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ABSTRACT

Application of Oxford Nanopore Technologies’ long-
read sequencing platform to transcriptomic analysis
is increasing in popularity. However, such analysis
can be challenging due to the high sequence er-
ror and small library sizes, which decreases quan-
tification accuracy and reduces power for statis-
tical testing. Here, we report the analysis of two
nanopore RNA-seq datasets with the goal of obtain-
ing gene- and isoform-level differential expression
information. A dataset of synthetic, spliced, spike-
in RNAs (‘sequins’) as well as a mouse neural stem
cell dataset from samples with a null mutation of the
epigenetic regulator Smchd1 was analysed using a
mix of long-read specific tools for preprocessing to-
gether with established short-read RNA-seq meth-
ods for downstream analysis. We used limma-voom
to perform differential gene expression analysis, and
the novel FLAMES pipeline to perform isoform identi-
fication and quantification, followed by DRIMSeq and
limma-diffSplice (with stageR) to perform differential
transcript usage analysis. We compared results from
the sequins dataset to the ground truth, and results
of the mouse dataset to a previous short-read study
on equivalent samples. Overall, our work shows that
transcriptomic analysis of long-read nanopore data
using long-read specific preprocessing methods to-
gether with short-read differential expression meth-
ods and software that are already in wide use can
yield meaningful results.

INTRODUCTION

Short-read sequencing technology has underpinned tran-
scriptomic profiling research over the past decade. The se-
quencing platforms offered by companies such as Illumina
Inc. provide high read accuracy (>99.9%) and throughput
which allows many samples to be profiled in parallel. One
major limitation of short-read sequencing technology is the
modest read lengths offered (currently up to 600 bases),
which makes accurate isoform quantification and novel iso-
form discovery challenging. Long-read sequencing offers a
distinct advantage in this regard, with the ability to gener-
ate reads that are typically in the 1–100 kilobase (kb) range
(1), which spans the typical length distribution of spliced
genes in human (for protein coding genes 1–3 kb is typ-
ical with outliers such as Titin at >80 kb) thereby allow-
ing the sequencing of entire isoforms. This, however, comes
at the expense of lower throughput and reduced accuracy
compared to short-read sequencing. The two main technol-
ogy platforms that dominate the field of long-read sequenc-
ing are Pacific Biosciences’ (PacBio) Single-Molecule Real
Time (SMRT) sequencing and Oxford Nanopore Technolo-
gies’ (ONT) nanopore sequencing.

Previous work on long-read transcriptomic data focuses
on transcript-level analysis, especially in the discovery of
novel isoforms (2–4). Some long-read specific methods have
been developed for this task. Reference-based methods,
such as TALON (5), compares reads to existing gene and
transcript models to create novel models. Reference-free
methods, such as FLAIR (6), maps reads to the refer-
ence genome, clusters alignments into groups and collapses
them into isoforms. Differential transcript usage (DTU)
is another transcript-level analysis that is of great inter-
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est (6–8). DTU analyses examine differences in the rela-
tive proportions of expressed isoforms between two con-
ditions. The DRIMSeq (9) method performs DTU analy-
sis on transcript-level RNA-seq counts using a Dirichlet-
multinomial model. Alternatively, tools developed for dif-
ferential exon usage analysis, such as the diffSplice func-
tion (10) in the limma and edgeR packages, can also be used
for DTU analyses by substituting transcript-level counts for
exon-level counts (11). Both DRIMSeq and diffSplice meth-
ods were developed for short-read data. The stageR package
(12) can be used to control the false discovery rate (FDR) of
DTU analyses through its stage-wise method which screens
potential DTU genes using gene-level P-values before se-
lecting the transcripts with evidence of DTU.

In many analyses, a gene-level analysis is as far as re-
searchers go, so understanding how well this type of anal-
ysis can be done for long-read data is of interest. Previ-
ous studies have looked at gene-level analysis of nanopore
data but study design limited the methods used. Soneson
et al. (13) concluded that read coverage in native RNA li-
braries (∼0.5 million aligned reads per flow cell) were too
low for gene-level analyses, resulting in low power and high
variability. Gleeson et al. (14) found differential expression
analysis performed using DESeq2 (15) was specific but not
sensitive on their ONT MinION direct RNA neuroblas-
toma samples with synthetic spike-in controls, based on 6
samples and around 4 million reads in total. Li et al. (7)
worked around this by simply using fold-changes to identify
differentially expressed genes for three ONT MinION direct
RNA Caenorhabditis elegans samples; however, the lack of
statistical testing could lead to unreliable results. Jenjaroen-
pun et al. (16) used DESeq2 (15) to perform differential ex-
pression analysis on direct RNA transcript-level counts, but
gene-level expression was not studied. Cruz-Garcia et al.
(17) used a Snakemake pipeline which included the edgeR
(18) quasi-likelihood method to identify a radiation expo-
sure signature consisting of 46 transcripts from a high cov-
erage (40–75 million reads per sample) ONT PromethION
PCR cDNA dataset of human blood cells.

