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Enzymes that cleave ATP to activate carboxylic acids play
essential roles in primary and secondary metabolism in all
domains of life. Class I adenylate-forming enzymes share a con-
served structural fold but act on a wide range of substrates to
catalyze reactions involved in bioluminescence, nonribosomal
peptide biosynthesis, fatty acid activation, and b-lactone forma-
tion. Despite their metabolic importance, the substrates and
functions of the vast majority of adenylate-forming enzymes are
unknown without tools available to accurately predict them.
Given the crucial roles of adenylate-forming enzymes in biosyn-
thesis, this also severely limits our ability to predict natural
product structures from biosynthetic gene clusters. Here we
used machine learning to predict adenylate-forming enzyme
function and substrate specificity from protein sequences. We
built a web-based predictive tool and used it to comprehensively
map the biochemical diversity of adenylate-forming enzymes
across >50,000 candidate biosynthetic gene clusters in bacterial,
fungal, and plant genomes. Ancestral phylogenetic reconstruc-
tion and sequence similarity networking of enzymes from these
clusters suggested divergent evolution of the adenylate-forming
superfamily from a core enzyme scaffold most related to con-
temporary CoA ligases toward more specialized functions
including b-lactone synthetases. Our classifier predicted b-lac-
tone synthetases in uncharacterized biosynthetic gene clusters
conserved in >90 different strains of Nocardia. To test our pre-
diction, we purified a candidate b-lactone synthetase from
Nocardia brasiliensis and reconstituted the biosynthetic path-
way in vitro to link the gene cluster to the b-lactone natural
product, nocardiolactone. We anticipate that our machine
learning approach will aid in functional classification of
enzymes and advance natural product discovery.

Adenylation is a widespread and essential reaction in nature
to transform inert carboxylic acid groups into high energy acyl-
AMP intermediates. Class I adenylate-forming enzymes cata-
lyze reactions for natural product biosynthesis, firefly biolumi-
nescence, and the activation of fatty acids with CoA (1). The
conversion of acetate to acetyl-CoA by a partially purified ace-

tyl-CoA ligase was first described by Lipmann in 1944 (2). Since
then, enzymes with this conserved structural fold have been
found to activate over 200 different substrates including aro-
matic, aliphatic, and amino acids. To encompass the major
functional enzyme classes, the term “ANL superfamily” was
proposed based on the acyl-CoA ligases, nonribosomal peptide
synthetases (NRPSs), and luciferases (3).
Most ANL superfamily enzymes have two-step reaction

mechanisms: adenylation followed by thioesterification. During
the thioesterification step, ANL enzymes undergo a dramatic
conformational change involving a 140° domain rotation of the
C-terminal domain (3). Thioester bond formation results from
nucleophilic attack, typically by a phosphopantetheine thiol
group. A notable exception to phosphopantetheine is the use of
molecular oxygen by firefly luciferase to convert D-luciferin to a
light-emitting oxidized intermediate (3). Other interesting
exceptions include functionally divergent ANL enzymes within
the same pathway that catalyze the adenylation and thioesterifi-
cation reactions separately (4, 5). The ANL superfamily has
recently expanded to include several new classes of enzymes
including the fatty acyl-AMP ligases (6), aryl polyene adenyla-
tion enzymes (7), and b-lactone synthetases (8). Strikingly, an
ANL enzyme involved in cremeomycin biosynthesis was shown
to use nitrite to catalyze late stage nitrogen–nitrogen bond for-
mation in diazo-containing natural products (9). The discovery
of new reactions in the ANL superfamily over 75 years after
Lipmann’s initial report suggests that these enzymes still have
unexplored biocatalytic potential, particularly in specialized
metabolic pathways.
No computational tools currently exist for prediction and

functional classification of ANL enzymes at the superfamily
level. Still, the development of one previous platform, which is
no longer supported or available, showed that this class of
enzymes is amenable to computational predictions of substrate
and function (10). Bioinformatics tools have also developed to
predict substrates for NRPS adenylation (A) domains (11, 12).
Genome mining approaches using NRPS A domain prediction
tools have proved useful to access the biosynthetic potential of
unculturable organisms and link “orphan” natural products
with their biosynthetic gene clusters. For example, NRPS A do-
main predictions guided the discovery of the biosynthetic ma-
chinery for the leinamycin family of natural products (13) and
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enabled sequence-based structure prediction of several novel
lipopeptides by Zhao et al. (14). However, Zhao et al. reported
limitations in existing tools in that they could not predict the
chain length of lipid tails incorporated into lipopeptides. Lipid
tails are prevalent in natural products and are incorporated by
fatty acyl-AMP or acyl-CoA ligase enzymes, both in the ANL
superfamily. These enzymes are among the most well-studied
subclasses of ANL enzymes. For less-studied subclasses,
enzyme functions and substrates are even more challenging to
predict. Hence, a computational tool encompassing all classes
of ANL enzymes would constitute a major step toward more
accurate structural prediction of natural product scaffolds.
Here, we used machine learning to develop a predictive plat-

form for ANL superfamily enzymes and map their substrate-
and-function landscape across 50,064 candidate biosynthetic
gene clusters in bacterial, fungal, and plant genomes. We
detected candidate b-lactone synthetases in uncharacterized
biosynthetic gene clusters from pathogenic Nocardia spp. and
experimentally validated the gene cluster in vitro to link it to
the orphan b-lactone compound, nocardiolactone. Overall, this
research provides a proof of principle toward the use of
machine learning for classification of enzyme substrates to
guide natural product discovery.

Results

Machine learning accurately predicts ANL enzyme function
and substrate specificity

A global analysis of protein family domains revealed that
ANL superfamily enzymes (PF00501; AMP-binding domains)
are the third most abundant domain in known natural product
biosynthetic pathways (Table S1). Despite the essential and var-
ied roles of ANL enzymes, there is no single database that cata-
logs their biosynthetic diversity. Therefore, wemined the litera-
ture, MIBiG (15), and UniProtKB (16) for ANL enzymes with
known substrate specificities. We then constructed a training
set of .1,700 ANL protein sequences paired with their func-
tional class, substrate(s), kinetic data, and crystal structures if
solved. As reported previously by Gulick (3) and others, ANL
superfamily enzymes in our training set were divergent at the
sequence level but shared a common structural fold and core
motifs including (Y/F)(G/W)X(A/T)E and (S/T)GD critical for
ATP binding and catalysis.
We defined nine major functional classes on the basis of hav-

ing enough experimentally characterized enzymes to enable
classification by machine learning: short-chain acyl-CoA syn-
thetases (C2–C5, SACS), medium-chain acyl-CoA synthetases
(C6–C12, MACS), long-chain acyl-CoA synthetases (C13–C17,
LACS), very-long-chain acyl-CoA synthetases (C181), fatty
acyl-AMP ligases (FAAL), luciferases (LUC), b-lactone synthe-
tases (BLS), aryl-CoA ligases (ARYL), and NRPS A domains. In
addition, we trained a separate model to predict enzyme sub-
strate specificity. Although prediction at the level of an individ-
ual substrate is desirable, the broad substrate specificity of
some classes of ANL enzymes limited the resolution of our pre-
dictions to groups of chemically similar compounds. For exam-
ple, one class of LACS has demonstrated activity with fatty
acids with chain lengths ranging from C8 to C20 (17). There

were over 200 chemically distinct substrates in our training set,
many with just one experimental example. Therefore, we clus-
tered substrates based on chemical similarity (Tanimoto coeffi-
cient) to identify 15 groups for broad level substrate classifica-
tion (Table S2).
Previously, 34 amino acids within 8 Å of the gramicidin syn-

thetase active site were shown to be critical for accurate predic-
tion of NRPS A domain substrate specificity (11). Because of
the high level of structural conservation between NRPS A
domains and other proteins in the superfamily, we hypothe-
sized that these 34 active site residues would also be important
features for ANL substrate prediction. Using an AMP-binding
profile HiddenMarkovModel (pHMM), we extracted 34 active
site residues from our .1,700 training set sequences. Further
inspection of the superfamily-wide pHMM alignment revealed
the presence of a fatty acyl-AMP ligase-specific insertion (FSI)
of 20 amino acids not present in other superfamily members
(Fig. S1). The FSI has been suggested to inhibit the 140° do-
main rotation of the C-terminal domain and is critical for the
rejection of CoA-SH as an acceptor molecule (6). Because the
FSI was shown experimentally to be an important feature to
distinguish FAAL from LACS enzymes, we extracted 20 FSI
residues from each sequence and appended them to our fea-
ture vector for a total of 54 residues. Each amino acid was fur-
ther encoded as 15 normalized real numbers corresponding
to different physicochemical properties including hydropho-
bicity, volume, secondary structure, and electronic properties
(11). The physicochemical properties were then used to train
machine learning models to predict enzyme function and
substrate (Fig. 1A).
Three different machine learning algorithms were evaluated

for our classification problem: feedforward neural networks,
naïve Bayes, and random forest. Random forest performed
slightly better than its counterparts for both function and sub-
strate classification problems (Fig. 1B and Fig. S2). Naïve Bayes
also performed well but was significantly slower than random
forest in run time. The feedforward neural network performed
the worst, likely because of a relatively small number of training
samples, and was also the slowest model to train. On the basis
of speed and accuracy, we chose to proceed with the random
forest algorithm. Our best performing model achieved 82.5 6
2.3% test set classification accuracy for substrate specificity and
83.36 3.0% for functional class prediction (Fig. 1B and Fig. S2).
The average area under the receiver operating characteristic
curve (micro-average AUROC) was 0.981 for substrate group
prediction and 0.978 for functional class (Fig. 1C and Fig. S2).
Within-class accuracy was highest for the FAAL and NRPS A
domains, most likely because of a larger amount of experimen-
tal data for these protein families (Fig. S2). Both of our classi-
fiers also performed well with more specialized enzymes that
accept single substrates such as the BLS and LUC classes (Fig.
S2). We speculate that enzymes with specialized functions
might have distinct “active-site patterns” that could be learned
by our algorithms because of the preference of these enzymes
for single substrates (e.g. D-luciferin). Our machine learning
model consistently performed the worst on substrate classifica-
tion for enzymes with broad substrate specificity such as the
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aryl/biaryl acids and C6–C11 chain length fatty acids and aryl
acids (Fig. 1D).
We developed a web application, AdenylPred (z.umn.edu/

AdenylPred), for adenylation prediction, to make our machine
learning models publicly available. Users can upload their
sequences of adenylate-forming enzymes in multi-FASTA or
GenBank format either as nucleotide or as protein sequences.
Predictions and probability scores between 0 and 1 (with scores
.0.6 designated as confident predictions) are reported for both
functional classification and substrate specificity. The entire
ANL enzyme training set is also available in a searchable data-
base format. Overall, the web app provides an interactive inter-
face for users with little computational experience. A pared-

down command-line version of the tool is also available for
download for the analysis of large data sets.

