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Motion sickness (MS) and postural control (PC) conditions are common complaints
among those who passively travel. Many theories explaining a probable cause for MS
have been proposed but the most prominent is the sensory conflict theory, stating
that a mismatch between vestibular and visual signals causes MS. Few measurements
have been made to understand and quantify the interplay between muscle activation,
brain activity, and heart behavior during this condition. We introduce here a novel
multimetric system called BioVRSea based on virtual reality (VR), a mechanical platform
and several biomedical sensors to study the physiology associated with MS and
seasickness. This study reports the results from 28 individuals: the subjects stand
on the platform wearing VR goggles, a 64-channel EEG dry-electrode cap, two EMG
sensors on the gastrocnemius muscles, and a sensor on the chest that captures
the heart rate (HR). The virtual environment shows a boat surrounded by waves
whose frequency and amplitude are synchronized with the platform movement. Three
measurement protocols are performed by each subject, after each of which they
answer the Motion Sickness Susceptibility Questionnaire. Nineteen parameters are
extracted from the biomedical sensors (5 from EEG, 12 from EMG and, 2 from
HR) and 13 from the questionnaire. Eight binary indexes are computed to quantify
the symptoms combining all of them in the Motion Sickness Index (IMS). These
parameters create the MS database composed of 83 measurements.All indexes
undergo univariate statistical analysis, with EMG parameters being most significant,
in contrast to EEG parameters. Machine learning (ML) gives good results in the
classification of the binary indexes, finding random forest to be the best algorithm
(accuracy of 74.7 for IMS). The feature importance analysis showed that muscle
parameters are the most relevant, and for EEG analysis, beta wave results were the most
important. The present work serves as the first step in identifying the key physiological
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factors that differentiate those who suffer from MS from those who do not using the
novel BioVRSea system. Coupled with ML, BioVRSea is of value in the evaluation of
PC disruptions, which are among the most disturbing and costly health conditions
affecting humans.

Keywords: motion sickness, postural control, sea sickness, virtual reality, machine learning, heart rate,
electroencephalogram – EEG, electromyography – EMG

INTRODUCTION

Postural control (PC) is a central nervous system (CNS) feedback
control system that governs human upright stance and gives
a platform for locomotion and task-driven behavior, as well
as several autonomic responses. The PC system works on a
subconscious level and is based on continuous CNS input from
visual, vestibular, proprioceptive, and somatosensory receptors
Massion (1994). The CNS then processes this information to
direct (efferent signals) both somatic (muscular) and autonomic
(blood pressure etc.) responses. The PC system can be disturbed
in two ways: the first one is a disease disruption (lost
function) at all levels, and the second is a physiological
“overstimulation” (increased function), which gives rise to
motion sickness (MS).

State of the Art
Motion sickness is experienced by those who passively travel
and is more common in women and at a young age. Although
there are great individual differences, sex and age are both
predictors of MS and motion sickness susceptibility (MSS)
in general populations, probably due to gene–environment
interaction Golding (2006a).

In addition, MS and MSS also fluctuate across age, i.e., in
general, humans from 2 years of age begin to feel motion
sick during traveling, peaking at 13 years of age and declining
postpubertal (Bos et al., 2007; Huppert et al., 2019).

One of the best-known manifestations of MS is seasickness
Petersen (2012). Due to modern technology, humans have
faced new MS situations such as spaceflights [space sickness
Crampton (1990)] or when playing computer games, including
the phenomenon of “cybersickness” in virtual reality (VR)
environments LaViola (2000). MS is a polysymptomatic disorder,
where the primary symptoms are nausea and vomiting, but
sweating, facial pallor, increased salivation, drowsiness, and
dizziness are also frequent Golding (2006a). There is varying
susceptibility among the general population, but all those with
a fully or partially functional vestibular system can experience

Abbreviations: ADA-B, ada-boosting; AUCROC, area under the curve
receiver operating characteristics; CNS, central nervous system; EEG,
electroencephalography; EGG, electrogastrography; EMG, electromyography;
EOG, electro-oculography; GB, gradient boosting tree; HR, heart rate; IDizz ,
dizziness and vertigo index; IFatig , fatigue index; IGenDis, general discomfort index;
IHead , head index; IMS, motion sickness index; INM , neurological/muscle strain
index; IPV , physiological/vegetative index; IStom, stomach-related index; KNN,
K nearest neighbor; LG, low gamma; ML, machine learning; MLP, multilayer
perceptron; MS, motion sickness; MSS, motion sickness susceptibility; MSSQ,
motion sickness susceptibility questionnaire; PC, postural control; PSD, power
spectral density; RF, random forests; SCT, sensory conflict theory; SVM, support
vector machine; VR, virtual reality.

MS. Females report higher incidence in MS history (higher
frequency and severity of symptoms) and are more susceptible
to seasickness, simulator sickness, and visually induced MS than
males of the same age (Flanagan et al., 2005; Lawther and Griffin,
1988; Turner, 1999).

Two main theories regarding the pathogenesis of MS exist.
The “sensory conflict theory” (SCT) Reason (1978) states that
MS is caused by conflict between visual, vestibular, and/or
somatosensory inputs. In the case of passive travel, such as being
a passenger in a car or on a ship, the physical motion perceived
by the vestibular system does not match the expected signals
from the visual system. Sensory conflict can also occur due to a
purely visual stimulus, as can be experienced by people during VR
simulations who may perceive a visual movement, but vestibular
signals do not match this. Recent studies report possible “sensory
conflict neurons” in the brainstem and cerebellum (Oman and
Cullen, 2014; Cohen et al., 2019) and also brain networks
that mediate nausea and vomiting Yates et al. (2014b), which
appear to further support the sensory conflict theory. A second
theory of pathogenesis in MS is the “postural control theory”
Riccio and Stoffregen (1991). It states that prolonged postural
instability precedes the subjective symptoms of MS, i.e., that
MS is directly brought on by an inability to control the
posture during motion rather than a detection of any sensory
conflict. The ability to remain bipedal/upright is crucial to
human survival and MS appears to be closely linked to postural
instability; studies have shown that greater postural instability or
increased body sway correlates with greater MSS (Cobb, 1999;
Tal et al., 2010).