In this study, we performed both gene- and isoform-level
analyses of two nanopore long-read transcriptome sequenc-
ing datasets that follow a simple replicated experimental de-
sign: a synthetic ‘sequins’ (19) PCR-cDNA dataset, and a
mouse neural stem cell direct-cDNA dataset. We obtained
meaningful results using an analysis pipeline that mostly
comprised of ‘off-the-shelf’ methods developed for short-
read data, despite our datasets having only a few million
long reads per sample. We found our results for the common
two-group experimental design to be reliable in that they are
broadly consistent with the available ground-truth or find-
ings from a previous short-read experiment. We found exist-
ing methods for isoform identification from long-read data
to be unreliable, and introduce a novel method, FLAMES,
as part of our isoform-level analysis pipeline.

MATERIALS AND METHODS

Study design

Mouse neural stem cells (NSCs) from 4 wild-type (WT)
and 3 MommeD1 mutated (Smchd1-null) (20) samples were
prepared and sequenced, together with 3 ‘other’ samples

from a different experiment. Samples were sequenced in two
batches, each containing 6 samples. One WT and one ‘other’
sample were sequenced in both batches as technical repli-
cates in order to obtain additional reads for these samples.

Technical replicates of synthetic ‘sequin’ RNA standards
(19) from two mixes (A and B) were prepared and se-
quenced. These samples contain the same transcripts but
at variable molar ratios to simulate biological differences
in gene expression and alternative splicing. Among the 76
synthetic genes, 21 were up-regulated and 23 were down-
regulated in mix B compared to mix A. The corresponding
transcripts of 28 genes were expressed at different propor-
tions between the two mixes, resulting in DTU for 62 out of
160 transcripts. A further two sequin mix A and two mix B
samples were sequenced using Illumina short-read sequenc-
ing technology together with RNA from human lung ade-
nocarcinoma cell lines.

Biological materials

Synthetic ‘sequin’ RNA standards were obtained from the
Garvan Institute of Medical Research.

NSCs were derived as described in Chen et al. (21).
Cells were grown in NeuroCult Stem Cell medium (Stem-
Cell Technologies #05702) with cytokines: NeuroCult NSC
Basal Medium (Mouse) (StemCell Technologies #05700)
supplemented with NeuroCult Proliferation Supplement
(Mouse) (StemCell Technologies #05701), 0.25 mg/mL rh
EGF (StemCell Technologies #02633) and 0.25 mg/ml rh
bFGF (StemCell Technologies #02634). We extracted total
RNA with Trizol and purified polyA RNA with the NEB-
Next Poly(A) mRNA Magnetic Isolation Module (E7490).

Nanopore sequencing and data preprocessing

Sequin cDNA libraries were constructed with SQK-
PCS109 cDNA-PCR sequencing and SQK-PBK004 PCR
Barcoding kits using the supplied protocol. Briefly, dupli-
cate libraries of each mix (A1, A2, B1 and B2) were con-
structed using 15 ng as input for cDNA synthesis. Sam-
ples were barcoded 1 to 4 using the supplied PCR barcodes.
Transcripts were amplified by 14 cycles of PCR with a 6-min
extension time.

Sequencing libraries were individually purified using
Beckman Coulter 0.8x AMPure XP beads and quantified
using an Invitrogen Qubit 4.0 Fluorometer (ThermoFisher
Scientific). Equimolar amounts of each sample were pooled
to a total of approximately 160 fmol (assuming median
transcript size is 1 kb), and quality control of the pooled
library was performed using Agilent Technologies TapeSta-
tion 4200. The final library was loaded onto an R9.4.1 Min-
ION flow cell and sequenced for 65 h with a buffer refuel
at 24 h (using 250 ml buffer FB) using the ONT GridION
platform. The fast5 files were base-called by Guppy version
4.0.11 using configuration file dna r9.4.1 450bps hac.cfg to
obtainfastq files, trim adaptor sequences and demultiplex
barcoded reads. Guppy is only available to ONT customers
via the community site (https://community.nanoporetech.
com/).