AdenylPred validation with widely distributed ANL
superfamily sequences

To evaluate AdenylPred performance with an entirely
separate set of ANL sequences, we mined the literature for
newly characterized adenylate-forming enzymes that had
not been included in the initial training and testing sets.
We assembled a new benchmark set of 40 protein sequen-
ces from insects, fungi, cyanobacteria, and other prokar-
yotes (Table S3). Of these, 27 of 40 had been directly veri-
fied through protein purification and in vitro biochemical

Figure 1. Machine learning to predict substrate and function of adenylate-forming enzymes from protein sequences. A, the machine learning work-
flow includes extracting 34 active site residues (green) and FAAL-specific loop (red) residues and encoding them as a vector of physiochemical properties. Sep-
arate classifiers are trained to predict substrate specificity and enzyme function. B, hold-out test set accuracy scores for three different classification methods
evaluated in this study. C, AUROC for substrate specificity predictions. Colors correspond to different substrates and macro (gray) and micro (black) AUROC
averages. Red, aryl/biaryl acids; green, bulky/phenyl aa; blue, C13–C17 fatty acids; purple, C181 fatty acids; orange, C2–C5 acids; tan, C6–C12 fatty acids; brown, suc-
cinylbenzoic acids; hot pink, cyclic aliphatic aa; dark blue, cysteine; fuchsia, luciferin; light pink, b-hydroxy acids; turquoise, polar and charged aa; goldenrod,
small hydrophilic aa; deep pink, small hydrophobic aa; lavender, tiny aa. D, confusion matrix of predicted versus truth for ANL substrate specificity on hold-out
test set. Predictions for functional class are presented in Fig. S2.
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assays or through MS-based analysis of cell lysates. The
substrates and functions of remaining 13 of 40 enzymes
could still be inferred with confidence using biosynthetic
logic on the basis of experimental work such as natural
product structure elucidation or deletions of other biosyn-
thetic genes in the cluster (Table S3). Sequences in the
benchmark set were also divergent from the training set
with as low as 27.4% amino acid sequence identity to the
top BLAST hit in the training set (mean 52.5%; Table S3).
Substrate preferences of enzymes in the benchmark set
included .30 compounds such as benzoxazolinate, 3-cya-
nobutanoate, and 3-(methylthio)propanoate (Fig. S3). The
benchmark set also included a number of unusual or multi-
functional adenylate-forming enzymes involved in diazo-

group formation (9), formylation (18), and amide-bond
formation (19, 20).
The overall accuracy of AdenylPred for all 40 sequences

independent of probability score was 83% for functional
class prediction and 73% for substrate specificity prediction
(Table S3). Additionally, AdenylPred had 100% functional
class and substrate specificity prediction accuracy for all
sequences with probability scores .0.6. There were 25 of 40
sequences that had functional group probability scores.0.6
and 11 of 40 that had substrate scores.0.6. For these “high-
confidence” sequences, the average percentage of aa identity
was 58.9% to the training set, whereas for substrate specific-
ity it was 71%. The overall classification accuracy scores
indicate that AdenylPred has utility in predicting functions

Figure 2. Maximum-likelihood phylogenetic tree of characterized protein sequences in the ANL superfamily. Tree was computed using the Jones–Tay-
lor–Thornton matrix–based model of amino acid substitution and colored by functional enzyme class. Some enzyme classes such as BLS, NRPS, and LUC form
monophyletic clades, whereas other sequences, i.e. the ARYL class are dispersed throughout the tree, suggest evolutionary divergence. Red, ARYL; green, BLS;
dark blue, very-long-chain acyl-CoA synthetase; orange, LUC; light blue, FAAL; brown, NRPS; purple, LACS; pink, SACS; gold, MACS. Gray node circles represent
bootstrap support.75% at branch points. Bar, 0.4 aa substitutions per site.
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and substrates for a range of different enzymes in the ANL
superfamily. As expected, prediction accuracy is positively
associated with both the AdenylPred probability score and
similarity of the query sequence to the training set. In par-
ticular, ANL sequences with low AdenylPred probability
scores are promising candidates for experimental investiga-
tion because they may highlight ANL enzymes with as-yet
undiscovered functions and substrates.

Specialized ANL enzymes may have evolved from an
ancestral scaffold utilizing CoA-SH

We next used a phylogenetic approach to investigate the
functional divergence of ANL superfamily enzymes (Fig. 2).
Maximum-likelihood phylogenetic analysis revealed that some
functional classes, including the BLS, LUC, and NRPS enzymes,
formed tight monophyletic clades, whereas others, including
enzymes in the ARYL, SACS, and MACS classes, were

Figure 3. Predicted functional distribution of adenylation enzymes encoded in 50,064 candidate biosynthetic gene clusters. A, sequence similarity
network of all standalone AMP-binding pHMM hits extracted from candidate biosynthetic gene clusters identified in .24,000 bacterial, fungal, and plant
genomes. Diamonds correspond to training set sequences, and circles represent AMP-binding hits extracted frombiosynthetic gene clusters. The network was
trimmed to a BLAST e-value threshold of 13 10236. Circles with a probability.0.6 are colored by their prediction, whereas sequences colored gray had “no
confident prediction.” B, bar plot of relative counts for different functional classes of ANL enzymes within biosynthetic gene clusters (AdenylPred prediction
probability. 0.6). VLACS, very-long-chain acyl-CoA synthetase.
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dispersed throughout the tree. The wide phylogenetic distribu-
tion of the ARYL sequences in particular indicated many ARYL
enzymes were more closely related to different protein subfa-
milies than to each other. This observation could likely be
explained by two evolutionary scenarios: 1) CoA ligase activity
arose independently several times throughout ANL superfam-
ily evolution or 2) radial divergence of the superfamily occurred
from an ancestral scaffold similar to contemporary CoA-ligase-
like enzymes (21). To investigate these scenarios further, we
used a maximum-likelihood approach for ancestral sequence
reconstruction to estimate the 10 most likely sequences for the
predicted ancestral protein at the root of the ANL phylogeny
(22).We used AdenylPred to extract sequence features and pre-
dict function and substrate for our reconstructed ancestral pro-
teins. AdenylPred classified 10 of 10 of the most likely ancestral
ANL proteins as the aryl-CoA ligases most likely to activate aryl
and biaryl derivatives as substrates (probability score = 0.6).We
also tested a maximum-likelihood ancestral reconstruction
using only 34 active-site residues as the seed sequences rather
than full-length sequences and obtained similar ARYL predic-
tions (probability score = 0.7). These results suggest that the
active sites of our reconstructed ancestral ANL proteins were
most similar to contemporary CoA-ligase enzymes in the ANL
superfamily.

Sequence similarity networking suggests radial divergence of
the ANL superfamily

To map the functional distribution of adenylation enzymes
encoded in 50,064 candidate biosynthetic gene clusters, we
applied AdenylPred to a taxonomically diverse and representa-
tive collection of bacterial, fungal, and plant genomes. We
extracted all standalone adenylate-forming enzyme sequences
from 50,064 candidate biosynthetic gene clusters detected
using antiSMASH (23), fungiSMASH (24), and plantiSMASH
(25). To visualize results, we constructed a sequence similarity
network of adenylate-forming enzymes in which each node
represents a group of proteins that share .40% amino acid
sequence identity (Fig. 3A). Nodes were colored by their func-
tional class predicted using AdenylPred. The sequence similar-
ity network displayed a topology in which most functional pro-
tein subfamilies showed higher sequence similarity with “core”
sequences than with any other subfamily (Fig. 3A). For all nodes
in the core of the clustering diagramwith AdenylPred probabil-
ity scores.0.6, 80% were predicted to be aryl-CoA synthetases.
To test the robustness of the network topology with a different
sequence set, we constructed a sequence similarity network
from a smaller set of all AMP-binding domains from the man-
ually curated MIBiG database (Fig. S4). Again, we recovered
the same topology with the core containing mostly CoA-utiliz-
ing enzymes. Of the 48,250 full-length AMP-binding hits that
we analyzed with AdenylPred, 79% of the high-confidence hits
were predicted to be in either the ARYL or NRPS classes (Fig.
3A). There were no predicted luciferases in the biosynthetic
gene clusters, which was expected because insect genomes
including fireflies were not included in the genome set. Nota-
bly, the number of predicted FAALs in our data set outnum-
bered LACS more than 10-fold (3,673 to 322). Because both

FAALs and LACSs both accept long-chain fatty acids as sub-
strates, these findings support previous reports that the major-
ity of lipid tails in lipopeptides, and other natural products may
be incorporated through FAAL-mediated activity rather than
CoA activation (26). b-Lactone formation and CoA activation
of long-chain fatty acids were the least common functions cata-
lyzed by ANL enzymes in candidate biosynthetic gene clusters
(Fig. 3B).

