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Above-ground biomass in forests is critical to the global carbon cycle as it stores and 
sequesters carbon from the atmosphere. Climate change will disrupt the carbon cycle 
hence understanding how climate and other abiotic variables determine forest biomass 
at broad spatial scales is important for validating and constraining Earth System models 
and predicting the impacts of climate change on forest carbon stores. We examined the 
importance of climate and soil variables to explaining above-ground biomass distribution 
across the Australian continent using publicly available biomass data from 3130 mature 
forest sites, in 6 broad ecoregions, encompassing tropical, subtropical and temperate 
biomes. We used the Random Forest algorithm to test the explanatory power of 14 
abiotic variables (8 climate, 6 soil) and to identify the best-performing models based on  
climate-only, soil-only and climate plus soil. The best performing models explained ~50% 
of the variation (climate-only: R2 = 0.47 ± 0.04, and climate plus soils: R2 = 0.49 ± 0.04). 
Mean temperature of the driest quarter was the most important climate variable, and 
bulk density was the most important soil variable. Climate variables were consistently 
more important than soil variables in combined models, and model predictive perfor-
mance was not substantively improved by the inclusion of soil variables. This result was 
also achieved when the analysis was repeated at the ecoregion scale. Predicted forest 
above-ground biomass ranged from 18 to 1066 Mg ha−1, often under-predicting mea-
sured above-ground biomass, which ranged from 7 to 1500 Mg ha−1. This suggested that 
other non-climate, non-edaphic variables impose a substantial influence on forest above-
ground biomass, particularly in the high biomass range. We conclude that climate is a 
strong predictor of above-ground biomass at broad spatial scales and across large environ-
mental gradients, yet to predict forest above-ground biomass distribution under future 
climates, other non-climatic factors must also be identified.
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Introduction

Biomass stored in forests is critical to the global carbon cycle. Forest ecosystems 
contain an estimated 861 ± 66 Gt C globally (Pan  et  al. 2011) and provide a vital 
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climate regulating service (de Groot et al. 2010) by remov-
ing and sequestering carbon from the atmosphere. The live 
mass (biomass) in forest ecosystems is especially crucial as it 
annually sequesters around 2.4 ± 0.4 Gt C globally (Pan et al. 
2011), offsetting 21% of the annual anthropogenic emissions 
of 10.7 ± 1.2 Gt C from fossil fuels, industry and land-use 
change (Le Quere  et  al. 2018). Since the global climate is 
predicted to change substantially over the coming decades 
(Collins  et  al. 2013) it is critical that we understand how 
strongly climate and other abiotic factors are associated with 
forest biomass at broad spatial scales. Such understanding 
may contribute to validating and constraining Earth System 
models and to predicting impacts of changing climates on 
forest carbon stores.

It is well established that climate strongly affects the dis-
tribution and storage of carbon in global forests (Pan et al. 
2013). Temperature and precipitation are clearly linked to bio-
mass storage (Keith et al. 2009, Pan et al. 2013) through the 
constraints they place on biomass production. Temperature 
regulates the rates of carbon dioxide assimilation in leaves 
(Farquhar  et  al. 1980) and carbon losses from respiration 
associated with maintaining living tissue (Larjavaara and 
Muller-Landau 2012). Precipitation influences water avail-
ability, which in turn affects stomatal conductance, nutrient 
uptake, leaf area index and thus forest productivity (Eamus 
2003). Mean annual temperature (MAT) (Liu  et  al. 2014, 
Vieilledent  et  al. 2016, Zhang  et  al. 2016, Gordon  et  al. 
2018, Ali  et  al. 2020) and mean annual precipitation 
(MAP) (Slik et al. 2010, Liu et al. 2014, Cook et al. 2015, 
Poorter et al. 2016, Vieilledent et al. 2016, Zhang et al. 2016, 
Li et al. 2019, Wang et al. 2019) are strongly associated with 
forest biomass (or biomass production) in diverse forests at 
a range of spatial scales. Yet temperature can also constrain 
forest biomass through seasonality (Vieilledent et al. 2016), 
the maximum and minimum temperatures of the warmest 
and coldest months (Bowman et al. 2014b) and the number 
of growing days (Ali et al. 2020). Further, precipitation can 
also constrain forest biomass through seasonality (Slik et al. 
2010, Prior  et  al. 2011, Poorter  et  al. 2016), variability 
(Alvarez-Davila et al. 2017), and by determining the extent 
(Saatchi et al. 2007) and length of dry periods (Malhi et al. 
2006, Saatchi et al. 2007).

Forest AGB is also influenced by non-climatic factors such 
as soil properties (Paoli et al. 2008). Soil affects the distribu-
tion of trees, and influences forest processes that affect AGB 
distribution (Pan  et  al. 2013) such as growth, recruitment 
and mortality (Yuan  et  al. 2019). Soil physical properties 
like bulk density can influence biomass production through 
effects on root growth and associated nutrient uptake (Aerts 
and Chapin 1999) either directly via physically inhibiting 
elongation or indirectly via altering water and oxygen avail-
ability (Bengough 2003). The type and size (such as clay, silt 
and sand) of soil particles affects its water holding capacity 
and thus imparts strong influence on the ability for plants to 
extract water (Bengough 2003) and for seedlings to establish 
(Ford and HilleRisLambers 2019). Soil chemical properties 

can also impose environmental limits to biomass production 
by restricting nutrient availability (such as N and P), or by 
influencing nutrient uptake through, for example, effects of 
pH on the availability of Ca, Al and P (Hjelm and Rytter 
2016).

