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Abstract

This study evaluated the resistance status of Haemonchus contortus from sheep flocks in the state of Sdo Paulo,
Brazil, through comparison between the fecal egg count reduction test (FECRT) and the larval development
test (LDT). For the FECRT, 35 sheep were selected in each of five flocks and divided into groups treated with:
benzimidazole, levamisole, ivermectin, monepantel and control. Feces were collected for EPG and fecal cultures.
The LDT was performed using thiabendazole (TBZ), levamisole (LEV), ivermectin aglycone (IVM-A) and Zolvix (ZLV).
Resistance to all drugs was detected using FECRT in 100% of the flocks, except in relation to ZLV (40% resistant
and 20% suspected of resistance). LDT indicated resistance to TBZ and IVM-A in all flocks, to LEV in 80% of flocks
and to ZLV in 10%. Total agreement was obtained between the two tests for TBZ and IVM (k = 1.0), while for LEV
(k=0.8)and ZLV (k = 0.9), substantial and almost perfect agreement were obtained, respectively. The concordance
between the tests was significant, thus showing that it is possible to use the outcome of the LDT to predict the
FECRT, and hence validating the former as a fast diagnostic test for use by sheep farmers in Brazil.

Keywords: Anthelmintic resistance, FECRT, laboratory diagnosis, RESISTA-Test©, small ruminants.

Resumo

Este estudo avaliou o status de resisténcia de Haemonchus contortus em rebanhos ovinos do estado de Sao Paulo,
Brasil, através de um estudo comparativo entre o teste de reducdo da contagem de ovos nas fezes (TRCOF) e o teste
de desenvolvimento larvar (TDL). Para o TRCOF, 35 ovinos foram selecionados em cada um dos cinco rebanhos
e divididos em grupos tratados com: benzimidazol, levamisol, ivermectina, monepantel e controle. Fezes foram
coletadas para OPG e coproculturas. O TDL foi realizado com tiabendazol-TBZ, levamisol-LEV, ivermectina aglicona-
IVM-A e Zolvix-ZLV. Resisténcia a todos os farmacos foi detectada por meio do TRCOF em 100% dos rebanhos, exceto
para ZLV (40% resistentes e 20% suspeitos de resisténcia). O LDT indicou resisténcia ao TBZ e IVM-A em todos os
rebanhos; em 80% dos rebanhos ao LEV e 10% ao ZLV. Foi obtida concordancia total entre os dois testes para TBZ
e IVM (k =1,0), enquanto para LEV (k=0,8) e ZLV (k = 0,9) foram obtidas concordancia substancial e quase perfeita,
respectivamente. A concordancia entre os testes foi significante, sendo possivel usar o resultado do LDT para
prever o do TRCOF, validando-se o primeiro como um teste diagnostico rapido para criadores de ovinos no Brasil.

Palavras-chave: Resisténcia anti-helmintica, TRCOF, diagndstico laboratorial, RESISTA- Test©, pequenos
ruminantes.
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Diagnosis of anthelmintic resistance in sheep

Introduction

Helminthiasis in small ruminants is aggravated by high levels of parasite resistance. This is the current scenario
in almost all countries in the world in which sheep farming is present (Kaplan & Vidyashankar, 2012). The increasing
occurrence of gastrointestinal nematodes (GIN) that are resistant to anthelmintics, and the need for reliable
information about their establishment and dissemination, indicates that standardized laboratory tests are required
(Von Samson-Himmelstjerna et al., 2009; Traversa & Yon Samson-Himmelstjerna, 2016).

Many advances in investigating resistance have been achieved over the past 50 years, including in relation to
diagnostics, important physiological and genetic discoveries and the development of predictive mathematical models
and tools to help farmers to manage resistance (Kotze et al., 2014). However, this challenge has only been partially
overcome. One key issue that still needs to be resolved is to develop faster and easier diagnostic techniques for
estimating the presence of anthelmintic resistance that can be used by farmers.