AdenylPred-guided discovery of b-lactone synthetases in
biosynthetic gene clusters

b-Lactone synthetases are among the most recently discov-
ered members of the ANL superfamily (8), and a comprehen-
sive analysis of their prevalence in natural product biosynthetic
gene clusters had never been conducted. We examined
AdenylPred hits for b-lactone synthetases from our collection
of 50,064 candidate biosynthetic gene clusters. As expected, we
detected candidate b-lactone synthetases in gene clusters re-
sponsible for the biosynthesis of knownb-lactone natural prod-
ucts including ebelactone and lipstatin (27, 28). Predicted can-
didate b-lactone synthetases were also detected in 48 distinct
bacterial and fungal genera, with the highest-confidence hits in
the Planctomycetes, Deltaproteobacteria, and Actinobacteria
(Fig. S5). To experimentally characterize one of these predic-
tions, we selected a candidate b-lactone synthetase sequence
that was highly conserved within the bacterial genus Nocardia
(Fig. S5). Previously, a b-lactone natural product, nocardiolac-
tone, had been isolated from pathogenic strains of Nocardia
spp. (29). However, no follow-up studies on nocardiolactone
were published, and the biosynthetic gene cluster was never
reported, resulting in nocardiolactone being labeled an orphan
natural product. Based on this, we hypothesized that the b-lac-
tone synthetases detected by AdenylPred in Nocardia genomes
were involved in b-lactone biosynthesis in the natural product
nocardiolactone.
We identified three flanking genes around the predicted

b-lactone synthetase genes in Nocardia spp. that shared syn-
teny with biosynthetic genes for the b-lactone natural product,
lipstatin (Fig. 4A). The lipstatin cluster also encodes NRPS and
formyltransferase enzymes that attach an N-formyl leucine to
the di-alkyl backbone (27). However, NRPS and formyltransfer-
ase genes conserved in the lipstatin cluster were absent from all
candidate nocardiolactone clusters in Nocardia (Fig. 4B). We
hypothesized that this cluster of four biosynthetic genes,
termed nltABCD, might encode all the necessary enzymes for
Nocardia spp. to produce a di-alkyl b-lactone product similar
to lipstatin but lacking an amino acid side chain. Predicted
functions of genes in the nltABCD biosynthetic cluster corre-
spond to the reactions required to produce the orphan struc-
ture of the b-lactone product, nocardiolactone (Fig. 4A),
prompting us to characterize the biosynthetic enzymes and
pathway experimentally.

In vitro reconstitution of the nocardiolactone pathway links
the biosynthetic gene cluster to its orphan natural product

Nocardiolactone was originally isolated in 1999 from a path-
ogenic strain of Nocardia brasiliensis and other unidentified
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strains of Nocardia spp. that are not available in public culture
collections (29). Genetic manipulation in Nocardia remains
challenging; therefore we opted instead to reconstitute the
complete biosynthetic pathway in vitro by heterologously
expressing and purifying individual nltABCD pathway enzymes.
This approach gave us full control to determine the function of
each pathway enzyme through biochemical analysis of intermedi-
ates and comparisonwith synthetic standards.
We cloned and expressed the gene encoding a candidate

b-lactone synthetase, termed NltC, from a publicly available N.
brasiliensis genome. NltC purified as a 60-kDa monomer. To
test NltC for b-lactone synthetase activity, we synthesized syn-

and anti-2-octyl-3-hydroxydodecanoic acid diastereomers as
substrate analogs and added purified NltC, ATP, and MgCl2
(Fig. 5A). Compared with no enzyme controls, we observed
NltC-catalyzed formation of cis-and trans-b-lactones by 1H
NMR after overnight reactions (Fig. S6A). The coupling con-
stants were consistent with synthetic standards for cis- and
trans-b-lactones of comparable chain length (8). AMP release
is also commonly used as a readout for ANL enzyme activity. In
a time-course analysis of AMP release by NltC, we observed ac-
tivity with C20 chain length b-hydroxy acids but no activity
with C14 length analogs above the level of the no-substrate con-
trol (Fig. 5A). NltC also showed weak activity with 2-

Figure 4. Proposed nocardiolactone biosynthetic gene cluster. A, synteny between published bacterial cis-olefin and lipstatin gene clusters with the pro-
posed nocardiolactone biosynthetic gene cluster. Percentages correspond to amino acid identity. B, representatives of the proposed nocardiolactone biosyn-
thetic cluster in Nocardia.Maximum-likelihood phylogenetic tree is based on NltC amino acid sequence distance estimated using the Jones–Taylor–Thornton
model of amino acid substitution. Sequences corresponding toNocardia isolated from humans are designated by black circles.
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hexyldecanoic acid as a substrate mimic, but not with 10-nona-
decanol, suggesting adenylation of the carboxylic acid rather
than hydroxyl group (Fig. S6B). These results are consistent
with the reported adenylation activity for the b-lactone synthe-
tase from Xanthomonas campestris and with most enzymes in
the ANL superfamily (30). Overall, these results support
AdenylPred-guided predictions that NltC in N. brasiliensis is a
functional b-lactone synthetase.
To further characterize enzymes involved in nocardiolactone

biosynthesis, we purified two upstream thiolase family proteins,
NltA and NltB. Recently, homologous enzymes in the lipstatin
biosynthetic pathway, LstA and LstB were shown to form a
functional heterodimer to catalyze “head-to-head”Claisen con-
densation of two acyl-CoAs (31). We hypothesized NltA and
NltB might catalyze a similar reaction to form the nocardiolac-
tone backbone (Fig. 5B). When heterologously expressed, NltA
was mostly insoluble and formed inclusion bodies even when
co-expressed with chaperones. We also attempted to purify a
NltA homolog from a closely related organism, Nocardia
yamanashiensis, and again observed inclusion body formation.
In contrast, NltB could be purified with a moderate yield (;28
mg/liters of culture). When tested individually, NltA and NltB
protein preparations did not display activity with any chain
length (C8–C16) acyl-CoA substrate tested. However, when
nltA and nltB were co-expressed on the same plasmid, we
obtained soluble protein that actively catalyzed the Claisen
condensation of long-chain acyl-CoAs to b-keto acids (Fig. 5B).
Size-exclusion chromatography indicated that NltA and NltB
formed a heterodimer that eluted at 72 kDa.
From homology modeling and sequence analysis, we

observed that the NltB sequence was 45 amino acids shorter

than NltA and lacked a Cys-His-Asn catalytic triad, similar to
reports for LstB relative to LstA (31). Although no crystal struc-
ture of LstAB is available, site-directed mutagenesis revealed
that a conserved glutamate in LstB (Glu60) was required for
condensation activity (31). In the crystal structure of the physi-
ological homodimer of OleA from X. campestris, a similarly
positioned glutamate from the b-chain was shown to enter the
active site of the a-chain in the OleA homodimer to deproto-
nate and activate the a-carbon of the substrate (32). Based on
homology modeling and structural alignments with OleA,
Glu57 from NltB may be similarly poised for a-carbon deproto-
nation in the NltA active site (Fig. S7A). We used site-directed
mutagenesis to mutate the NltB Glu57 to either Ala or Gln.
Claisen condensation activity was abolished in NltABE57A and
NltABE57Q mutants compared with WT NltAB (Fig. S7B).
Taken together, these results suggest NltA and NltB may form
a functional heterodimer with NltBE57 required to catalyze the
Claisen condensation of two fatty acyl-CoA substrates.
The final enzyme in the nocardiolactone cluster, NltD,

belongs to the short-chain reductase superfamily. NltD purified
as a 78-kDa fusion protein with a maltose-binding protein tag.
NltD has an N-terminal conserved nucleotide binding motif
(Rossman fold) and a SXnYXXXK catalytic triad characteristic
of short-chain reductase superfamily members (33). NltD
shares 53% amino acid identity with the lipstatin reductase
(LstD) and 36% identity with X. campestris OleD, a 2-alkyl-3-
ketoalkanoic acid reductase involved in olefin biosynthesis (Fig.
4A). Because studies on OleD demonstrated 2-alkyl-3-ketoal-
kanoic acids are unstable, we monitored the reaction in reverse
with 2-alkyl-3-hydroxyalkanoic acid substrates using a spectro-
photometric assay for NADPH formation (33). Purified NltD

Figure 5. Biochemical characterization of nocardiolactone biosynthetic enzymes. A, time-course analysis of NltC activity with di-alkyl b-hydroxy acids
with carbon backbones of length C20 (blue) and C14 (orange) compared with a no-substrate control (gray). NltC prefers longer chain b-hydroxy acids (C20) and
shows no discernable activity with C14 b-hydroxy acids above the level of the no-substrate control. B, co-expressed NltA and NltB enzymes condense 2 myris-
toyl-CoAs to form 2-myristoyl-3-ketomyristic acid. The resulting ketone (14-heptacosanone) from the breakdown of 2-myristoyl-3-ketomyristic acid was
observable by GC-MS. The enzymatic product of NltAB was identical to a 14-heptacosanone control produced byWT X. campestrisOleA but was not observed
to be catalyzed by NltA or NltB enzymes purified individually. C, proposed biosynthetic pathway for nocardiolactone. R1, C18H37; R2, C13H27.
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catalyzed NADP1-dependent conversion of 2-alkyl-3-hydrox-
yalkanoic acid to 2-alkyl-3-ketoalkanoic acid with both C20 and
C14 di-alkyl b-hydroxy acid substrates at a rate similar to a X.
campestrisOleD control (Fig. S8).
We next reconstituted the entire pathway to produce nocar-

diolactone-like analogs by combining purified pathway
enzymes with decanoyl-CoA, NADPH, ATP, and MgCl2 (Fig.
5C and Fig. S9). Because of instability and loss of activity of
purified NltAB over time, we substituted the functionally
equivalent and stable homodimer, OleA, from X. campestris
(34). After overnight incubation, we observed formation of a
di-alkyl b-lactone natural product (Fig. S9). Based on in vitro
evidence, we propose nocardiolactone biosynthesis is initiated
via “head-to-head” Claisen condensation of two fatty acyl-CoA
substrates catalyzed by a heterodimeric interaction between
NltA and NltB. NltD then reduces the di-alkyl b-keto acid to a
di-alkyl b-hydroxy acid in an NADPH-dependent manner.
Finally, intramolecular ring closure of a b-hydroxy acid to a
b-lactone is catalyzed by the ATP-dependent b-lactone synthe-
tase NltC (Fig. 5C). Overall, these results link the nltABCD bio-
synthetic gene cluster in N. brasiliensis to the orphan natural
product nocardiolactone.