Links between the physico-chemical properties of soil and 
above-ground biomass have been demonstrated for a diverse 
range of forests across the world (Paoli et al. 2008, Slik et al. 
2010, Baraloto et al. 2011, Unger et al. 2012, Fei et al. 2018, 
van der Sande  et  al. 2018). Physical characteristics such as 
the proportion of clay (Laurance  et  al. 1999, Aldana  et  al. 
2017, Toledo et al. 2017, Ali et al. 2020), sand (Toledo et al. 
2018, Ali et al. 2020) and fine sand (Laurance et al. 1999) 
as well as the structure (Quesada et al. 2012), bulk density 
(Ali et al. 2020), depth (Laurance et al. 1999) and rooting 
depth (Navarrete-Segueda et al. 2018) of soil have been asso-
ciated with AGB trends in forests. Chemical characteristics 
such as the concentration of soil nutrients like phosphorus 
(Sankaran  et  al. 2005, Quesada  et  al. 2012, Fedrigo  et  al. 
2014, Navarrete-Segueda  et  al. 2018, van der Sande  et  al. 
2018, Fricker et al. 2019, Cheng et al. 2020) and nitrogen 
(Laurance et al. 1999, Fedrigo et al. 2014), or the concentra-
tion of trace elements including Al (Laurance et al. 1999, de 
Assis et al. 2019), Ca (Quesada et al. 2012), K (Quesada et al. 
2012, Fedrigo  et  al. 2014), Mg (Laurance  et  al. 1999, 
Quesada et al. 2012, Fedrigo et al. 2014), Fe (de Assis et al. 
2019) and Zn (Laurance et al. 1999) as well as other measures 
of soil fertility (Slik et al. 2010, Toledo et al. 2017, Ali et al. 
2019b), and pH (Santiago-Garcia et al. 2019) can also influ-
ence forest AGB.

Few studies have examined statistical relationships between 
forest AGB and both climatic and soil physico-chemical prop-
erties at broad-spatial scales and in diverse forests. Such studies 
are important to reveal the effect of climate and soil on forest 
AGB independent of forest type, and for revealing ecological 
patterns that may be obscured at smaller spatial scales (Levin 
1992). The two notable exceptions, Sankaran  et  al. (2005) 
whose continental-scale study examined African savannas and 
Zhang et al. (2016) whose subcontinental study examined six 
forest types in southwest China both suggest that soil imparts 
a small effect when compared to the substantial influence of 
climate. However, these studies addressed additional factors 
including disturbance (Sankaran et al. 2005) and stand age 
(Zhang et al. 2016), which might have weakened the appar-
ent influence of soil. Soil properties have been shown to 
moderate the effects of climate at the local scale on both adult 
tree survival (Ibanez et al. 2014) and seedling establishment 
(Ford and HilleRisLambers 2019), and it is possible that such 
moderation may also occur at broader spatial scales. If soil is 
a driver of AGB across multiple forest types and biomes, then 
soil may moderate or compound effects of climate change on 
forest biomass. Further understanding of such feedbacks are 
necessary for validating and constraining broad-scale biomass 
models.

The Australian continent offers a unique opportunity 
to examine broad-scale drivers of forest biomass because it 
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encompasses multiple biomes, several ecoregions, many for-
est types and broad climatic and abiotic gradients. Australia 
extends from 10°41′ to 43°38′S and from 113°09′ to 
153°38′E, with a landmass of approximately 769 Mha 
of which native forest covers 16% or 123 Mha (Montreal 
Process Implementation Group for Australian and National 
Forest Inventory Steering Committee 2013). Forests are 
found in tropical, subtropical and temperate biomes (IPCC 
2006), across six world ecoregions (Dept of Agriculture 
Water and the Environment 2020), and encompass a range 
of forest structures including eucalypt tall-closed forests, rain-
forests, eucalypt low, medium and tall open-forests, and euca-
lypt mallee woodlands (Montreal Process Implementation 
Group for Australian and National Forest Inventory Steering 
Committee 2013) of which some may be classed as savannas. 
The climate varies considerably across the continent, with the 
tropical north primarily influenced by the monsoon, the cen-
tre characterised by aridity, and a temperate climate prevail-
ing in both the south west and east (Peel et al. 2007). Overall, 
the continent encompasses 12 separate Köppen–Geiger cli-
mate zones (Peel et al. 2007). In addition, Australia encom-
passes broad ranges in soil physico-chemical properties. For 
instance, sand, silt and clay fractions each cover the full range 
from 0 to > 90%, soil pH ranges from strongly acidic (2.1) 
to strongly basic (10.3), and effective cation exchange capac-
ity ranges from 0 to 99.28 me/100 g (Viscarra-Rossel  et  al. 
2015).

We examined the importance of climate and soil vari-
ables in explaining forest biomass across Australia using a 
continent-wide biomass database. By doing so, we aimed to 
elucidate a) whether models including climate-only, soil-only 
or climate plus soil explain more of the variation in AGB 
at broad spatial scales, and b) the broad-scale abiotic driv-
ers of forest biomass. We hypothesised that models contain-
ing climate plus soil variables would explain more variation 
than models based on climate or soils alone. Consistent with 
global relationships, we hypothesised that MAT and MAP 
would be the most important climate variables to explain 
AGB distribution. Due to the importance of phosphorus to 
photosynthesis (Kirschbaum et al. 1992) and consistent with 
several studies that have demonstrated the importance of 
soil phosphorus (Sankaran et al. 2005, Quesada et al. 2012, 
Fedrigo et al. 2014, Navarrete-Segueda et al. 2018, van der 
Sande et al. 2018, Fricker et al. 2019, Cheng et al. 2020) to 
forest AGB we further hypothesised that phosphorus would 
be the most important edaphic variable.

Methods

Study area

Our study covered Australia’s native forested area, with forests 
defined by the Montreal Process Implementation Group for 
Australian and National Forest Inventory Steering Committee 
(2013) as areas dominated by trees with mature or poten-
tially mature stand height over 2 m and existing or potential 

crown cover of 20% or more. This forest definition is broad 
enough to include a wide variety of woody vegetation, includ-
ing some that may be classified as woodlands and savannas in 
alternate classification systems (Dept of Agriculture Water and 
the Environment 2020) and is consistent with Kyoto carbon 
accounting methods (Commonwealth of Australia 2019). 
Australian forests thus encompass at least 15 forest types 
(Supplementary material Appendix 1 Table A1), are largely 
dominated by eucalypt species, and are located around the con-
tinent’s perimeter with the greatest forest area situated along 
the east coast (Fig. 1). The forests are distributed across a wide 
range of climatic conditions (e.g. 4.4–29.1°C mean annual 
temperature range, 108–6563 mm mean annual precipita-
tion range), and soil properties (e.g. 0.0–61.6% clay, 1.18–
61.7 me/100 g effective cation exchange capacity; Table 1).