Regardless of the underlying pathophysiology, CNS adaptive
signals as well as efferent signals involved in the corrective
processes, preceding and during MS, are measurable via
various methods. Some studies have looked into possible
correlations between MS levels and physiological biosignals
such as electroencephalography (EEG), electrogastrography
(EGG), electro-oculography (EOG), skin conductivity, heart
rate (HR), blood pressure, body temperature, and cerebral
blood oxygen demand visualized in functional magnetic
resonance imaging. Relationships between the levels of MS
experienced by subjects have been demonstrated in various
EEG, EGG, and eye movement studies. Koohestani et al.
(2019) give an overview of objective biosignal measures in
MS research. Objective kinematic measures such as center of
pressure (COP) are also documented as having relationships
to MS levels in the literature (Thurrell and Bronstein, 2002;
Weech et al., 2018) as well as spectral characteristics of
spontaneous sway, which have been measured as a possible
objective measurement for a predictive MS parameter
Laboissière et al. (2015).
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Objective measures can be useful for tracking the onset of MS,
as it may be possible to use biosignals to predict the likelihood
of the subject experiencing MS. Therefore, a subject’s MSS can
be linked to measurable physiological or kinematic parameters
in some cases by correlating the objective measurements with a
standardized subjective MSS test/experienced MS level test. This
is crucial for all further genetic studies on MS.

Motion sickness susceptibility is generally assessed by means
of a questionnaire: subjective reporting of experienced levels
of typical MS symptoms during biosignal measurement is a
method used extensively in recent experimental studies (Kennedy
et al., 1993; Golding, 2016; Mazloumi Gavgani et al., 2018).
Correlation of various biosignals and subjective reporting of
MS levels is a task to which machine learning (ML) is
actively contributing. EEG has been used as a technique to
correlate biosignal measurements with MS levels in multiple
subjects using ML for VR-related MS Li et al. (2020). Ko
et al. (2011) used neural network ML algorithms to estimate
patient’s MS level based on the EEG power spectra from
possible stimulated brain areas. Li et al. (2019) also studied
EEG, COP, and head and waist motion markers correlated
to a subjective MS questionnaire using ML following visually
induced MS. Wang et al. (2019) used postural difference
measures pre- and post-visually induced MS calculated with
a deep long short term memory model. These studies used
visually induced MS exclusively for estimating physiological
response in virtual environments. Hell and Argyriou (2018) also
used ML to predict MS using a VR rollercoaster simulation
tool and a neural network architecture predicting MS and
the intensity of roller coasters in order to improve the
gaming experience.

Scientific Goal and Proposed Experiment
In this paper, we present the results from the first study using
a new seasickness measurement platform called BioVRSea. This
system is a sailing simulator that records, in synchronized
fashion, heart, muscle, and brain signals (Figure 1). The
participants wear the VR goggles showing a rough sea scenario.
The movement of the ship on the waves in the VR scenario is
coupled to the moving platform and the frequency and amplitude
of the VR wave motion is synchronized with the platform
motion. Subjective and objective MS levels are assessed by a
questionnaire while biosensors measure EEG, electromyography
(EMG), and HR of the subject. The creation of a database allows
the implementation of various statistical and ML algorithms with
the aim of correlating the biometric results with new indexes that
combine the various symptoms of MS, having as main novelty the
EEG application and interpretation in association with VR and
moving platform inducing MS, linked to other biosignals.

MATERIALS AND METHODS

The biosensors used in this study are 64-channel EEG, 2-channel
EMG, and HR chest monitor.

This first study is based on data acquired from 28 subjects (age:
23.8± 1.2), 22 women and 6 men (ethic approval by the Icelandic
Bioethics Commission – Number: VSN-20-101 – May 2020).
Each participant is measured three times (except one subject
who underwent only two protocols) using different protocols
based on the amplitude and frequency of the simulated waves.
From each protocol, we extract 19 parameters associated with
HR, EEG, and EMG signals. Moreover, after every protocol, the

FIGURE 1 | BioVRSea structure: the moving platform, shown in a photo with a subject on the left, is combined with a rough sea VR scenario and with EEG, EMG,
and HR bio-signal acquisition.
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subject answers the Motion Sickness Susceptibility Questionnaire
(MSSQ) Golding (2006b) based on the self-evaluation of 13
different neurophysiological conditions. A total of 83 datasets
[(28× 3) - 1] constitute the final database of our study.

BioVRSea Measurement’s Protocols
The VR software (Virtualis, VR, France) dynamically visualizes
a virtual environment as if the subject is out on the open sea on
a little boat. A moving platform (Virtualis VR, France) mimics
the waves according to the simulated environment (Figure 1).
The operator can set frequency (between 0.5 and 3 Hz) and
amplitude of the waves (from 0 to 2). During the simulation,
we vary the amplitude of the platform movements from 0%
up to 100%. The platform allows fast (tailored) movements in
0◦−45◦−90◦−135◦−180◦−225◦−270◦−315◦−360◦ (linear acc.
not available) coupled to synchronized visual VR movements.

Three different protocols are implemented in this study
(Figure 2):

• 0 Hz, null wave amplitude. Sea simulation is not
performed during this protocol. The subject remains in
an upright position on the platform for 60 s, observing
mountains surrounded by lights in a dark environment
through the goggles.
• 1 Hz, and wave amplitude = 0.6. This sea simulation

protocol is divided into four parts, 30 s each with different
platform movement amplitudes: 25, 50, 75, and again 25%.
Total time: 120 s.
• 3 Hz, and wave amplitude = 0.5. This sea simulation

protocol is divided into four parts, 30 s each with different
platform movement amplitudes: 25, 50, 75, and again 25%.
Total time: 120 s.

