
wb

2
)

+ = 2ru′b′
∂b

∂r
. (5.17)

These equations may then be integrated from zero to infinity with respect to r,

and by defining additional non-dimensional profile coefficients, can be expressed as

a pair of ODEs,

d

dz

(
θ̂b
MB

Q

)
= 0, (5.18)

d

dz

(
γ̂b
MG

Q

)
= sgn(Bo)

MG3/2

QB
δ̂b, (5.19)

where (5.18) and (5.19) correspond to the conservation of buoyancy and mean

squared buoyancy, respectively. The profile coefficients are defined as,
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θ̂b =
2

wmgmr2mb

∫ r̃

0

wbrdr,

γ̂b =
2

wmg2mr
2
mb

∫ r̃

0

wb
2
rdr,

δ̂b =
4

wmg2mrmb

∫ r̃

0

u′b′
∂b

∂r
rdr,


(5.20)

where γ̂b is the dimensionless flux of mean squared buoyancy, δ̂b is the dimensionless

production of buoyancy variance, and θ̂b is an alternative expression of the dimen-

sionless buoyancy flux, θm. These are similar to the ODEs and profile coefficients

used by Craske et al. (2017), who defined them in terms of rm and bm, however, in

the present case they are defined in terms of rmb and gm. By applying the product

rule to (5.18) and (5.19), and using the definition of rmb from (5.2), the following

may be derived,

dB

dz
= −BQ

M

d

dz

(
M

Q

)
−B d

dz

(
ln θ̂b

)
, (5.21)

dG

dz
= sgn(Bo)

δ̂b
γ̂b

G3/2

B
− GQ

M

d

dz

(
M

Q

)
−G d

dz
(ln γ̂b) , (5.22)

drmb

dz
= sgn(Bo)

1

G1/2

dB

dz
− sgn(Bo)

B

2G3/2

dG

dz

= − δ̂b
2γ̂b
− rmb

2wm

dwm

dz
+ rmb

d

dz

(
ln
γ̂
1/2
b

θ̂b

)
,

(5.23)

which provides an analytical expression for the spreading rate of the buoyancy width,

rmb, consistent with the conservation of volume, buoyancy, and squared mean buoy-

ancy equations. The first term of (5.23), −δ̂b/(2γ̂b), is the ratio of dimensionless

production of buoyancy variance to the dimensionless flux of squared mean buoy-

ancy, and is a scalar analogue of the first term of (5.14). The second term relates

the behaviour of the velocity scale, wm, and buoyancy width, rmb, to the spreading

rate. The third is related to any similarity drift, and is zero if the flow is fully self-

similar. Invoking the assumption of Gaussian mean velocity and buoyancy profiles,

but allowing for a non-constant λ, the expression can be written as,

drmb

dz
= − δ̂b

8
(2 + λ2)︸ ︷︷ ︸
H1

− rmb

2wm

dwm

dz︸ ︷︷ ︸
H2

+ rmb
d

dz

(
ln

(
λ2 + 1√
λ2 + 2

))
︸ ︷︷ ︸

H3

, (5.24)
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since we have, for Gaussian profiles, θ̂b = θm = 2/(λ2 + 1) and γ̂b = 4/(λ2 + 2). Here

we clearly see that the third term, related to similarity drift, is zero if λ is constant.

For self-similar neutral jets wm ∼ z−1 and, since λ is constant, rmb ∼ rm ∼ z

(Fischer et al. 1979). If assumed to originate from a point source, then these scales

may be expressed as power laws of the form rmb = abz and wm = kz−1, where ab

and k are constants. From this, the second term of (5.24) becomes H2 = ab/2 and

is constant. Since H1 is also constant for self-similar jets, and H3 = 0, we obtain

the expected result that drmb/dz is constant.

Figure 5.15(a) and (b) show the terms of the velocity and scalar spreading

rate equations from (5.15) and (5.24), respectively. The two terms of drmb/dz

are similar with mean values of H1
∼= 0.081 and H2

∼= 0.084, giving a combined

total of drmb/dz ∼= 0.165, for the neutral jet assuming self-similar Gaussian pro-

files. The velocity spreading rate has only one non-zero term in this case, and is

drm/dz = T1 ∼= 0.151. If the rm and rmb power laws from above are assumed to

hold, then it follows that,

λ =
rmb

rm
=

(drmb/dz)

(drm/dz)
, (5.25)

for a neutral jet, which gives λ ∼= 1.10 using these values for drmb/dz and drm/dz.

This is in reasonable agreement with the mean value of λ from figure 5.6 of λ ∼= 1.18,

obtained by directly measuring the 1/e width of the buoyancy and scalar profiles.

For negatively buoyant jets with Gaussian velocity/buoyancy profiles and vari-

able λ, all the terms of (5.15) and (5.24) may be non-zero and vary with distance from

the source (or more negative Ri). Figure 5.15(a) shows the first term of drm/dz,

T1, slightly increasing with decreasing Ri. That is, an increasing −δm/γm, the ratio

of dimensionless turbulence production to the dimensionless mean energy flux. The

second term, T2, however, strongly increases in magnitude (with the opposite sign)

as Ri becomes more negative, reducing the overall magnitude of drm/dz. The effect

of negative buoyancy, captured by Ri < 0, thus reduces the overall spreading rate

of the velocity width.

Conversely, figure 5.15(b) shows that the overall spreading rate of the buoyancy

width increases with decreasing Ri, which is driven primarily by the growth of the

second term of drmb/dz, H2. This term captures the effect of the decelerating mean

flow on the spreading rate, and may be explained by considering the solution by

Morton (1959), plotted in figure 2.2, for the simplified case of a self-similar negatively

buoyant jet with constant α. Here we see that the gradient of the velocity scale,

dwm/dz, approaches negative infinity at the top of the jet (where Ri → −∞),

81



5.7. VELOCITY AND BUOYANCY SPREADING RATES

-0.3-0.2-0.10

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

-0.3-0.2-0.10

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 5.15: The individual terms (and the sum of them) of the velocity, (a), and
buoyancy/scalar, (b), spreading rate equations as defined in (5.15) and (5.24) re-
spectively. These assume Gaussian profiles and include only the mean components
of the profile coefficients, and are plotted against Ri for the negatively buoyant jet.
For the neutral jet, which has Ri = 0 and approximately constant terms, the mean
values are shown as horizontal lines for clarity.

the width scale approaches positive infinity, and the velocity scale approaches zero.

This can also be seen in the plots of Ĥ2 in figures 2.2(a) and (c), where the term is

relatively small and increases slowly with decreasing F̂ r for F̂ r & 2 (R̂i & −0.25),

but grows rapidly towards infinity as F̂ r reduces to zero. This may be interpreted

as the ‘forced’ and ‘buoyancy dominated’ regimes, respectively. It is clear from this

that the term H2 = −(rmb/2wm)dwm/dz increases as Ri → −∞ in this simplified

model, as is observed in the present flow. However, the model predicts two distinct

regimes where H2 increases slowly and then rapidly further from the source, which

is not as clear from figure 5.15(b). The first term of drmb/dz, H1, increases slightly

at the start of the jet, but after this remains reasonably constant and similar to the
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value of the neutral jet. The third term, H3, which is non-zero due to the varying

λ, is nevertheless relatively small and constant with an average value of H3
∼= 0.035.

The net effect of all the terms in both equations is therefore to increase drmb/dz

and decrease drm/dz with decreasing Ri (or increasing z).

In the case of negatively buoyant jets, the right most side of (5.25) does not

hold, since rm and rmb evolve differently and do not scale linearly with z. However,

if rm and rmb could be approximated as power laws of the form rm ∼= awz
m and

rmb
∼= abz

n, with constants aw, ab, n and m, then it follows that,

λ =
rmb

rm
∼=
m

n

(drmb/dz)

(drm/dz)
(5.26)

From this, it can be seen how the increasing drmb/dz and decreasing drm/dz, shown

in figure 5.15, can contribute to the increasing λ observed in figure 5.6.

Neutral and positively buoyant jets and plumes all tend towards a state of full

self-similarity in the far field (Fischer et al. 1979; Papanicolaou and List 1988). For

negatively buoyant jets, however, the mean velocity and buoyancy profiles continue

to grow at different rates with increasing axial distance or decreasing Ri. This occurs

over the entire range of Ri observed, including the ‘forced’ regime (Ri & −0.11).

This behaviour can be explained by (5.15) and (5.24), which describe the velocity

and buoyancy spreading rates as derived from the conservation equations, rather

than any fundamental differences in the physics governing the flow. The lack of self-

similarity in negatively buoyant jets, which may be characterised by the increasing

λ, is largely driven by the second term in both spreading rate equations, T2 and

H2. This is a natural consequence of the jets negative buoyancy reducing the mean

momentum to zero at the top of the jet, resulting in Ri → −∞ and a flow regime

dominated by negative buoyancy rather than momentum.

When using integral models to describe a negatively buoyant jet, such as (2.12)-

(2.14), it is reasonable to assume Gaussian velocity and buoyancy profiles and con-

sider only the mean components of the profile coefficients. From figure 5.4 we have

seen that assuming a linear α relation with Ri, given by (5.8) based on a constant

λ ∼= 1.46 and linear δm relation, gives good predictions of wc up to z/D ∼= 30.

However, it is not accurate over the full z/D range, nor does it take into account

the variable λ observed in figure 5.6. For a more complete model, the variation

of λ should be taken into account. One approach would be to integrate (5.13) to

obtain rmb, and then calculate λ from (2.29). This would require approximating the

terms H1 and H2, which themselves both contain λ. However, these are not the

dominant terms in (5.13), and as was seen in figure 5.15(b), H2 is reasonably small
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and constant with the mean value H3
∼= 0.035. The term H1 increases slightly over

the range 0.03 . −Ri . 0.06, but remains reasonably constant after this. As a first

approximation, this term may be assumed constant, taking the mean value from the

present data of H1
∼= 0.077. With a value for λ, (5.7) can then be used to model α,

and the integral model may be solved.

5.8 Conclusions

Negatively buoyant jets have been investigated experimentally using combined PIV

and PLIF measurements. This has allowed for mean velocity and buoyancy profiles,

as well as turbulence profiles, to be obtained for a range of local Fr. Although

there are differences between a neutral and negatively buoyant jet across the whole

range of Fr investigated, a ‘forced’ regime for Fr & 3.0 (Ri & −0.11) was iden-

tified, where the flows are more similar. It has been shown that the velocity and

buoyancy profiles take Gaussian shapes over a wide range of Fr, and scale with

the local centreline values, wc and bc, just as in a neutral jet, even outside of the

forced regime. However, the velocity fluctuations, w′2 and w′u′, increase relative to

w2
c , due to the strongly decelerating mean flow, which is more significant for lower

Fr. An integral ‘turbulence velocity scale’, w2
f , is therefore required to collapse the

turbulence fluctuation profiles onto a single curve, where as in a neutral jet w2
c or

w2
m is sufficient.

The mean velocity and buoyancy profiles have been shown to develop with dif-

ferent length scales across the full Fr range observed, and so the ratio of widths,

λ, varies with axial distance. New integral quantities, gm and rmb, were therefore

introduced that scale with bc and rb independent of λ. We have shown via a de-

rived expression for drmb/dz, given in (5.24) and plotted in figure 5.15, some of

the factors contributing to why the velocity and buoyancy profiles spread at dif-

ferent rates. The dominant term of the drmb/dz expression is the second term,

H2 = −(rmb/2wm)dwm/dz, which captures the decelerating mean flow of the jet.

This term grows for more negative Ri, causing drmb/dz to increase. This is con-

sistent with the broad behaviour of the simplified model of a negatively buoyant

jet described by Morton (1959). Conversely, drm/dz decreases along the jet as Ri

becomes more negative, due to the factor of Ri present in the second term, T2, of

(5.15). The increasing drmb/dz and decreasing drm/dz contributes to the increasing

λ observed.

Entrainment in negatively buoyant jets was also investigated by building on

the expressions derived by van Reeuwijk and Craske (2015), and applying them

84



CHAPTER 5. NEGATIVELY BUOYANT JETS

to flows with Gaussian profiles, but without assuming a constant λ. It was found

that entrainment is generally lower in the negatively buoyant jet than the neutral

jet in the forced regime near the source (Fr & 3.0, Ri & −0.11), with α in the

NBJ decreasing with more negative Ri. The finding that entrainment is lower in

negatively buoyant jets than neutral jets is consistent with several previous studies

(Papanicolaou et al. 2008; Kaminski et al. 2005). Further from the source, for

Fr . 2.0 (Ri . −0.25), α < 0 and there is a net radial outflow fluid from the

jet to the ambient. This can be explained by (5.7), the expression for αMG, which

becomes negative for sufficiently large and negative Ri. This phenomenon has also

been observed by Williamson et al. (2011) and Cresswell and Szczepura (1993) for

the inner flow of a fully developed fountain, where fluid was found to move from the

inner to the outer flow after some distance from the source.

The present investigation has provided evidence of several differences between

neutral and negatively buoyant jets, including the scaling of the turbulent velocity

profiles, the buoyancy and velocity spreading rates, a lower entrainment coefficient

and the eventual net ejection of fluid near the top of the NBJ. It is possible for an

integral model approach to be applied to negatively buoyant jets, and we have seen

that reasonable wc agreement can be achieved for z/D . 30 by assuming a linear

α relationship with Ri, based on empirical fits of the present data. However, the

model is not accurate over the full z/D range observed and thus is likely incomplete.