Among the in vivo techniques for detecting resistance, the fecal egg count reduction test (FECRT) stands out. This
testis based on comparison of the infection levels estimated through the mean pre-treatment and post-treatment
fecal egg counts (FEC) and it needs to meet the recommendations made by Coles et al. (1992). However, FECRT
presents some limitations, in that it can underestimate the occurrence of anthelmintic resistance when pretreatment
FEC is low. To avoid biases, arithmetic means may be used for the efficacy calculations, or diagnostic methods
with low detection limits, e.g., FLOTAC or mini-FLOTAC, can be employed (Traversa & Von Samson-Himmelstjerna,
2016; George et al., 2017; Wang et al., 2017). In addition, there are flaws in the detection of resistance using FECRT,
especially in relation to species with low egg production, such as Teladorsagia circumcincta or Trichostrongylus spp.
(Palcy et al., 2010). There have been reports of false positive results in relation to H. contortus, T. colubriformis
and T. circumcincta for levamisole (Cawthorne & Cheong, 1984; Grimshaw et al., 1994) and false negative results
for ivermectin (Jackson, 1993). Moreover, FECRT is considered to be a laborious, time-consuming and expensive
test (US$ 392.95 for a test with six chemical groups and a control group) (Love & Hutchinson, 2003; DPI, 2012;
Chagas et al., 2013; Babjak et al., 2018).

Therefore, in vitro assays have been developed to assess parasite resistance to different classes of anthelmintic.
The larval development test (LDT) (Hubert & Kerboeuf, 1992) is considered to be sensitive and practical, and it
allows in vitro evaluation of the efficacy of more than one chemical group at the same time, while not depending
on embryonated eggs (Kaplan et al., 2007). LDT results have been shown to provide reliable dose-response curves
for benzimidazoles (BZs), levamisole (LEV) and ivermectin (IVM) (Taylor, 1990), and reference parasite strains may
be included to give a measurement of inter-assay variation (Craven et al., 1999).

In seeking to deal with advancing resistance, the use of sensitive tests to determine the degree of efficacy of a
given drug in a specific population of parasites can help in planning control strategies (Taylor et al., 2002). However,
even though diagnosing parasitic resistance is of fundamental importance, it is not yet a practical reality in Brazil.
Thus, validation of practical methods for making diagnoses through laboratory tests is extremely important.
In vitro analyses are less costly and relatively easy to do, and they are able to provide reproducible parameters
for measurement of drug resistance, thereby enabling diagnoses that are less dependent on animal experiments
(Chagas et al., 2013).

Therefore, the objective of this study was to evaluate the resistance status of H. contortus from sheep flocks
regarding the chemical groups of benzimidazoles, imidothiazoles, avermectins and amino-acetonitrile derivatives
(AADs), through a comparative study between FECRT and LDT.

Material and Methods

This was an experimental study with a field trial design, in which the research population (animals) was divided
into treatment and control groups. Farms were selected on the basis that they had adequate handling facilities
and were related to suspected anthelmintic resistance. All data, collected between November 1, 2018 to March
30, 2020, were stored in the computer of the Veterinary Parasitology Laboratory and were backed up monthly in
the system of the Embrapa Pecuaria Sudeste Data Center.

Sampling procedures for FECRT

This trial was carried out in the state of Sdo Paulo, Brazil, in five flocks of sheep kept on pasture. To be included
in the study, the flocks needed to: (1) have a minimum of 49 animals with FEC > 200; and (2) have been kept
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without any anthelmintic treatment for at least 12 weeks before the study (Coles et al., 1992). In total, 245 animals
of different breeds participated in the experiment, which followed the methodology of Coles et al. (2006). The
breed composition of the animals was as follows: crosses of % Texel and % Santa Inés (0.82%); ¥ lle-de-France and
% Santa Inés (1.22%); %2 Dorper and % Santa Inés (24.08%); 3 Dorper (24.08%); and other breeds such as Dorper
(0.41%), Texel (2.86%), White Dorper (3.27%), lle-de-France (6.12%), Santa Inés (17.14%) and Morada Nova (20.00%).

In each of the five flocks, 35 sheep were divided into five groups (n = 7): untreated control (C), benzimidazole
(BZ) (Valbazen 10 oral Cobalt, Pfizer, 5 mg/kg BW), levamisole (LEV) (Ripercol L 150 F injectable, Fort Dodge,
6.2 mg/kg BW), ivermectin (IVM) (lvomec 1% injectable, Merial, 0.2 mg/kg BW), and Zolvix (ZLV) (Monepantel 2.5%
oral, Elanco, 2.5 mg/kg BW).