The nocardiolactone gene cluster is enriched in human
pathogens

With the biosynthetic gene cluster identified, we next probed
the taxonomic distribution and abundance of the nocardiolac-
tone pathway in Nocardia genomes. We used AdenylPred to
identify putative b-lactone synthetases and detected nltC
homologs with flanking nltABD genes in 94 of 159 complete
Nocardia genomes in the PATRIC database (35). Notably, the
strict nltABCD cluster was not detected in any closely related
genera such as Rhodococcus, Streptomyces, or Mycobacterium,
suggesting that nocardiolactone biosynthesis may be specific to
the genus Nocardia. We observed the nocardiolactone gene
cluster was more prevalent among strains of pathogenic clinical
isolates fromhuman patients than in strains isolated from other
sources (Fig. 4B). The complete nltABCD cluster was detected
in 68% of genomes of distinct species of human pathogenic
Nocardia relative to 27% isolated from nonhuman sources (p =
0.002, Fisher’s exact test). We also queried a separate data set
comprised of 169 clinical isolates of Nocardia from human
patients6 and recovered a similar proportion of complete
nocardiolactone cluster hits among clinical isolates (112 of
169,;66%). Although only correlative, the enrichment war-
rants further research and suggests an association between
the presence of the nocardiolactone cluster and Nocardia
pathogenicity.

Discussion

Based on our ancestral reconstruction, we propose that an-
cient ANL enzymes had an active site most similar to contem-
porary enzymes that use CoA-SH as an acceptor molecule.
This evolutionary scenario is supported by phylogenetic analy-
sis and the composition of the “core” of the ANL sequence sim-

ilarity network (Fig. 3A). Many other enzyme superfamilies do
not have this radial topology and instead tend to show patterns
of sequential functional divergence (36, 37). However, Babbitt
and co-workers (21) detected a radial topology in the nitrore-
ductase superfamily and provided multiple lines of evidence
supporting the possibility that this network topology indicated
divergent evolution of the superfamily from a minimal flavin-
binding scaffold. Similarly, our results suggest that ANL
sequences may have undergone divergent evolution from an-
cestral enzymes with CoA-ligase–like scaffolds toward more
specialized functions.
The proposed evolutionary trajectory of the ANL superfam-

ily is supported by experimental evidence for low-level CoA-
ligase activity in many extant ANL enzymes that primarily per-
form other functions. For example, Linne et al. (38) tested the
CoA-ligase activity of five different NRPS A domains. Surpris-
ingly, all of the NRPS A domains tested were also able to syn-
thesize acyl-CoAs in vitro. Enzymatic CoA-ligase activity of the
NRPS A domains varied proportionally to their evolutionary
similarity with a native acyl-CoA synthetase, suggesting that
greater sequence divergence resulted in more specialized NRPS
A domain activity and reduced bifunctionality (38). Firefly luci-
ferases were also demonstrated to be bifunctional as CoA-
ligases (39), and luciferase activity was conferred to an acyl-
CoA ligase from a nonluminescent click beetle by just a single
point mutation (40). Arora et al. (6) showed that FAAL
enzymes likely lost their CoA-ligase activity because of the FSI.
Indeed, deletion of the FSI conferred acyl-CoA ligase activity in
FAAL28 fromMycobacterium tuberculosis. The fact that single
mutations can revert many enzymes back to a CoA-ligase state
supports the hypothesis that the ANL superfamily arose from
an ancestral enzyme using CoA-SH as an acceptor molecule.
Nevertheless it is challenging to conclusively rule out the alter-
native hypothesis that CoA-ligase activity arose independently
several times in the evolution of the ANL superfamily. Overall,
phylogenetic ancestral reconstruction coupled with
AdenylPred analysis yielded new insights into the evolutionary
structure–function relationships among adenylate-forming
enzymes.
Within the ANL superfamily, the b-lactone synthetases were

the most recently discovered family, and the extent of their role
in natural product biosynthesis remains poorly understood (8,
30).We used AdenylPred to identify.90 b-lactone synthetases
in uncharacterized biosynthetic gene clusters from 48 different
genera (Fig. S5), which is significantly more than the eight
known biosynthetic gene clusters for b-lactone natural prod-
ucts reported to date (41). The disparity between the number of
predicted b-lactone biosynthetic gene clusters and known
b-lactone natural products has several possible explanations.
One reason may be limited discovery because of the reactivity
and thermal instability of b-lactones. b-Lactones are strained
rings that can rapidly hydrolyze in aqueous solutions (42) or
thermally decarboxylate, thus hampering their detection by
common analytical methods such as GC-MS (8). It is also plau-
sible many biosynthetic gene clusters with b-lactone synthe-
tases are not expressed under normal laboratory conditions.
Another explanation is the undetected role of b-lactones as
intermediates in the biosynthesis of other chemical moieties6S. J. Pidot and T. P. Stinear, manuscript in preparation.
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(8). Chemists have long referred to b-lactones as “privileged
structures” for the total synthesis of compounds with a variety
of functional groups including b-lactams, g-lactones, and
alkenes (41, 42). Our findings suggest microbes might also use
b-lactones as intermediates because we detected a number of
b-lactone synthetase hits in gene clusters known to make natu-
ral products without final b-lactone moieties such as polyunsa-
turated fatty acids. Indeed, b-lactone synthetases in oleABCD
gene clusters were recently linked to production of the final
alkene moiety in the biosynthesis of a C31 polyunsaturated
hydrocarbon product (43). Such cases, if more widespread, may
have also escaped detection because most of the predicted gene
clusters with b-lactone synthetases were not detected by tools
like antiSMASH until recently (23), prohibiting the discovery of
such biosynthetic pathways through genomemining approaches.
The recent feature implementation in antiSMASH to detect likely
b-lactone moieties now enables further research into the role of
b-lactones as intermediates in the biosynthesis of hydrocarbons
and other natural products (23).
Among the predicted gene clusters containing b-lactone syn-

thetase homologs, we detected a conserved four-gene cluster in
Nocardia that we linked to the orphan b-lactone natural prod-
uct, nocardiolactone. Numerous biosynthetic gene clusters
have been detected in Nocardia spp., and Nocardia genomes
were shown to have as many type I polyketide synthases and
NRPS gene clusters as Streptomyces genomes (44). Despite this,
only a small number of biosynthetic gene clusters in Nocardia
have been experimentally verified. Recently, the biosynthetic
gene cluster for the nargenicin family of macrolide antibiotics
was discovered in human pathogenic strains of Nocardia
arthriditis (45). Khosla and co-workers (46) also reported on a
unique class of orphan polyketide synthases in the genomes of
Nocardia isolates from human patients with nocardiosis. Based
on the conservation of this gene cluster in clinical isolates from
nocardiosis patients, Khosla proposed the product might play a
role in Nocardia pathogenicity in human hosts. Similarly, we
found that the nocardiolactone gene cluster was significantly
more abundant in the genomes of human pathogenic strains
compared with isolates from nonhuman sources. The enrich-
ment supports the hypothesis that nocardiolactone could play a
role in the pathogenicity of Nocardia; however, in vivo studies
are required.
Nocardiolactone was first isolated from the mycelia of

Nocardia spp. rather than the fermentation broth, suggesting
the compound is cell-associated (29). The long, waxy di-alkyl
tails of nocardiolactone resemble mycolic acids and would
likely embed in the cell membrane. The cell wall composition
varies between different species of Nocardia but is known to
consist primarily of trehalose dimycolate and several other un-
identified hydrophobic compounds (47). Studies on Nocardia
virulence found that cell-surface composition was a critical de-
terminant for attachment and penetration of host cells (48).
Cell wall–associated lipids inN. brasiliensis were also shown to
induce a strong inflammatory response (47). The role of hydro-
phobic natural products in Nocardia pathogenicity and infec-
tion remains a rich and untapped direction for future research.
In summary, we conducted the first global analysis of adenyl-

ate-forming enzymes in .50,000 candidate biosynthetic gene

clusters from all domains of life. Our machine learning
approach yielded evolutionary insights into ANL superfamily
divergence from a core scaffold similar to contemporary CoA-
ligases toward enzymes with more specialized functions such
as b-lactone formation. AdenylPred analysis also detected.90
b-lactone synthetases in gene clusters in Nocardia spp. that
were enriched in the genomes of human pathogens. Through
in vitro pathway reconstitution, we were able to link this
gene cluster family to the orphan natural product nocardio-
lactone. These findings demonstrate how machine learning
methods can be used to pair gene clusters with orphan sec-
ondary metabolites and advance understanding of natural
product biosynthesis.

Experimental procedures

Sequence similarity network

Candidate biosynthetic gene clusters from.24,000 bacterial
genomes in the antiSMASH database version 2 (49) were com-
bined with precalculated plantiSMASH output (25) and results
from fungiSMASH analysis of 1,100 fungal genomes (accession
numbers available at https://github.com/serina-robinson/
adenylpred_analysis/). The AMP-binding pHMM (PF00501)
was used to query all genes in the data set with default parame-
ters, returning 213,993 significant hits. Because the distribution
and identity of NRPS adenylation domains have already been
analyzed in detail by Chevrette et al. (12), we opted to analyze
only standalone AMP-binding pHMM hits. All sequences with
a condensation domain (PF00668) in the same coding sequence
were filtered out, leaving 71,331 “standalone” AMP-binding
HMM hits. Of these, partial sequences (less than 150 amino
acids in length) were removed for a total of 63,395 sequences.
Because of computational limitations of visualizing large net-
works, the sequences were clustered using CD-HIT (50) with a
word size of 2 and 40% sequence similarity cutoff to yield 2,344
cluster representatives. Cluster representatives were combined
with the AdenylPred training set sequences to observe their
relation to sequences with known specificity. A sequence simi-
larity network was constructed by calculating pairwise BLAST
(51) similarities between all sequences. The network was exam-
ined over a comprehensive range of e-value cutoffs and visual-
ized using the igraph package (52).