Data sources and preparation

We used publicly available continental and global-scale data 
products to investigate the extent to which AGB is associ-
ated with climate and soil variables in Australia’s forests 
(Supplementary material Appendix 1 Table A2). AGB (i.e. 
only in live pools) data were obtained from the AusCover 
and TERN Biomass Plot Library (TERN AusCover 2017). 
This is an Australia-wide compilation of 14 453 plot-level 
biomass estimates from 11 241 sites (mean area 0.158 ha, and 
range 0.005–3.2 ha) computed from tree diameter measure-
ments made by government, university and research institu-
tions between 1936 and 2017. Soil data for 10 variables were 
obtained from the National Soil Landscape Grid (Viscarra-
Rossel et al. 2015). These are continent-wide grids (~100 m 
resolution) that were derived by spatial modelling of over 
2.4 million soil measurements (mainly sampled from agri-
cultural regions) with 32 environmental variables (Viscarra-
Rossel et al. 2015). They were available in 6 depth intervals 
(0–5, 5–15, 30–60, 60–100 and 100–200 cm), and we 
selected the topmost layer (0–5 cm) for all soil variables based 
on high correlations (r > 0.70) among all intervals. Climate 
data obtained from WorldClim 2.0 (Fick and Hijmans 2017) 
contained 19 pre-calculated bioclimatic variables at a spatial 
resolution of ~ 1 km2.

To prepare the data for analysis we first extracted climate, 
soil and forest attributes for each biomass plot location in 
ArcMap ver. 10.4.1 (ESRI 2015). We then followed a thor-
ough data cleaning process to remove errors and potential 
biases in the dataset, and to restrict our analysis to only mini-
mally disturbed regions of mature forest (Supplementary 
material Appendix 1 Table A3). We did this to minimise the 
effects of both disturbance (Seedre  et  al. 2020) and stand 
age (Liu  et  al. 2014, Zhang  et  al. 2016, Zhu  et  al. 2018, 
Jones et al. 2019, Li et al. 2019) on forest AGB in our analy-
ses; noting that consistent Australia-wide fire-history data 
are lacking, and that stand age is difficult to define for the 
many fire-tolerant forests that are composed of multiple age 
cohorts (i.e. fires are not stand replacing; Aponte et al. 2020). 
First, we applied a quantitative assessment that used ancillary 
datasets, direct communication with data custodians, and 
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Landsat imagery from 1972 to 2016 to check for continuous 
forest cover (> 20%). We thus excluded plots that were sig-
nificantly impacted by anthropogenic disturbance and/or by 
a major natural disturbance such as a cyclone or high-sever-
ity (i.e. crown-consuming) wildfire after 1972 as described 
in Roxburgh  et  al. (2019). Plots that were burned by low 
to moderate-severity prescribed fire or wildfire (i.e. crown 
cover retained or quickly recovered) during this period were 
thus retained. Next, we removed all measurements where 

forest height was < 2 m and canopy cover < 20%, and where 
the forest type was non-native (i.e. plantation) or unspeci-
fied using the Montreal Process Implementation Group for 
Australian and National Forest Inventory Steering Committee 
(2013) map. We then excluded measurements where AGB 
measurements were less than 0.01 Mg ha−1 (thereby exclud-
ing measurements of 0 Mg ha−1) or exceeded 1504 Mg ha−1 
because this represented a reasonable likely maximum 
AGB for Eucalyptus regnans forest, widely recognised as 

Figure 1. The spatial extent of the study, showing the Australian forested area (green), 3130 biomass plot locations (red) and three biomes 
(grey) covered in this study. Biome data were sourced from the FAO GeoNetwork (Food and Agricultural Organisation of the United 
Nations 2001), forest data were sourced from Australia’s National Forest Inventory, 2013 (ABARES 2013), and biomass plot locations were 
sourced from the Biomass Plot Library (TERN AusCover 2017). GDA94, Australian Albers projection.

Table 1. Climate and soil variables used as potential predictor variables in models of above-ground biomass. Values are the range, mean and 
standard deviation for Australia’s forested area. Bioclimatic variables are sourced from WorldClim 2.0 (Fick and Hijmans 2017) and soil 
variables from the 0–5 cm layers of the Australian Soil Landscape Grid (Viscarra Rossel et al. 2014).

Variable name Description Units Mean Min Max SD

bio_1 Mean annual temperature (MAT) °C 20.6 4.41 29.1 5.15
bio_3 Isothermality – 53.0 29.2 75.2 7.99
bio_7 Temperature annual range °C 23.3 9.3 34.4 4.43
bio_9 Mean temperature of driest quarter °C 18.6 2.33 29.0 4.79
bio_12 Mean annual precipitation (MAP) mm 855 108 6563 451.6
bio_15 Precipitation seasonality – 67.3 7.35 145.4 39.8
bio_17 Precipitation of driest quarter mm 67.1 0  684 66.0
bio_19 Precipitation of coldest quarter mm 103.4 0 1042 122
awc_0_5 Available water capacity % 14.3 3 23.5 1.29
bdw_0_5 Bulk density (whole earth) g cm−3 1.35 0.56 2.38 0.15
cly_0_5 Clay % 17.7 0 61.6 7.17
ece_0_5 Effective cation exchange capacity me/100 g 9.24 1.18 61.7 5.10
phc_0_5 pH (CaCl2) – 5.28 3.56 8.27 0.61
pto_0_5 Total phosphorus % 0.03 0.01 0.33 0.01
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Australia’s most carbon-dense forest type (Sillett et al. 2015, 
Volkova et al. 2018), acknowledging that the accuracy of one 
higher biomass estimate (3638 Mg ha−1, Keith et al. (2009)), 
has been questioned (Sillett et al. 2015). For sites with mul-
tiple measurements, we removed duplicates or the lower esti-
mate. Finally, we investigated all sites where AGB fell outside 
three standard deviations of the mean for the forest type and 
excluded those sites with no precedent in the literature (e.g. 
Acacia forest > 727 Mg ha−1, Callitris forest > 349 Mg ha−1). 
Our process retained 21.6% of measurements (27.8% of 
sites), leaving 3130 measurements for inclusion in our study 
from the original 14 453 measurements.