For the NSC dataset we prepared direct-cDNA libraries
from 40 ng purified polyadenylated RNA. We combined
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the ONT direct-cDNA sequencing (SQK-DCS108) pro-
tocol (version DCB 9036 v108 revG 30Jun2017) with the
one-pot native barcoding protocol (http://lab.loman.net/
protocols/) with extended incubation times (using SQK-
LSK109 and EXP-NBD103 kits) for library prepara-
tion of the first batch, and used the updated kits SQK-
DCS109 and EXP-NBD114 for the second batch (proto-
col PDCB 9093 v109 revA 04Feb2019). We loaded 100 ng
of the final libraries on one PromethION flow cell
(FLO-PRO002) per batch. The fast5 files were base-
called by Guppy version 4.0.11 using configuration file
dna r9.4.1 450bps hac prom.cfg to yield fastq files. Guppy
was also used to trim adaptor sequences from reads and
demultiplex barcoded reads. The ‘other’ samples were re-
moved in downstream analysis. For an overview of our anal-
ysis pipeline see Figure 1A.

Illumina sequencing

About 6 ng of sequins mix A or B were added to 1 �g of to-
tal RNA from human lung adenocarcinoma cell line NCI-
H1975 (mix A) and HCC827 (mix B). The pooled RNA
was subjected to the NEBNext Poly(A) mRNA Magnetic
Isolation Module (E7490) and NEBNext Ultra II Direc-
tional RNA Library Prep (E7760) for Illumina following
manufacturer’s instructions and default fragmentation con-
ditions (15 min at 94◦C), 5-fold adaptor dilution and a final
amplification of nine PCR cycles. Indexed and pooled li-
braries were sequenced on a NextSeq500 (Illumina) High
Output, 81 cycles paired-end.

Genomic alignment

The NSC reads were aligned to mouse mm10 genome using
minimap2 version 2.17-r943-dirty (22) to get bam files. The
genome alignments were performed with the arguments

-ax splice -uf -k14 –junc-bed, allowing spliced alignments
on the forward transcript strand to map with higher sen-
sitivity. It also uses annotated splice junctions to improve
the accuracy of mapping at junctions. Gencode release M23
(GRCm38.p6) annotation (23) was used to provide infor-
mation on known splicing junctions. The sequins ONT
reads were mapped to the artificial chromosome chrIS R
using minimap2 with the arguments -ax splice –MD. The
bam files were sorted and indexed using samtools version
1.6 (24). The sequin Illumina reads were mapped to chrIS R
using Subread version 1.6.3 (25).

Gene abundance estimation

Mapped reads were assigned to individual genes and
counted by the featureCounts (26) function in the R (https://
www.R-project.org/) Bioconductor (27) package Rsubread
version 1.34.4 (25,28). We used the Gencode release M23
(GRCm38.p6) annotation for the NSC data, and sequins
annotation GTF file version 2.4 for the sequins data. Ar-
guments isLongRead=TRUE (as recommended in the fea-
tureCounts help page when dealing with Nanopore data)
and primaryOnly=TRUE to count primary alignments only
were specified.

Differential gene expression analysis

Genes in the NSC dataset were annotated us-
ing the R/Bioconductor package Mus.musculus
(https://bioconductor.org/packages/Mus.musculus/ version
1.3.1) and read counts from technical replicates of the
same sample run across different batches were combined
(i.e. summed together). For all datasets, we organized and
preprocessed the count data using the R/Bioconductor
package edgeR version 3.26.8 (18,29). Lowly expressed
genes were removed using the filterByExpr function with
default arguments. Normalization factors were calculated
using the trimmed mean of M-values method (30). Dif-
ferential gene expression (DGE) analysis was performed
using the limma-voom pipeline version 3.40.6 (10,31,32),
with sample-specific quality weights (33). Linear models
were fitted with either genotype or sequin mix information
to create the design matrix, followed by empirical Bayes
moderation of t-statistics (34). Raw P-values were adjusted
for multiple testing (35).

Mouse NSC short-read data

We obtained DGE results from a previous Illumina short-
read RNA-seq study comparing mouse Smchd1-null and
WT NSC samples (21,36) available at http://bioinf.wehi.
edu.au/folders/smchd1/ and from GEO (accession number
GSE65747). Using a limma-voom pipeline, the study re-
ported 1197 differentially expressed (DE) genes (adjusted
P-value cutoff of 0.01). We further restricted this list (ad-
justed P-value cutoff of 0.0001) to give us 218 up- and 54
down-regulated genes in Smchd1-null samples when com-
pared to WT samples. This cutoff resulted in similar num-
bers of significant genes between the short- and long-read
datasets. The DE genes were compared to that of the NSC
long-read data using ROAST gene set testing (37) with 9999
rotations.

Transcript-level analysis

We used three different tools to perform isoform detection
and quantification: FLAIR version 1.5 (commit 2f8df51)
(6) and TALON version 5.0 (commit c41b9dc) (5) for the
sequins data, and FLAMES version 0.1.0 (available at
https://github.com/XueyiDong/FLAMES) (38) for both
sequins and NSC datasets. Default parameters were used
to run FLAIR. TranscriptClean (39) version 1.02 which per-
forms reference-based error correction was applied prior
to running TALON version 5.0. Transcripts identified by
TALON were filtered using default setting.