Training set construction

The AdenylPred training set was pulled and manually cura-
ted from three databases: UniProtKB, MIBiG, and the most up-
to-date NRPS A domain training set from SANDPUMA (12).
AMP-binding enzymes (PF00501) in the UniProtKB database
that had experimental evidence at the protein level were
extracted and linked to their substrate through literature min-
ing and manual verification. The MIBiG database was queried
with the AMP-binding HMM (PF00501). MIBiG sequences
were extracted and linked to their product and substrate when
reported in the literature. The SANDPUMA NRPS A domain
data set (12) was randomly down-sampled with stratification by
substrate class to balance the training set classes for substrate
and enzyme function prediction. A dictionary of databases and
other bioinformatics resources used in analysis here are defined
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in Table S4. Training set sequences were grouped into 15 sub-
strate groups and 9 enzyme functional classes.

Machine learning methods

Protein sequences in the training set were aligned with the
AMP-binding HMM using HMMAlign (53). Residues within 8
Å of the active site were extracted and encoded as tuples of
physicochemical properties as described by Röttig et al. (11).
The FSI was extracted, one-hot encoded, and concatenated to
the vector of active site vector properties for a total of 585
sequence features. Three differentmachine learning algorithms
were trained for multiclass classification: random forest, naïve
Bayes, and feedforward neural networks. Descriptions of these
algorithms and other machine learning terms commonly used
throughout the manuscript are provided in Table S5. The data
were split with stratified sampling into 75% training and 25%
test sets. Tuning parameters for all models were adjusted by
grid search using 10-fold cross-validation repeated with five
iterations. The confidence of random forest predictions can be
assessed using a nonparametric probability estimation for class
membership calculated as a value between 0 and 1 (54). Based
on the distribution of prediction probabilities, we set an empiri-
cal threshold for prediction confidence of 0.6 (60%), below
which all substrates are listed as “no confident result,” although
the best prediction is still provided to the user.

AdenylPred availability

The web application is available at z.umn.edu/adenylpred
(shortened URL) or https://srobinson.shinyapps.io/AdenylPred/.
The command-line version of the tool is available at https://
github.com/serina-robinson/adenylpred.

Phylogenetic analysis and ancestral reconstruction

Training set sequences were aligned were aligned using
HMMAlign (53) and terminal ends of the alignment were
trimmed. The phylogeny of the entire training set was esti-
mated using RAxML version 8.2.9 (55) with the Jones–Taylor–
Thornton matrix–based model of amino acid substitution and
a discrete gamma model with 20 rate categories. For ancestral
sequence reconstruction, training set sequences were redun-
dancy filtered to 40% amino acid identity with a word size of 2
with CD-HIT (50). FastML was used to reconstruct the most
likely ancestral sequences for internal nodes of the tree (22).
AdenylPred was then used to predict the functional class and
substrate of the root ancestral sequence in the ANL
superfamily.

HPLC analysis of NltC activity

HPLC analysis of ATP, ADP, and AMP was conducted using
an Agilent 1100 series instrument with a C18 eclipse plus (Agi-
lent) column mounted with a C18 guard column. The reactions
were carried out in glass HPLC vials with a total volume of 500
ml in assay buffer (50 mM Tris base adjusted to pH 8.0 with
HCl). The reactions were initiated with the addition of 0.5 mM

enzyme (15 mg) to 100 mM of ATP, 100 mM of substrate, and 2%
EtOH originating from the substrate stocks. Separation of ATP,

ADP, and AMPwas observed after 9 min under isocratic condi-
tions with 95% 100 mm H2KPO4 (pH 6.0 with KOH) and 5%
methanol while monitoring at 259 nm.

Cloning, expression, and purification of nocardiolactone
biosynthetic enzymes

Genes encoding NltA (WP_042260942.1), NltB (WP_
042260944.1), NltC (WP_042260945.1), and NltD (WP_
042260949.1) from N. brasiliensis, and NltA from N. yamana-
shiensis (WP_067710538.1) were codon-optimized for Esche-
richia coli and synthesized by IntegratedDNATechnologies. The
synthetic gene encoding NltC was cloned into a pET30b1 vector
with NdeI and HindIII restriction sites with a C-terminal His6
tag. The gene encoding NltD was cloned into a modified pMAL-
c5x vector with a tobacco etch virus protease cut site added at
NdeI and HindIII restriction sites and a N-terminal His6 tag and
expressed as a fusion with maltose-binding protein. The gene
encoding NltA from N. yamanashiensis was cloned into a
pET28b1 at NdeI and XhoI restriction sites. The genes encoding
NltA and NltB from N. brasiliensis were cloned individually as in
the case of N. yamanashiensis and combined with a ribosome-
binding site-like sequence (tttgtttaactttaagaaggaga) inserted into
a single pET28b1 vector with a N-terminal His6 tag. Accession
numbers and codon-optimized plasmid sequences are available
in the supporting information. Constructs were cloned byGibson
assembly into DH5a cells and verified by Sanger sequencing.
Sequence-verified plasmids were transformed into BL21 (DE3)
cells (NEB). Starter cultures (5 ml) were grown in Terrific Broth
overnight at 37 °C with kanamycin selection. Cultures of 1 liter
with 75 mg/ml kanamycin were grown to an optical density of 0.5
at 37 °C, induced by the addition of 1 ml of isopropyl b-D-1-thio-
galactopyranoside (1 M stock) and further incubated for 19 h at
15 °C. Induced cells were harvested at 40003 g with a Beckman
centrifuge and frozen at280 °C. The cell pellets were thawed on
ice and resuspended in 10 ml of buffer containing 500 mM NaCl,
20 mM Tris base, and 10% glycerol at pH 7.4. Elution buffer for
the nickel column was the same but with the addition of 400 mM

imidazole. NltD purification buffer required the addition of
0.025% Tween 20. Cell pellets were lysed with two or three cycles
in a French pressure cell (1500 p.s.i.) and centrifuged for 60 min
at 17,0003 g. Supernatants were filtered through a 0.45-mm low
protein binding filter (Corning), loaded into a GE Life Sciences
€AKTA fast liquid protein chromatography system, and injected
onto a GE Life Sciences HisTrap HP 5-ml column. After washes
to remove nonspecifically bound proteins, His-tagged proteins
were eluted with a stepwise gradient of 5, 10, 15, and 80% elution
buffer over 2.5 column volumes at 1 ml/min and collected in 2-
ml fractions. Protein concentration was determined by the
method of Bradford (56) using the Bio-Rad protein assay dye rea-
gent concentrate and a standard curve prepared from a 2 mg/ml
bovine albumin standard (Thermo Scientific). The desired pro-
tein fractions were pooled, analyzed by SDS-PAGE, flash-frozen
in liquidN2, and stored at280 °C.

GC-MS

Separation and identification of metabolites was accom-
plished by GC-MS (Agilent 7890a and 5975c) equipped with a
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30-m3 0.25-mm inner diameter3 0.25-mmDB-1ms capillary
column with outflow split to flame ionization and MS detec-
tors. The formation of the unstable b-keto acid catalyzed by
OleA and NltAB could be observed as its ketone breakdown
product by GC-MS as published previously (33). Olefins from
the complete thermal decarboxylation of b-lactone products
were detected without derivatization by comparison to syn-
thetic b-lactone standards described previously (8, 30). The
b-hydroxy acids required methylation of the carboxylic acid
group by diazomethane for detection by GC-MS. Ethereal alco-
holic solutions of diazomethane were prepared fromN-methyl-
N-nitroso-p-toluenesulfonamide (Sigma–Aldrich). All samples
were extracted with tert-methyl butyl ether and mixed with 50
ml of diazomethane solution. One microliter of each sample
was injected into the injection port (230 °C). The 25-min pro-
gram was as follows: hold 80 °C for 2 min; ramp linearly to 320 °
C for 20min; and hold 320 °C for 3 min.

Verification of NltC b-lactone synthetase activity by 1H NMR

The reaction mixtures were set up in separate funnels with 1
mg of NltC, 20 mg of ATP, and 30 mg of MgCl2·6H2O in 100
ml of 200 mM NaCl and 20 mM NaPO4 buffer (pH 7.4). The
reactions were initiated with the addition of 1.5 ml of 2-octyl-3-
hydroxydodecanoic acids dissolved in EtOH (1.0 mg/ml stock).
As an internal standard, 10 ml of 1-bromo-naphthalene (0.5
mg/ml stock) was added to each reaction mixture. The reac-
tions were allowed to run for 24 h before three successive
extractions were performed with 10, 5, and 5 ml of dichlorome-
thane. The samples were evaporated at room temperature
before solvation in CDCl3 for 1H NMR (400 MHz). Fig. S6A
shows the 1H NMR spectra of 2-octyl-3-hydroxydodecanoic
acids allowed to react overnight with NltC compared with a
no-enzyme control. Chemical shifts for synthetic 2-octyl-3-
hydroxydodecanoic acid starting materials and cis- and trans-
3-octyl-4-nonyloxetan-2-one products were reported by Chris-
tenson et al. (8).

NltD activity assay

The activity of NltD/OleD by NADPH-dependent consump-
tion of 2-alkyl-3-ketoalkanoic acid was monitored using the
method described by Bonnett et al. (33). The reaction was
measured in reverse because the b-keto acid substrate for
NltD/OleD homologs was previously shown to be unstable and
undergoes rapid decarboxylation to a ketone (33). Briefly, pro-
gress was tracked by the change in absorbance at 340 nm by the
formation or consumption of NADPH (e340 = 6,220 M

21 cm21)
in UV-transparent 96-well plates (Greiner, Sigma–Aldrich)
measured using a SpectraMax Plus microplate reader (Molecu-
lar Devices).