Modelling relationships

The Random Forest algorithm was used to model relation-
ships between AGB and climate and soil variables. Random 
Forest is a machine learning model that handles numerous 
variables and is robust to over-fitting (Breiman 2001) thus 
being well suited to the complex data set used in this study. 
Random Forest has been used to predict above-ground carbon 
stocks in Madagascar (Vieilledent et al. 2016) and Australia 
(Roxburgh et  al. 2019), map carbon stocks in the Western 
Amazon (Mascaro et al. 2014), and predict changes to for-
est canopy cover with climate change in south east Australia 
(Williamson et al. 2014). The method outperformed simple 
regression analysis for predicting above-ground forest biomass 
at broad spatial scales (Corona-Nunez et al. 2017), and simi-
larly has outperformed other machine learning techniques 
for forest biomass estimation (boosted regression trees, sup-
port vector machine, multiple regression splines (Safari et al. 
2017), and support vector regression (Liu et al. 2017).

We developed models for three combinations of variables 
– climate-only, soil-only and climate plus soils to test the per-
formance of climate and soil variables in explaining variation 
in AGB of Australia’s forests. Variables for inclusion in models 
were selected by first computing the correlation between all 
climate (19) and soil (10) variables, and then choosing only 
those variables that were not highly correlated (r < 0.8) with 
all other retained climate and soil variables and where possible 
minimising selection of those with correlations between 0.6 
and 0.8 (Supplementary material Appendix 1 Fig. A1). When 
choosing between variables we also selected those with a likely 
proximal (or direct) link to forest biomass. For example, mean 
annual temperature (MAT, bio_1) and mean annual precipi-
tation (MAP, bio_12) were selected due to their global associa-
tions with AGB (Liu et al. 2014). The soil physical properties 
bulk density (bdw_0_5) and clay (cly_0_5) were selected for 
their potential to affect root growth (Bengough 2003). Soil 
chemical properties such as total phosphorus (pto_0_5) were 
selected for their potential to affect plant growth through 
nutrient limitation (Aerts and Chapin 1999). Water avail-
ability (MAT – potential evapotranspiration) and MAT:MAP 
(the ratio of mean annual temperature to mean annual pre-
cipitation) were considered based on identified relationships 
with AGB (Brown and Lugo 1982, Alvarez-Davila  et  al. 

2017), but were excluded due to high correlations with MAP. 
Eight climate variables were selected: four representing tem-
perature (MAT, isothermality, temperature annual range and 
mean temperature of the driest quarter), and four representing 
precipitation (MAP, precipitation seasonality, precipitation of 
the driest quarter, and precipitation of the coldest quarter). 
Six soil variables were selected: three representing physical 
characteristics (available water capacity, bulk density and per-
centage clay) and three representing chemical characteristics 
(effective cation exchange capacity, total phosphorus and pH; 
Table 1). Thus, we had 8 explanatory variables for the climate-
only model, 6 for the soil-only model and 14 for the climate 
plus soils model. Histograms of each of the selected variables 
for the 3130 plots are presented in Supplementary material 
Appendix 1 Fig. A2.

Models were developed in R ver. 3.4.3 (R Core Team) 
using the ‘randomForest’ package (Liaw and Wiener 2002) 
tuned to try two variables at each split (mtry = 2), produce 
300 trees (ntrees = 300), and with AGB log transformed to 
normalise the distribution. These model tuning parameters 
were selected because they minimised out of bag error rates 
(Liaw and Wiener 2002). We used k-fold cross-validation, 
randomly splitting the data into 10 equal-sized folds so that 
90% of the data set was used for model training and 10% for 
model testing. We thus repeated the analysis 10 times (one 
for each fold) for each of the 3 variable sets. Model perfor-
mance and explanatory power of each of the climate-only, 
soil-only and climate plus soil models was evaluated by calcu-
lating the average of the root mean squared error, model bias 
and coefficient of determination (R2) across the ten folds. To 
test that our results were consistent across broad forest types, 
we repeated the analysis using plots assigned to their world 
ecoregion classification (Dept of Agriculture Water and the 
Environment 2020). For each ecoregion with sufficient plots 
(n ≈ 100) we randomly split the data into training and test 
sets using a 70:30 split and then repeated the Random Forest 
analysis for each of the variable sets.

The importance of each variable to the model performance 
was used as an indicator of that variable’s influence on AGB. 
This was evaluated for each of the three variable sets by first 
calculating the reduction in mean squared error with variable 
removal for each of the folds, and then calculating the mean 
reduction in mean squared error and confidence intervals 
across the ten folds. To directly compare variable importance 
between the models produced for each variable set the % 
increase in MSE was normalised from 0 to 1.

Model predictions

All ten iterations of the Random Forest model for each of 
the variable sets were used to predict above-ground forest 
biomass distribution across Australia. We used the ensemble 
prediction to produce a map of AGB and the coefficient of 
variation to produce a map of prediction error. All statistical 
analyses were conducted in R ver. 3.4.3 (R Core Team) and 
spatial analyses in ArcMap ver. 10.4.1 (ESRI 2015).
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Results

Above-ground biomass data

The 3130 measurement plots that remained after data clean-
ing were distributed across 15 forest types, three biomes and 
six world ecoregions (Supplementary material Appendix 1 
Table A1). Plot locations were clustered in the south west 
corner, south east and east coast of the continent’s forests 
with few samples in the north eastern and northern reaches 
and no plots located in the inner south west (Fig. 1). The 
majority of sites were in the subtropical biome (2083, 
66.6%), followed by the temperate (775, 24.8%) and tropi-
cal (272, 8.69%) biomes. Mean AGB of the measurement 
plots was 201.1 (CI 95% ± 7.5) Mg ha−1, ranging from 
65.0 (± 9.7) Mg ha−1 for the tropical biome to 157.3 (± 
5.7) Mg ha−1 for the subtropical and 366.7 (± 22.2) Mg ha−1 
for the temperate biome. The majority of points were sam-
pled in eucalypt forests (2477, 79.1%), of which eucalypt 
medium woodland (1078, 34.4%), eucalypt medium open 
(638, 11.1%) and eucalypt tall open (551, 19.5%) were 
the most highly represented forest types. The highest mean 
AGB was 925.5 (± 794.8) Mg ha−1 in eucalypt tall closed 
forest (albeit based on only two measurements) and the low-
est was 61.8 (± 9.2) Mg ha−1 in eucalypt mallee woodland 
(Supplementary material Appendix 1 Fig. A3).