The expression for drmb/dz derived in (5.24) may be of use in further improving

predictions by modelling a non-constant λ, although further research is required.

Future research may also seek to understand the origins behind the increasing −δm
observed in NBJs, which motivated the inclusion of the δ̃ term in (5.9), the empirical

α relation. A detailed analysis of the governing equations, specifically applied to

negatively buoyant jets, may provide insight here.

85



Chapter 6

Fully developed fountains

The following chapter investigates the quasi-steady fully developed stage

of fountain flow (F), occurring after the initial rise of a negatively buoy-

ant jet (NBJ), where the flow consists of an inner/outer flow (IF/OF)

structure. Fountains and negatively buoyant jets with Fro = 30 are

compared alongside each other, allowing the effect of the return flow

to be identified. Unlike NBJs, the mean velocity and buoyancy profiles

in fountains do not take similar Gaussian shapes along the flow. The

changing shape of these profiles is most evident in the outer flow region,

while there is a degree of similarity in the inner flow. Fountains with

different source Froude number, Fro, are investigated, finding that mean

velocity/buoyancy profiles in the IF are similar in Fro = 15 and 30 foun-

tains at locations where the local Fr is similar. The Reynolds stress and

axial turbulence intensity profiles, however, are significantly affected by

the return flow and differ for the two Fro cases in both the inner and

outer flow regions.

6.1 Introduction

The present chapter will now consider the fully developed fountain stage of the

flow, which occurs after a negatively buoyant jet has collapsed back onto itself and

a quasi-steady state is reached. Forced fountains, Fro & 5.5 (Burridge and Hunt

2012), oscillate around a steady-state height lower than the initial rise reached by

the NBJ, zss < zi, and consist of a two layer, inner flow/outer flow structure such

as what was shown in figure 1.2(d).

Several previous investigations into fully developed fountains have involved tak-

ing bulk flow measurements, such as of zi and zss, to obtain Fro scaling relations
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for the rise heights (Turner 1966; Kaye and Hunt 2006; Burridge and Hunt 2012).

These have aided the classification of distinct fountain regimes by Fro, ranging from

very weak fountains (Fro . 1.0) to highly forced (Fro & 5.5), the latter being the

primary focus of the present investigation. Other studies have sought to investigate

overall entrainment and dilution in fountains, such as Burridge and Hunt (2016) who

proposed scaling relations for the entrained volume flux for the different fountain

classes.

Although fewer attempts have been made, there have been some investigations

involving local measurements of the internal velocity/scalar fields in fountains. Ex-

perimental studies by Mizushina et al. (1982) and Cresswell and Szczepura (1993),

and a DNS study by Williamson et al. (2011), all found that the profiles inside foun-

tains were not self-similar. The assumption of self-similarity is common in attempts

to model fountains. These typically treat the inner flow as an NBJ surrounded by an

opposing outer flow, assume self-similarity, and use constant entrainment coefficients

to describe mixing between the IF/OF layers and the ambient fluid (McDougall 1981;

Bloomfield and Kerr 2000; Hunt and Debugne 2016).

The present investigation will use combined PIV and PLIF measurements of the

velocity/scalar fields in fountains. A key focus will be on differences between the

development of NBJs and fountains, thus revealing the effect of the return flow, as

well as between fountains with different Fro. Time-averaged statistics for a fully

developed fountain are presented alongside those for an NBJ in §6.2, including a

discussion of the effect of Fro on these profiles. The radial expansion of the inner

flow of fountains is discussed in §6.5, where a scaling for the overall fountain width

is found that is consistent with previous literature (Mizushina et al. 1982).

6.2 Statistics

6.2.1 Velocity and buoyancy profiles

In section 5.3, it was shown that the mean velocity and scalar concentration (buoy-

ancy) profiles of a negatively buoyant jet are Gaussian over a wide range of local

Fr. For the fountain, Fr here is defined based on inner flow quantities only, with

the integrals in (2.9) being computed up to the IF/OF boundary, r̃ = rio, rather

than infinity. This is expressed below, where rio is defined as the location where the
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mean axial velocity is first equal to zero, w(r = rio) = 0.

Q = 2

∫ rio

0

wrdr, M = 2

∫ rio

0

w2rdr, F = 2

∫ rio

0

wbrdr, B = 2

∫ rio

0

brdr.

(6.1a − d)

With the same definitions for the velocity, length and buoyancy scales, which now

apply to the IF only,

wm =
M

Q
, rm =

Q

M1/2
, bm =

BM

Q2
. (6.2a − c)

and using the same definition of the local Froude and Richardson numbers,

Fr =
wm

(−rmbm)1/2
=

1

(−Ri)1/2
. (6.3)

When normalised by the centreline quantities, wc and cc, and respective half-

widths, r1/2,w and r1/2,c, the velocity and buoyancy profiles for an NBJ collapse

onto a single curve. Although the widths of these profiles grow at different rates

along the jet, evident from the non-constant λ shown in figure 5.6, the profiles still

maintain a similar Gaussian shape. These normalised velocity profiles, w/wc, and

scalar profiles, c/cc, are shown in figures 6.1(b) and 6.2(b) for a Fro = 30 NBJ at a

range of locations, along with the best fit profile for a neutral jet by Wang and Law

(2002) as a reference.

The profiles for a fully developed fountain, also with Fro = 30, are shown in fig-

ures 6.1(a) and 6.2(a), where it is immediately clear that the profiles do not collapse

in the same way as the NBJ. Although the velocity and scalar profiles are reason-

ably similar for r/r1/2,w . 1 and r/r1/2,c . 1, respectively, they diverge for radial

locations beyond this. For the velocity profile, this is particularly evident in the OF

where w < 0. The minimum (most negative) value of the velocity profile will be

denoted wd, with the radial location of this point denoted rd. Figure 6.1(a) shows

that wd/wc becomes increasingly negative with increasing axial distance, while the

location of the local minima, rd/r1/2,w, moves towards the centre. This is primarily

a consequence of the normalisation, where wc strongly decreases as the IF is decel-

erated under negative buoyancy, increasing the magnitude of wd/wc. The velocity

half-width, r1/2,w, also increases relative to rd, reducing the value of rd/r1/2,w. The

actual magnitude of wd is found to decrease towards zero at the top of the fountain,

and rd moves outwards as the IF expands. This can be seen in figure 6.1(c), which

shows w normalised by the source velocity, wo, with the radial coordinate normalised

by the source radius, ro. Since wo and ro are constant in a given experiment, these
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Figure 6.1: Mean velocity profiles, w, for a fully developed fountain, (a) and (c),
and negatively buoyant jet, (b) and (d), both with Fro = 30 at a range of axial
locations. The profiles are normalised by the local centreline value, wc, and half-
width, r1/2,w, in (a) and (b), and by source velocity, wo, and radius, ro, in (c) and
(d). The best fit profile for a neutral jet by Wang and Law (2002) is also shown as
a reference.

profiles directly reflect the magnitude and shape of w at a particular location.

The scalar profiles, normalised by both local and source quantities, are given

in figures 6.2(a)-(d) for the fountain and NBJ. Unlike the NBJ profiles in (b), the

fountain profiles in (a) do not collapse onto the same curve for the full radial width,

although they are reasonably similar in the inner-profile for r/r1/2,c . 1. This

means that, particularly in the outer-profile (r/r1/2,c & 1), they are no longer well

described by a similar Gaussian shape along the flow, appearing to get narrower

with axial distance. Figure 6.2(c), however, reveals that the narrowing is again a

89



6.2. STATISTICS

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20

0

0.1

0.2

0.3

0.4

0 5 10 15 20

0

0.05

0.1

0.15

0.2

Figure 6.2: Mean scalar profiles, c, for a fully developed fountain, (a) and (c), and
negatively buoyant jet, (b) and (d), both with Fro = 30 at a range of axial locations.
The profiles are normalised by the local centreline value, cc, and half-width, r1/2,c,
in (a) and (b), and by source concentration, co, and radius, ro, in (c) and (d). The
best fit profile for a neutral jet by Wang and Law (2002) is also shown as a reference.

consequence of the normalisation by a growing r1/2,c. The c/co profiles show how

the shape changes with increasing axial distance, narrowing in the middle section

(5 . r/ro . 12), but wider at the tails (r/ro & 15). Neither the velocity nor scalar

(buoyancy) profiles in a fully developed fountain can therefore be considered self-

similar in the sense that they have similar shapes along the fountain. Despite this,

the most significant shape-change of the profiles occurs in the outer region, with the

inner profiles approximately collapsing when normalised by their centreline values

and respective half-widths.
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Figure 6.3: Profiles of the mean axial turbulence fluctuations, w′2, for a fully de-
veloped fountain, (a) and (c), and negatively buoyant jet, (b) and (d), both with
Fro = 30. The profiles are normalised by the local centreline value, w2

c , and half-
width, r1/2,w, in (a) and (b), and by source velocity, w2

o, and radius, ro, in (c) and
(d). The best fit profile for a neutral jet by Wang and Law (2002) is also shown as
a reference.

6.2.2 Turbulence statistics

Profiles for the axial turbulence fluctuations and Reynolds stress, w′2 and w′u′, are

given in figures 6.3 and 6.4, normalised by both local and source quantities. The

development of these turbulence profiles in an NBJ were discussed in §5.3, where

they were found to increase with axial distance due to the strongly decelerating

mean flow, characterised here by wc. This differs to neutral jets and plumes, where

w′2 and w′u′ decrease at the same rate as the mean flow, and so the normalised

profiles, w′2/w2
c and w′u′/w2

c , are approximately constant along the flow (at least in
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the fully developed, self-similar region) (Panchapakesan and Lumley 1993; Hussein

et al. 1994; Wang and Law 2002).
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Figure 6.4: Profiles of the mean Reynolds stress, w′u′, for a fully developed fountain,
(a) and (c), and negatively buoyant jet, (b) and (d), both with Fro = 30. The
profiles are normalised by the local centreline value, w2

c , and half-width, r1/2,w, in
(a) and (b), and by source velocity, w2

o, and radius, ro, in (c) and (d). The best fit
profile for a neutral jet by Wang and Law (2002) is also shown as a reference.

For the fully developed fountain, the behavior of w′2 and w′u′ remaining high

relative to w2
c is more prominent than in the NBJ. The locally normalised profiles

in figures 6.3(a)-(b) and 6.4(a)-(b) increase more rapidly in the fountain than NBJ,

with large peak values of w′2/w2
c
∼= 0.2 and w′u′/w2

c
∼= 0.04 for the Fr = 2.23

profile. These are considerably higher than the NBJ peaks at a similar Fr = 2.21 of

w′2/w2
c
∼= 0.09 and w′u′/w2

c
∼= 0.02. Figures 6.3(c)-(d) and 6.4(c)-(d), show the w′2

and w′u′ profiles instead normalised by source conditions. These profiles decrease
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with axial distance, showing that the turbulence is actually decreasing along the

flow. This illustrates the fact that the increasing turbulence intensities observed in

figures 6.3(a)-(b) and 6.4(a)-(b) are primarily driven by the decreasing wc, rather

than an increase in turbulence production. From these it is clear that w′2 and w′u′

decrease with axial distance for both the NBJ and fountain, and is higher in the

fountain than the NBJ at similar local Fr. This is particularly true of the w′2/w2
o

profile, where the peak values in the fountain profiles are approximately twice that

of the NBJ at similar Fr. This is likely due to interactions between the IF/OF

that result in increased turbulence in the IF, and so also contributes to the greater

w′2/w2
c and w′u′/w2

c observed in the fountain.
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Figure 6.5: Profiles of the mean scalar fluctuations,
√
c′2, for a fully developed

fountain, (a) and (c), and negatively buoyant jet, (b) and (d), both with Fro = 30.
The profiles are normalised by the local centreline value, cc, and half-width, r1/2,c,
in (a) and (b), and by source concentration, c2o, and radius, ro, in (c) and (d). The
best fit profile for a neutral jet by Wang and Law (2002) is also shown as a reference.
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Figure 6.5(a)-(d) shows profiles of the mean turbulence scalar fluctuations,
√
c′2,

normalised by both local and source quantities. The
√
c′2/cc profiles for the NBJ,

shown in (b), are reasonably well collapsed with no discernible trend with axial

location, as was discussed in §5.3. The fountain profiles however, are not self-

similar, and do not appear to follow a clear increasing or decreasing trend with axial

distance.

Profiles of the axial and radial fluxes, w′c′ and u′c′, for the fountain and NBJ are

given in figures 6.6(a)-(c) and 6.7(a)-(c). When normalised by local quantities, as

in 6.6(a) and 6.7(a), the profiles clearly increase with axial distance. A moderate

increase can also be observed between the NBJ profiles nearest and furthest from

the source (z/D = 19.77 and z/D = 38.86), although the trend is less significant

and there is some scatter in the profiles between these locations. This increase may

also be attributable to the NBJ still developing over this z/D range. As with the

velocity fluctuations, the growth in the turbulent scalar profiles for the fountain is

primarily a result of normalising by the decreasing wc, rather than an increase in

axial/radial scalar transport. This can be seen in figures 6.6(c) and 6.7(c) where the

profiles, when normalised by source parameters, are shown to decrease in magnitude

with axial distance. It is also notable that the w′c′ profiles for the fountain drop

considerably below zero in the outer profile. This corresponds to the OF region

where the direction of axial mean flow is reversed, and so a sign reversal of the axial

scalar flux is expected.