The first protocol mentioned (0 Hz) is the non-movable
(platform stable) pre-test (baseline) sampling where the subjects

can relax. This is done before the other two protocols (1 and 3 Hz)
where the subjects during the movements have to grab onto the
protection bars that they have in front. The eyes must be opened
during all the three protocols.

The selection of these frequencies was based on two main
reasons. The first reason is to only act upon one of MS
etiologic theory: multiple theories have been listed to explain
MS, and the SCT is easily the leading perspective. Frequencies
below 1 Hz are not considered because they might act upon
the additional Postural Instability Theory, which is rooted in
perception of lower <0.5 Hz frequencies Riccio and Stoffregen
(1991). The second reason is to ensure that an easy scenario
(1 Hz) is available to reduce the risk of falling, as well
as a harder one (3 Hz) to ensure sufficient movement to
trigger MS.

Data Acquisition
During each protocol, heart, muscle, and brain data are acquired
using the following technologies:

• HR is measured using a heart chest sensor (Polar Electro,
Kempele, Finland, sampling frequency of 1,000 Hz).
• Muscle electrical activities from the lower limbs are acquired

using two wireless EMG sensors (sampling frequency of
1,600 Hz) placed on the gastrocnemius of each leg (Kiso ehf,
Reykjavik, Iceland).
• Brain electrical activity is measured using a 64-channel dry

electrode cap (sampling frequency of 500 Hz) from AntNeuro,
Hengelo, Netherlands.

Feature Extraction
Electromyography data processing was performed using
Matlab_2020b (MathWorks Inc., Natick, Massachusetts,
United States). The EMG signal was filtered with a 50th-order
FIR bandpass filter with cutoff frequencies at 40 and 500 Hz.

FIGURE 2 | The three acquisition protocols that each patient has been subjected to.
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A fast Fourier transform was then used to obtain the frequency
spectrum. The relative power spectral density (PSD) was then
calculated for five frequency bands, equally distributed from
40 to 500 Hz, resulting in five parameters per leg. Finally, the
integral of the rectified EMG signal for each leg was calculated
and divided by the sample size, resulting in one parameter per
leg. A total of 12 EMG-related features is thus computed.

The EEG was recorded using a 64-dry electrode channel
system with an EOG electrode placed below the right eye and a
ground electrode placed on the left side of the neck. Data pre-
processing and analysis were performed with Brainstorm Tadel
et al. (2011) and Matlab_2020b.

The data were re-referenced using the common average
reference. A high-pass and a low-pass filter were set, respectively,
from 0.1 and 40 Hz. Bad channels were manually removed when
EEG voltage was higher than 300 µV. If more than 20% of
the channels showed too much noise or incorrect signal, the
whole trial was rejected. The signals were digitized in segments
of 30 s, within 1-Hz and 3-Hz protocols. DC offset correction
was performed, and baseline correction was applied using the
0-Hz segment. Channels marked as bad were removed and
interpolated. Individual trials were visually inspected and rejected
when indicative of excessive muscle activity, eye movements, or
other artifacts.

The PSD was computed for each epoch with Welch’s method,
with the following frequency bands: delta (0.5–4 Hz), theta (4–
8 Hz), alpha (8–13 Hz), beta (13–35 Hz), and low gamma (LG)
(35–40 Hz). The relative power of each band was then computed
and averaged across all channels, obtaining a total of five EEG-
related features.

Finally, from the HR signal, we calculate two features: HR
average and standard deviation.

This results in a total of 19 biometric features for each
acquisition protocol (Table 1).

Table 2 shows the objective physiological measurement
differences for all the subjects between the first static protocol
and the other two, the light one (1 Hz) in green and the hard one
(3 Hz) in red. The arrows show how the values of the single EEG,
EMG, and HR data rise or fall during the protocols. For example,
it is possible to notice how the EMG values for both legs at low
frequencies increase for the most patients, while they decrease at
high frequencies. On the opposite, the EEG values do not follow
such a regular trend.

Motion Sickness Questionnaire and
Relative Indexes
At the end of every protocol the subjects were asked to
fill out a questionnaire regarding their MS symptoms. The
questionnaire is based on the MSSQ proposed by Golding
(2006b). The subjects must give a score between zero and
two for 13 typical MS symptoms: general discomfort, dizziness
and vertigo, stomach awareness, sweating, nausea, salivation,
burping, headache, fullness of head, blurred vision, fatigue, eye
strain, and difficulty focusing.

We define a total of eight binary indexes considering
the MSSQ answers.

TABLE 1 | Description of the 19 biometric parameters that
compose the database.

Biometric parameter Description

EEG – Delta Relative power spectra between frequency band
0.5–4 Hz

EEG – Theta Relative power spectra between frequency band
4–8 Hz

EEG – Alpha Relative power spectra between frequency band
8–13 Hz

EEG – Beta Relative power spectra between frequency band
13–35 Hz

EEG – LG Relative power spectra between frequency band
35–40 Hz

EMG – L area Integral of the rectified EMG signal of left gastrocnemius
divided by the sample size

EMG – R area Integral of the rectified EMG signal of right
gastrocnemius divided by the sample size

EMG – L 40-132 Left gastrocnemius relative PSD in the 40–132 Hz
frequency band

EMG – L 132-224 Left gastrocnemius relative PSD in the 132–224 Hz
frequency band

EMG – L 224-316 Left gastrocnemius relative PSD in the 224–316 Hz
frequency band

EMG – L 316-408 Left gastrocnemius relative PSD in the 316–408 Hz
frequency band

EMG – L 408-500 Left gastrocnemius relative PSD in the 408–500 Hz
frequency band

EMG – R 40-132 Right gastrocnemius relative PSD in the 40–132 Hz
frequency band

EMG – R 132-224 Right gastrocnemius relative PSD in the 132–224 Hz
frequency band