Model performance

Including soil variables did not significantly increase model fit 
based on R2 values (Fig. 2, Supplementary material Appendix 
1 Table A4). The two models that contained climate variables 
both resulted in higher R2 values (climate-only: 0.47 ± 0.04; 
climate plus soil: 0.49 ± 0.04), than the soil-only model 
(0.42 ± 0.03). However, the only difference that was statisti-
cally significant, based on non-overlapping 95% confidence 
intervals, was between the soil-only model and the climate 
plus soil model.

The three variable sets produced models with similar 
error and bias. RMSE was lowest for the climate-only model 
(162 ± 11 Mg ha−1) followed by the climate plus soil model 
(163 ± 11 Mg ha−1) and was highest for the soil-only model 
(172 ± 10 Mg ha−1), although the 95% confidence intervals 
overlapped indicating non-significant differences. Bias fol-
lowed a similar pattern (climate-only: 16.4 ± 3.1; climate 
plus soil: 18.5 ± 3.1; soil-only: 19.7 ± 2.9), although again 
the differences were not statistically significant. All models 
under-predicted AGB, particularly at higher biomass val-
ues (Fig. 3) and this effect was more pronounced in models 
that contained soil variables. Maximum predicted biomass 
for the test data was 776 Mg ha−1 for the soil-only model, 
734 Mg ha−1 for the climate plus soil model, compared to 
975 Mg ha−1 for the climate-only model, indicating that soil 
variables restricted the predictive range. Examination of the 
residuals showed that overprediction was linearly constrained 
and scaled with AGB. Further, residuals were greatest at low 
latitude and high longitude in a region that corresponds with 
the temperate forests of south east Australia (Supplementary 
material Appendix 1 Fig. A4).

The R2 statistic for ecoregion models was always lower than 
the corresponding continent-wide model, yet results were 
broadly consistent (Supplementary material Appendix 1 Fig. 
A5). Climate-only and climate plus soils models performed 
equally well, explaining more of the variation than soil-only 
models for all ecoregions. Non-overlapping 95% confidence 
intervals indicate these differences were statistically signifi-
cant. The Temperate broadleaf and mixed forest (TM-FOR) 
plots produced models with the greatest explanatory power 
(climate-only: 0.33 ± 0.01; climate plus soil: 0.32 ± 0.01; 
soil-only: 0.25 ± 0.01), compared to Tropical and subtropi-
cal grasslands, savannas and shrublands (TR-SAV) with the 
least explanatory power (climate-only: 0.17 ± 0.01; climate 
plus soil: 0.15 ± 0.01; soil-only: 0.09 ± 0.01). The model 
RMSE scaled with biomass, i.e. was least for TR-SAV and 
greatest for TM-FOR. Model bias was not clearly different 
from the full dataset (ALL) for any of the ecoregions with the 

Figure 2. Comparative model performance statistics for the Random Forest models produced from each variable set (climate-only, soil-only 
and climate plus soil), showing (a) R2; (b) RMSE; and (c) model bias. Error bars represent the 95% confidence interval on the mean of the 
model statistic that was calculated from the 10 folds for each variable set. Detailed statistics are presented in Supplementary material 
Appendix 1 Table A4.
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exception of the TR-SAV climate plus soils model, which had 
weaker bias (TR-SAV: 14.5 ± 0.67; ALL: 18.5 ± 3.1).

Variable importance

The most important variables for each of the Random 
Forest models were mean temperature of the driest quarter 
(bio_9) for the climate-only and the climate plus soil mod-
els, and bulk density (bdw_0_5) for the soil-only model 
(Fig. 4a, Supplementary material Appendix 1 Table A5). 
Partial dependence plots (Supplementary material Appendix 
1 Fig. A6) and Pearson correlation analysis (Supplementary 
material Appendix 1 Fig. A1) indicated that the relationship 
between AGB and mean temperature of the driest quarter 
was mostly flat, although a scatter plot indicated that AGB 
peaked in the 10–15°C temperature range (Supplementary 
material Appendix 1 Fig. A7). In contrast, AGB decreased 
with increasing bulk density. The least important variables 
for each of the Random Forest models were precipitation of 
the coldest quarter (bio_19) for the climate-only model, and 
percent clay (cly_0_5) for both the soil-only and the climate 
plus soil model.

Three main points can be drawn from the normalised 
variable importance comparison (Fig. 4b). Firstly, five cli-
mate variables (MAT (bio_1), MAP (bio_12), precipita-
tion seasonality (bio_15), precipitation of the driest quarter 
(bio_17) and precipitation of the coldest quarter (bio_19) 
imposed a significantly different effect on the model perfor-
mance of the climate-only model compared with the climate 
plus soil models. This is evidenced by non-overlapping 95% 
confidence intervals of the normalised increase in MSE and 
suggests that including soil variables increased the effect of 
these climate variables on model performance. Secondly, the 
three climate variables that imparted the greatest effect on the 
mean squared error (bio_1, bio_9, bio_15) were consistent 
across the climate-only and the climate plus soil models, indi-
cating an importance to AGB that was independent of soil. 
Thirdly, the importance of three soil variables – bulk den-
sity (bdw_0_5), available water holding capacity (awc_0_5) 
and effective cation exchange capacity (ece_0_5) – was 

Figure 3. Observed versus predicted above-ground biomass (AGB) for the composite of 10 folds of models produced using the variable sets 
for (a) climate-only, (b) soil-only and (c) climate plus soil.

Figure 4. Comparison of variable importance between the Random 
Forest models produced from the three variable sets (climate-only, 
soil-only and climate plus soil) for (a) absolute % increase in MSE, 
and (b) normalised % increase in MSE. Error bars represent 95% 
confidence intervals of the mean of the 10 folds used during cross 
validation.
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significantly different between the soil-only and climate plus 
soil models. Including climate in the model significantly 
enhanced the importance of available water holding capacity, 
and significantly decreased the importance of bulk density, 
and effective cation exchange capacity.