Neither the mean velocity/scalar profiles, nor the turbulence fluctuations, scale

well with the centreline values in fully developed fountains across the full width

of the flow. Another potential scaling option would be to include the OF velocity,

which could be characterised by the velocity at the location of ‘maximum outer-flow’,

w(r = rd) = wd. The mean velocity profile could then be normalised by a character-

istic relative IF/OF velocity, wc−wd. However, since wc >> |wd| for the majority of

the fountain height, this gives similar results to the wc normalisation, and the pro-

files do not collapse across the full fountain width. This velocity scale is, however,

relevant when considering entrainment between these two regions, and is discussed

in §7.3.2. Another approach would be to consider the quantity, (w − wd)/(wc − wd),

which is the fountain velocity relative to the moving reference frame of the OF. This

is always positive and has a centreline value of 1. Although this could potentially

be useful from a modelling point of view, it was also not sufficient to collapse the

profiles.
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Figure 6.6: Profiles of the mean axial turbulent flux, w′c′, for a fully developed
fountain, (a) and (c), and negatively buoyant jet, (b) and (d), both with Fro = 30.
The profiles are normalised by the local product, wccc, and half-width, r1/2,c, in (a)
and (b), and by source quantity, woco, and radius, ro, in (c) and (d). The best fit
profile for a neutral jet by Wang and Law (2002) is also shown as a reference.
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Figure 6.7: Profiles of the mean radial turbulent flux, u′c′, for a fully developed
fountain, (a) and (c), and negatively buoyant jet, (b) and (d), both with Fro = 30.
The profiles are normalised by the local product, wccc, and half-width, r1/2,c, in (a)
and (b), and by source quantity, woco, and radius, ro, in (c) and (d). The best fit
profile for a neutral jet by Wang and Law (2002) is also shown as a reference.
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6.3 Fro dependence

In §6.2.1-6.2.2, mean and turbulence statistics were presented for a fountain and

negatively buoyant jet, both with Fro = 30, at axial locations where they had a

similar local Fr. Now, statistics for two fountains with different source Froude

numbers, Fro = 30 and 15, will be presented also for similar Fr. Figure 6.8(a)-(d)

shows w/wc and c/cc profiles for both these fountains at Fr = 3.1 and Fr = 1.3.

The velocity profiles in (a) and (c) are very similar for 0 . r . rd at both Fr

locations. That is, up to approximately the radial the location of ‘maximum return

flow’. The profiles with Fr = 3.1 are similar even beyond this point, over the full r

range obtained, although this is not the case at all Fr locations. The scalar profiles

in (b) and (d) are also similar in this r range, where they agree up to near the ×
markers that correspond to rd, while differing somewhat in the outer profile.
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Figure 6.8: Normalised w and c profiles in Fro = 30 and 15 fountains. The profiles
correspond to axial locations where the local Fr in both flows are approximately
equal. Additionally, ◦ markers corresponding to radial location, rio, and × markers
corresponding to rd, are also shown on each profile.

The agreement of these profiles between the two Fro fountains at similar Fr

is better than those in figures 6.1(a) and 6.2(a), which showed profiles at differ-
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Figure 6.9: Normalised w′u′ and u′c′ profiles in Fro = 30 and 15 fountains. The
profiles correspond to axial locations where the local Fr in both flows are approxi-
mately equal. Additionally, ◦ markers corresponding to radial location, rio, and ×
markers corresponding to rd, are also shown on each profile.

ent Fr locations for the same Fro = 30 fountain. The latter w/wc profiles only

agreed up until r/r1/2,w . 1, which is prior to the IF/OF boundary, rio. The c/cc

profiles in figure 6.2(a) only approximately agree for r/r1/2,w . 1, and are signif-

icantly different beyond this. In figure 6.8(b) and (d) the agreement between the

Fro = 30 and 15 profiles is closer over the full profiles shown, but particularly for

r/r1/2,c . 1. Together, figures 6.1, 6.2 and 6.8 show that despite the locally nor-

malised velocity/scalar profiles not being generally self-similar within an individual

fountain, their shape for r . rd does not depend significantly on Fro and is instead

controlled by Fr. That is, at a given local Fr, these profiles in different Fro foun-

tains are similar up to the location of maximum return flow, rd, with the closest

agreement up to the IF/OF boundary, rio. It should be noted that both these foun-

tains have Fro in the ‘highly forced’ regime (Fro & 5.5), and this may not hold in

lower Fro fountains, particularly those in the the ‘intermediate’ regime and below

(Fro . 2.8) (Burridge and Hunt 2012).
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Figure 6.9 shows w′u′/w2
c and u′c′/wc cc for both Fro = 30 and 15 fountains at

similar Fr locations. In contrast to the mean velocity/scalar profiles in figure 6.8,

these turbulence quantities clearly have both a Fr and Fro dependence and are not

generally similar in the two fountains at the same Fr. This difference is likely due

to interactions with the outer flow having an effect on the turbulence production in

the inner flow, since the OF at a given Fr location will be different in a Fro = 30

and 15 fountain. Although differences in the OF may also affect the mean profiles,

w and c in the IF, this is largely captured by wc and cc in the normalisation. A

Fro dependence in w′u′/w2
c and u′c′/wc cc at similar Fr locations is not seen in

negatively buoyant jets, which do not have an OF present. This can be seen in

figures 6.10(a)-(c), which show the profiles for Fro = 30 and 10 negatively buoyant

jets at locations corresponding to Fr ∼= 3.5 and Fr ∼= 3.1. Although these are

somewhat noisier than in the fountain, both the w′u′/w2
c and u′c′/wc cc profiles are

similar shapes and magnitudes at the two Fr locations. This supports the conjecture

that the Fro dependence observed in figure 6.9 for the fountain is primarily a result

of the return flow, which is not present in the NBJ.

6.4 Centreline velocity decay

Figure 6.11 shows the decay of the centreline velocity, characterised by wo/wc, for

10 ≤ Fro ≤ 30 fountains and negatively buoyant jets plotted with z/D. Data for a

neutral jet, which has Fr =∞, is also shown as a reference. As discussed in §5.3.1,

in neutral jets this corresponds to a w−1c ∼ z scaling. In NBJs, this deceleration is

stronger and the relationship between w−1c and z is generally non-linear. Near the

source, however, where the local Fr is high and the flow is momentum dominated,

NBJs are more similar to neutral jets and wo/wc could be approximated as linear.

This region was referred to as the ‘forced’ regime in chapter 5, and corresponded to

z/D . 26 (Fr & 3.0) for the Fro = 30 NBJ.

At similar z/D locations, the Fro = 10, 20 and 30 fountains all decelerate more

rapidly than the corresponding negatively buoyant jet with the same Fro. This is

most evident in the Fro = 30 case, where data has been gathered over a larger

z/D range, and reveals the significance of the return flow on the development of wc.

The Fro = 10 NBJ data, which is close to the source and in the ‘forced’ regime,

almost coincides with the linear fit of the jet data. It is possible that all NBJs with

sufficiently high Fro approach this ‘neutral jet line’ near the source where the flow

is increasingly momentum dominated, although additional research is required to

affirm this. For fountains, wo/wc may never closely resemble this jet-like state, since
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Figure 6.10: Normalised w′u′ and u′c′ profiles in Fro = 30 and 10 negatively buoyant
jets. The profiles correspond to axial locations where the local Fr in both flows are
approximately equal.
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Figure 6.11: The decay of the mean centreline velocity, wc/wo, plotted with z/D for
fountains and negatively buoyant jets with 10 ≤ Fro ≤ 30, and a neutral jet.

the presence of the return flow will continue to affect the IF even at the source.

6.5 Radial expansion and fountain width

The radial expansion of a fountains inner flow may may be characterised by the

radial location of the IF/OF boundary, rio, or by other measures of the inner flow

velocity profile, such as the half-width, r1/2,w. Figure 6.12(a) shows r1/2,w/D with

axial distance, z/D, for Fro = 30 and 15 fountains, a Fro = 30 NBJ and a neutral

jet. For the fountains, rio/D, is also shown. For a large portion of their height,

the neutral jet, Fro = 30 fountain and NBJ, all have similar r1/2,w/D at similar

axial locations. This does not mean that the velocity profiles are similar at these

locations, as it was shown in figure 6.11(a) that wc is very different in these flows

at the same z/D. The r1/2,w agreement may be a result of the fact that these flows

had similar source conditions, 0.58 . wo . 0.67 m s−1 and D = 10 mm, and were

obtained using the same experimental set up. It is not expected that all fountains

and NBJs with arbitrary Fro and source conditions will have similar r1/2,w/D to a

neutral jet at the same z/D locations.

In the fountains, r1/2,w and rio increases with z/D for the majority of their height,

followed by a sharp decrease after some critical point. Since the overall width of a

fountain decreases in the cap region, the IF width scales could also be expected to

decrease in the cap. The location where rio and r1/2,w start to decline may therefore

101



6.5. RADIAL EXPANSION AND FOUNTAIN WIDTH

0 2 4 6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10 20 30 40

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 6.12: The velocity half-width, r1/2,w, for Fro = 30 and 15 fountains, a
Fro = 30 NBJ, and a neutral jet. The radial location of the IF/OF boundary, rio,
is also shown for the fountains. In (a), r1/2,w/D and rio/D is plotted against z/D,
with vertical lines showing the location of the steady state rise height, zss/D, of
the two fountains. In (b), an alternative normalisation is used, r1/2,w/(FroD) and
rio/(FroD), and is plotted with Fr.

reflect the beginning of the cap region, which will be denoted zc. This occurs at

zc/D ∼= 15 for the Fro = 15 case and zc/D ∼= 28 for the Fro = 30 case. The

same values are obtained using either the location of maximum r1/2,w or rio, and is

approximately zc/D ∼= Fro for both fountains. Vertical lines are also shown in figure

6.12(a) to indicate the predicted steady state rise height of the fountains based on

the high Fro scaling relation, zss/ro = 2.46Fro (Turner 1966; Kaye and Hunt 2006).

If the cap region was assumed hemispherical, then the thickness of the cap would

be an approximation of the overall fountain radius, rf . If, additionally, zc/D = Fro

was presumed to be a universal scaling for the start of the cap region, then by using
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the aforementioned zss relation we obtain,

rf
D

=
zss
D
− zc
D

= 0.23Fro. (6.4)

This is in good agreement with proposed relation by Mizushina et al. (1982) of

rf/D = 0.26Fro, who directly measured the width of fountains with 3 . Fro . 258.

The agreement supports the earlier assumption that the location of maximum rio

and r1/2,w can be used to estimate the start of the cap region.

Figure 6.12(b) shows the radial expansion of the IF normalised by Fro, with

r1/2,w/(FroD) and rio/(FroD) plotted against Fr. The start of the cap region

occurs at very similar Fr for both fountains, Fr = 1.1 for the Fro = 15 case and

Fr = 1.3 for Fro = 30. These are similar to the value proposed by Shrinivas and

Hunt (2014) of Fr = 1.4, and used by Hunt and Debugne (2016) in their theoretical

model of a fountain. Although there is some discrepancy between the two fountains

for Fr & 4 in figure 6.12(b), possibly due to their profiles still developing, the values

for both Fro are are in reasonable agreement at similar Fr. This suggests that not

only does the overall fountain width scale with Fro, as was reported by Mizushina

et al. (1982) and implied by (6.4), but so does the IF velocity profile at a given Fr.

This implies that, for a given local Fr, the width of the the IF is a fixed fraction of

the overall width across different Fro fountains. This fraction, however, varies along

the height of a particular fountain and depends on the local Fr. This is consistent

with the arguments made in §6.3 with regard to figure 6.8(a) and (b), where the

shape of the velocity profiles in the inner flow are not significantly affected by Fro,

and are instead governed by Fr.

6.6 Conclusions

Fully developed fountains, with an established IF/OF structure, have been investi-

gated using velocity and buoyancy measurements obtained from combined PIV and

PLIF experiments. This data has been compared to negatively buoyant jets, which

do not have an OF, that were investigated using the same experimental set-up. Mean

and turbulence profiles for fountains and NBJs at similar local Fr were presented

in §6.2.1-6.2.2, revealing the effect that a return flow has on the IF of a fountain.

Unlike NBJs, the mean w and c profiles do not collapse when normalised by their

local centreline value and respective half-width, and so are not self-similar in this

sense. This is consistent with previous studies that have also obtained data on the

internal velocity/scalar fields (Williamson et al. 2011; Cresswell and Szczepura 1993;

Mizushina et al. 1982). Despite this, there is a degree of similarity for the inner flow

103



6.6. CONCLUSIONS

of the fountain, with the w/wc and c/cc profiles being reasonably similar for r . rio

over the range of axial locations investigated.

Fountains with different source Froude numbers were also investigated, with

figure 6.8 showing that the normalised mean velocity and scalar profiles of Fro = 15

and 30 fountains at similar local Fr locations were similar for 0 . r . rd. This was

not the case for the turbulence quantities, such as w′u′/w2
c and u′c′/w c in figure 6.9,

where there is a clear Fro dependence. This can be attributed to differences in the

OF at a particular local Fr location in the two fountains, which affects the profiles

in both the inner and outer flow regions.