FLAMES (short for ‘Full-Length trAnscript quantifica-
tion, Mutation and Splicing analysis’) is a novel method
and software tool developed for long-read RNA-seq data
(38), available at https://github.com/LuyiTian/FLAMES. It
requires sorted bam files with reads aligned to the genome
as input. FLAMES first summarizes the alignment results
by grouping reads with similar splice junctions to get a raw
isoform annotation. The raw isoform annotation is com-
pared against the reference annotation to correct potential
splice site and transcript start/end errors. Transcripts that
have similar splice junctions (<5 bp by default) and tran-
script start/end (<100 bp by default) to the reference tran-
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A

B C

D E

Figure 1. Analysis workflow and quality metrics. (A) Overview of the analysis workflow used to process the mouse NSC direct-cDNA long-read and
short-read RNA-seq data. (B) The number of raw reads, quality filtered reads, trimmed and demultiplexed reads, reads from chosen samples and gene-level
counts in the NSC dataset. (C) Distribution of read quality in the NSC dataset, stratified by read length. Read quality is defined by the average base quality
score of a read. (D) The total number of reads assigned to each sample in the NSC dataset (green: Smchd1-null samples; orange: WT samples). (E) A
hexagonal 2D density plot showing the correlation between gene length and average gene expression (log-CPM) in the NSC dataset.
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script are merged with the reference. High-confidence iso-
forms are those identified with at least 10 supporting reads.
This process will also collapse isoforms that are likely to be
truncated transcripts, which are identified as having incom-
plete 3’ regions compared to the full-length forms. A draft
transcript assembly is generated at this stage, and all reads
are re-aligned to both the known and assembled transcripts
and quantified. For reads that align to multiple transcripts,
both the proportion of transcript covered by the read align-
ment and the percentage of read sequence that aligns to
each transcript are considered, with the read assigned to the
transcript with highest coverage and >80% of its sequence
aligned. A configuration file (JSON format) is used to set
all parameters mentioned above so that different parame-
ters can used to adapt to different situations. For example,
one could set more stringent parameters for merging splice
junctions (i.e. decreasing the default from 5 to 1 bp) to bet-
ter suit long-read data generated by the PacBio platform,
which generally has a lower error rate.

After running each isoform detection tool, SQANTI (40)
version 1.2 was used to classify identified isoforms into
structural categories by comparing them to the annotation.
An isoform matching a reference transcript can be cate-
gorized as ‘full splice match’ or ‘incomplete splice match’,
based on whether all splice junctions are matched. ‘Novel
in catalog’ is the category for novel isoforms of known
genes containing new combinations of already annotated
junctions or novel splice junctions composed of annotated
donors and acceptors. ‘Novel not in catalog’ stands for the
novel isoforms with novel donors and/or acceptors. Other
isoforms can be categorized as either ‘antisense’, ‘fusion’
or ‘genic/intergenic’ isoforms. For both Illumina short-
read datasets, Salmon version 1.3.0 (41) ‘mapping-based
mode’ was used to obtain quantification of isoforms iden-
tified in corresponding ONT long-read data by FLAMES.
Lowly expressed genes and transcripts were removed from
downstream analysis using the dmFilter function from the
DRIMSeq package. For all long- and short-read datasets,
genes were required to have an associated gene count (ob-
tained by summing counts across all transcripts for a given
gene) of 10 or more in every sample. A second filter required
transcripts to have 10 or more counts in at least 3 samples
in the NSC data, and in at least 2 samples in the sequins
data.

DTU analysis was performed using two methods: the
R/Bioconductor package DRIMSeq version 1.12.0 (9), and
diffSplice from the limma package version 3.40.6. Orig-
inally, DRIMSeq was designed for use with transcript-
level counts in short-read data, giving adjusted P-values
at both the gene-level and feature-level (transcripts). Diff-
Splice analyses exon-level counts in short-read data to in-
directly call for differences in isoform proportions, and re-
ports adjusted P-values at the gene-level (Simes adjustment
and/or F-tests) and exon-level (t-tests). For long-read data,
we applied the diffSplice to transcript-level counts rather
than exon-level counts as carried out by Love et al. (11).
Additionally, the stage-wise method from R/Bioconductor
package stageR version 1.6.0 (12) was also applied to the
raw P-values from DRIMSeq (gene- and transcript-level)
and diffSplice (Simes and t-tests) methods for FDR control
to give stageR gene- and transcript-level adjusted P-values.

Data and code availability

RNA-seq data can be accessed from Gene Expression Om-
nibus (GEO) under accession numbers GSE151984 (se-
quins long-read), GSE151841 (NSC long-read data) and
GSE164598 (sequins short-read). All code used to per-
form these analyses are available from https://github.com/
XueyiDong/LongReadRNA.