To form the groups, the flocks were visited one day before the treatment (D-1) to collect feces for individual
FEC and for fecal cultures (pooled), to determine which parasite genera were present (Van Wyk et al., 2004). Each
group was then allocated seven animals in decreasing order of FEC (= 200), in order to obtain a similar average
per group. The animals were then weighed and dewormed (D0), in accordance with the specifications of the
anthelmintic manufacturer. After 14 days (D14), a third visit to the flocks was made for new collection of feces for
individual FEC and fecal cultures (group analysis).

Sampling procedures for LDT

Feces were collected individually for FECRT on DO and D14, placed in vacuum-sealable plastic bags (Vac Freezer;
Sanremo Sr375), identified and immediately taken to the laboratory for LDT. Egg recovery was performed through
sequential use of sieves, following the methodology of Coles et al. (1992). About 70 nematode eggs were added to
each well of 96-well plates, along with a nutritive medium as described by Hubert & Kerboeuf (1992). The plates
were identified, sealed with PVC film and kept in an incubator for 24 hours (27°C; RH > 80%), for the larvae (L,) to
develop.

After this period, each well received serial dilutions of thiabendazole (TBZ) (Sigma-Aldrich T8904), levamisole (LEV)
(Sigma-Aldrich 31742), ivermectin aglycone (IVM-A) (Bioaustralis BIA-11151) and Zolvix®. The stock solutions were
prepared by dissolving drugs in dimethyl sulfoxide plus distilled water (maximum DMSO concentration in the well
of 0.025%, with subsequent serial dilution, without interference in the larval development). Comparative studies
with monepantel (MPT) (chemical base, GS P11144) and Zolvix® (commercial product) had previously indicated that
the use of Zolvix® is recommended rather than MPT (Raza et al., 2016; Kotze et al., 2018; Gainza et al., 2020). The
negative control consisted of distilled water and nutritive medium. The plates were then incubated again under
the same conditions for a further six days. All concentrations of anthelmintic and the negative control were tested
as two replicates.

After incubation, eggs and larvae (L,, L, and L,) from each well were quantified using an inverted microscope and
were identified at the genus level (Van Wyk et al., 2004). The numbers of L, vs. eggs + L, + L, in each well containing
the treatments were compared with the control wells to determine the critical well. This was defined as the well in
which development to the L, stage was inhibited by 50%, compared with the control wells. Critical wells correspond
closely to calculated values for LC, (Kaplan et al., 2007) and can be used in a similar way to make inferences about

the resistance status of the parasite population for a given flock.

FECRT and LDT analyses and resistance determination

The efficacy of the anthelmintics in the FECRT was estimated using the RESO 4.0 software to define the resistance
or susceptibility status of the treated groups in relation to the control group. Resistance was defined as present if
(i) the percentage reduction in egg count was less than 95%; and (ii) the 95% confidence level was less than 90%.
If only one of the two criteria was met, resistance was suspected (Coles et al., 1992; 2006).

In LDT, all larvae in the control wells, and in the wells above and below the critical well, were counted and identified
to determine the predominant genus. Resistance of H. contortus to anthelmintics was deemed to be present when
the predominant parasite (L,) in the control and critical wells of the plates was of this genus (Australia, 1996).

LC results for susceptible and resistant H. contortus isolates were previously determined by Gainza et al. (2020).
Comparisons of these values were used to ascertain the anthelmintic resistance status of each flock. It was deemed
that, for H. contortus: 1) the critical wells associated with LC,; values corresponded to FECRT > 95% and were
classified as susceptible; 2) wells associated with delineating doses (LC,, - LC,,) corresponded to FECRT between
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80% to 94% and were classified as presenting suspected resistance; and 3) wells associated with the discriminatory
dose value (LC,,) corresponded to FECRT < 79% and were classified as resistant (adapted from Crook et al., 2016).

Avalue equivalent to a half-well (0.5 critical well) was also added to the value of the critical well that was used
as a cutoff value, except for ZLV. Thus, the resistance status estimates were conservative so as not to overestimate
resistance status. In this manner, results at the limit of resistance would be classified as presenting suspected
resistance. The present method developed with these criteria was therefore named the RESISTA-Test®©.