The growth of the inner flow was presented for Fro = 15 and 30 fountains in

figure 6.12, where both the velocity half-width, r1/2,w, and IF/OF boundary, rio,

were plotted with axial distance and local Fr. These were shown to increase along

the fountain as the inner flow expands until they reach some maximum value, after

which they rapidly decrease towards zero. This critical location where the IF has

reached its maximum thickness was interpreted as the start of the cap region, and

was used to estimate the overall fountain width. This could be expressed through

(6.4) and is consistent with the relation proposed by Mizushina et al. (1982), who

directly measured the width of fountains using flow visualisation.
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Chapter 7

Entrainment in fountains and

negatively buoyant jets

The following chapter considers the integral models first introduced in

chapter 2 and applied to a negatively buoyant jet in chapter 5, and ex-

tends them to fully developed fountains. A focus is placed on character-

ising entrainment between the inner and outer flow regions of fountains,

which is then compared to entrainment in negatively buoyant jets. In

fountains, entrainment between the IF/OF is shown to depend on the

local Richardson number, Ri, through a derived expression for the en-

trainment coefficient, α. Fountains are found to have α < 0 for the

majority of their height, implying a net radial outflow of fluid from the

IF to the OF. An alternative description of entrainment is considered,

the ‘decomposed top-hat’ model, where the radial flow is separated into

inflow and outflow components that are then estimated using the present

experimental data. The radial inflow is found to be proportional to the

axial IF velocity, which is similar to the classical description of entrain-

ment in pure jets/plumes, while the outflow depends on the local Ri.

7.1 Introduction

Entrainment in negatively buoyant jets was explored in chapter 5 using integral

models originally derived to describe neutral/positively buoyant jets and plumes

(Morton et al. 1956; Priestley and Ball 1955; van Reeuwijk and Craske 2015). This

could be pursued since NBJs do not have a return flow and hence have a structure

that resembles these jet-like flows. Fully developed fountains, however, have an

inner/outer flow structure that could be described as an NBJ surrounded by an
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opposing shear flow. The inner flow of a fountain is then affected by interactions

with the return flow, and the previously discussed integral models, which are valid for

homogeneous quiescence environments, cannot be directly applied in their current

form. Additionally, the lack of full self-similarity in fountains poses a limit to the

potentially applicability of integral models. However, since we have that velocity

and scalar profiles approximately collapse in the IF, as was discussed in §6.2.1, there

is still a degree of self-similarity in the IF that makes these models useful to consider.

McDougall (1981) attempted to model a fountain by considering this IF/OF

structure, assuming self-similar profiles, and using constant entrainment coefficients

to describe mixing between the IF/OF regions and between the OF/ambient fluid.

Bloomfield and Kerr (2000) built upon this model and assessed alternate entrain-

ment formulations, including relating entrainment into the IF to the relative veloc-

ity difference of the IF/OF (as assumed by McDougall (1981)), as well as to the

IF velocity only. Both formulations under-predicted the steady state rise height,

zss, with the latter approach giving predictions closer to experiments. Hunt and

Debugne (2016) developed a similar integral model, but additionally accounted for

entrainment into the cap region. They assumed a constant entrainment coefficient

that described radial flow from the OF to the IF, and obtained predictions for rise

height, IF width and velocity that were in good agreement with experiments. Other

experimental and numerical studies, however, have reported that the radial flow of

fluid is primarily in the opposite direction, from the IF to the OF (Williamson et al.

2011; Cresswell and Szczepura 1993). In reality, the complex mixing process that

occurs between the IF/OF is unlikely to be fully captured by a simple constant

entrainment coefficient, and additional research would be useful here. Differences

between entrainment in negatively buoyant jets without a return flow, and in the

fully developed fountain with the IF/OF structure, has also not been given much

attention (Hunt and Debugne 2016).

An aim of the present chapter is to extend the integral model approach applied

to NBJs in chapter 5 to study fully developed fountains. A particular focus will be

placed on the inner flow, with the aim of characterising mixing between the IF/OF

regions. While previous modelling attempts have assumed constant entrainment

coefficients to describe radial flow between the layers (McDougall 1981; Bloomfield

and Kerr 2000; Hunt and Debugne 2016), this study will utilise the present ex-

perimental data to explore alternative entrainment formulations without the need

for these assumptions. Entrainment between the IF/OF of fountains is discussed in

§7.2 in the context of an integral model framework, where it is found to be primarily

from the IF to the OF for the majority of its height. An alternative description of
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entrainment that may be applied to both fountains and NBJs is proposed in §7.3,

where it is decomposed into an approximately constant inflow component and a

locally varying outflow component in the context of a ‘decomposed top-hat’ model.

7.2 Integral models

As was discussed in §2.4, it is possible to derive an integral model to describe jets and

plumes with arbitrary buoyancy in a homogeneous environment from the conserva-

tion of volume, momentum, buoyancy and axial kinetic energy given in (2.4)-(2.7)

(Morton et al. 1956; Priestley and Ball 1955). By integrating these equations from

r = 0 to infinity, and neglecting second-order turbulence contributions, the system

of ODEs in (2.19)-(2.22) was obtained. These were written in terms of the local vol-

ume, momentum and buoyancy fluxes, Q, M and F defined in (2.9), several profile

coefficients in (2.16), and the entrainment coefficient, α in (2.17). There were all

defined in terms of an integration limit r̃, which was set to r̃ =∞ throughout §2.4

and chapter 5.

Since (2.4)-(2.7) are valid for any axisymmetric flow in a homogeneous environ-

ment under the Boussinesq assumption, they may also be applied to a fully developed

fountain. A system of ODEs similar to (2.19)-(2.22) may then be derived for the

inner flow of a fountain by integrating (2.4)-(2.7) from r = 0 to rio, the IF/OF

boundary, instead of infinity. In this case, we let r̃ = rio in (2.9)-(2.17), and all

integral quantities and profile coefficients correspond to the inner flow,

dQ

dz
= 2αM1/2 (7.1)

dM

dz
=

FQ

θmM
− 2

(
ru′w′

)
r=rio

(7.2)

dF

dz
= −2

(
rub
)
r=rio

− 2
(
ru′b′

)
r=rio

(7.3)

d

dz

(
γm

M2

Q

)
= δm

M5/2

Q2
+ 2F. (7.4)

The higher order turbulence terms, i.e. turbulence components of the profile co-

efficients, have been neglected here. The continuity and kinetic energy equations,

(7.1) and (7.4), are in the same form as (2.12) and (2.15) since w(r = rio) = 0, but

the momentum and buoyancy equations have non-zero boundary conditions arising

because u′w′, u′b′ and b do not go to zero at rio. In the present formulation, α is

related to the integral scales of the IF only, and describes the exchange of fluid be-

tween the IF and OF, where α > 0 corresponds to fluid moving from the OF to the
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IF. An alternative approach may be to define the velocity scale in the definition of

α in (2.17) so that it includes information about the outer flow velocity. However,

since no assumptions are being made regarding the value or behaviour of α, any

substitution here can be made valid provided it is consistent with the conservation

equations.

Similarly to the derivation or (2.23), an expression for α for the inner flow of

a fountain may be derived using (7.1), (7.2) and (7.4) (van Reeuwijk and Craske

2015),

α = − δm
2γm

+

(
1− θm

γm

)
Ri+

Q

2M1/2

d

dz
(ln γm)− 2Q

M3/2

(
ru′w′

)
r=rio

. (7.5)

This expression is almost identical to (2.23), except it includes a non-zero shear

stress term at the boundary, and all integral quantities and profile coefficients are

defined up to rio.

Carazzo et al. (2010) derived a similar set of equations to (7.1)-(7.4) for the

IF of a fountain, but went on to construct additional conservation equations for

w3 and wb in order to replace the boundary conditions with integral profiles, and

obtained a ‘confined top-hat’ model for the flow. For the purposes of the present

investigation, it is sufficient to derive only the w3 equation, obtained by multiplying

the momentum equation, (2.5), by 3w2,

∂

∂r

(
ruw3 + 3ru′w′w2

)
+

∂

∂z

(
rw4

)
= 3rw2b+ 6rwu′w′

∂w

∂r
. (7.6)

This may then be integrated with respect to r from 0 to rio giving,

d

dz

(
Γm

M3

Q2

)
= 6∆m

M7/2

Q3
+ 3µm

MF

θmQ
, (7.7)

which is written in terms of the new profile coefficients,

µm =
1

w2
mbmr

2
m

∫ r̃

0

w2brdr,

Γm =
1

w4
mr

2
m

∫ r̃

0

w4rdr,

∆m =
1

w4
mrm

∫ r̃

0

ww′u′
∂w

∂r
rdr,


(7.9)

with r̃ = rio. Note that this approach may also be applied to jets and plumes in a

homogeneous environment by setting r̃ =∞ in the profile coefficient definitions, and
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Figure 7.1: The entrainment coefficient, α, plotted with local Ri for the inner flow
of a Fro = 30 and Fro = 15 fountain (F), and of a Fro = 30 negatively buoyant jet
(NBJ), as calculated using (7.5) and (7.10).

integrating the conservation equations to infinity. In this case, the same expression

as (7.7) is obtained.

By applying the product rule to (7.7), and using (7.1) and (7.4), a new expression

for α without any boundary conditions may be derived,

α =
3

2

(
δm
γm
− 4∆m

Γm

)
+ 3

(
θm
γm
− µm

Γm

)
Ri+

Q

M1/2

d

dz

(
ln

Γm

γ
3/2
m

)
, (7.10)

which is valid for arbitrary velocity and buoyancy profiles and does not make any

assumptions about the self-similarity of the flow. By setting r̃ = rio in the profile

coefficient and α definition, this describes entrainment between the inner and outer

flow of a fully developed fountain. As with (7.9), it may also be applied to jets

of arbitrary buoyancy in a homogeneous environment by setting r̃ = ∞. This is

somewhat similar to the expression for α in Carazzo et al. (2010) (their equation

(4.38)), which is valid for self-similar profiles and corresponds to entrainment in

their top-hat model of the flow. Although both formulations are equally valid with

respect to their given framework, (7.10) may be immediately applied to both the IF

of a fountain or a negatively buoyant jet with arbitrary profiles, using the classical

integral velocity, width and buoyancy scales defined in (2.10).

Both (7.5) and (7.10) are valid expressions for the entrainment coefficient of
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the inner flow of a fountain (r̃ = rio), as well for a negatively buoyant jet (r̃ =∞).

Using data from the present experiments, it is possible to calculate each of the profile

coefficients present in these expressions, as well as directly measure the boundary

condition,
(
ru′w′

)
r=rio

in (7.5). Figure 7.1 shows α calculated using both (7.5) and

(7.10), for two fully developed fountains with Fro = 30 and Fro = 15, as well as

for a negatively buoyant jet with Fro = 30. As in §5.5, Gaussian velocity/buoyancy

profiles were assumed for the NBJ, which results in γm = 4/3, Γm = 1, and the third

term in (7.5) and (7.10) equalling zero. For the fountain, Gaussian profiles were not

assumed, though the third terms in these two equations were found to be negligible

and so have been neglected.

As discussed in §5.5 for the negatively buoyant jet, α < 0 for Ri . −0.25 in

figure 7.1, indicating there is a mean radial outflow of fluid from the jet. For the

Fro = 30 fountain, α becomes negative near Ri ∼= −0.13, reflecting a mean outflow

of fluid from the IF to the OF. For the Fro = 15 fountain, α < 0 for Ri . −0.04,

and is close to zero for Ri & −0.04. This is consistent with studies by Williamson

et al. (2011) (Fro = 7) and Cresswell and Szczepura (1993) (Fro ∼= 3.2), who

predominately observed a mean radial flow from the IF to OF, other than in a small

region near the source. More generally, figure 7.1 shows good agreement between the

α estimated from (7.5), which uses a direct measurement of the IF/OF boundary

condition, and (7.10), which uses the new profile coefficients defined in (7.9). This

provides a reasonable validation of the approach taken by Carazzo et al. (2010) and

here, of replacing the IF/OF boundary conditions by integral profiles obtained from

the additional conservation equation.

7.3 Decomposing entrainment

Turbulent entrainment is generally considered the process where fluid is transported

from a non-turbulent to turbulent region across a turbulent/non-turbulent interface

(TNTI) (e.g. Mistry et al. (2016)). For the negatively buoyant jet, α < 0 in figure

7.1 indicates there is a mean radial outflow of fluid from the turbulent jet to the

quiescent ambient. For the fully developed fountains, the size and sign of α indicates

the direction and magnitude of mean radial flow between the IF and OF. In these

contexts, α is simply a parameter constrained by the conservation equations, and

is therefore not necessarily a measure of ‘turbulent entrainment’ in the traditional

sense. A negatively buoyant jet with α < 0 could undergo instantaneous ‘entrain-

ment’ (i.e. flow from the ambient across the TNTI into the jet) at some times, while

expelling fluid at others. For a fountain, although the IF/OF boundary is between
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two turbulent regions rather than a TNTI, there can still be instantaneous fluid

transport across this boundary in either direction, separate from the mean flow.