RESULTS

Data quality

To assess the quality of our long-read datasets, raw long
reads were pre-processed and assigned to gene-level counts
using an appropriate reference genome. Figure 1B shows
the number of reads (or amount of information) retained
after some crucial steps in processing the NSC data. A to-
tal of ∼81 million reads were successfully sequenced and
base-called. Approximately 70%, or ∼57 million reads had
an average base quality score >7 and passed quality filter-
ing. Around 51 million quality-passed reads were detected
with adaptor and barcode sequences in the trimming and
demultiplexing steps. The reads from our samples of in-
terest were then mapped to the genome and assigned to
genes, producing ∼33 million gene-level counts. For the se-
quins dataset, ∼11 million raw reads yielded ∼6.4 million
gene-level counts (Supplementary Figure S1). In compari-
son, the sequins short-read dataset had ∼162 million gene-
level counts.

In the NSC dataset, median read length is 752 bases. Fig-
ure 1C shows that shorter reads tend to have higher me-
dian read quality, but the difference is subtle. The quality
of ‘extra long’ reads (≥3000 bases) were similar to reads
of other length categories, indicating Nanopore’s ability to
detect transcripts in this size range. A small proportion of
reads (∼1%) exceed 5 kilobases. Similar to the NSC dataset,
the sequins dataset had a median read length of 716 bases,
which is shorter than its expected value of 908 bases. The
library size (sum of gene counts) of samples in the NSC
dataset varied between 2.7 and 7.7 million reads (Figure
1D). In comparison, the library size of samples in the short-
read NSC study (21) range between 18.6 and 23.2 million
reads.

Gene expression analysis

In short-read RNA-seq, transcripts (or genes) are frag-
mented for sequencing, such that longer transcripts can be
over-represented relative to transcripts that are shorter. As
a consequence, DGE analyses are biased towards the detec-
tion of genes (or transcripts) that are relatively long (42).
Also, DGE analyses may be confounded by DTU such that
gene-level counts are affected by the varying proportions
of transcripts with varying lengths. One advantage to long-
read RNA-seq protocols is that they do not include the
fragmentation step, and should theoretically be unbiased to
gene length. To examine this, we looked at the relationship
between gene length and gene expression using log2-counts-
per-million (log-CPM) values. Gene length is weakly asso-
ciated with expression in both long-read datasets; Pearson
correlation of 0.035 for the NSC dataset (Figure 1E) and
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-0.056 for the sequins dataset (Supplementary Figure S2),
whereas the equivalent correlation in the short-read NSC
study (21) is greater at 0.20.

We applied the limma-voom workflow designed for short-
read DGE analysis to the long-read data. We first anal-
ysed the sequins data to check whether the approach was
appropriate using the ground-truth available. The analy-
sis was carried out using voomWithQualityWeights to ac-
count for sample-level heterogeneity by estimating sample-
specific quality weights based on similarity of gene expres-
sion within the same group. The sample weights were com-
bined with voom precision weights that are based on the
mean-variance relationship estimated from the data. Even
though there were only 69 genes present in the dataset (as
opposed to tens of thousands in a typical dataset), the
mean-variance trend observed for the sequins data (Supple-
mentary Figure S3) was similar to that of short-read RNA-
seq data (31).

Linear modelling on the gene-level counts were carried to
obtain estimated log2fold-change (logFC) values between
mix A and B. Estimated values were highly correlated (R2 =
0.934) with expected logFCs (Figure 2A). Using an ad-
justed P-value cutoff of 0.05, 21 down-regulated and 18 up-
regulated genes were detected between mix B and A. There
were no false discoveries, and only 2 of the true differentially
expressed genes were not detected.

The same DGE analysis workflow was also applied to the
short-read sequins data, with 2 false negative and 3 false
positive discoveries made. Upon checking the annotation,
we found that all of false positive genes in the short-read
data were long (>2400 bp) DTU genes that were lowly ex-
pressed (abundance ≤ 0.24; median abundance among all
genes = 7.55). The t-statistics from DGE analysis of short-
read data were observed to be highly correlated (R2 = 0.838)
with the t-statistics from the long-read data (Figure 2B).
Overall, results from the sequin synthetic control data in-
dicate that the limma-voom pipeline is powerful and reliable
when applied to long-read data, so we next applied it to the
NSC dataset.