Statistical analysis

The degree of concordance between the efficacy (i.e. the parasite was susceptible, suspected of resistance or
resistant) found for each chemical group in the FECRT and the critical well obtained in the LDT (where there was
50% inhibition of larval development + 95% Cl) was ascertained. Then, it was also found an association with the
concentration of the drug that was in that critical well (Crook et al., 2016). The Fisher's Exact Chi-square test was
used to compare the resistance status of H. contortus regarding each chemical group in each flock, and to analyze
the level of agreement between the in vivo field test (FECRT) and the in vitro laboratory test (LDT), in order to validate
the RESISTA-Test®©. Paired t tests were used to compare the values of the critical wells that were associated with
the LC,, and LC,,, respectively, for the four chemical groups. It was adopted the following scale to describe the
quality of agreement in terms of kappa values: < 0: no agreement, 0-0.2: low, 0.2-0.4: fair, 0.4-0.6: moderate, 0.6-0.8:
substantial, and 0.8-1: almost perfect (Landis & Koch, 1977). All the analyses were performed using the XLSTAT
Premium 2020.1.1 software (Addinsoft 2020; XLSTAT statistical and data analysis solution; Boston, USA). All effects
were evaluated at a 5% significance level.

Results

The anthelmintic resistance status of H. contortus was determined when this was the predominant genus, as
counted in the control and critical wells of the plates. This criterion was met in all the flocks evaluated. The fecal
cultures carried out in the control groups on days 0 and 14 can be seen in Figure 1.
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Figure 1. Percentage of nematode genre in fecal culture of the control groups from flocks (Flock 1 to Flock 5) on days 0 and 14.
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Table 1 summarizes the FECRT results for each experimental group in each of the sheep flocks evaluated.
Among the five flocks, three (60%) showed resistance to all anthelmintics (flocks 1, 2 and 4), while two flocks (40%)
showed susceptibility to ZLV (flocks 3 and 5). Flock 4 demonstrated the worst resistance scenario for BZ, LEV and
IVM. Although ZLV presented 97% efficacy, the 95% confidence level was from 87 to 100%, thus classifying it as
giving rise to suspected resistance. In Flock 1, efficacy higher than 80% was detected for LEV and ZLV.

Table 1. The arithmetic means of fecal egg counts on day 14 after treatment (FEC D14), fecal egg count reduction percentages
(R%) and the lower and upper 95% confidence intervals (Cl), in sheep flocks (N = 49; 7 animals per group) that were tested
using the following anthelmintics (AH): benzimidazole (BZ), levamisole (LEV), ivermectin (IVM) and Zolvix (ZLV), and also using
an untreated control group (C).

Flock 1 Flock 2 Flock 3 Flock 4 Flock 5
AH FECD14 R%(Cl) FECD14 R%(Cl) FECD14 R%(Cl) FECD14 R%(Cl) FECD14 R% (Cl)
BZ 8579 0(0-74) 871 54 (10-76) 2450 32 (0-79) 836 0(0-63) 1667 2(0-72)
LEV 900 89 (79-94) 350 81 (44-94) 2471 31(0-70) 529 37 (0-74) 825 51 (0-85)
IVM 11264 0 (0-66) 1050 44 (0-81) 3171 11 (0-69) 2893 0(0-0) 1400 18 (0-71)
ZLV 1086 87 (50-96) 721 62 (0-90) 71 98 (93-99) 2143 97 (87-100) 43 97 (94-99)
C 8157 1886 3579 836 1700

*Resistance is present if (i) the percentage reduction in egg count is less than 95% and (ii) the 95% confidence level is less than 90%. If only one
of the two criteria is met, resistance is suspected (Coles et al., 1992). Bold indicates that the anthelmintic was effective.

In the LDT, the resistance of H. contortus to each chemical group in each flock was confirmed based on the
concentration in the critical well (LC,)) and the discriminant concentration (LC,,). H. contortus in all flocks was
classified as resistant to TBZ and, comparing the average concentrations in the critical wells, statistical difference
was detected (P =0.028). For LEV, H. contortus in all flocks except Flock 2 was considered resistant, with no significant
differences among the mean concentrations of critical wells (P = 0.077), between the farms. H. contortus in all flocks
was resistant to IVM-A, with significant differences between the averages of the critical wells (P = 0.009). Lastly,
ZLV resistance was detected only in Flock 2, Flock 1 was classified as suspected of resistance, while susceptibility
occurred in Flocks 3, 4 and 5, with no differences between the averages (P = 0.096).