General synthetic procedures

Synthesis and purification of racemic 2-octyl-3-hydroxydo-
decanoic acid was performed as described previously (8, 57) via
a-carbon deprotonation of decanoic acid by lithium diisopro-
pylamide followed by the addition of decanal to form 2-octyl-3-
hydroxydodecanoate. An identical synthetic method was used
to synthesize a racemic diastereomeric mix of 2-hexyl-3-

hydroxyoctanoic acid from hexanal and octanoic acid as
described by Robinson et al. (30).

Data availability

Scripts and raw data for analyses and figures presented in
this manuscript are available on GitHub: https://github.com/
serina-robinson/adenylpred_analysis. A searchable database
for the training set is also available at z.umn.edu/adenylpred.

Acknowledgments—We acknowledge Satria Kautsar for assistance
in extracting candidate biosynthetic gene clusters. Aalt-Jan van
Dijk is recognized for insightful discussions on machine learning.
Kelly Aukema and Mike Freeman are acknowledged for manuscript
edits and discussion. We are grateful to Jorge Navarro-Muñoz for
providing the output from fungiSMASH analysis.

Author contributions—S. L. R., M. H. M., and L. P. W. conceptuali-
zation; S. L. R., S. J. P., T. P. S., and M. H. M. resources; S. L. R` B. R.
T. data curation; S. L. R. and B. R. T. software; S. L. R. formal analy-
sis; S. L. R., M. H. M., and L. P. W. funding acquisition; S. L. R., B. R.
T., and S. J. P. validation; S. L. R., B. R. T., M. D. S., and S. J. P. inves-
tigation; S. L. R. visualization; S. L. R., B. R. T., and M. H. M. meth-
odology; S. L. R. writing-original draft; S. L. R., T. P. S., M. H. M.,
and L. P. W. project administration; S. L. R., B. R. T., M. D. S., S. J.
P., T. P. S., M. H. M., and L. P. W. writing-review and editing; M. H.
M. and L. P. W. supervision.

Funding and additional information—S.L.R. is supported by the
National Science Foundation Graduate Research Fellowship under
NSF grant number 00039202 and a Graduate Research Opportuni-
ties Worldwide (GROW) fellowship to the Netherlands supported
by the NSF and the Netherlands Organization for Scientific
Research (NWO) grant number 040.15.054/6097 (to S. L. R. and M.
H. M.).

Conflict of interest—M. H. M. is a co-founder of Design Pharma-
ceuticals and on the scientific advisory board of Hexagon Bio.

Abbreviations—The abbreviations used are: NRPS, nonribosomal
peptide synthetase; A domain, adenylation domain; SACS, short-
chain acyl-CoA synthetase; MACS, medium-chain acyl-CoA syn-
thetase; LACS, long-chain acyl-CoA synthetase; FAAL, fatty acyl-
AMP ligase; LUC, luciferase; BLS, b-lactone synthetase; ARYL,
aryl-CoA ligase; pHMM, profile Hidden Markov Model; FSI, fatty
acyl-AMP ligase-specific insertion; AUROC, area under the re-
ceiver operating characteristic curve; aa, amino acid(s).

References

1. D’Ambrosio, H. K., and Derbyshire, E. R. (2020) Investigating the role of
class I adenylate-forming enzymes in natural product biosynthesis. ACS
Chem. Biol. 15, 17–27 CrossRefMedline

2. Lipmann, F. (1944) Enzymatic synthesis of acetyl phosphate. J. Biol. Chem.
155, 55–70

3. Gulick, A. M. (2009) Conformational dynamics in the acyl-CoA synthe-
tases, adenylation domains of non-ribosomal peptide synthetases, and fire-
fly luciferase.ACSChem. Biol. 4, 811–827 CrossRefMedline

4. Wang, N., Rudolf, J. D., Dong, L. B., Osipiuk, J., Hatzos-Skintges, C.,
Endres, M., Chang, C. Y., Babnigg, G., Joachimiak, A., Phillips, G. N., and

Global analysis of adenylate-forming enzymes

J. Biol. Chem. (2020) 295(44) 14826–14839 14837

https://doi.org/10.1074/jbc.RA120.013528
https://github.com/serina-robinson/adenylpred_analysis
https://github.com/serina-robinson/adenylpred_analysis
https://srobinson.shinyapps.io/AdenylPred/
http://dx.doi.org/10.1021/acschembio.9b00865
http://www.ncbi.nlm.nih.gov/pubmed/31815417
http://dx.doi.org/10.1021/cb900156h
http://www.ncbi.nlm.nih.gov/pubmed/19610673


Shen, B. (2018) Natural separation of the acyl-CoA ligase reaction results
in a non-adenylating enzyme. Nat. Chem. Biol. 14, 730–737 CrossRef
Medline

5. Bera, A. K., Atanasova, V., Gamage, S., Robinson, H., and Parsons, J. F.
(2010) Structure of the D-alanylgriseoluteic acid biosynthetic protein
EhpF, an atypical member of the ANL superfamily of adenylating enzymes.
Acta Crystallogr. D Biol. Crystallogr. 66, 664–672 CrossRefMedline

6. Arora, P., Goyal, A., Natarajan, V. T., Rajakumara, E., Verma, P., Gupta, R.,
Yousuf, M., Trivedi, O. A., Mohanty, D., Tyagi, A., Sankaranarayanan, R.,
and Gokhale, R. S. (2009) Mechanistic and functional insights into fatty
acid activation in Mycobacterium tuberculosis. Nat. Chem. Biol. 5, 166–
173 CrossRefMedline

7. Cimermancic, P., Medema, M. H., Claesen, J., Kurita, K., Brown, L. C.,
Mavrommatis, K., Pati, A., Godfrey, P. A., Koehrsen, M., Clardy, J., Birren,
B. W., Takano, E., Sali, A., Linington, R. G., and Fischbach, M. A. (2014)
Insights into secondary metabolism from a global analysis of prokaryotic
biosynthetic gene clusters.Cell 158, 412–421 CrossRefMedline

8. Christenson, J. K., Richman, J. E., Jensen, M. R., Neufeld, J. Y., Wilmot,
C. M., and Wackett, L. P. (2017) b-Lactone synthetase found in the olefin
biosynthesis pathway. Biochemistry 56, 348–351 CrossRefMedline

9. Waldman, A. J., and Balskus, E. P. (2018) Discovery of a diazo-forming
enzyme in cremeomycin biosynthesis. J. Org. Chem. 83, 7539–7546 Cross-
RefMedline

10. Khurana, P., Gokhale, R. S., andMohanty, D. (2010) Genome scale predic-
tion of substrate specificity for acyl adenylate superfamily of enzymes
based on active site residue profiles. BMC Bioinformatics 11, 57 CrossRef
Medline

11. Röttig, M., Medema, M. H., Blin, K., Weber, T., Rausch, C., and Kohl-
bacher, O. (2011) NRPSpredictor2-a web server for predicting NRPS
adenylation domain specificity. Nucleic Acids Res. 39, W362–W367
CrossRefMedline

12. Chevrette, M. G., Aicheler, F., Kohlbacher, O., Currie, C. R., andMedema,
M. H. (2017) SANDPUMA: ensemble predictions of nonribosomal pep-
tide chemistry reveal biosynthetic diversity across Actinobacteria. Bioin-
formatics 33, 3202–3210 CrossRefMedline

13. Pan, G., Xu, Z., Guo, Z., Ma, M., Yang, D., Zhou, H., Gansemans, Y., Zhu,
X., Huang, Y., Zhao, L. X., and Jiang, Y. (2017) Discovery of the leinamycin
family of natural products by mining actinobacterial genomes. Proc. Natl.
Acad. Sci. U.S.A. 114, E11131–E11140 CrossRefMedline

14. Zhao, H., Liu, Y. P., and Zhang, L. Q. (2019) In silico and genetic analyses
of cyclic lipopeptide synthetic gene clusters in Pseudomonas sp. 11K1.
Front.Microbiol. 10, 544 CrossRefMedline

15. Kautsar, S. A., Blin, K., Shaw, S., Navarro-Muñoz, J. C., Terlouw, B. R., van
der Hooft, J. J. J., van Santen, J. A., Tracanna, V., Suarez Duran, H. G., Pas-
cal Andreu, V., Selem-Mojica, N., Alanjary, M., Robinson, S. L., Lund, G.,
Epstein, S. C., et al. (2020) MIBiG 2.0: a repository for biosynthetic gene
clusters of known function. Nucleic Acids Res. 48, D454–D458 Medline
CrossRefMedline

16. UniProt Consortium, (2019) UniProt: a worldwide hub of protein knowl-
edge.Nucleic Acids Res. 47,D506–D515 CrossRefMedline

17. Fujino, T., Kang, M. J., Suzuki, H., Iijima, H., and Yamamoto, T. (1996)
Molecular characterization and expression of rat acyl-CoA synthetase 3. J.
Biol. Chem. 271, 16748–16752 CrossRefMedline

18. Bauman, K. D., Li, J., Murata, K., Mantovani, S. M., Dahesh, S., Nizet, V.,
Luhavaya, H., and Moore, B. S. (2019) Refactoring the cryptic streptophe-
nazine biosynthetic gene cluster unites phenazine, polyketide, and nonri-
bosomal peptide biochemistry. Cell Chem. Biol. 26, 724–736 CrossRef
Medline

19. Petchey, M., Cuetos, A., Rowlinson, B., Dannevald, S., Frese, A., Sutton,
P. W., Lovelock, S., Lloyd, R. C., Fairlamb, I. J. S., and Grogan, G. (2018)
The broad aryl acid specificity of the amide bond synthetase McbA sug-
gests potential for the biocatalytic synthesis of amides. Angew. Chem. Int.
Ed. 57, 11584–11588 CrossRefMedline