Unsupervised clustering by multidimensional scaling
(MDS) was used to observe the relationships between NSC
samples. Dimension 1 in the MDS plot roughly separates
samples by genotype (Figure 2C), although a Smchd1-null
sample (sample 7) is positioned more closely to WT sam-
ples. The mean-variance trend for this dataset is again typi-
cal of what is observed in short-read RNA-seq experiments
(31) (Figure 2D). Estimated sample weights favoured sam-
ples that distinguished groups across dimension 2 of the
MDS plot, giving samples 2 and 3 in the Smchd1-null group
weights that are >1, as well as samples 1 and 5 in the WT
group (Supplementary Figure S4). Using the default ad-
justed P-value cutoff of 0.05, only 12 genes were detected
as DE. Using a more liberal adjusted P-value cutoff of 0.25
to account for the small library sizes, detected 81 down-
regulated and 63 up-regulated genes between Smchd1-null
and WT samples (Figure 2E). The Smchd1 gene, which was
depleted in Smchd1-null samples, was detected as the most
significantly down-regulated gene in the comparison (high-
lighted in Figure 2E) and serves as a positive control for this
analysis.

In a previous short-read study on the same mouse NSC
groups (21,36), the imprinted genes Ndn, Mkrn3 and Peg12

were reported as up-regulated. These genes were also found
to be DE in the long-read dataset (highlighted in Fig-
ure 2E). Further comparison between the short- and long-
read datasets was carried out using a barcode plot (Fig-
ure 2F). The barcode plot shows that genes that were up-
regulated in the short-read dataset (red vertical lines in the
plot) also tend to be up-regulated in our long-read dataset
(positioned towards the right of the plot). Specifically, the
genes that were most highly up-regulated in the short-read
dataset as ranked by logFC (long red vertical lines), are also
highly up-regulated in the long-read data (further right in
the plot). The same goes for down-regulated genes in the
short-read dataset (blue vertical lines in the plot), which
tend to be down-regulated in the long-read dataset (posi-
tioned towards the left of the plot). We tested concordance
of the datasets formally by applying the ROAST gene set
testing method (37) to our long-read data. Using both up-
and down-regulated gene sets from the short-read dataset,
weighted on their logFC values, ROAST returned an ‘up’ P-
value of 0.086, which indicates that transcriptional changes
for the comparison of Smchd1-null versus WT are some-
what consistent between the two datasets (up-regulated
genes in the short-read data tend to be up-regulated in the
long-read data, and down-regulated genes in the long-read
data tend to be down-regulated in the long-read data). The
relatively large ROAST P-value and overall lack of power to
detect differentially expressed genes is likely due to relatively
low sequencing levels per sample and within-genotype sam-
ple heterogeneity in the long-read experiment. Smoothed
scatter plots of the logFCs and t-statistic for each gene be-
tween the short- and long-read datasets are presented in
Supplementary Figure S5. Discordance between the long-
and short-read data is likely caused by the fact that sam-
ples were not perfectly matched. The short-read experi-
ment, which was performed a few years earlier, used sam-
ples derived from different animals which may have been
at a slightly different developmental stage compared to the
newer samples profiled using long-read RNA-seq. In addi-
tion, since these samples are from primary cells in culture,
the number of passages post derivation can also influence
gene expression and any subsequent differential expression
results.

Transcript-level analysis

Transcript-level analysis of nanopore RNA-seq data usu-
ally starts with isoform detection. To test which tool is best
suited to nanopore data, we compared two popular tools,
FLAIR and TALON with our novel FLAMES pipeline on
the sequins dataset. Ideally, all transcripts that appear in the
sequins annotation should be detected, and there should be
no novel isoforms. Our results showed that FLAMES de-
tected the most sequin transcripts (Figure 3A, ‘full splice
match’ category) and fewer artefactual isoforms (Figure
3A, other categories). While most sequin transcripts were
also detected by FLAIR, a large number of artefactual
isoforms were also identified, especially those classified as
‘novel in catalog’ for which we know there should be none.
TALON detected ∼77% of the sequin transcripts, and a dis-
proportionately large number of artefactual isoforms, es-
pecially in the ‘antisense’ and ‘novel not in catalog’ cate-
gories. When we looked into the number of reads assigned
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Figure 2. Results for differential gene expression analysis. (A) Scatter plot of the observed logFC between mix A and B versus the expected logFC in the
sequins long-read data. The blue line is the linear regression line. (B) Scatter plot of the t-statistics calculated between mix A and B from the sequins
short-read and long-read data. The blue line is the linear regression line. (C) MDS plot showing the relationship between NSC samples based on gene-level
logCPM. (D) Voom mean-variance trend in NSC data where points represent genes. (E) Gene-level plot of logFC for Smchd1-null versus WT plotted against
average log2-expression values. Differentially expressed genes are highlighted (red: up-regulated genes, blue: down-regulated genes). (F) The barcode plot
shows the correlation between our long-read differential expression results and the results from a previous short-read dataset collected on the same NSC
sample types. Each vertical bar represents a DE gene from the previous short-read study (red: up-regulated genes, blue: down-regulated genes), and the
position of the bar on the x-axis represents the moderated t-statistic of the same gene in the long-read results. The length of the vertical lines represent the
logFC of the gene in the short-read results. The red worm on the top and the blue worm at the bottom represent the relative enrichment of the vertical bars
in each part of the plot with the smooth fit obtained using a moving average with tricube weights.

to transcripts in each category (Figure 3B), the majority
of counts in FLAMES were from known isoforms, while
more than half of the counts in FLAIR and TALON were
from artefactual isoforms. The total number of read counts
from FLAMES (∼4.9 M) and TALON (∼4.2 M) are similar,
while FLAIR recovered a lower number (∼2.7 M). Results
from the sequins dataset indicated that the novel FLAMES
pipeline outperformed the other two methods.