Such exchange of fluid across a turbulent shear layer is still often regarded as ‘en-

trainment’ (Morton 1962; McDougall 1981), and we will also take this interpretation

in the context of fountains.

As discussed in §5.5, the α < 0 in the NBJ is a natural consequence of the conser-

vation equations, being primarily driven by the Ri term in (2.23). This term becomes

increasingly negative as Ri→ −∞ as the mean flow decelerates and wm → 0. For a

fountain, although α is additionally affected by the return flow, we would still expect

α < 0 for sufficiently negative Ri as the inner flow velocity approaches zero. This

section will explore an alternative approach to characterising entrainment in NBJs

and fountains, where it will be separated into an inflowing ‘turbulent entrainment’

contribution occurring simultaneously with a mean outflow of fluid.

7.3.1 Decomposed top-hat model

Consider a control volume of a thin horizontal slice of an axisymmetric fully devel-

oped fountain, such as one taken from the fountain schematic shown in figure 7.2.

The slice should be taken before the cap, z < zc, where there are distinct IF and

OF regions (e.g. Ri ≥ −0.5) (Shrinivas and Hunt 2014; Hunt and Debugne 2016).

For simplicity, the fountain is presumed to be orientated vertically upwards with a

denser IF than OF (the opposite but equivalent case to the present experiments),

and have top-hat vertical velocity and buoyancy profiles. Here we have, for the inner

and outer flows, ŵif and ŵof denoting the vertical velocities, r̂if and r̂of the widths,

and ĝif = g(ρe − ρ̂if )/ρe and ĝof = g(ρe − ρ̂of )/ρe the buoyancies. Here ρ̂if , ρ̂of and

ρe are the densities of the IF, OF and ambient, and so we have ĝif < 0 and ĝof < 0.

There is also a radial exchange of fluid between the inner and outer flow that is

presumed to go in both directions simultaneously. The velocity of fluid ‘entrained’

into the IF from the OF is denoted by ûe, while velocity of outflowing fluid from

the IF to the OF is ûout. Fluid entrained into the OF from the ambient has a radial

velocity ûa. The equations for conservation of volume, momentum and buoyancy

flux for the inner flow of this system are then,

dQ̂if

dz
= 2r̂if ûe − 2r̂if ûout (7.11)

dM̂if

dz
= −2r̂if ûeŵof − 2r̂if ûoutŵif + r̂2if ĝif (7.12)

dF̂if

dz
= 2r̂if ûeĝof − 2r̂if ûoutĝif , (7.13)
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Figure 7.2: Schematic diagram of a fully developed fountain.

where Q̂if = r̂2if ŵif , M̂if = r̂2if ŵ
2
if and F̂if = r̂2if ŵif ĝif are the (scaled) volume,

momentum and buoyancy fluxes.

In a fully developed fountain, the mean radial velocity is from the IF to the OF for

the majority of its height. A mean radial outflow is also seen in negatively buoyant

jets that do not have a return flow, where it is driven by the decelerating mean

flow as characterised by Ri → −∞. Despite this, there may still be instantaneous

‘entrainment’ from the OF to the IF of a fountain across the IF/OF interface (or

from the ambient to the jet in the case of an NBJ). The present analysis will treat

ûe as the ‘entrainment velocity’, and assume that it is proportional to the velocity

of the IF by an entrainment coefficient, αe,

ûe = αeŵif . (7.14)

Other options for this entrainment relation, such as replacing ŵif with ŵif − ŵof ,

the relative difference between the IF/OF, are explored in §7.3.2. No assumptions

will be made about the velocity of the outflowing fluid, ûout, which in practice is

likely dependent on both the inner and outer flow. In this formulation, even if

ŵof = 0 and ĝof = 0 and the flow is effectively a negatively buoyant jet without a

return flow, there may still be a radial outflow of fluid occurring simultaneously to

entrainment (i.e. ûe > 0 and ûout > 0). This is a key difference when compared to

previously proposed fountain models, such as by McDougall (1981) or Bloomfield

and Kerr (2000), who treated flow from the IF to OF as proportional to ŵof , and
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related them by second entrainment coefficient. The conservation equations for the

present system may then be written as,

dQ̂if

dz
= 2αer̂if ŵif − 2r̂if ûout (7.15)

dM̂if

dz
= −2αer̂if ŵif ŵof − 2r̂if ûoutŵif + r̂2if ĝif (7.16)

dF̂if

dz
= 2αer̂if ŵif ĝof − 2r̂if ûoutĝif , (7.17)

This system of equations will be referred to as the ‘decomposed top-hat’ model, and

may also be applied to negatively buoyant jets by setting ŵof = ĝof = 0.

If the top-hat variables in (7.15)-(7.17) are replaced with integral quantities

calculated from the experimental data, then the only unknowns in the volume and

momentum flux equations are αe and ûout. For the inner flow velocity and radius,

we set ŵif = wm and r̂if = rm as defined using (2.9) and (2.10a-b) with r̃ = rio

for a fountain and r̃ = ∞ for an NBJ. We will define the outer flow velocity, ŵof ,

similarly to wm except the integrals in (2.9) are evaluated from rio to infinity. For

the inner flow buoyancy scale, we take ĝif = gm as defined in (5.2), again using

r̃ = rio for fountains and r̃ = ∞ for NBJs. The outer flow buoyancy, ĝof , may

be similarly defined except with the integration limits set from r = rio to infinity.

The derivatives, dQ̂if/dz and dM̂if/dz, are estimated using a second order accurate

finite difference stencil. When referring exclusively to negatively buoyant jets, which

do not have an outer flow, the subscript ‘if ’ is omitted from the notation.

With all top-hat variables in (7.15) and (7.16) defined based on local integral

scales, the pair of equations may then be solved simultaneously to obtain estimates

for αe and ûout along the fountain and NBJ. Figure 7.3 shows αe plotted with local

Ri for Fro = 30 and Fro = 15 fountains, and a Fro = 30 NBJ. Here only results

prior to the cap region are shown, since this is where the present top-hat model

is expected to be valid. The entrainment coefficient for a neutral jet, which has

ûout = 0, is also shown as a horizontal line as a reference. This corresponds to

α = 0.071, as calculated in §5.5. For the fully developed fountains, we have a

slightly higher αe in the Fro = 30 than Fro = 15 case, with average values of

αe = 0.062 and αe = 0.050, respectively. Both fountains have αe > 0 over the

full range shown, which contrasts to the original definition of α discussed in §7.2

and shown in figure 7.1. This had α < 0 for the majority of the Ri range shown

(Ri . −0.13 for Fro = 30, and Ri . −0.011 for Fro = 15), and also had α generally

lower in the Fro = 15 case. This previous formulation of α, which was expressed by

(7.5) and (7.10), will henceforth referred to as the ‘full model’.
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Figure 7.3: The entrainment coefficient, αe, plotted with local Ri for the inner
flow of a Fro = 30 and Fro = 15 fountain (F), and of a Fro = 30 negatively
buoyant jet (NBJ). Here αe = ûe/ŵif , and corresponds to the ‘decomposed top-hat
model’ described by (7.15)-(7.17). The entrainment coefficient for neutral jet (J), as
estimated in §5.5, is also shown as a reference. For neutral jets, Ri = 0 everywhere
and so α is shown as a horizontal line for clarity.

The results in figure 7.3 for the ‘decomposed model’ are more scattered in the

NBJ since there is less data available, but we clearly have αe > 0 over the Ri range

shown (with an average value of αe = 0.077). This again contrasts to the full model

in figure 7.1, where α < 0 for Ri . −0.25. Since there is no clear systematic trend

for αe with Ri in the NBJ or fountains, αe could be approximated by taking the

average value as constant. We would then have αe in the NBJ similar to α in a

neutral jet, and fountain values somewhat lower.

In the decomposed formulation, αe can be interpreted as a measure of the rate

of ‘turbulent entrainment’ in the flow. For fountains, this represents ‘entrainment’

from the OF to IF across the IF/OF interface, and in NBJs it is entrainment from

the ambient into the jet across the TNTI. This contrasts to α in the full model

shown in figure 7.1, which simply reflects the direction and magnitude of the mean

radial velocity.

Solving (7.15) and (7.16) simultaneously also provides values for ûout, the outflow

velocity. Figure 7.4 shows ûout/ŵif plotted with Ri for the Fro = 30 and Fro = 15

fountains, and Fro = 30 NBJ. We see that, for all three flows, ûout increases with

−Ri, and that ûout > 0 for all Ri < 0. Near the source, where the IF is much

stronger than the outer flow, ûout/ŵif → 0 and Ri→ 0. This is consistent with the

neutral jet case, which has Ri = 0 and does not have a mean outflow. Regions where

114



CHAPTER 7. ENTRAINMENT IN FOUNTAINS AND NBJS

-0.5-0.4-0.3-0.2-0.10

0

0.05

0.1

0.15

0.2

0.25

Figure 7.4: The normalised radial outflow velocity, ûout/ŵif , with respect to the
‘decomposed top-hat’ model for Fro = 30 and Fro = 15 fountains, and a Fro = 30
NBJ. Horizontal lines indicating average values of αe from figure 7.3 are also shown.

there is a net radial outflow of fluid from the IF correspond to where ûout > ûe. Since

αe = ûe/ŵif from (7.14), this is equivalent to where ûout/ŵif > αe. Horizontal lines

showing average values of αe for the fountains and NBJ are also shown in figure 7.4,

which therefore indicate the start of the region where there is a net radial outflow

of fluid from the IF. Figure 7.4 therefore implies that the IF of both Fro fountains

and the NBJ have a net radial outflow of fluid for a large portion of their height,

with the local Ri at the start of this region broadly consistent with figure 7.1. That

is, where α < 0 in the original formulation given by (7.5) and (7.10).

The decomposed formulation separates radial flow between the IF/OF of a foun-

tain into two components that are constrained by both the conservation of mass

and momentum. The inflow term is described by the approximately constant αe,

which represents ‘turbulent entrainment’ from the OF to the IF. The outflow term,

ûout/ŵif , represents fluid ejected from the IF to the OF and depends on the local

Ri. This term approaches zero as Ri → 0 where the IF is much stronger than the

OF, and increases for more negative Ri.

7.3.2 Alternative entrainment and body-force formulations

The decomposed model presented in §7.3.1 describes radial flow from the OF to IF as

proportional to the IF velocity, as implied by the definition of αe in (7.14). This was

the entrainment formulation used by Hunt and Debugne (2016) and also considered

by Bloomfield and Kerr (2000) in their theoretical models of a fountain, and will
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be referred to as E1. McDougall (1981) used an alternative formulation, which was

also considered by Bloomfield and Kerr (2000), where ûe is instead proportional to

the relative velocity difference between the IF and OF. In this case, the entrainment

coefficient in (7.14) would be defined using the substitution,

ûe = αe (ŵif + ŵof ) , (7.18)

which will be referred to as E2, the second entrainment formulation.

Another way in which the fountain model could be modified is to consider al-

ternative body-force formulations. McDougall (1981) considered two formulations,

the first was that the buoyancy force acting on the IF depends on the density dif-

ference between the IF and the ambient fluid. This follows from the assumption

that the pressure is hydrostatic everywhere and that lines of constant pressure are

horizontal. This will be referred to as, B1, and was the formulation used in §7.3.1

in the momentum equations (7.12) and (7.16). The second body-force formulation

considered by McDougall (1981), and also by Bloomfield and Kerr (2000) and Hunt

and Debugne (2016), is to treat the OF as an effective ‘ambient’ with respect to

the IF. The buoyancy force acting on the IF would then be related the the den-

sity difference between the IF and OF. This body-force formulation will be denoted

B2, and results in an alternative momentum equation for the IF that would replace

(7.12) (McDougall 1981; Bloomfield and Kerr 2000; Hunt and Debugne 2016),

dM̂if

dz
= −2r̂if ûeŵof − 2r̂if ûoutŵif + r̂2if

(
ĝif − ĝof + ŵof

dŵof

dz

)
, (7.19)

where the third term in the parentheses, ŵofdŵof/dz, arises due to the accelerating

reference frame (i.e. the OF) (McDougall 1981).

There are then four combinations of entrainment and body force formulations,

each of which were considered by Bloomfield and Kerr (2000), and which can be

expressed as B1E1, B1E2, B2E1 and B2E2. Bloomfield and Kerr (2000) also used

entrainment relations to describe radial flow from the IF to OF, and from the ambi-

ent to the IF, and assumed constant entrainment coefficients. By combining these

with a system of equations similar to (7.11)-(7.13) but for the OF, they solved their

fountain model for the four formulations. In the present study, we have instead

used experimental data to estimate the inflow entrainment coefficient, αe, and out-

flow component ûout, without making any further assumptions. Figures (7.3) and

(7.4), and the discussion in §7.3.1, correspond to this approach applied to formula-

tion B1E1.

The same procedure is now applied to the remaining three entrainment/body-
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force formulations, B1E2, B2E1 and B2E2. That is, simultaneously solving conser-

vation equations (7.11) and either (7.12) or (7.19), while using either entrainment

relation for ûe, to calculate αe and ûout at a range of axial locations along the foun-

tain. The value of αe for these formulations is plotted with Ri in figure 7.5(a)-(c).