20. Du, Y. L., Alkhalaf, L. M., and Ryan, K. S. (2015) In vitro reconstitution of
indolmycin biosynthesis reveals themolecular basis of oxazolinone assem-
bly. Proc. Natl. Acad. Sci. U.S.A. 112, 2717–2722 CrossRefMedline

21. Akiva, E., Copp, J. N., Tokuriki, N., and Babbitt, P. C. (2017) Evolutionary
and molecular foundations of multiple contemporary functions of the

nitroreductase superfamily. Proc. Natl. Acad. Sci. U.S.A. 114, E9549–
E9558 CrossRefMedline

22. Ashkenazy, H., Penn, O., Doron-Faigenboim, A., Cohen, O., Cannarozzi,
G., Zomer, O., and Pupko, T. (2012) FastML: a web server for probabilistic
reconstruction of ancestral sequences. Nucleic Acids Res. 40, W580–
W584CrossRefMedline

23. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S. Y., Medema,
M. H., and Weber, T. (2019) antiSMASH 5.0: updates to the secondary
metabolite genome mining pipeline. Nucleic Acids Res. 47, W81–W87
CrossRefMedline

24. Blin, K., Wolf, T., Chevrette, M. G., Lu, X., Schwalen, C. J., Kautsar, S. A.,
Suarez Duran, H. G., de Los Santos, E. L. C., Kim, H. U., Nave, M., Dick-
schat, J. S., Mitchell, D. A., Shelest, E., Breitling, R., Takano, E., et al. (2017)
antiSMASH 4.0-improvements in chemistry prediction and gene cluster
boundary identification. Nucleic Acids Res. 45, W36–W41 CrossRef
Medline

25. Kautsar, S. A., Suarez Duran, H. G., Blin, K., Osbourn, A., and Medema,
M. H. (2017) plantiSMASH: automated identification, annotation and
expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res.
45,W55–W63CrossRefMedline

26. Galica, T., Hrouzek, P., and Mareš, J. (2017) Genome mining reveals high
incidence of putative lipopeptide biosynthesis NRPS/PKS clusters contain-
ing fatty acyl-AMP ligase genes in biofilm-forming cyanobacteria. J. Phy-
col. 53, 985–998 CrossRefMedline

27. Bai, T., Zhang, D., Lin, S., Long, Q., Wang, Y., Ou, H., Kang, Q., Deng, Z.,
Liu,W., and Tao,M. (2014) Operon for biosynthesis of lipstatin, theb-lac-
tone inhibitor of human pancreatic lipase. Appl. Environ. Microbiol. 80,
7473–7483 CrossRefMedline

28. Wyatt, M. A., Ahilan, Y., Argyropoulos, P., Boddy, C. N., Magarvey, N. A.,
and Harrison, P. H. (2013) Biosynthesis of ebelactone A: isotopic tracer,
advanced precursor and genetic studies reveal a thioesterase-independent
cyclization to give a polyketide b-lactone. J. Antibiotics 66, 421–430Cross-
RefMedline

29. Mikami, Y., Yazawa, Y., Tanaka, Y., Ritzau,M., and Gräfeb, U. (1999) Isola-
tion and structure of nocardiolactone, a new dialkyl-substituted b-lactone
from pathogenicNocardia strains.Nat. Prod. Lett. 13, 277–284 CrossRef

30. Robinson, S. L., Christenson, J. K., Richman, J. E., Jenkins, D. J., Neres, J.,
Fonseca, D. R., Aldrich, C. C., and Wackett, L. P. (2019) Mechanism of a
standalone b-lactone synthetase: new continuous assay for a widespread
ANL superfamily enzyme. ChemBioChem. 20, 1701–1711 CrossRef
Medline

31. Zhang, D., Zhang, F., and Liu, W. (2019) A KAS-III heterodimer in lipsta-
tin biosynthesis nondecarboxylatively condenses C8 and C14 fatty acyl-
CoA substrates by a variable mechanism during the establishment of a C22

aliphatic skeleton. J. Am. Chem. Soc. 141, 3993–4001 CrossRefMedline
32. Goblirsch, B. R., Jensen, M. R., Mohamed, F. A., Wackett, L. P., and Wil-

mot, C. M. (2016) Substrate trapping in crystals of the thiolase OleA iden-
tifies three channels that enable long chain olefin biosynthesis. J. Biol.
Chem. 291, 26698–26706 CrossRefMedline

33. Bonnett, S. A., Papireddy, K., Higgins, S., del Cardayre, S., and Reynolds,
K. A. (2011) Functional characterization of an NADPH dependent 2-alkyl-
3-ketoalkanoic acid reductase involved in olefin biosynthesis in Stenotro-
phomonas maltophilia. Biochemistry 50, 9633–9640 CrossRefMedline

34. Frias, J. A., Richman, J. E., Erickson, J. S., andWackett, L. P. (2011) Purifica-
tion and characterization of OleA from Xanthomonas campestris and
demonstration of a non-decarboxylative Claisen condensation reaction. J.
Biol. Chem. 286, 10930–10938 CrossRefMedline

35. Wattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard,
J. L., Gillespie, J. J., Gough, R., Hix, D., Kenyon, R., Machi, D., Mao, C.,
Nordberg, E. K., Olson, R., Overbeek, R., et al. (2014) PATRIC, the bacte-
rial bioinformatics database and analysis resource. Nucleic Acids Res. 42,
D581–D591 CrossRefMedline

36. Baier, F., and Tokuriki, N. (2014) Connectivity between catalytic land-
scapes of the metallo-b-lactamase superfamily. J. Mol. Biol. 426, 2442–
2456 CrossRefMedline

37. Hicks, M. A., Barber, A. E., Giddings, L. A., Caldwell, J., O'Connor, S. E.,
and Babbitt, P. C. (2011) The evolution of function in strictosidine syn-
thase-like proteins. Proteins 79, 3082–3098 CrossRefMedline

Global analysis of adenylate-forming enzymes

14838 J. Biol. Chem. (2020) 295(44) 14826–14839

http://dx.doi.org/10.1038/s41589-018-0061-0
http://www.ncbi.nlm.nih.gov/pubmed/29867143
http://dx.doi.org/10.1107/S0907444910008425
http://www.ncbi.nlm.nih.gov/pubmed/20516619
http://dx.doi.org/10.1038/nchembio.143
http://www.ncbi.nlm.nih.gov/pubmed/19182784
http://dx.doi.org/10.1016/j.cell.2014.06.034
http://www.ncbi.nlm.nih.gov/pubmed/25036635
http://dx.doi.org/10.1021/acs.biochem.6b01199
http://www.ncbi.nlm.nih.gov/pubmed/28029240
http://dx.doi.org/10.1021/acs.joc.8b00367
http://dx.doi.org/10.1021/acs.joc.8b00367
http://www.ncbi.nlm.nih.gov/pubmed/29771512
http://dx.doi.org/10.1186/1471-2105-11-57
http://www.ncbi.nlm.nih.gov/pubmed/20105319
http://dx.doi.org/10.1093/nar/gkr323
http://www.ncbi.nlm.nih.gov/pubmed/21558170
http://dx.doi.org/10.1093/bioinformatics/btx400
http://www.ncbi.nlm.nih.gov/pubmed/28633438
http://dx.doi.org/10.1073/pnas.1716245115
http://www.ncbi.nlm.nih.gov/pubmed/29229819
http://dx.doi.org/10.3389/fmicb.2019.00544
http://www.ncbi.nlm.nih.gov/pubmed/30941113
http://www.ncbi.nlm.nih.gov/pubmed/31612915
http://dx.doi.org/10.1093/nar/gkz882
http://www.ncbi.nlm.nih.gov/pubmed/31612915
http://dx.doi.org/10.1093/nar/gky1049
http://www.ncbi.nlm.nih.gov/pubmed/30395287
http://dx.doi.org/10.1074/jbc.271.28.16748
http://www.ncbi.nlm.nih.gov/pubmed/8663269
http://dx.doi.org/10.1016/j.chembiol.2019.02.004
http://www.ncbi.nlm.nih.gov/pubmed/30853419
http://dx.doi.org/10.1002/anie.201804592
http://www.ncbi.nlm.nih.gov/pubmed/30035356
http://dx.doi.org/10.1073/pnas.1419964112
http://www.ncbi.nlm.nih.gov/pubmed/25730866
http://dx.doi.org/10.1073/pnas.1706849114
http://www.ncbi.nlm.nih.gov/pubmed/29078300
http://dx.doi.org/10.1093/nar/gks498
http://www.ncbi.nlm.nih.gov/pubmed/22661579
http://dx.doi.org/10.1093/nar/gkz310
http://www.ncbi.nlm.nih.gov/pubmed/31032519
http://dx.doi.org/10.1093/nar/gkx319
http://www.ncbi.nlm.nih.gov/pubmed/28460038
http://dx.doi.org/10.1093/nar/gkx305
http://www.ncbi.nlm.nih.gov/pubmed/28453650
http://dx.doi.org/10.1111/jpy.12555
http://www.ncbi.nlm.nih.gov/pubmed/28632895
http://dx.doi.org/10.1128/AEM.01765-14
http://www.ncbi.nlm.nih.gov/pubmed/25239907
http://dx.doi.org/10.1038/ja.2013.48
http://dx.doi.org/10.1038/ja.2013.48
http://www.ncbi.nlm.nih.gov/pubmed/23801186
http://dx.doi.org/10.1080/10575639908048798
http://dx.doi.org/10.1002/cbic.201800821
http://www.ncbi.nlm.nih.gov/pubmed/30856684
http://dx.doi.org/10.1021/jacs.8b12843
http://www.ncbi.nlm.nih.gov/pubmed/30763089
http://dx.doi.org/10.1074/jbc.M116.760892
http://www.ncbi.nlm.nih.gov/pubmed/27815501
http://dx.doi.org/10.1021/bi201096w
http://www.ncbi.nlm.nih.gov/pubmed/21958090
http://dx.doi.org/10.1074/jbc.M110.216127
http://www.ncbi.nlm.nih.gov/pubmed/21266575
http://dx.doi.org/10.1093/nar/gkt1099
http://www.ncbi.nlm.nih.gov/pubmed/24225323
http://dx.doi.org/10.1016/j.jmb.2014.04.013
http://www.ncbi.nlm.nih.gov/pubmed/24769192
http://dx.doi.org/10.1002/prot.23135
http://www.ncbi.nlm.nih.gov/pubmed/21948213