EMG – R 224-316 Right gastrocnemius relative PSD in the 224–316 Hz
frequency band

EMG – R 316-408 Right gastrocnemius relative PSD in the 316–408 Hz
frequency band

EMG – R 408-500 Right gastrocnemius relative PSD in the 408–500 Hz
frequency band

HR average Heart rate average

HR std Heart rate standard deviation

General discomfort (IGenDis, 1st) and Dizziness and Vertigo
(IDizz , 2nd) are considered as independent and individual
indexes. Stomach awareness, sweating, nausea, salivation, and
burping are considered together as stomach-related to create the
Stomach-related Index (IStom, 3rd). Headache, fullness of head,
and blurred vision together produce the Head Index (IHead, 4th)
while fatigue, eye strain, and difficulty focusing contribute to the
Fatigue Index (IFatig , 5th). IStom, IFatig , and IHead are computed
as binary indexes following these steps: first, we compute the
average from the individual responses of each index; second,
we calculate the maximum among the averages; and third, we
divide the cohort into two groups (below and above 1/3 of the
maximum). For IGenDis and IDizz , we apply only steps 2 and 3
using the direct response instead of the average.

Moreover, we established two more indexes,
Physiological/Vegetative Index (IPV, 6th) and
Neurological/Muscle Strain Index (INM, 7th). IPV is based
on the previously outlined steps from the responses from
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TABLE 2 | Difference of the objective brain, muscle, and health bio measurements between the first static protocol and the light (1 Hz – green) and the hard one (3 Hz – red) for all the patients (the one that did not
perform the 3-Hz protocol is not included).

PATIENT ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

EEG – Delta ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↑ ↑

EEG – Theta ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↓ ↓ ↓ ↓

EEG – Alpha ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↑ ↓ ↓ ↓

EEG – Beta ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑

EEG – LG ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑

EMG – L area ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

EMG – R area ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

EMG – L 40-132 ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑

EMG – L 132-224 ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓

EMG – L 224-316 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓

EMG – L 316-408 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓

EMG – L 408-500 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓

EMG – R 40-132 ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑

EMG – R 132-224 ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓

EMG – R 224-316 ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

EMG – R 316-408 ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓

EMG – R 408-500 ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

HR average ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↓ ↓ ↑ ↑ ↑

HR std ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ - ↑ ↑ ↑ ↑ ↑ ↑ ↓ ↑ ↑ ↑ ↑ ↓ ↓ ↑ ↑ ↑ ↓ ↓ ↑ ↓ ↓

The up arrows show an increase, and the down arrows show a decrease.
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sweating, salivation, nausea, burping, stomach awareness, and
general discomfort conditions. Similarly, the INM is based on
fatigue, eye strain, difficulty focusing, headache, fullness of head,
blurred vision, and again general discomfort conditions.

The last index is called Motion Sickness Index (IMS, 8th), and
it is based on the weighted sum SumMS of all the MSSQ answers
(Eq. 1) and steps 2 and 3.

SumMS = (0, 2 · GenDisc+ 0, 2 · Dizz&Vert + 0, 2 ·∑(
StomAwe, Nausea, Sweat, Saliv, Burp

)
+ 0, 2 ·∑(

Fatigue, EyeStr, DiffFocus
)
+ 0, 2 ·∑(

Headache, FullHead, BlurrVis
)
) (1)

In Table 3, it is possible to see the percentage of MSSQ answers
and indexes for the entire cohort. It is possible to identify
general discomfort, sweating, nausea, and vertigo as the most
significant indexes with over 20% of responses being 2, which is
the highest possible value. Salivation and burping, conversely, are
the least significant with a percentage lower than 5% providing a
response of value 2.

Table 4, similarly to Table 2, shows the increase or decrease of
the value of the subjective given answer to the questionnaire using
the colored arrows. It is possible to see that some patients, like
numbers 10, 11, 14, and 22, have an increase of the symptom for
both the 1-Hz and the 3-Hz protocols while others do not show
any significant difference. Subject number 16 shows an increase
only with the 3-Hz protocol, confirming the strong influence of
the wave frequency on the body.

Statistical Analysis
All the parameters extracted from EEG, EMG, and HR underwent
a non-parametric statistical univariate explorative analysis in
order to understand whether there was a statistically different
grouping by IGenDis, IDizz , IStom, IHead, IFatig , IPV , INM , and IMs.
All the indexes underwent univariate statistical analysis through
the Mann–Whitney test.

ML Tool and Algorithms
The ML analysis was performed by using KNIME Analytics
Platform (v. 4.2.0), which is a well-known platform in the
field of biomedical studies, as it is considered the best
choice for advanced users of ML Tougui et al. (2020)
Several studies have been performed in clinical settings: for
radiomics studies in oncology (Ricciardi et al., 2019; Romeo
et al., 2020), for fetal monitoring (Improta et al., 2019;
Ricciardi et al., 2020b), for investigating some relationships in
ophthalmology (D’Addio et al., 2019; Improta et al., 2020), and
in cardiology Ricciardi et al. (2020a).

The following algorithms were implemented through the
platform: Random Forests (RF), Gradient Boosting tree (GB),
Ada-Boosting of decision tree (ADA-B), Support Vector Machine
(SVM), K Nearest Neighbor (KNN), and Multilayer Perceptron
(MLP). The first three are based on a structure made up of
nodes (starting point of the tree, which indicates an attribute),
leaves (the question to be answered, which is the final label),
and branches (connecting the nodes) and showed good results
in different studies (Recenti et al., 2020; Ricciardi et al., 2020c).
There are many criteria for splitting up the records: the gain
ratio was used in this study Safavian and Landgrebe (1991).
RF and GB are two empowered versions of the decision tree;
they apply the ensemble learning methods of randomization,
bagging, and boosting to make the weak learner stronger
(Breiman, 2001; Friedman, 2001). SVM and KNN are two
instance-based algorithms (Keller et al., 1985; Suykens and
Vandewalle, 1999); the former assigns the class to the test
data based on their distance from similar training data while
the latter is capable of solving problems that have to do
with overfitting, small datasets, and non-linear and/or high-
dimensional data; it can also be used for both classification
and regression. It aims to find the best hyperplane that
divides the dataset into two classes. MLP consists of a form
of neural network with an input layer, one or more hidden
layers, and an output layer. The training is usually achieved by
using the algorithm backpropagation of errors or some of its
variants Riedmiller and Braun (1993).