Continental predictions

The three models produced predictions of AGB distribution 
across Australia’s forested extent (Fig. 5a–c) that were very 
similar, including strong correlations between continent-
wide biomass means, particularly between the climate-only 
and climate plus soil models (Pearson r 0.97) (Supplementary 
material Appendix 1 Table A6). Predicted forest AGB ranged 
from 18 to 1066 Mg ha−1 (mean 100 ± 0.02 Mg ha−1 95% 
CI) for the climate-only model, 18 to 980 Mg ha−1 (mean 
102 ± 0.02 Mg ha−1 95% CI) for the soil-only model, and 
20 to 950 Mg ha−1 (mean 97 ± 0.02 Mg ha−1 95% CI) for the 
climate plus soil model. Total continent-wide forest AGB 
was predicted at 9517 Mt (± 66.6 Mt) for the climate-only 
model, 9768 Mt (± 73.8 Mt) for the soil-only model, and 
9305 Mt (± 76.4 Mt) for the climate plus soil model. All 
models predicted regions of higher biomass concentrated in 
the south west and south east corners of the country, and 
the greatest differences between model predictions were in 

the tropical north east of the continent where the soil-only 
predictions indicated higher biomass than both of the models 
that included climate variables. Variation within model pre-
dictions indicated by the coefficient of variation (Fig. 5d–f ) 
was also similar among models, the majority of the predic-
tions falling within the range of 0.1–2%. Coefficient of varia-
tions among model folds were highest in the north and south 
west for all models, in regions of low biomass that are mostly 
covered by savanna and woodland.

Discussion

In this study, we examined the importance of climate and soil 
variables to explaining AGB distribution in Australian forests. 
Climate was the strongest predictor of AGB and soil variables 
did not significantly improve model predictive performance, 
even when the analysis was repeated by broad forest ecoregion. 
In contrast to global studies, neither MAT, nor MAP alone 
were the most important climatic variables. Rather, our models 
showed that the average temperature during the driest quar-
ter was most important. Further, soil phosphorus was not the 
most important soil variable, instead we found that bulk den-
sity imparted the strongest influence of all the soil variables 
that we explored. Overall, our best model explained 49% of 

Figure 5. Predicted forest above-ground biomass (AGB) across the Australian continent based on the mean of the ten folds for (a) climate-
only, (b) soil-only and (c) climate plus soil models. Associated model precision is indicated by the co-efficient of variation across the ten 
folds, for (d) climate-only, (e) soil-only and (f ) climate plus soil models. The model residuals plotted against latitude and longitude are 
available in the supplementary material (Supplementary material Appendix 1 Fig. A4). GDA94, Australian Albers projection.
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the variation, therefore we expect that unexamined factors, 
such as disturbance regimes (particularly fire regimes), species 
diversity, stand age-cohort distribution, and forest structure are 
also important drivers of AGB in Australian forests.

Climate more important than soils

Climate was more important than soils for predicting AGB 
distribution across Australia. Contrary to our hypothesis, 
including soil variables did not improve model performance. 
This was an unexpected result, given the importance of soil 
to plant growth (Kulmatiski  et  al. 2008) and the demon-
strated direct effect that the soil variables we considered have 
on AGB distribution and wood production in many forests 
(Slik et al. 2010, Baraloto et al. 2011, Quesada et al. 2012, 
Toledo et  al. 2017, Navarrete-Segueda et  al. 2018, van der 
Sande  et  al. 2018, Cheng et  al. 2020). We propose several 
explanations for this result:

Firstly, climate is more generally limiting to AGB than soil. 
It is well established that average temperature (Brown and 
Lugo 1982, Raich et al. 2006, Liu et al. 2014, Zhang et al. 
2016) and annual precipitation (Slik et al. 2010, Stegen et al. 
2011, Liu et al. 2014, Cook et al. 2015, Vieilledent et al. 2016, 
Zhang et al. 2016) are strongly associated with AGB distribu-
tion. Plants require temperatures that encourage growth, but 
discourage increased rates of transpiration (Bowman  et  al. 
2014b, Prior and Bowman 2014) or autotrophic respiration 
(Medlyn et al. 2011). Plants also require access to sufficient 
water for maintaining physiological processes (Lawlor 1995) 
and avoiding tree drought mortality (van der Molen  et  al. 
2011). When temperatures are outside the range for opti-
mal growth (Huang et al. 2019), or access to water is limited 
(Eamus 2003), forest productivity is constrained. Over time, 
total forest AGB is therefore limited by seasonal and annual 
fluctuations in temperature and precipitation. Our models 
suggest that these factors outweigh any influence that soils 
impart, at least in the region and across the environmental 
gradients our study encompassed.

Secondly, soils may act indirectly on AGB distribution 
through their effect on biotic factors. Emerging evidence sug-
gests that AGB is influenced by the action of soil on stand 
characteristics such as structural diversity (Ali  et al. 2019b, 
Aponte  et  al. 2020), stand density (Ali  et  al. 2019a), spe-
cies richness (Ali  et  al. 2019a, b), functional diversity 
(Aponte et al. 2020, Cheng et al. 2020) and the number of 
large trees (Aldana et al. 2017, Navarrete-Segueda et al. 2018, 
Ali et al. 2019c). This has been demonstrated at broad spatial 
scales for temperate (Aponte et al. 2020), tropical (Ali et al. 
2019b, c), and moist temperate, semi-humid and semi-arid 
forests (Ali et al. 2020). Soil characteristics have the potential 
to directly determine the type of vegetation that can be sup-
ported (i.e. grassland versus forest), and then influence the 
structural and functional characteristics of that vegetation. 
Since we limited our analysis to forests, the effects of soil on 
AGB distribution in our models may have been constrained 
to those on forest characteristics rather than the larger influ-
ence on woody versus non-woody ecosystems.