In comparing the results from LDT and FECRT, there was total agreement between the tests (k = 1.00) regarding
the resistance of H. contortus to benzimidazoles and TBZ, in all flocks, with no significant differences (P = 0.655)
(Table 2). LDT showed susceptibility to LEV in Flock 2, while FECRT demonstrated resistance. The critical cutoff
point for LEV resistance was 0.001 pg/mL. Flock 2 showed critical values below this point, while Flocks 1, 3, 4 and
5 showed values above it, thus indicating resistance to LEV (wells 7.5, 9.5 and 6.5 respectively). However, the chi-
square analysis revealed that there was no significant difference between the results obtained from FECRT and
LDT for LEV (P = 0.151), and substantial agreement between the tests was detected (k = 0.8). In the case of IVM-A,
there was total agreement (k = 1.0) between the tests regarding detection of H. contortus resistance in all flocks,
with no significant differences (P = 0.666). Lastly, for ZLV, the critical cutoff point for resistance in the LDT was 0.005
pg/mL. Flock 2 presented values above this point (well 9.5) and Flocks 3 and 5 had values below it, thus indicating
susceptibility, and these showed total agreement with the results from the FECRT (k = 1.0). Also, ZLV results from
Flocks 1 and 4 showed substantial agreement with those of FECRT (k = 0.8). The chi-square analysis revealed that
there was no significant difference (P = 0.116) between the results obtained from FECRT and LDT for ZLV, which
presented almost perfect agreement (k = 0.9).

Discussion

This was the first study carried out in Brazil comparing FECRT and LDT to detect the resistance of GIN to four
chemical groups in small ruminants. These chemical groups used in LDT were selected based on previous research
that had demonstrated a dose-response relationship with regard to detecting resistance to anthelmintics in vitro
(Coles et al., 1992; 2006). In the present study, LDT revealed that H. contortus presented resistance to TBZ (100%
of the flocks), IVM-A (100%), LEV (60%) and ZLV (20%). In FECRT, resistance to the anthelmintics evaluated was
detected in 60% of the flocks, for all drugs except ZLV, to which 40% were susceptible. These results were expected,
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since Salgado et al. (2019) had reported that multiple anthelmintic resistance is a serious problem within sheep
production in Brazil.

In order to set up a comparison between in vitro and in vivo tests, the discriminatory doses for detection
of resistance in LDT were established for all anthelmintics. The critical cutoff points (LC,) for resistance were:
0.010 pg/mL for TBZ, 0.001 pg/mL for LEV, 0.001 pg/mL for IVM-A and 0.005 pg/mL for ZLV. The LC,, values used
as cutoff values or discriminatory doses for detecting resistance were determined. Discriminant doses were also
determined in other studies for use in LDT: 0.1 pg/mL for TBZ and 1 pyg/mL for LEV, against H. contortus (Hong et al.,
1996; Mitchell et al., 2010); 0.02 pg/mL for TBZ and 0.5 pg/mL for LEV against H. contortus, T. circumcincta and
T. colubriformis (Coles et al., 2006); and 0.01 pg/mL for TBZ, 2.5 pg/mL for LEV and 0.0008 pg/mL for IVM to
H. contortus (Taylor, 1990).

It should be noted that our results differed regarding the cutoff values for LEV, from those reported by Taylor
(1990), Hong et al. (1996) and Mitchell et al. (2010). However, those authors had used commercial anthelmintics in
their assays to perform the LDT and determine the LC,. Because of this, it is necessary to highlight the importance
of using standard substances in order to establish cutoff criteria and reduce the variability of the criteria to a
minimum. Although in the present study the approach used to determine the cutoff values (LC, ) for MPT was
through the commercial anthelmintic (Zolvix®), it was justified by the fact that in previous studies Zolvix® presented
better performance than MPT (chemical base), for detecting resistance to LDT among H. contortus (Lecova et al.,
2013; Raza et al., 2016; Kotze et al., 2018; Gainza et al., 2019).