To further assess the performance of FLAMES and the
quality of the dataset, we calculated the coverage fraction

of transcripts by individual reads. Here, reads covering 95%
or more of the bases of their corresponding transcript are
defined as ‘full-length’. In our sequins data, 47% of reads
were found to be full-length, which is similar to Gleeson
et al (14)’s ONT MinION direct RNA dataset. Reads as-
signed to longer transcripts are less likely to be full-length
(Figure 3C), consistent with findings from Jenjaroenpun
et al. (16). This suggests that some reads may be truncated
in our sequins dataset, which presumably occurs during li-
brary preparation. The truncated reads may have resulted
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Figure 3. Isoform identification and differential transcript usage analysis. (A) A bar plot showing the number of discovered isoform types in the sequins
long-read dataset. The bars are separated into isoform categories (by colour), and the dashed line represents the true number of isoform types. The red
‘full-splice-match’ category represents the known transcripts present in the sequin controls (i.e. true positive), while the other categories represent erroneous
transcripts. (B) A bar plot showing the number of counts from isoforms in the sequins long-read dataset. The bars are separated into isoform categories
(by colour) from which the counts are associated with. (C) A scatter plot showing the correlation between the fraction of full-length reads assigned to
a transcript and the length of the annotated transcript. Dots are coloured by the transcript count (log2-scale). (D) The correlation between observed
transcript counts and expected transcript abundance of each gene from each sequins sample. (E) A bar plot showing the false discovery rate (FDR) from
different tests of DTU in sequins long-read data. (F) A bar plot showing the true positive rate (FDR) from different tests of DTU in sequins long-read
data.
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in the detection of ‘incomplete splice match’ isoforms (blue
in Figure 3A and 3B).

Next, we used DRIMSeq and the diffSplice function
in limma for DTU analysis of long-read data. We also
combined the methods with the stage-wise analysis from
the stageR (12) package since it was recommended in the
DRIMSeq vignette for statistical improvement and en-
hanced biological interpretation of results. We expect good
performance of DTU analyses comparing mixes A and B
since the observed CPM values of sequin transcripts were
highly correlated with their expected abundances (Pearson
correlation = 0.81, Figure 3D). We expect up to 5% of false
discoveries by applying at adjusted P-value cutoff of 0.05.
diffSplice methods performed better than DRIMSeq overall
with no false discoveries and high true positive rate (TPR >
0.82) (Figure 3E and 3F, Supplementary Figure S6). DRIM-
Seq had comparable TPR, but did not properly control the
FDR, such that more false discoveries were found (FDR
between 0.08 and 0.10) than expected. For transcript-level
testing, stageR improved the TPR of both methods whilst
maintaining the same FDR. However, stageR did not im-
prove the performance in gene-level testing for either of the
two methods (i.e. the TPRs were unchanged while the FDR
increased for DRIMSeq by 0.005.

We also quantified the expression of the same transcripts
and performed DTU analysis on short-read sequins data.
The observed transcripts per kilobase million (TPM) val-
ues were also highly correlated with their expected abun-
dances (Pearson correlation = 0.86, Supplementary Figure
S7). However, the FDR of all DTU tests were higher than
that of long-read data, and were not properly controlled
(FDRs ranged between 0.10 and 0.17 using an adjusted P-
value cutoff of 0.05, Supplementary Figure S8). The higher
error rates in short-read data suggests that both methods
performed better on long-read data than on the short-read
data that they were originally designed for use on. We ex-
amined the concordance between the datasets by compar-
ing the top n most significant DTU genes. For both DRIM-
Seq and diffSplice, in the top 19 genes, which is the num-
ber of true DTU genes in the datasets, there were 16 genes
in common between the two methods (Supplementary Fig-
ure S9). We demonstrate that our pipeline and combina-
tion of methods for transcript-level analysis produces ac-
curate transcript quantification and identification of DTU,
and provides confidence for application to other long-read
transcriptomic datasets.