38. Linne, U., Schäfer, A., Stubbs, M. T., and Marahiel, M. A. (2007) Amino-
acyl-coenzyme A synthesis catalyzed by adenylation domains. FEBS Lett.
581, 905–910 CrossRefMedline

39. Oba, Y., Ojika, M., and Inouye, S. (2003) Firefly luciferase is a bifunctional
enzyme: ATP-dependent monooxygenase and a long chain fatty acyl-CoA
synthetase. FEBS Lett. 540, 251–254 CrossRef

40. Oba, Y., Iida, K., and Inouye, S. (2009) Functional conversion of fatty acyl-
CoA synthetase to firefly luciferase by site-directed mutagenesis: a key
substitution responsible for luminescence activity. FEBS Lett. 583, 2004–
2008 CrossRefMedline

41. Robinson, S. L., Christenson, J. K., and Wackett, L. P. (2019) Biosynthesis
and chemical diversity of b-lactone natural products. Nat. Prod. Rep. 36,
458–475 CrossRefMedline

42. Wang, Y., Tennyson, R. L., and Romo, D. (2004) b-Lactones: intermediates
for natural product total synthesis and new transformations. Heterocycles
64, 605–658 CrossRef

43. Allemann, M. N., Shulse, C. N., and Allen, E. E. (2019) Linkage of marine
bacteria polyunsaturated fatty acid and long-chain hydrocarbon biosyn-
thesis. Front. Microbiol. 10, 702 CrossRefMedline

44. Komaki, H., Ichikawa, N., Hosoyama, A., Takahashi-Nakaguchi, A., Mat-
suzawa, T., Suzuki, K. I., Fujita, N., and Gonoi, T. (2014) Genome based
analysis of type-I polyketide synthase and nonribosomal peptide synthe-
tase gene clusters in seven strains of five representative Nocardia species.
BMCGenomics 15, 323 CrossRefMedline

45. Pidot, S. J., Herisse, M., Sharkey, L., Atkin, L., Porter, J. L., Seemann, T.,
Howden, B. P., Rizzacasa, M. A., and Stinear, T. P. (2019) Biosynthesis and
ether-bridge formation in nargenicin macrolides. Angew. Chem. Int. Ed.
58, 3996–4001 CrossRefMedline

46. Kuo, J., Lynch, S. R., Liu, C.W., Xiao, X., and Khosla, C. (2016) Partial in vitro
reconstitution of an orphanpolyketide synthase associatedwith clinical cases
of nocardiosis.ACSChem. Biol. 11, 2636–2641 CrossRefMedline

47. Trevino-Villarreal, J. H., Vera-Cabrera, L., Valero-Guillén, P. L., and Sali-
nas-Carmona, M. C. (2012) Nocardia brasiliensis cell wall lipids modulate

macrophage and dendritic responses that favor development of experi-
mental actinomycetoma in BALB/c mice. Infect. Immun. 80, 3587–3601
CrossRefMedline

48. Beaman, B. L. (1996) Differential binding ofNocardia asteroides in themu-
rine lung and brain suggests multiple ligands on the nocardial surface.
Infect. Immun. 64, 4859–4862 CrossRefMedline

49. Blin, K., Pascal Andreu, V., de los Santos, E. L. C., Del Carratore, F., Lee,
S. Y., Medema, M. H., and Weber, T. (2019) The antiSMASH database
version 2: a comprehensive resource on secondary metabolite biosynthetic
gene clusters.Nucleic Acids Res. 47,D625–D630 CrossRefMedline

50. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012) CD-HIT: accelerated for
clustering the next-generation sequencing data. Bioinformatics 28, 3150–
3152 CrossRefMedline

51. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer,
K., and Madden, T. L. (2009) BLAST1: architecture and applications.
BMCBioinformatics 10, 421 CrossRefMedline

52. Csardi, G., and Nepusz, T. (2006) The igraph software package for com-
plex network research. InterJournal 1695, 1–9

53. Eddy, S. R. (2011) Accelerated profile HMM searches. PLoS Comp. Biol. 7,
e1002195 CrossRefMedline

54. Malley, J. D., Kruppa, J., Dasgupta, A., Malley, K. G., and Ziegler, A. (2012)
Probability machines.Methods Inf. Med. 51, 74–81 CrossRefMedline

55. Stamatakis, A. (2014) RAxML version 8: a tool for phylogenetic analysis
and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313
CrossRefMedline

56. Bradford, M. M. (1976) A rapid and sensitive method for quantitation of
microgram quantities of protein utilizing the principle of protein-dye
binding.Anal. Biochem. 72, 248–254 CrossRefMedline

57. Mulzer, J., Brüntrup, G., Hartz, G., Kühl, U., Blaschek, U., and Böhrer, G.
(1981) Additionen von Carbonsäure-Dianionen an a,b-ungesättigte Car-
bonylverbindungen-Steuerung der 1,2-/1, 4-Regioselektivität durch steri-
sche Substituenteneffekte.Chemische Berichte 114, 3701–3372 CrossRef

Global analysis of adenylate-forming enzymes

J. Biol. Chem. (2020) 295(44) 14826–14839 14839

http://dx.doi.org/10.1016/j.febslet.2007.01.066
http://www.ncbi.nlm.nih.gov/pubmed/17303131
http://dx.doi.org/10.1016/S0014-5793(03)00272-2
http://dx.doi.org/10.1016/j.febslet.2009.05.018
http://www.ncbi.nlm.nih.gov/pubmed/19450587
http://dx.doi.org/10.1039/C8NP00052B
http://www.ncbi.nlm.nih.gov/pubmed/30191940
http://dx.doi.org/10.3987/REV-04-SR(P)3
http://dx.doi.org/10.3389/fmicb.2019.00702
http://www.ncbi.nlm.nih.gov/pubmed/31024488
http://dx.doi.org/10.1186/1471-2164-15-323
http://www.ncbi.nlm.nih.gov/pubmed/24884595
http://dx.doi.org/10.1002/anie.201900290
http://www.ncbi.nlm.nih.gov/pubmed/30677204
http://dx.doi.org/10.1021/acschembio.6b00489
http://www.ncbi.nlm.nih.gov/pubmed/27384917
http://dx.doi.org/10.1128/IAI.00446-12
http://www.ncbi.nlm.nih.gov/pubmed/22851755
http://dx.doi.org/10.1128/IAI.64.11.4859-4862.1996
http://www.ncbi.nlm.nih.gov/pubmed/8890253
http://dx.doi.org/10.1093/nar/gky1060
http://www.ncbi.nlm.nih.gov/pubmed/30395294
http://dx.doi.org/10.1093/bioinformatics/bts565
http://www.ncbi.nlm.nih.gov/pubmed/23060610
http://dx.doi.org/10.1186/1471-2105-10-421
http://www.ncbi.nlm.nih.gov/pubmed/20003500
http://dx.doi.org/10.1371/journal.pcbi.1002195
http://www.ncbi.nlm.nih.gov/pubmed/22039361
http://dx.doi.org/10.3414/ME00-01-0052
http://www.ncbi.nlm.nih.gov/pubmed/21915433
http://dx.doi.org/10.1093/bioinformatics/btu033
http://www.ncbi.nlm.nih.gov/pubmed/24451623
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://www.ncbi.nlm.nih.gov/pubmed/942051
http://dx.doi.org/10.1002/cber.19811141123


 

Minerva Access is the Institutional Repository of The University of Melbourne

 

 

Author/s: 

Robinson, SL; Terlouw, BR; Smith, MD; Pidot, SJ; Stinear, TP; Medema, MH; Wackett, LP

 

Title: 

Global analysis of adenylate-forming enzymes reveals beta-lactone biosynthesis pathway in

pathogenic Nocardia

 

Date: 

2020-10-30

 

Citation: 

Robinson, S. L., Terlouw, B. R., Smith, M. D., Pidot, S. J., Stinear, T. P., Medema, M. H.  &

Wackett, L. P. (2020). Global analysis of adenylate-forming enzymes reveals beta-lactone

biosynthesis pathway in pathogenic Nocardia. JOURNAL OF BIOLOGICAL CHEMISTRY,

295 (44), pp.14826-14838. https://doi.org/10.1074/jbc.RA120.013528.

 

Persistent Link: 

http://hdl.handle.net/11343/273797

 

File Description:

Published version

License: 

CC BY


	Global analysis of adenylate-forming enzymes reveals β-lactone biosynthesis pathway in pathogenic Nocardia
	Results
	Machine learning accurately predicts ANL enzyme function and substrate specificity
	AdenylPred validation with widely distributed ANL superfamily sequences
	Specialized ANL enzymes may have evolved from an ancestral scaffold utilizing CoA-SH
	Sequence similarity networking suggests radial divergence of the ANL superfamily
	AdenylPred-guided discovery of β-lactone synthetases in biosynthetic gene clusters
	In vitro reconstitution of the nocardiolactone pathway links the biosynthetic gene cluster to its orphan natural product
	The nocardiolactone gene cluster is enriched in human pathogens

	Discussion
	Experimental procedures
	Sequence similarity network
	Training set construction
	Machine learning methods
	AdenylPred availability
	Phylogenetic analysis and ancestral reconstruction
	HPLC analysis of NltC activity
	Cloning, expression, and purification of nocardiolactone biosynthetic enzymes
	GC-MS
	Verification of NltC β-lactone synthetase activity by 1H NMR
	NltD activity assay
	General synthetic procedures

	Data availability
	References