The present study indicated that a good association existed between FECRT and LDT with regard to detection
of H. contortus resistant to benzimidazoles and TBZ. Similar findings were reported by Grimshaw et al. (1994) using
the FECRT, egg hatch test and LDT on sheep farms in southern England, and by Crook et al. (2016) on sheep and
goat farms in the Central Atlantic region of the United States. High frequency of resistance to benzimidazoles (BZs)
in the state of Sdo Paulo was previously described by Verissimo et al. (2012). Anthelmintics from this chemical
group have been the basis for GIN control in many countries for decades (Chaudhry et al., 2015; Ali et al., 2019).
However, resistance to BZs is an established problem worldwide, in regions where production of small ruminants is
essential (Lalljee et al., 2019). Nonetheless, this chemical group is still widely used, which is probably why resistant
alleles in sheep flocks continue to be observed at high or increasing frequencies.

Despite the differences in results between FECRT and LDT regarding resistance to LEV and ZLV in some flocks,
these were not statistically significant. In these flocks, LDT showed susceptibility to LEV and ZLV, while FECRT showed
resistance and suspected resistance. Although LDT assesses resistance to chemical compounds, it is important to
highlight that anthelmintics can present some efficacy even when the level of resistance is not very high (period of
resistance establishment). This provides an explanation for why, according to the LDT, LEV was more effective in
Flock 2 while ZLV was more effective in Flocks 1 and 4 than in the others, which had higher critical resistance values.
Previous studies have reported conflicting results only for resistance to LEV, between FECRT and LDT (Maingi et al.,
1998). However, the data from the present study indicated that the results from the two tests are comparable. The
improvement of the LDT accuracy will continue in the coming years. In this way, adjustments in the interpretation
of critical wells and associated drug concentration cutoffs will be possible with more assertiveness from a larger
sample of flocks, which will allow reaching total agreement for LEV and ZLV drugs as well.

The anthelmintic resistance for IVM-A among H. contortus isolates in the flocks that was detected using LDT
was also detected using FECRT. Thus, the agreement between the results was due to use of IVM-A in the LDT. The
use of this molecule significantly increases the ability of LDT to differentiate between susceptible and resistant
isolates (Dolinska et al., 2013; 2014).

Anthelmintic resistance is an evolutionary process that is impossible to prevent if anthelmintics are used in
a flock (Kaplan, 2020), but it is possible to reduce the rate at which resistance develops by modifying strategies
of anthelmintic use. For this reason, diagnosing resistance early on is fundamental. In the current work, we took
a conservative approach in assigning cutoff points for resistance and included a borderline category (suspected
of resistance) in order to avoid classifying flocks as presenting resistance when they are indeed susceptible. The
cutoff points for assigning low resistance status presented critical well values that were 1.5 to 2.0 higher than the
cutoff point for assigning susceptible status. This corresponded to an increase in the drug concentration. Thus,
we believe that flocks with suspected resistance represented an important shift towards resistance. The cutoff
points for assigning resistant status presented critical well values > 2.5 higher than the cutoff point for assigning
susceptible status, which corresponded to a fivefold increase in drug concentration.
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FECRT is an important tool for diagnosing resistance, but it can be extremely laborious and expensive for the
producer. In addition, this method may sometimes not be an option for small farmers, due to the small number
of animals and the minimum number of animals required in order to test for multiple anthelmintic agents. On the
other hand, LDT also has limitations, such as contamination of the culture medium, the labor of parasite counting
and dependence on purchasing drug molecules. Even so, it clearly has advantages over FECRT. The LDT validated
in the present study offers a faster and more reliable laboratory test alternative for resistance monitoring and can
be used in sustainable integrated parasite management by Brazilian sheep farmers and technicians.

Conclusion

The data from the present study indicated that H. contortus had a multiple-resistance profile in the flocks
evaluated. Total agreement was obtained regarding the results from the two tests for TBZ and IVM-A, and substantial
and almost perfect agreement for LEV and ZLV, respectively. The correlations between the tests were usually good
and it was possible to use the outcome of LDT to predict the outcome of FECRT, thus validating the former for use
by farmers. This test was here named the RESISTA-Test© for diagnosing resistance presented by H. contortus, the
main parasite of small ruminants in tropical countries.
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