We then applied our transcript-level analysis workflow to
the NSC dataset. The FLAMES pipeline returned 38 857
unique isoforms from 9837 genes, of which 38% were clas-
sified as novel (Supplementary Figure S10), which is a lot
more than what was observed in the sequins dataset. Since
we observed a very low level of falsely discovered isoforms
in the sequins data, we assume that that most of these novel
isoforms are real, which suggests that the current mouse
transcript annotation is incomplete. Of the mapped reads,
32.3% were assigned to novel isoforms, the majority of
which were from the ‘novel not in catalog’ category (Supple-
mentary Figure S11). Using an adjusted P-value cutoff of
0.05, DRIMSeq found one gene Pisd as having DTU in the
Smchd1-null versus WT comparison, while diffSplice did
not detect any DTU genes, although Pisd had the smallest

P-value (raw P-value = 0.0002) among all the genes tested.
Transcript ENSMUST00000201980.4 (‘Known5’) and EN-
SMUSG00000023452.19 32736305 32746312 1 (‘Novel2’)
in Pisd was identified by DRIMSeq to have differential us-
age between the two groups (Supplementary Figures S12
and S13).

We also performed DTU analysis on the NSC short-read
data. Based on the sequins results, DTU analysis on short
reads may be less reliable, with more false discoveries than
expected. Using an adjusted P-value cutoff of 0.05, DRIM-
Seq found 139 DTU genes, while diffSplice only found 9
DTU genes (Supplementary Figure S14). There were three
DTU genes (Pisd, Cyth2 and Pabpn1) found in common
by both methods. Transcript ENSMUST00000201980.4 in
Pisd was identified by both methods to have a higher usage
in Smchd1-null samples than in WT samples (Supplemen-
tary Figure S15, ‘Known5’), which was concordant with
what was observed in the long-read analysis. Since we ob-
served high TPRs in our DTU analysis for the sequins
short-read data and the library size of the NSC short-read
dataset is relatively high, we expect our analysis to have suf-
ficient power to detect DTU genes if they were present in
this dataset.

DISCUSSION

Our DGE analysis uses a limma-voom workflow and shows
that results from PCR-cDNA and direct-cDNA long-reads
are reliable, such that estimated results are comparable to
the known truth in the sequins synthetic control dataset,
and concordant with corresponding short-read studies. Al-
though the total library size in the sequins dataset is lower
than that of the NSC dataset, more reads were assigned per
gene since the dataset contains a small set of genes, which
improved power for DGE analysis. Overall, comparisons
using long-read experiments suffer from a lack of statisti-
cal power due to low library sizes. It would be desirable for
long-read transcriptomic studies to have total read numbers
that are more comparable to what is routinely achieved in
short-read experiments (20–50 million reads per sample is
not unusual). We expect this to occur in the near future as
throughput of long-read experiments increases.

We also looked into transcript-level analysis of long-read
data and found our novel FLAMES pipeline to be reli-
able in both isoform detection and quantification. The high
false positive rate of FLAIR and TALON for isoform detec-
tion suggests that these algorithms need further improve-
ment to adapt to the high error rates in long-read sequenc-
ing. Despite methods being designed originally for short-
read data, diffSplice (with or without stageR) performed
very well in DTU analyses of the sequins long-read data
using transcript-level counts, with better FDR control ob-
served in long-read DTU analysis than in the short-read
DTU analysis. We believe these methods could be applied to
other datasets with confidence, but may lack power to detect
DTU genes if transcript counts are very low. Notably, rela-
tive to DGE analyses, a DTU analysis further splits gene-
level counts into associated isoforms which reduces power
for statistical testing. For this reason, the power to detect
DTU genes in the NSC long-read dataset is reduced relative
to the sequins dataset since the latter contains far fewer ex-
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pressed genes and transcripts to begin with, such that tran-
scripts have higher counts on average. Another potential is-
sue in the application of these methods to our NSC dataset
is that altered expression of the gene Smchd1 may not affect
RNA splicing mechanisms, which could mean there is a bi-
ological explanation for why very little DTU was observed
in these data across both the short and long-read analyses.

Our study is the first to test a pipeline for both gene-
level DGE analysis and transcript-level DTU analysis of
nanopore long-read RNA-seq data. Whilst the sequencing
depth is relatively low, we are still able to obtain reasonable
results using pre-existing methods designed for short reads,
namely the limma software. We expect that other short-read
tools such as edgeR and DESeq2 may also be appropri-
ate, as used in other studies (14,17) although further bench-
marking efforts are required to confirm this. Exploring the
strengths and weaknesses of different analysis methods on
data arising from both the Nanopore and PacBio long-read
platforms using a specially designed benchmarking dataset
is planned as future work.

We hope that our analysis will encourage further research
into the potential for long-read RNA-seq to be used in place
of short-read RNA-seq, allowing for the simultaneous ex-
ploration of gene-level and isoform-level changes within the
same experiment in a more comprehensive way.

SUPPLEMENTARY DATA

Supplementary Data are available at NARGAB Online.
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