The forest types we examined and limitations in the soil 
data may also have contributed to our result. Many of the 
studies that demonstrated significant direct soil effects were 
in tropical rainforests, where soil may be more influential due 
to a lesser influence of climatic limitations on productivity. 
In tropical rainforests the small annual variation in daytime 
temperature means forests are growing in conditions close 
to their growth optima for much of the year (Doughty and 
Goulden 2008, Tan et  al. 2017) and precipitation is rarely 
limiting. Our study encompassed many forest types, of which 
only a small proportion of sites (7%) were in rainforest and a 
large proportion were in open forests (38%) and woodlands 
(41%) some of which may be alternatively described as savan-
nas (Dept of Agriculture Water and the Environment 2020). 
Moreover, Australian forests primarily consist of Eucalyptus 
species and thus may not reflect findings in tropical forests, 
or be representative of evergreen broad-leaved forests glob-
ally. Finally, the soil data we used were modelled rather than 
measured directly at measurement sites. Since soil can change 
dramatically over short distances it is likely that at some sites, 
the soil values that we used were inaccurate. Recent analysis of 
the National Soil Landscape Grid in south eastern Australia 
showed that the model consistently underpredicted Soil 
Organic Carbon (SOC) concentration in forests when com-
pared to measured values (R2 = 0.49, Bennett et al. 2020b). 
Thus, differences between our climate-only and climate plus 
soils models may have become significant if measured rather 
than modelled soil data were available.

Mean temperature of the driest quarter most 
important climate variable

Mean temperature of the driest quarter was the most impor-
tant climate variable in our models, ranking higher than 
either MAT or MAP. This may be a function of forest growth 
across large climatic gradients, suggesting that climatic con-
ditions during periods of constraint are more critical to AGB 
distribution across broad regions and diverse forest types 
than the mean annual condition. Both temperature and 
precipitation impose limitations to growth, which is one of 
the key demographic process that contributes to forest AGB 
(Vanderwel  et  al. 2016). Both species (Hinko-Najera  et  al. 
2019) and ecosystem (Huang et  al. 2019) growth rates are 
highest when temperatures are at an optimum, and when 
other factors (such as precipitation) are not limiting. One 
interpretation of our analysis is that during the driest period 
of the year, when precipitation already imposes a constraint 
on growth, the effect of an additional constraint (tempera-
ture) becomes more influential.

Our study is the first to indicate the importance of mean 
temperature of the driest quarter to forest AGB. Only one 
other study has analysed the relationship between these vari-
ables and akin to our analysis their simple correlation resulted 
in no significant relationship (Saatchi et al. 2007). This may 
be due to the study being conducted at the subcontinental 
scale, having low variation (~5°C) in annual temperature 
across the study range, and addressing tropical rainforests in 
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the Amazon basin. Because we adopted a broad definition of 
forest that included forests with diverse structural and func-
tional characteristics, our analysis indicated different drivers 
of biomass across Australia compared with the Amazon basin. 
Several studies have demonstrated the importance of mean 
temperature of the driest quarter to forest variables that in 
turn may be associated with AGB. For example, mean tem-
perature of the driest quarter was strongly associated with 
the distribution of the Australian rainforest tree Nothofagus 
cunninghamii (Worth  et  al. 2015), the Chinese forest tree 
Liriodendron chinense (Xu  et  al. 2017), the distribution of 
Chinese forests (Dakhil et al. 2019), and the basal area and 
dominant height of Chinese larch plantations (Lei  et  al. 
2016). Thus, mean temperature of the driest quarter may be 
affecting AGB distribution of forests across this broad region 
by influencing the distribution of species, forests and the size 
of individual trees.

Bulk density is the most important soil variable

Bulk density was the most important soil variable in AGB 
models, yet it was of substantially lower importance in mod-
els that also included climate variables. As a measure of soil 
compaction (Zhao et al. 2010), bulk density represents the 
strength, porosity and matric potential of soil, and thus 
influences root growth and plant access to water, nutrients 
and oxygen (Bengough 2003). In very hard soil (high bulk 
density) roots may be unable to penetrate the soil to access 
water and nutrients, whilst in very soft soil (low bulk den-
sity) physical contact between the soil and roots may restrict 
uptake (Stirzaker et al. 1996). By limiting plant growth rates, 
AGB of forests growing in soils of very high or very low bulk 
density may be reduced compared to those growing in soils of 
optimum bulk density. Our analysis indicates that the effects 
of bulk density are lessened in models that also include cli-
mate variables, indicating a stronger overall influence of the 
later on AGB distribution across Australia. This conclusion is 
consistent with other broad-scale studies that have demon-
strated a smaller influence of soils than climate on the distri-
bution of woody cover in African savannas (Sankaran et al. 
2005) and forest AGB distribution in south-west China 
(Zhang et al. 2016).

Our study is the first to statistically demonstrate the 
importance of bulk density to forest AGB distribution. 
Few studies have considered relationships between AGB 
and bulk density in natural forests with two notable excep-
tions. Bulk density was in two of the top ten models that 
explained AGB distribution in Iran’s moist temperate, semi-
humid and semi-arid forests (Ali et al. 2020) and it was sig-
nificantly correlated with biomass in the Amazon basin when 
combined with other variables that represented soil structure 
(Quesada et al. 2012). Other studies showed that high bulk 
density limits height growth in conifer seedlings (Zhao et al. 
2010), and both leaf area and root length in barley seedlings 
(Stirzaker et al. 1996), however the effects of bulk density on 
AGB in forests remains under-examined.

Climate variables predict pattern of above-ground 
biomass distribution

The overall spatial pattern of AGB distribution in Australian 
forests can be predicted with relatively few climate vari-
ables. Our study is the first to limit mapping of AGB to 
Australia’s protected forests, however the spatial distribution 
predicted from our models was strikingly similar to stud-
ies that have predicted AGB across the full extent of the 
continent (Supplementary material Appendix 1 Fig. A8). 
Similarly to Berry and Roderick (2006), Montreal Process 
Implementation Group for Australian and National Forest 
Inventory Steering Committee (2013), Commonwealth 
of Australia (2018) and Roxburgh  et  al. (2019), our maps 
illustrate regions of high biomass in the south-west, south-
east and east coast of the continent, with lower biomass in 
the north and the inner-east, and negligible biomass in the 
centre. A side-by-side comparison reveals regions of greatest 
difference between our estimate and previous estimates in the 
tropical north where our predictions are around 100 Mg ha−1 
lower. This underestimation was likely caused by the lack of 
plots from this region available in the Biomass Plot Library 
source data used for training our models. Moreover, the lack 
of data from this region and minimal plots from the AGB 
range > 500 Mg ha−1 may have contributed to the overall 
underestimation of total forest biomass from our models 
at 88% (climate-only model), 91% (soil-only model) and 
86% (climate plus soil model) when compared to the only 
known Australia-wide estimate of 5390 Mt C for combined 
production and non-production forests (10 780 Mt dry mat-
ter, assuming a conversion rate of 0.5, Commonwealth of 
Australia 2018).