TABLE 3 | Percentage of the MSSQ answers for each symptom, and percentage of zeros and ones for the eight computed indexes.

MSSQ Symptoms 0 (%) 1 (%) 2 (%) Index 0 (%) 1 (%) Index 0 (%) 1 (%) Index 0 (%) 1 (%)

Gen. Discomfort 43.4 30.1 26.5 IGenDis 43.4 56.6

Sweating 43.4 32.5 24.1

Salivation 79.5 15.7 4.8 IPV 63.9 36.1

Nausea 61.4 14.5 24.1 IStom 62.6 37.4

Burping 94.0 6.0 0.0

Stomach Awern. 66.3 18.1 15.7

Fatigue 67.5 16.3 13.2 IMS 61.4 38.6

Eye Strain 53.8 26.9 19.2 Ifatig 56.6 43.4

Diff. Focusing 62.7 22.9 14.5

Headache 55.4 25.3 19.3 INM* 59.0 41.0

Full. Of Head 63.9 22.9 13.2 IHead 57.8 42.2

Blurr. Vision 61.4 26.5 12.0

Dizziness - Vertigo 54.2 24.1 21.7 IDizz 54.2 45.8

*INM includes also General Discomfort.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 7 April 2021 | Volume 9 | Article 635661

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


fbioe-09-635661 March 26, 2021 Time: 17:37 # 8

Recenti et al. Motion Sickness Virtual Reality Platform

TA
B

LE
4

|D
iff

er
en

ce
of

th
e

su
bj

ec
tiv

e
M

S
sy

m
pt

om
s

be
tw

ee
n

th
e

fir
st

st
at

ic
pr

ot
oc

ol
an

d
th

e
lig

ht
(1

H
z

–
gr

ee
n)

an
d

th
e

ha
rd

(3
H

z
–

re
d)

fo
r

al
lt

he
pa

tie
nt

s
(th

e
on

e
th

at
di

d
no

tp
er

fo
rm

th
e

3-
H

z
pr

ot
oc

ol
is

no
ti

nc
lu

de
d)

.

P
at

ie
nt

Id
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

26
27

G
en

.D
is

co
m

fo
rt
↑

–
↑

–
↑
↓
↑

–
↓
↓
↑
↑

–
↑
↑
↑
↑
↑
↑
↑
↑
↑

–
–

–
–
↑
↑

–
–

–
↑

–
–

–
–

–
–
↑
↑

–
↑

–
↑

–
↑
↑
↑
↓
↓

–
–
↑
↑

S
w

ea
tin

g
–

–
–

–
–
↑

–
–

–
–

–
–
↑
↑

–
–

–
↑
↑
↑
↑
↑

–
–

–
–

–
↑

–
–

–
↑

–
–

–
–

–
–

–
↑

–
–
↑
↑

–
–
↑
↑
↑

–
–

–
–
↑

S
al

iv
at

io
n

–
–

–
↑

–
–

–
–

–
–
↑
↑

–
↑
↑
↑

–
↑
↑
↑
↑
↑
↑
↑

–
–
↑
↑
↑
↑

–
↑

–
–

–
–

–
–
↑
↑
↑
↑
↑
↑

–
–
↑
↑
↑
↑
↑
↑

–
–

N
au

se
a

↑
–
↑
↑
↑

–
↑

–
↑

–
↑
↑
↑
↑

–
–

–
↑

–
–
↑
↑
↑
↑
↑
↑
↑
↑

–
–

–
↑
↓

–
↑
↑

–
–
↑
↑

–
↑
↑
↑

–
–

–
–
↑
↑

–
↑
↑
↑

B
ur

pi
ng

–
–

–
–

–
–
↑

–
–

–
–

–
↑
↑
↑

–
–

–
↑
↑
↑
↑

–
–

–
–
↑
↑

–
–

–
↑

–
–

–
–

–
↑

–
–

–
↑
↑
↑

–
–
↑
↑
↑
↑
↑
↑
↑
↑

S
to

m
ac

h
A

w
er

n.
–

–
–

–
–

–
–

–
–

–
–
↑

–
–
↑
↑

–
↑
↑
↑
↑
↑

–
–

–
–

–
–

–
–

–
↑

–
↑

–
–

–
↑

–
↑

–
↑

–
–

–
–

–
–
↑
↑

–
↑

–
–

Fa
tig

ue
–

–
–

–
↑

–
↑
↑
↑

–
↑
↑
↓
↓
↑

–
–
↓

–
–
↑
↑
↑

–
↑
↑
↑
↑
↑
↑

–
↑
↑
↑
↑
↑

–
–
↑
↑
↑
↑
↑
↑

–
↑
↑
↑
↓
↓

–
↑
↑
↑

E
ye

S
tr

ai
n

–
–
↑

–
–

–
↑

–
↑

–
–
↑

–
↑
↑
↑

–
–
↑
↑
↑
↑

–
–

–
–
↑
↑

–
–

–
↑

–
–

–
–

–
↑
↑
↑

–
↑
↑
↑

–
–
↑
↑

–
–
↑
↑
↑
↑

D
iff

.F
oc

us
in

g
–

–
↑
↑

–
–
↑

–
–

–
–

–
–
↑
↑
↑

–
↑
↑
↑
↑
↑

–
–

–
–
↑
↑

–
–

–
↑

–
–

–
–

–
–

–
↑
↑
↑
↑
↑

–
–
↑
↑

–
↑
↑
↑
↑
↑

H
ea

da
ch

e
↑

–
↑
↑
↑

–
↑

–
↑

–
↑

–
↑
↑
↑

–
–
↑
↑
↑
↑
↑

–
–

–
–
↑
↑

–
–

–
↑
↑

–
↑
↑

–
↑

–
–

–
↑
↑
↑

–
↑

–
↑
↑
↑

–
↑

–
–

Fu
ll.