Similarly to figure 7.3 corresponding to B1E1, αe is reasonably constant in each

formulation with no significant trend with Ri. The mean αe value for each case is

summarised in table 7.1, which shows the largest values in B2E1, and consistently

higher values in the Fro = 30 than Fro = 15 fountain.

B1E1 B1E2 B2E1 B2E2
αe (Fro = 15) 0.050 0.042 0.061 0.051
αe (Fro = 30) 0.062 0.051 0.073 0.059

Table 7.1: Mean values of αe for Fro = 15 and 30 fountains in the decomposed top-
hat model for the alternative body-force and entrainment formulations, as estimated
from the present experimental data.

While the value of the outflow component, ûout, is affected by the body force

formulation, it is independent of the choice of αe substitution when simultaneously

solving the conservation of volume and momentum equations using the present data.

This can be seen if the conservation equations are solved simultaneously for ûe and

ûout before substituting in the chosen entrainment relation, resulting in the same

value of ûout for E1 and E2. However, when comparing with αe, it is useful to

normalise ûout in a way consistent with the definition of αe. For example, in B1E2,

αe = ûe/(ŵif + ŵof ), and so it is useful to consider ûout/(ŵif + ŵof ). The normalised

outflow component is presented in figure 7.6 for B1E2, B2E1 and B2E2, along with

horizontal lines corresponding to the mean αe value to indicate the start of the

region where there is a net radial outflow from the IF to OF. Similarly to figure 7.4,

all cases show that the normalised outflow component is strongly dependent on Ri.

The precise values differ slightly for each entrainment/body-force formulation, but

are nevertheless broadly similar.

McDougall (1981) and Bloomfield and Kerr (2000) both assumed that the radial

outflow component was proportional to the OF velocity when solving their fountain

models. In the present case, it was desirable to formulate a ‘fountain’ model that

could also be applied to NBJs, which have ŵof = ĝof = 0 but can also be subject

to a net radial outflow as demonstrated in §5.5. In this case, such an entrainment

relation is not well defined and so has not been considered until now. Despite this,

we now briefly consider ûout/ŵof for the two body-force formulations in the Fro = 15

and 30 fountains, shown in figure 7.7, recalling that the value of ûout is the same

in both entrainment formulations. Figure 7.7 shows a strong Ri dependence on
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Figure 7.5: The entrainment coefficient, αe, for (a) B1E2, (b) B2E1 and (c) B2E2,
for Fro = 15 and 30 fountains under the decomposed top-hat model, as estimated
from the present experimental data. The mean NBJ value, which is the same in all
formulations, is shown as a horizontal line as a reference.
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Figure 7.6: The radial velocity outflow component, ûout, for (a) B1E2, (b) B2E1
and (c) B2E2, for Fro = 15 and 30 fountains under the decomposed top-hat model,
as estimated from the present experimental data. In each case, ûout is normalised
so that it is consistent with the definition of αe.
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Figure 7.7: The radial velocity outflow component, ûout, normalised by the outer
flow velocity, ŵof , for Fro = 15 and 30 fountains under the decomposed top-hat
model.

ûout/ŵof , with broadly similar values for both body-force formulations for each Fro

fountain. Bloomfield and Kerr (2000) assumed that this quantity was a constant

equal to ûout/ŵof = 0.147, which is similar to the present values near Ri ∼= −0.05,

but lower than those further along the fountain.

Although the precise values of αe are affected by the choice of body-force and

entrainment formulations, and ûout by the choice of body-force formulation only, the

overall trends for both quantities are very similar. That is, the Ri-dependence of

the outflow component shown in figure 7.6-7.7, and the approximately constant αe

in figure 7.5 and table 7.1. The arguments put forward in §7.3.1 corresponding to

B1E1 may therefore also be applied to the other formulations. Namely, that the ap-

proximately constant αe can be interpreted as representing ‘turbulent entrainment’

from the OF to IF, similar to the classical description of entrainment in pure jets

and plumes (Morton et al. 1956). The outflow component then represents the fluid

ejected from the IF to the OF as a result of the decelerating and expanding IF, as

well as capturing other complex interactions with the OF. Although all four formu-

lations are similar in this way, the B1E1 formulation most closely resembles the ‘full

model’ discussed in §7.2, which relates α to IF quantities only. The following section

will seek to compare the decomposed formulation to the full model, and so we will

now primarily consider B1E1. All further references to the ‘decomposed top-hat’

model correspond to this formulation unless specified otherwise.
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7.3.3 Connection to the full model

Figures 7.3 and 7.4 show that, in the present decomposed top-hat formulation, the

radial flow across the IF/OF boundary of a fountain (or between an NBJ and the

ambient) can be described by an approximately constant turbulent entrainment

coefficient, αe, and a local Ri-dependent outflow component, ûout/ŵif . If the net

radial flow from the IF to OF is denoted û, so that û = ûout − ûe, then the ratio

α̂ = −û/ŵif is a non-dimensional measure of the direction and magnitude of the

mean radial flow at a given height. Using (7.14), this may then be written as,

α̂ = αe −
ûout
ŵif

, (7.20)

which expresses α̂ as the sum of a constant and Ri-dependent component, αe and

−ûout/ŵif , respectively. This is then the present top-hat model’s equivalent to α

in the full model, defined by (2.23) or (7.10), which is also a measure of the mean

radial velocity relative to the IF velocity scale. If the profile coefficients in (7.10)

were assumed constant, then this may be written as,

α =
3

2

(
δm
γm
− 4∆m

Γm

)
+ 3

(
θm
γm
− µm

Γm

)
Ri, (7.21)

which is also expressed as the sum of a constant and Ri-dependent component,

namely the first and second terms respectively.

For Gaussian velocity and buoyancy profiles, which was shown in figure 5.5 to be

a reasonable assumption in NBJs, we have that γm = 4/3, Γm = 1, θm = 2/(λ2 + 1)

and µ = 2/(2λ2 + 2). In figure 5.6 it was shown that λ, and hence θm and µm, are

not constant in negatively buoyant jets. However, their variation has little effect

on the Ri term in α relations (2.23) and (7.21), and so may be approximated as

constant with λ ∼= 1.46 for this purpose. For the inner flow of a fountain, the profiles

cannot be simply described by Gaussian functions, and so these profile coefficients

must be numerically estimated from their integral definitions, (2.16) and (7.9). By

assuming these are constant we obtain, by taking averages, θm ∼= 0.68 and µm
∼= 0.36

for Fro = 30, and θm ∼= 0.65 and µm
∼= 0.34 for Fro = 15. The data suggests

that γm and Γm have a weak Ri dependence in fountains, with 1.27 & γm & 1.18

and 0.90 & Γm & 0.76 over 0 . −Ri . 0.5. Since this variation is not very

significant, these were approximated as constant using average values of γm ∼= 1.23

and Γm
∼= 0.85 for Fro = 30, and γm ∼= 1.23 and Γm

∼= 0.84 for Fro = 15. All four of

these profile coefficients, θm, µm, γm and Γm, therefore have similar values for both

fountains, with a negligible Fro dependence.
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For a negatively buoyant jet, it was shown in §5.5 that δm is not constant, and

instead varies linearly with Ri. The present data shows that an approximately linear

relation also occurs in fountains. Additionally, the profile coefficient ∆m, defined in

(7.9) and related to the turbulent production, is also well described by a linear Ri

relation. These can be expressed as,

δm = δo + δ̃Ri,

∆m = ∆o + ∆̃Ri,

}
(7.22)

where δo and ∆o represent the values at the source, and δ̃ and ∆̃ are additional

ad hoc terms that capture the observed Ri dependence. The increasing −δm and

−∆m with negative Ri is related to the behaviour of the w′u′ profiles discussed in

§6.2.2, where the turbulence did not decrease at the same rate as the mean flow in

NBJs and fountains. A detailed analysis of the governing equations may shed light

on the precise reason for this behaviour, which is left for potential future research.

For the purposes of the present investigation, the observation of a linear trend and

subsequent empirical expressions in (7.22) will be used.

By using these linear relations, the expression for α in (7.21) becomes,

α =
3

2

(
δo
γm
− 4∆o

Γm

)
︸ ︷︷ ︸

P1

+ 3

(
θm
γm
− µm

Γm

+
δ̃

2γm
− 2∆̃

Γm

)
Ri︸ ︷︷ ︸

P2

. (7.23)

This expresses α as the sum of a constant and Ri-dependent component, P1 and P2,

and is valid for both negatively buoyant jets and fountains. The following expression,

which is valid for NBJs only, was originally presented in (5.9),

α = − δo
2γm︸ ︷︷ ︸
L1

+

(
1− θm

γm
− δ̃

2γm

)
Ri︸ ︷︷ ︸

L2

, (7.24)

except here the subscript ‘j’ has been replaced with ‘o’ to correspond to the Ri = 0

intercept. This is for consistency with (7.23), and because we will not presume that

the Ri = 0 value of δm and ∆m in fully developed fountains correspond to the neutral

jet values. Although both (7.23) and (7.24) are equally valid for negatively buoyant

jets, (7.24) is simpler since it does not depend on ∆m or Γm. Equation (7.24) will

therefore be used for calculating α in negatively buoyant jets, while (7.23) will be

used for fountains. It is then useful to attempt to unify the ‘decomposed top-hat

model’ with the ‘full model’ by considering α̂ = α. Both (7.23) and (7.24) express α
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in terms of constant and Ri-dependent components, which may then be compared

individually to the components of α̂ defined in (7.20). We would then have,

L1 = αe

L2 = − ûout
ŵ

NBJ (7.25)

P1 = αe

P2 = − ûout
ŵif

Fountain (7.26)

for the negatively buoyant jet and fountains.

These different components and their summation are given in figure 7.8 for the

Fro = 30 negatively buoyant jet, and in figure 7.9 for the Fro = 30 and Fro =

15 fountains. For the NBJ, figure 7.8(a) shows L1 = 0.075 and L2 = 0.292Ri

corresponding to (7.24), with the values originally obtained from the linear fits in

(5.8). Although very good agreement is observed between αe and L1, the constant

component of the entrainment coefficient, there is a discrepancy between the Ri-

dependent terms, L2 and −ûout/ŵ. It was found that better agreement could be

obtained by including the turbulence components of the profile coefficients, δf and

γf originally defined in (2.16), in the expression for α. In this case, average values

of δf ∼= −0.044 and γf ∼= 0.47 were calculated using the present experimental data

and assumed constant. This results in the following expression for α that can be

used in place of (7.24),

α = −δo + δf
2γg︸ ︷︷ ︸
L1

+

(
1− θm

γg
− δ̃

2γg

)
Ri︸ ︷︷ ︸

L2

, (7.27)

where γg = γm+γf . Figure 7.8(b) shows the same α̂ decomposition, but now with L1

and L2 calculated using (7.27). The constant terms, αe and L1, are not as close as in

(a) but still reasonably agree, while the agreement between the Ri terms −ûout/ŵ
and L2, and the overall summations, α̂ and α have been significantly improved.

Although this supports the validity of the ‘decomposed top-hat’ formulation, it raises

questions as to whether the assumptions made in §5.5-5.7, where the turbulence

components of the profile coefficients were ignored, are appropriate. Although the

turbulence components do have an effect on the entrainment rate, the modelling of

NBJs in §5.6 showed that reasonable wc agreement could nevertheless be achieved

without them. It is therefore argued that neglecting these higher order contributions

is a reasonable simplification for the purposes of the present investigation. The
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Figure 7.8: The constant and Ri-dependent components of the entrainment coeffi-
cient of a Fro = 30 negatively buoyant jet from both the decomposed top-hat model
(α̂ = αe − ûout/ŵ), and the full model (α = L1 + L2). Figure (a) shows the terms
L1 and L2 as calculated using (7.24), while (b) uses (7.27). That is, (a) neglects the
turbulence component of profile coefficients, δf and γf , while (b) includes them.

effect of including additional turbulence components, namely the subscript-f profile

coefficients in (2.16), is left for potential future research.

The components of the entrainment coefficient for the fully developed fountain

are given in figure 7.9(a) and (b) for Fro = 30 and 15 cases respectively. For

both Fro cases, (7.23) has been used to calculate the α components, P1 and P2,

with the turbulence profile coefficients neglected. Here the linear fits used to ob-

tain δm = δo + δ̃Ri and ∆m = ∆o + ∆̃Ri have been obtained from the experimental

data for each Fro fountain separately. The Fro = 30 case in (a) shows good agree-

ment between both the constant and Ri-dependent components, with αe
∼= P1 and
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−ûout/ŵif
∼= P2, and subsequently α ∼= α̂. Although the agreement is more mod-

est in the Fro = 15 case, the components and their summation are still broadly

consistent.
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Figure 7.9: The constant and Ri-dependent components of the entrainment co-
efficient of a fully developed fountain from both the decomposed top-hat model
(α̂ = αe − ûout/ŵ), and the full model (α = L1 + L2). Results for the Fro = 30
fountain are shown in (a), and the Fro = 15 case shown in (b).

In the case of the negatively buoyant jet, the constant component corresponds to

turbulent entrainment from ambient fluid into the NBJ. Near the source where Ri→
0, this fully describes entrainment and may be interpreted as the ‘neutral jet’ value.