Other non-climatic, non-edaphic variables will also influ-
ence AGB distribution. The climate and soil variables we 
selected explained ~ 50% of the variation, meaning factors 
we did not consider were equally important. Biotic factors 
such as species diversity and stand structural complexity 
(Ali et al. 2019b), structural diversity (Aponte et al. 2020), 
functional trait composition and diversity (Ali et al. 2017), 
stand age (Liu et al. 2014, Zhang et al. 2016, Zhu et al. 2018, 
Jones et al. 2019, Li et al. 2019), and average stem diameter 
(Poorter  et  al. 2015, Cuni-Sanchez  et  al. 2017) also influ-
ence carbon storage. As do disturbances such as prescribed 
fire (Bennett  et  al. 2013), wildfire (Bowman  et  al. 2013, 
Keith et al. 2014) and harvest (Norris et al. 2010). Further, 
climate and soil may act indirectly on AGB by affecting 
these biotic factors (Aldana et al. 2017, Ali et al. 2019b, c, 
Aponte et al. 2020). Hence, the traits of dominant species, 
and the structural and functional composition of the forest, 
together with disturbance history (i.e. the time since the last 
disturbance, severity of the disturbance and stand age-cohort 
distribution) likely have had considerable influence on AGB 
distribution

Australia is a fire-prone continent (Murphy et  al. 2013) 
so we anticipate that fire regimes will be of particular 
importance to AGB in Australia’s forests. Fire affects the 
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accumulation of forest AGB by consuming biomass, causing 
tree mortality, and by affecting juvenile recruitment, and the 
re-growth of established trees (Bennett  et  al. 2017). Across 
the continent, fire consumes on average 11% of the carbon 
captured via Net Primary Productivity, though primarily in 
litter and woody debris fuels rather than in live tree carbon 
(Murphy et al. 2019). Nonetheless, whilst fire is unquestion-
ably important, unravelling its effects is problematic due 
both to inconsistent or incomplete fire records, and to the 
multi-faceted ways that fires influence forest biomass. From 
stand-replacing wildfires in highly productive forests in the 
south east (Bowman et al. 2014a), to minimal or partial mor-
tality of established resprouter trees plus new seedling recruit-
ment in fire-tolerant multi-aged forests (Bennett et al. 2016), 
to maintaining the balance of grass and tree co-existence in 
savanna ecosystems (Beringer et al. 2015). Whilst our data-
cleaning process aimed to reduce the influence of fire on our 
analyses, we excluded only plots with crown cover reduced 
to < 20% after 1972, and thus likely included many plots 
affected by low to moderate severity fires. As a consequence, 
fire effects likely contributed to the unexplained variation 
in our predictive models, including potentially constraining 
forest AGB below climatic and/or edaphic potential in some 
ecoregions (Supplementary material Appendix 1 Fig. A5).

Limitations of the source data

Several limitations in our source data are important to con-
sider. Firstly, the Biomass Plot Library plot level data is an 
aggregation of measurements made by government and 
research organisations over many years. As such, data were 
not collected using a stratified sampling regime nor standard 
measurement protocol, thus all forest types and regions were 
not equally represented and there were likely (undescribed) 
differences in sampling methodologies. In particular, the 
north east tropical forests and sites of high biomass in the 
south east, especially in tall closed forests, were under-repre-
sented and sample plots ranged from 0.005 to 25 ha in size. 
The AGB values were also pre-calculated using the gener-
alised allometric equation of Paul et al. (2016). While there 
is evidence to suggest that at the continent scale this would 
have minimal impact on AGB estimates (Paul et al. 2016), it 
is possible that species-specific equations would yield differ-
ent results. Secondly, soil and climate variables were derived 
from modelled data and not measured directly at plots, thus 
values may not reflect actual soil and climate conditions at 
the Biomass Plot Library site locations. Any such deviations 
were likely greater for the soil data, as the majority of soil 
samples used in the soil modelling were derived from agri-
cultural regions (Viscarra-Rossel et al. 2015). The deviation 
among the Soil Landscape Grid predictions and measure-
ments of SOC concentration demonstrated by Bennett et al. 
(2020b) may also extend to the soil variables used in our 
study. Thirdly, the spatial resolution of the climate and soil 
data was mismatched to that of the biomass plot data and 
thus may have been inadequate to pick up effects of local 
topography on biomass distribution. Finally, the soil data we 

used as predictor variables in our models came from a conti-
nent-wide model that included 6 climate variables in a set of 
32 predictors (Viscarra-Rossel et al. 2015). While only one 
of these climate predictors was also included in our predictor 
set (MAP) this meant our two variable sets (climate-only and 
soil-only) were not wholly independent.

Conclusion

Our study has demonstrated that climate is more important 
than soils for explaining forest AGB distribution at broad spa-
tial scales across the continent of Australia. Since the climate 
is changing to become warmer, with more heat extremes, 
fewer cool extremes and decreases in rainfall (Bureau of 
Meteorology and CSIRO 2018), we were interested in exam-
ining whether models that used climate-only, soil-only or 
climate plus soil variables explained more of the variation 
in AGB distribution at broad spatial scales and across large 
environmental gradients. We showed that adding soil vari-
ables did not significantly improve the performance of cli-
mate-only models. Thus, akin to other studies, our results 
indicated a greater influence of climate than soil variables on 
forest AGB distribution at the continental scale. Because our 
models explained only 49% of the variation, we conclude 
that unexamined variables were equally important to forest 
AGB distribution in Australia. In particular, localised effects 
like steep topographic gradients and biotic factors – such as 
species and functional diversity, stand structural complexity 
and diversity, stand age-cohort distribution, and the traits of 
the dominant species – will warrant stronger consideration in 
biomass models, including better representation in biomass 
and ancillary data sets at broad scales.
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