O
fH

ea
d

–
–
↑
↑

–
–
↑
↑

–
–
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑
↑

–
–
↑
↑
↑
↑

–
–

–
–
↑

–
–
↑

–
↑
↑
↑

–
↑
↑
↑

–
–
↑
↑

–
–
↑
↑
↑
↑

B
lu

rr.
V

is
io

n
–

–
↑

–
–

–
↑
↑

–
–

–
–
↑
↑

–
–

–
–

–
–
↑
↑

–
–

–
–
↑
↑

–
–

–
↑

–
–

–
–

–
–

–
–
↑
↑
↑
↑

–
–
↑
↑

–
–
↑
↑
↑
↑

D
iz

zi
ne

ss
–

Ve
rt

.
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
↑

–
–
↑

–
–

–
–

–
–

–
–

–
–

–
–
↓
↓

–
–

–
–

–
–

–
–

–
–

–
↑

–
↑

–
–

Th
e

up
ar

ro
w

s
sh

ow
an

in
cr

ea
se

,a
nd

th
e

do
w

n
ar

ro
w

s
sh

ow
a

de
cr

ea
se

.

The most employed evaluation metrics were used to assess
the performance of the algorithms into the classifications tasks:
accuracy, sensitivity, specificity, and Area Under the Curve
Receiver Operating Characteristics (AUCROC) Hossin and
Sulaiman (2015). All these metrics were computed using the
K-Fold Cross Validation Kohavi (1995) with k = 10 using 10
different seeds. This means that the database is divided into 10
groups and each of them is used in turn as the test group while
the other nine are used for the training of the model. Using 10
different seeds allows the creation of different 10-fold divisions,
which allows a better exploration of the database and achieving
the best results.

RESULTS

Statistical Analysis Results
Table 5 shows the results of the statistical tests that assess
the significance of the 19 parameters with the eight binary
MSSQ indexes. Interestingly, only 4 out of 19 parameters never
show a significance.

The EEG Beta and LG showed significance only for the
individuals suffering from headache, fullness of head, and blurred
vision (IHead), while no other significances were found for
an EEG parameter.

The amplitude/area of EMG on both sides achieved a
significance for all the conditions except for General Discomfort
(IGenDis). Similarly, excluding a few cases, the power spectrum of
the EMG obtained a significance for almost all the conditions
except in the band of 132–224 for the left side, which is
never significant.

The HR Average was significant according to all indexes
excluding IStom, IFatig , and IHead while HR std showed statistical
significance only according to IGenDis.

The IGenDis index was the index that showed the least number
of significances for the analyzed parameters; only EMG – R
40–132 and 132–4 Hz and HR parameters achieved significant
results according to this index. On the other hand, IHead, IDizz ,
and INM were the indexes according to which the biometric
parameters show the greatest number of significant results
(respectively, 13 and 12).

Finally, 11 out of 19 parameters show a significant result
according to the overall IMS: 10 EMG-related features, 1 HR-
related feature, and no EEG feature.

ML Results
The ML analysis focuses on the binary classification of
physiological, neurological, and general MS conditions based
on the MSSQ responses. We performed the classification of the
following index previously defined:

(1) The Physiological/Vegetative Index (IPV ),
(2) The Neurological/Muscle Strain Index (INM),
(3) The MS Index (IMS).

We assessed these conditions using six different algorithms,
finding RF to yield the best results (Table 6).
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As regards IPV and INM , the RF was the best algorithm for
classifying both indexes; an accuracy of 75.9% with an AUCROC
of 0.815 was achieved for IPV while an accuracy of 79.5% with an
AUCROC of 0.832 was obtained. The highest sensitivity (85.0%)
was obtained by the ADA-B for the physiological index, while
the highest sensitivity was achieved by RF (74.4%). As regards
the neurological index, the best sensitivity (80.0%) was achieved
by the ADA-B while the best specificity (83.3%) was obtained
by RF. The MLP was the worst algorithm to perform both the
classifications since it reached the lowest accuracy (respectively,
49.4 and 45.8%) while the lowest AUCROC was reached by
KNN for the physiological index (0.573) and by SVM for the
neurological index (0.590).

The feature importance analysis (Figure 3) shows that
parameters extracted from EMG were the most important ones
by far for the classification of both indexes. The first EEG-based
features can be found in the 5th place in the ranking while the first
HR-based features can be found after the 10th place. Moreover, it
has to be highlighted that the top three features in Figure 3 for
these indexes are all statistically significant also in the previous
univariate analysis (Table 5).

Concerning IMS, the overall model for the indexes is good
enough considering accuracies greater than 70.0%, AUCROC
greater than 0.800, and the number of trials (equal to 83) that does
not allow us to analyze a large dataset; indeed, a greater number

of subjects would allow the improvement of the evaluation
metrics of the models.

The feature importance analysis (Figure 3 and Table 7)
highlighted novel results for IMS: the seasickness can be strongly
linked to features extracted from EMG (the top two were area and
frequency analysis in the range 40–132) and HR-based (average
and standard deviation were at the third and fourth place). On
the other hand, another important and surprising result is the
low importance of all the features extracted from the EEG, they
were below the seventh place in the final ranking (this also for
the other indexes except EEG-Beta which is quite relevant for IPV
and INM). This can be explained by the fact that a dry cap EEG
was used for the acquisition. More noise was detected and led
to a lower signal quality. Channels had to be rejected and could
not be interpolated, leading to an averaged PSD on less channels.
This can be one of the reasons of the low significance related
to EEG features.