This is supported by the present experimental data which give similar values of α =

0.071 and αe = 0.077 for the neutral and negatively buoyant jets, respectively. For

a fully developed fountain, the constant component can be interpreted as describing

the ‘turbulent entrainment’ from the OF to the IF associated with the mean IF
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velocity. In this case, the values are slightly lower than the neutral/negatively

buoyant jets and also have a source Fro dependence, with αe
∼= 0.062 and αe

∼= 0.050

for the Fro = 30 and 15 cases, respectively. This difference may be attributed to

the existence of a return flow, which will depend on Fro and is still present even

at the source where Ri = 0. This effect can be seen in the full model through the

profile coefficients δm and ∆m, which will be discussed further in §7.4.

In describing the radial flow between the inner and outer flow regions of a foun-

tain, the highly simplified ‘decomposed top-hat’ description of a fountain is con-

sistent with the more general, ‘full model’, approach discussed in §7.2. These are

also applicable to an NBJ, which can be thought of as fountain with a zero-velocity,

zero-buoyancy, outer flow under the same top-hat formulation. This provides evi-

dence that, despite fountains generally having a mean radial flow from the IF to OF

(or into the ambient for an NBJ), they still ‘entrain’ fluid at a rate proportional to

their characteristic axial velocity. This entrainment is captured by αe in the top-hat

model, and by terms L1 and P1 in the full model. This follows from equations (7.25)

and (7.26), where L1, P1 and αe are all positive and hence promote an inflow of fluid

into the NBJ/fountain.

While buoyant jets and plumes are subject to an acceleration due to their pos-

itive buoyancy and Ri > 0, NBJs are instead decelerated as characterised by the

increasingly negative Ri. This has implications for entrainment as captured by the

ûout term in the decomposed formulation, and by L2 and P2 in the full model. In

NBJs under the decomposed formulation, this has the effect of encouraging a radial

outflow of fluid. In a physical flow, there will be instantaneous entrainment at some

times and radial outflow at others. A mean radial outflow of fluid then occurs when

the Ri-dependent term is larger in magnitude than the constant entrainment term,

resulting in α < 0. In addition to the present experiments, different regions of mean

radial inflow and outflow have also been observed in other fountain investigations,

such as by Williamson et al. (2011) and Cresswell and Szczepura (1993). The present

decomposed top-hat model provides a consistent description of this observation, al-

lowing it to be understood in a similar context to the classical entrainment relations

originally applied to jets and plumes.

7.3.4 Special cases: pure jets/plumes

It is also useful to more closely consider the application of these models to neutral

jets and plumes. Once fully developed, these idealised flows can be considered fully

self-similar with constant profile coefficients. By additionally assuming that the
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velocity and buoyancy/scalar profiles are Gaussian, then (7.5) and (7.10) become,

α = −3

8
δm +

(
1− 3

2(λ2 + 1)

)
Ri, (7.28)

α =
3

2

(
3

4
δm − 4∆m

)
+ 3

(
3

2(λ2 + 1)
− 2

2λ2 + 1

)
Ri, (7.29)

where λ, defined in (2.29), is the ratio of 1/e widths of the scalar and velocity

profiles. For a neutral jet, Ri = 0, and so by equating (7.28) and (7.29) we find that

δm = 4∆m. This is supported by the present experimental data for a neutral jet,

where we find δm ∼= 4∆m
∼= −0.20.

If a self-similar buoyant jet or pure plume is now considered, with 0 < Ri ≤ Rip

and constant δm, then by equating the Ri components of (7.28) and (7.29) we obtain,

6

λ2 + 1
− 6

2λ2 + 1
− 1 = 0. (7.30)

That is, a non-linear equation restricting the possible values of λ to maintain con-

sistency between (7.29) and (7.28), with positive solutions of λ = 1 and λ = 1/
√

2.

Under these assumptions, we then have that λ can only take the values of 1 or

1/
√

2 in order to maintain consistency with the conservation of mass, momentum

and kinetic energy equations, (2.4)-(2.7), and the additionally derived w3 equation

in (7.6). Although, to the best of this authors knowledge, there have been no studies

to have reported a value as low as λ = 1/
√

2 ∼= 0.707 in buoyant jets or plumes,

the prediction of λ = 1 is remarkably consistent with the existing plume literature

(Papanicolaou and List 1988; Shabbir and George 1994; Wang and Law 2002; van

Reeuwijk et al. 2016). This then provides a new theoretical justification of the com-

monly reported λ = 1 observation in pure plumes. It should be noted that although

this consistency requirement exists for plumes/buoyant jets under these assump-

tions, there is no constraint here on λ in neutral jets (Ri = 0), which are typically

reported to have 1.15 . λ . 1.30 (Fischer et al. 1979; Wang and Law 2002; Ezzamel

et al. 2015). If δm is not constant, such as in NBJs or near the source in positively

buoyant jets (van Reeuwijk et al. 2016), then (7.30) is also not valid.

Consider now the application of the decomposed top-hat model to a Gaussian

neutral jet by equating α = α̂ from (7.28) and (7.20). Here the Ri-dependent

term is zero and we have αe = −3δm/8. That is, a constant turbulent entrainment

coefficient αe, and no outflow term. This is consistent with the classical description

of a turbulent jet, which entrains ambient fluid at a rate proportional to its mean

axial velocity, and is not subject to any ‘mean radial outflow’.
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For a buoyant jet with λ = 1 and constant δm, by setting α = α̂ we obtain,

α = αe −
ûout
ŵ

= −3

8
δm +

1

4
Ri. (7.31)

Equating the constant and Ri-dependent terms would then give αe = −3δm/8 and

−ûout/ŵ = Ri/4. We then have −ûout/ŵ > 0 and αe > 0, that is, both terms

promoting entrainment from the ambient into the plume, rather than a balance of

inflow and outflow as is the case in an NBJ. If applying the decomposed top-hat for-

mulation to positively buoyant jets or plumes, it is therefore potentially misleading

to refer to the Ri-dependent term as the ‘outflow term’, ûout. Despite this, it is still

a consistent description of the flow, and distinguishes between radial inflow associ-

ated with turbulent entrainment and with positive buoyancy. In these applications

it may simply be preferable to use an alternative nomenclature, such as replacing

ûout with ûb, to indicate it is radial flow associated with buoyancy.

7.4 Effect of the OF on the IF

For fully developed fountains, α in the full model can be expressed by (7.21), and

so depends on the profile coefficients, δm and ∆m. In §7.3.3, these were both ap-

proximated as linear with Ri but with different coefficients for the Fro = 30 and

Fro = 15 cases. Figure 7.10 shows δm and ∆m for both Fro fountains, as well as for

negatively buoyant jets with Fro = 30, 20 and 10. Both fountain cases are shown

well approximated by the empirical linear δm and ∆m relations,

δm = −0.22 + 1.3Ri

∆m = −0.048 + 0.18Ri

}
Fro = 30, (7.32)

δm = −0.051 + 1.1Ri

∆m = −0.011 + 0.16Ri

}
Fro = 15, (7.33)

and the Fro = 30 negatively buoyant jet by,

δm = −0.20 + 0.60Ri

∆m = −0.041 + 0.089Ri

}
Fro = 30. (7.34)

These may be written in the form δm = δo + δ̃Ri and ∆m = ∆o + ∆̃Ri as in (7.22).

Although the corresponding Ri coefficients are quite similar for both Fro cases in

the fully developed fountain, the constant terms are not. There is therefore clearly

a source Fro effect on δm and ∆m in fully developed fountains. Conversely, in the
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Figure 7.10: The profile coefficients, (a) δm, and (b) ∆m, defined in (2.16) and (7.9),
plotted with local Ri for fountains and negatively buoyant jets. Data is shown for
Fro = 30 and 15 fountains, and Fro = 30, 20 and 10 negatively buoyant jets.

NBJ the Fro = 10 and Fro = 30 data are in good agreement at similar local Ri for

both δm and ∆m. The data is more scattered for the Fro = 20 case, but there is

still reasonable agreement with the extrapolated line for both δm and ∆m.

As Ri → 0, a negatively buoyant jet becomes increasingly similar to a neutral

jet, which has Ri = 0 everywhere. At Ri = 0, the values of δm and ∆m should then

correspond to the ‘neutral jet values’. This was discussed in §5.5.2 for δm, and may

also be seen in figure 7.10(a), where the Ri intercept of the fit is δo ∼= −0.20. This is

the same as the average value from the present neutral jet experiments, δj ∼= −0.20,

and is also in agreement with existing jet literature (Craske and van Reeuwijk 2015;

Panchapakesan and Lumley 1993; Wang and Law 2002; Ezzamel et al. 2015). The

present jet data gives an average value of ∆j
∼= −0.049, which is somewhat higher

but still in reasonable agreement with ∆o
∼= −0.041 for the NBJ. Although the
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inner flow of a fully developed fountain may become more similar to a jet or NBJ as

Ri→ 0, it is still fundamentally different due to the presence of a return flow. Since

this return flow still exists at Ri = 0, δo and ∆o in fountains do not correspond to

the neutral jet values. The presence of the outer flow is therefore likely the source

of the Fro dependence of δm and ∆m in fountains, which is not seen in NBJs. This

manifests in term P1 from (7.23), the entrainment coefficient in the full model, or

equivalently αe in the decomposed top-hat formulation.

In describing entrainment in fully developed fountains using either the full or

decomposed top-hat models, knowledge of δm and ∆m for the particular Fro is

therefore required. This is not the case for an NBJ, which, from figure 7.10, appear

independent of Fro. This is because there is no outer flow present and the local

flow depends only on the local Ri. Predicting δm or ∆m for arbitrary Fro fountains

therefore likely requires further characterising the outer flow, and could be a useful

topic for future investigations. One approach may be to replace wm and rm in the

definitions of δm and ∆m, with scales that include information about the OF. A pre-

liminary attempt to use the relative velocity difference between the IF/OF, rather

than the IF velocity only, did not eliminate the Fro dependence. Other potential

approaches may be to include an additional turbulence velocity scale, possibly sim-

ilar to wf that was defined in (5.4) to collapse the turbulence profiles in an NBJ,

although further research in required.

7.5 Conclusions

This chapter has investigated entrainment in negatively buoyant jets and fountains

using two distinct approaches. The first approach, referred to as the ‘full model’,

uses derived expressions for the entrainment coefficient, α, to describe radial flow

between the IF/OF of a fountain, or between an NBJ and the ambient. Estimates

for α in fountains and negatively buoyant jets using these expressions were presented

in figure 7.1, which showed a strong Ri dependence on entrainment for all flows. For

both fountains, α < 0 over a large portion of their height, a finding consistent with

previous studies by Williamson et al. (2011) (Fro = 7) and Cresswell and Szczepura

(1993) (Fro = 3.2).

The second formulation of entrainment, the ‘decomposed top-hat model’, was

introduced in §7.3, where radial flow between the IF/OF is split up into an inflow

component proportional to the IF velocity scale, αe, and an outflow component,

ûout. Using the present experimental data, these were estimated along the fountains

and NBJ, finding that αe was approximately constant whilst ûout varied with Ri.
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This ‘decomposed’ formulation was shown to be broadly consistent with a simplified

version of the ‘full model’ in §7.3.3, where entrainment can also be expressed as

the sum of a constant and Ri-dependent component. Despite NBJs and fountains

generally having a non-constant α, and α < 0 after some axial distance, the decom-

posed top-hat formulation provides an interpretation of entrainment that is similar

to the classical jet and plume description used by Morton et al. (1956). That is,

that turbulent entrainment is proportional to a characteristic velocity at that height

by a constant entrainment coefficient. However, for an NBJ or fountain IF, there

is also an Ri-dependent radial outflow that is associated with the flows (negative)

buoyancy.

The present study has found certain similarities between NBJs without a return

flow and fully developed fountains, such as the approximately linear δm and ∆m.

In negatively buoyant jets, these profile coefficients do not appear to have a Fro

dependence. In fully developed fountains, however, they do. This has implications

for the entrainment coefficient, α in (7.23) and (7.24), describing radial flow across

the IF/OF boundary. This Fro dependence in fountains, which likely arises due

to differences in the outer flow, presents a challenge for accurately predicting en-

trainment in fountains with arbitrary Fro. Future research may seek to develop a

description of the local, Ri-dependent, entrainment in fountains that can more eas-

ily be applied to different Fro cases. This could involve relating δm and ∆m to the

outer flow in a way that eliminates this Fro dependence. This could include mean

velocity and length scales for the outer flow, or potentially an additional turbulence

velocity scale that can capture the development of w′u′. Such a study could benefit

from extensive measurements estimating these profile coefficients along the fountain

for a greater range of Fro.

The ‘full model’ description of the IF of a fountain captures all fundamental

transfers in the flow through the profile coefficients. Some of which are approxi-

mately constant and independent of Fro, such as γm, Γm, θm and µm, while δm and

∆m are not. Redefining δm and ∆m so that they are constant and universal for all

Fro fountains would therefore be useful in simplifying the application of this model.