DISCUSSION

Postural control is central in governing upright posture in
humans. PC failure is dual, firstly pathological disruption leading
to clinical difficulties where symptoms of vertigo, dizziness,
imbalance, and falling are prominent Dakin and Bolton (2018).

FIGURE 3 | Brain, muscle, and heart feature importance for IPV , INM, and IMS using Random Forest algorithm.
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Secondly, an overstimulation of the PC system may precipitate a
series of symptoms of discomfort known as MS Golding (2016).
As in PC diseases, there are many objective measurements to be
used in the diagnosis of these diseases. On the other hand, there
are limited ways to objectively measure MS. Questionnaires are
used to evaluate the incidence of subjective symptoms associated
with MS, most often nausea, pallor, vomiting, sweating, headache,
lightheadedness, and body discomfort Balk et al. (2013). There is
an urgent need for objective measurement to evaluate MS, as it
threatens human well-being when one is situated in a motion-
rich environment. It is also critical to objectively distinguish
people into MS-prone and non-MS-prone individuals. This is
possible using questionnaires Golding (2006b), but having an
objective way to discriminate these two groups is of great value
when comes to genetic research.

In this study, we use the BioVRSea research setup and focus
on EEG, EMG, and HR bio-signals associated with subjective MS
symptoms. Our EEG-coupled results show significant difference
in brain neural networking in individuals indicating subjective
symptoms of headache, fullness of the head, and blurred vision
(IHead). In an earlier study, we showed that open eyes trials
reflect a greater number of significant differences in EEG
absolute spectral power across all bands during both adaptation
and habituation. This suggests that following both acute and
prolonged proprioceptive perturbation, cortical activity may be
up-regulated with the availability of visual feedback Barollo et al.
(2020). These results generally support our prior hypothesis
that the visual recognition of instability may play a critical
role in governing cortical processes requisite for PC Edmunds
et al. (2019). These results underline the importance of visual
information in PC and simultaneously open up the VR afferent

link in PC perturbations. Being able to couple these subjective
symptoms, i.e., headache, fullness of the head, and blurred vision,
to objective intracranial activity is crucial in clinical context
and opens up ways for VR-coupled biosignal evaluation of PC
pathologies Maire et al. (2017). This is in keeping with many
other studies performed on motion and CNS triggers of head-
related symptoms. Jang et al. (2020) identified that the alpha
band was linked to VR sickness, with a decrease of the absolute
power during the experiment, followed by an increase during
the recovery, highlighting a negative correlation with the MSSQ
score. Kim et al. (2005) detected that in the case of cybersickness,
the severity of the symptoms was positively correlated with the
delta wave, and negatively with the beta waves. It is interesting
to see that, in our study, despite the low significance of EEG
regarding the different indexes chosen, the power associated to
the beta band is the parameter presenting the most importance in
IPV and INM. This corroborates the fact that beta band is related
to MS symptoms and is a feature that should be investigated in
MS studies. Our results do not enable to drawing of hypotheses
regarding the other power bands.

Our observations have indicated that definite vection does
not necessarily result in visually induced MS (you can have very
compelling vection but no visually induced MS), but at the same
time, most participants who get sick also report vection. Our
intentions are to verify the relationship between MS and visually
induced MS, although there are some participants that get sick
on the platform but never experience MS in the real world.
They probably have not experienced enough rough waters and
therefore we do not expect false positive/negative.

To be able to evaluate the relationship between BioVRSea
biosignals and subjective MS symptoms, the use of ML was

TABLE 5 | Significance of the 19 biometric parameters calculated with the univariate statistical analysis (Mann–Whitney test) for all the eight indexes.

IGenDis IStom IFatig IHead IDizz IPV INM IMS

EEG – Delta 0.734 0.903 0.790 0.383 0.841 0.529 0.993 0.667

EEG – Theta 0.934 0.880 0.388 0.613 0.400 0.927 0.184 0.181

EEG – Alpha 0.713 0.865 0.769 0.620 0.577 0.560 0.971 0.888

EEG – Beta 0.393 0.510 0.236 0.050* 0.194 0.105 0.130 0.335

EEG – LG 0.508 0.247 0.229 0.029* 0.070 0.087 0.081 0.217

EMG – L area 0.114 0.001*** 0.004** 0.001*** 0.001*** 0.001*** 0.001*** 0.001***

EMG – R area 0.157 0.004** 0.001*** 0.001*** 0.001*** 0.004** 0.001*** 0.001***

EMG – L 40–132 0.274 0.029* 0.006** 0.001*** 0.001*** 0.040* 0.004** 0.011**

EMG – L 132–224 0.941 0.492 0.274 0.079 0.165 0.444 0.285 0.449

EMG – L 224–316 0.247 0.031* 0.006** 0.001*** 0.001*** 0.090 0.010** 0.013**

EMG – L 316–408 0.236 0.025* 0.012** 0.003** 0.001*** 0.043* 0.003** 0.011**

EMG – L 408–500 0.286 0.023* 0.029* 0.003** 0.001*** 0.032* 0.002** 0.009**

EMG – R 40–132 0.040* 0.006** 0.003** 0.001*** 0.001*** 0.002** 0.001*** 0.008**

EMG – R 132–224 0.044* 0.027* 0.051* 0.035* 0.015** 0.005** 0.008** 0.100

EMG – R 224–316 0.079 0.026* 0.012** 0.007** 0.002** 0.037* 0.007** 0.040*

EMG – R 316–408 0.139 0.030* 0.006** 0.001*** 0.001*** 0.039* 0.003** 0.012**

EMG – R 408–500 0.118 0.020* 0.003** 0.001*** 0.001*** 0.018* 0.001*** 0.003**

HR average 0.001*** 0.219 0.082 0.314 0.012** 0.037* 0.010** 0.042*

HR std 0.040* 0.451 0.213 0.149 0.251 0.264 0.249 0.136

*Significant at 0.05. **Significant at 0.01. ***Significant at 0.001.
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TABLE 6 | Evaluation metrics after the classification ML analysis for IPV ,
INM, and IMS.

Index Algorithms Accuracy Sensitivity Specificity AUCROC

IPV RF 75.9 77.5 74.4 0.815
GB 74.7 75.0 74.4 0.705

ADA-B 75.9 85.0 67.4 0.781
SVM 60.2 62.5 58.1 0.603
KNN 57.8 60.0 55.8 0.573
MLP 49.4 77.5 23.3 0.642

INM RF 79.5 74.3 83.3 0.832
GB 69.9 71.4 68.8 0.711

ADA-B 73.5 80.0 68.8 0.746
SVM 60.2 51.4 66.7 0.590
KNN 67.5 65.7 68.8 0.694
MLP 45.8 80.0 20.8 0.737

IMS RF 74.7 59.4 84.3 0.801
GB 72.3 68.8 74.5 0.803

ADA-B 71.1 71.9 70.6 0.765
SVM 55.4 43.8 62.7 0.532
KNN 67.5 59.4 72.5 0.670
MLP 53.0 40.6 60.8 0.681

The bold values are the most significant values in the evaluation metrics that
describe the results of the ML classification for IPV , INM, and IMS using the listed
algorithms.

TABLE 7 | Feature importance (%) for IPV, INM, and IMS using Random Forest
algorithm.

IFV INM IMS

EEG – Delta 3.74 2.37 2.47
EEG – Theta 5.46 4.84 5.87
EEG – Alpha 2.78 1.97 2.16
EEG – Beta 7.18 6.71 4.29
EEG – LG 2.68 1.48 2.16
EMG – L area 5.56 8.88 4.23
EMG – R area 9.39 12.54 14.77
EMG – L 40–132 6.51 6.12 6.04
EMG – L 132–224 3.07 2.76 4.06
EMG – L 224–316 2.49 5.92 3.56
EMG – L 316–408 7.85 4.24 4.18
EMG – L 408–500 5.17 3.95 6.16
EMG – R 40–132 8.52 7.7 7.9
EMG – R 132–224 7.28 3.26 5.36
EMG – R 224–316 2.11 7.5 4.96
EMG – R 316–408 6.9 5.92 4.78
EMG – R 408–500 5.36 3.85 2.57
HR average 4.89 4.54 7.72
HR std 3.07 5.43 6.76

The bold values are the three most important values of the features importance
(%) for each of the indexes considered (IFV , INM, and IMS) using the random forest
algorithm.

necessary. This study clearly shows the benefit of ML; indeed,
it allowed us to achieve two aims: first, the possibility to model
several biometric parameters extracted from three types of signals
(EEG, EMG, and HR) in order to be able to classify/distinguish
patients suffering from seasickness according to these features;
second, the feature importance analysis allowed us to further
confirm the statistical results by ranking the features according to
their contribution to the classification task. Moreover, as regards
the ML models, the RF was the most reliable among all the
implemented ones (Table 6).

The amplitude of the EMG signals in both legs showed
significant difference regarding all conditions except general
discomfort (IGenDis). That indicates that almost all subjective
symptoms of MS showed correlation with changes in EMG.
This is in context with the fact that all human efforts initiated
to prevent falls, i.e., acute or long-term vertigo and dizziness,
are mediated through postural stabilizing muscles Perrin et al.
(2018). Some studies used EMG measurements to analyze the
behavior related to MS, with sensors placed on the abdominal
muscles Shafeie et al. (2013) and EMG combined with cervical
vestibular myogenic potential to study the effect of scopolamine
for the seasickness treatment Tal et al. (2016). As far as we
know, no study found significance related to EMG in the lower
limbs to quantify MS. This is an important piece of information
regarding our BioVRSea research setup and is a promising single
tool to objectively extract MS sufferers. On the other hand, this is
not surprising as the prime effector in PC is aimed at muscles
maintaining the upright posture and simultaneously avoiding
falls. Our BioVRSea research setup might answer several clinical
questions related to strategies used to prevent falls in patients
with PC pathologies.

The HR parameters were significantly associated with
the symptom of General Discomfort (IGenDis). The General
Discomfort symptom is general in its nature and does not
specifically point to MS. On the other hand, the triggered MS
discomfort relates to an escalated sense of generalized panic
in severe MS conditions, which is well capable of creating
extreme cardiovascular deviations Yates et al. (2014a). This is
expected as HR is probably the best-known biosignal associated
with numerous physical as well as pathological conditions,
particularly of a PC nature.

These results can be used to have quite a whole vision of the
body reaction to induced MS. This total vision can be used to help
the pathological patients and the people that are more prone to
MS planning an eventual rehabilitative therapy. Future ideas are
to use more physiological measurements like blood oxygenation,
skin sweating, and force used on the legs for the equilibrium.
All these actual and future body parameters coupled with the
BioVRSea system and ML are of value in further evaluation of PC
disruptions, which are probably the most disturbing and costly
health conditions affecting humans.

Limitations
Of course, the study has some limitations. The first is the small
number of subjects that limits also the possibility of obtaining
higher evaluation metrics in the ML analysis. The second is
the type of population that has been analyzed in this research
because it was limited regarding age and health status; all the
subjects were young and healthy. Further studies could increase
the number of subjects, which would allow improvements in the
performance of ML and include in the population more diverse
subjects. We use dry electrodes for the EEG acquisition resulting
in high noise signal, which we believe has limited the value of
the associated EEG parameters in both statistical significance
and ML. The use of a wet cap EEG for further acquisitions is a
potential improvement.
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Of course, the VR view that the investigated individual
visualizes standing on a virtual small vessel is not a true scenario
of working environment at sea but is nevertheless capable of
creating MS sensation at least in experienced sailors (verbal
statements after being on platform).
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