The present study has also focused primarily on entrainment between the IF/OF

of a fountain, where future research may seek to investigate it between the ambient

and OF, including at the cap region.
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Chapter 8

Conclusion

8.1 Summary

This thesis has investigated negatively buoyant turbulent jets experimentally using

combined PIV and PLIF measurements. Two distinct stages of the flow were con-

sidered, the initial ‘negatively buoyant jet’ stage, as well as the quasi-steady ‘fully

developed fountain’ stage. Since the NBJ stage occurs before the opposing return

flow is established, this could be analysed using some of the same tools often applied

to neural and positively buoyant jets. Namely, the integral model approach origi-

nally developed by Morton et al. (1956) and Priestley and Ball (1955). This reveals

some of the effects that negative buoyancy has on the development of jet-like flows.

Eventually the mean velocity of an NBJ is reduced to zero due to its opposing buoy-

ancy, after which it collapses back onto itself and a return flow starts to develop.

Once the return flow has established the fully developed fountain stage is reached,

where the flow consists of a negatively buoyant inner flow surrounded by an oppos-

ing outer flow. The IF of a fountain can then be considered a turbulent jet that is

affected by both negative buoyancy and interactions with the OF. While comparing

neutral and negatively buoyant jets reveals the effect of negative buoyancy on the

flow, differences between NBJs and fountains helps identify the effect of the OF.

8.2 PIV and PLIF measurements

This investigation used combined 2D particle image velocimetry (PIV) and planar

laser induced fluorescence (PLIF) to investigate NBJs and fountains. An experi-

mental rig was designed to produce the flow in a 1000 L tank, and obtain images

using 5 cameras operating simultaneously with a double pulsed 532 nm Nd:YAG

laser. Four of these cameras were used to capture PIV/PLIF images of the flow in
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the region of interest, with the images ‘stitched’ together to obtain a wider field of

view. The fifth camera was used to obtain a measurement of the power profile of

the laser pulses, which could then be used to correct each individual PLIF image

for variations in laser power output. The PLIF algorithm and correction procedure

was validated in §3.4.3, where it was found to reduce the error in scalar concen-

tration measurements. This approach is important when using lasers that have a

variable power profile shape, and when studying flows that may not be statistically

stationary. The experimental set-up and image processing procedure was applied to

a turbulent neutral jet in §4.4, where mean and turbulence statistics were obtained

that were consistent with existing literature.

8.3 The physics of NBJs and fountains

8.3.1 Negatively buoyant jet stage

The initial negatively buoyant jet stage of the flow was investigated in chapter 5.

Mean and turbulence profiles were presented for a Fro = 30 NBJ over a range of

local Fr, with the mean velocity and scalar profiles found to take Gaussian shapes

over the full range of Fr investigated. The relative widths of the scalar/velocity

profiles, characterised by λ defined in (2.29), increased with axial distance from

approximately λ ∼= 1.3 to 1.5 for 20 . z/D . 35. This is in contrast to pure jets

and plumes, which are typically reported to have lower and approximately constant

values of λ ∼= 1.2 and 1.0, respectively, once they have reached a state of self-

similarity (Fischer et al. 1979; Papanicolaou and List 1988; Wang and Law 2002;

Ezzamel et al. 2015). New integral buoyancy and buoyancy-width scales, gm and

rmb, were defined in (5.2) that scale with b independent of λ, and an analytical

expression for drmb/dz was derived in (5.23). This expression is valid for turbulent

jets with arbitrary buoyancy and, when examined alongside drm/dz in (5.14), assists

in explaining the increasing λ observed in NBJs.

Pure jets and plumes have turbulence profiles that scale with the mean flow,

such as w′u′/w2
c and w′2/w2

c , which collapse onto a single curve when plotted with a

local width scale such as the velocity half-width (Hussein et al. 1994; Panchapakesan

and Lumley 1993; Wang and Law 2002; Darisse et al. 2015). This was not observed

in the present negatively buoyant jet data, which was shown in figure 5.10 where

w′u′/w2
c and w′2/w2

c increase with axial distance. This is primarily a result of the

decelerating mean flow, characterised by a decreasing wc, rather than an increase in

turbulence production. An additional turbulence velocity scale, wf , was defined in

(5.4) that is capable of collapsing the w′u′ and w′2 profiles.
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Entrainment in negatively buoyancy jets was investigated through the expression

for α in (5.5), specifically applied to the case with Gaussian velocity/buoyancy

profiles. The terms of this expression were plotted in figure 7.8 with Ri, which

showed that despite the increasing dimensionless turbulence production, −δm, the

overall entrainment decreases with axial distance due to the increasingly negative

Ri. Near the source, where Ri ∼= 0 and the flow is dominated by momentum as

opposed to negative buoyancy, α in the NBJ is similar to a neutral jet. Further

along the NBJ, Ri → −∞ as wm → 0 and the flow becomes increasingly governed

by negative buoyancy. This reduces entrainment in the NBJ and eventually results

in α < 0 for Ri . −0.5, indicating a net radial outflow from the NBJ to the ambient

fluid. The development of α in the NBJ could be well approximated by a linear

relationship with Ri, which was constructed by assuming a linear δm relation with

Ri and a constant λ.

The integral model discussed in §2.4 and described by (2.19)-(2.21) was numeri-

cally solved for a negatively buoyant jet and compared to the present experimental

data in figure 5.4. Different entrainment relations were used to model α, referred

to as models 1 and 2 in §5.5.2, which correspond to a semi-empirical model based

on a linear fit of δm and a constant λ ∼= 1.46, and a constant δm ∼= −0.22 and

λ ∼= 1.1, respectively. Although both models give reasonable wo/wc predictions for

z/D . 30, neither maintain accuracy over the full z/D range while simultaneously

being consistent with the observed values of λ and δm. To the best of the authors

knowledge, this was the first attempt to assess the local flow predictions of integral

models to experimental data of an NBJ without a return flow.

8.3.2 Fully developed fountain stage

The fully developed fountain stage occurs after an NBJ has collapsed back onto

itself and is oscillating around its steady stage height, zss. This was the main focus

of chapter 6, which analysed data primarily from Fro = 30 and 15 fountains at a

range of axial locations (and local Fr). Mean velocity and buoyancy profiles for

a fountain were compared with an NBJ, both with Fro = 30, at a range of local

Fr. Unlike the NBJ, the fountain profiles did not take similar Gaussian shapes

along its height. Despite this, they were reasonable similar in the IF (r ≤ rio) when

normalised by centreline value and their respective half-widths. Additionally, when

the mean profiles of Fro = 15 and 30 fountains were compared at locations with

similar local Fr (based on IF quantities), improved agreement was observed in the

IF. Other profiles such as w′u′ and w′c′ were significantly different, even in the IF,

between both Fro fountains and the NBJ. The difference between these profiles in

134



CHAPTER 8. CONCLUSION

the two Fro fountains at similar Fr locations can be attributed to the presence of

the return flow, which is different in the two cases and is not captured in the present

definition of Fr.

The entrainment relation used in §5.5.2 to calculate α in an NBJ, (5.5), cannot

be immediately applied to a fully developed fountain due to the presence of a return

flow. By following a similar derivation procedure to that used in obtaining (5.5),

but setting the integration limits to rio (the IF/OF boundary) instead of infinity,

a similar α expression given in (7.5) was derived. This is in the same form as

(5.5) except now has a non-zero boundary condition term since w′u′ does not go

to zero at rio. An alternative expression for α was derived in (7.10), which used

an additional conservation equation that eliminated this boundary condition. Both

expressions describe entrainment between the IF/OF regions of a fountain, and were

referred to as the ‘full model’. These were used to calculate α in Fro = 15 and 30

fully developed fountains based on experimental data across a range of Ri, and was

presented in figure 7.1. The two expressions agreed with each other and gave α

strongly decreasing with negative Ri, with α < 0 for Ri . −0.25 in the Fro = 30

case and Ri . −0.04 in the Fro = 15 case.

The negative α indicates there is a net radial outflow of fluid from the IF to the

OF, which has also been observed in previous numerical and experimental studies

(Williamson et al. 2011; Cresswell and Szczepura 1993). This motivated the analysis

of the ‘decomposed top-hat’ model, presented in §7.3, which separates radial flow

between the IF/OF into and inflow and outflow components occurring simultane-

ously (McDougall 1981; Bloomfield and Kerr 2000; Hunt and Debugne 2016). The

inflow was related to the IF velocity scale by an entrainment coefficient, αe, while the

radial outflow, ûout, was left unconstrained. This could also be applied to an NBJ,

which may be considered a fountain with a zero velocity, zero buoyancy, outer flow

under this formulation. These were estimated using the present experimental data,

and it was found that αe was approximately constant for both Fro fountains and

the NBJ, while ûout/ŵif increased with negative Ri. The constant αe component

could then be interpreted as the ‘turbulent entrainment’ coefficient from the OF

to the IF, and is similar to the description of entrainment in pure jets and plumes,

while the variable outflow component can be associated with negative buoyancy and

the effect of the OF. Alternative body-force and entrainment formulations were also

considered in the decomposed top-hat model (McDougall 1981; Bloomfield and Kerr

2000; Hunt and Debugne 2016), which all resulted in similar trends for αe and ûout

with Ri.

By taking empirical fits of the present experimental data, entrainment in the ‘full
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model’ could also be expressed as the sum of constant and Ri-dependent compo-

nents. This allowed the decomposed formulation to be compared to the full-model

in §7.3.3, which were found to be in reasonable agreement. Despite this, a key issue

that arises is that α differs between the Fro = 15 and 30 cases. This is driven

by the profile coefficients δm and ∆m, which relate to the dimensionless turbulent

production in the IF and vary with Ri. The local Ri was defined based on integral

velocity/buoyancy/length scales that are defined up to rio, and so does not directly

capture the OF. The effect of the outer flow at a particular Ri may differ for foun-

tains with different Fro, which manifests as the apparent Fro dependence in δm,

∆m and α, as well as the profiles presented in §6.3.

8.4 Future work

A notable finding of the study into negatively buoyant jets in chapter 5 was the

increasing −δm with Ri. This arises due to the fact that w′u′ does not decrease

at the same rate as the mean flow, wm, as discussed in §5.3.3. Future research

may seek to better understand why this is, possibly through a detailed analysis of

the governing equations and various turbulence/energy budgets applied specifically

to NBJs. The increasing −δm was captured in the entrainment model 1, (5.9),

through the ad hoc δ̃ term estimated from an empirical fit of the data. An improved

understanding of the increasing −δm, and thus the origins of the δ̃ term, may be

useful in better modelling α in NBJs. Additionally, λ was shown to be higher in

NBJs than plumes and jets, and increased with axial distance along the flow. This

effect was neglected when solving the integral models for an NBJ, which assumed

λ is constant. The precise influence of λ on the flow is complex since it appears in

the expression for α as well as the definition of Ri, and future work may seek to

solve the integral model without assuming a constant λ, possibly with the aid of the

derived expression for drmb/dz in (5.14).

The estimates of αe and ûout in the decomposed top-hat model provided a new

interpretation of entrainment in fully developed fountains. That is, that the radial

flow can be characterised by an approximately constant ‘turbulent entrainment’

coefficient describing flow from the OF to IF, along with a radial outflow component

that varies with the local Ri. There are, however, differences between entrainment

in the Fro = 15 and 30 fountains that arise due to differences in the OF. The effect

of the OF can be seen in the value of the profile coefficients δm and ∆m in the full

model, which were presented in figure 7.10 for Fro = 15 and Fro = 30 fountains.

Future work may seek to develop a description of local entrainment in fountains that
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more explicitly accounts for the effect of the return flow. This could be potentially

be pursued by deriving an alternate ‘full model’ from the conservation equations

that defines α and the profile coefficients to include information about the outer

flow.

8.5 Final remarks

The present study has investigated the initial and quasi-steady stages of high Fro

turbulent jets with negative buoyancy originating from a round inlet. The initial

‘negatively buoyant jet’ stage, which does not have a return flow, resembles a neutral

or buoyant jet/plume except is subject to a buoyancy force that opposes its momen-

tum. Studying this flow allowed fundamental questions of how negative buoyancy

affects entrainment and the development of jet-like flows more generally to be in-

vestigated. This was the focus of chapter 5, where several key differences between

neutral and negatively buoyancy jets were identified. In light of these differences, the

classical integral models originally developed by Morton et al. (1956) and Priestley

and Ball (1955) were solved and compared to the present experimental data. Al-

though the models presented were incomplete, such as by neglecting higher order

turbulence contributions and assuming a constant λ, reasonable agreement with the

present experimental data was obtained for z/D . 30.

Fully developed flow, which consists of a turbulent NBJ surrounded by an op-

posing outer flow, is significantly more complex than an NBJ. This was the focus

of chapter 6 and 7, where different approaches to describing mixing between the

IF/OF regions were investigated. This was characterised through an entrainment

coefficient, α, that described the radial flow across the IF/OF boundary. This pro-

cess could also be interpreted as an inflow component occurring simultaneously with

a radial outflow. Calculating entrainment using these approaches results in different

estimates for different Fro fountains due to differences in the outer flow. An open

question that remains is then how to best describe local entrainment in fountains

more universally, for fountains with arbitrary Fro. Given the complexity of tur-

bulent fountains, particularly with regard to the interactions between the IF/OF

regions, there is still scope for additional research in this area. This may come in

the form of theoretical, experimental, or numerically studies that seek to find the

most complete description of local entrainment and mixing in forced fountains. Such

work will not only assist in better modelling the countless real-world examples of

negatively buoyant jets and fountains, but will contribute to a more fundamental

understanding of the physics of complex shear flows.
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