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Abstract

Simulations of tissue-specific effects of primary acute viral infections like COVID-19 are

essential for understanding disease outcomes and optimizing therapies. Such simulations

need to support continuous updating in response to rapid advances in understanding of

infection mechanisms, and parallel development of components by multiple groups. We

present an open-source platform for multiscale spatiotemporal simulation of an epithelial tis-

sue, viral infection, cellular immune response and tissue damage, specifically designed to

be modular and extensible to support continuous updating and parallel development. The

base simulation of a simplified patch of epithelial tissue and immune response exhibits dis-

tinct patterns of infection dynamics from widespread infection, to recurrence, to clearance.

Slower viral internalization and faster immune-cell recruitment slow infection and promote

containment. Because antiviral drugs can have side effects and show reduced clinical effec-

tiveness when given later during infection, we studied the effects on progression of treat-

ment potency and time-of-first treatment after infection. In simulations, even a low potency

therapy with a drug which reduces the replication rate of viral RNA greatly decreases the

total tissue damage and virus burden when given near the beginning of infection. Many com-

binations of dosage and treatment time lead to stochastic outcomes, with some simulation

replicas showing clearance or control (treatment success), while others show rapid infection

of all epithelial cells (treatment failure). Thus, while a high potency therapy usually is less

effective when given later, treatments at late times are occasionally effective. We illustrate
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how to extend the platform to model specific virus types (e.g., hepatitis C) and add additional

cellular mechanisms (tissue recovery and variable cell susceptibility to infection), using our

software modules and publicly-available software repository.

Author summary

This study presents an open-source, extensible, multiscale platform for simulating viral

immune interactions in epithelial tissues, which enables the rapid development and

deployment of sophisticated models of viruses, infection mechanisms and tissue types.

The model is used to investigate how potential treatments influence disease progression.

Simulation results suggest that drugs which interfere with virus replication (e.g., remdesi-

vir) yield substantially better infection outcomes when administered prophylactically even

at very low doses than when used at high doses as treatment for an infection that has

already begun.

Introduction

The current global pandemic of COVID-19, caused by the novel coronavirus Severe Acute

Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has motivated the study of beta corona-

virus diseases at multiple spatial and temporal computational modeling scales [1]. The time

course, severity of symptoms and complications from SARS-CoV-2 infection are highly vari-

able from patient to patient [2]. Mathematical modeling methods integrate the available host-

and pathogen-level data on disease dynamics that are required to understand the complex

biology of infection and immune response to optimize therapeutic interventions [3–5]. Mathe-

matical models and computer simulations built on spatial and ODE frameworks have been

extensively used to study in-host progression of viral infection [6], with a recent acceleration

in the development of spatial COVID-19 viral infection models in response to the global pan-

demic [7,8].

Building multiscale models of acute primary viral infection requires integration of submo-

dels of multiple biological components across scales (e.g., viral replication and internalization,

immune system responses). Non-spatial, coupled ordinary differential equation (ODE) models

can represent many aspects of pathogen-host interaction. In the context of viral infection

dynamics, specialized ODE models can describe both the entire virus-host response at the tis-

sue and organ levels and different stages of the viral replication cycle within cells, such as bind-

ing and internalization [9,10], viral genome replication and translation [11,12], assembly,

packaging and release [13,14]. By fitting ODE models to clinical or experimental data,

researchers have been able to estimate important parameters, such as the turnover rate of tar-

get cells, average lifetimes of viral particles and infected cells and the rate of production of new

viral particles by infected cells [15]. Other ODE models include pharmacokinetic models of

drug availability [16].

The simplest non-spatial models assume that the distribution of the modelled quantities (e.
g., cells, viruses, chemical species) are uniformly distributed in space and time [17]. This

assumption might not be realistic in solid tissues, where viruses and host immune cells are not

usually distributed homogeneously and infection propagates locally [15] or in situations where

transport limits the dynamics (e.g. the migration of antigen presenting cells to lymph nodes,

the transmission of virus between organs or the microdosimetry of a drug therapy). By
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averaging over spatio-temporal and individual cell variations, non-spatial models may not

accurately reflect the effects of tissue heterogeneity and resulting viral infection dynamics [18].

Compartmental ODE models, like physiologically based pharmacokinetic models (PBPK)

models or multi-compartment tissue infection models, maintain some of the simplicity of sin-

gle-compartment ODE models, while recognizing the critical role transport can play in viral

infection, immune response and treatment [19].

However, the spread of, and response to, some viruses is highly spatially localized, both in
vitro and in vivo [20,21]. For example, COVID-19 often begins with infection localized to the

nose and throat and then spreads to the lungs [22], with the specific location, size and distribu-

tion of lesions affecting clinical outcomes [23]. Spatial models have been increasingly used to

address such issues [24], including partial differential equations [25,26] fluid-dynamic models

[27] and agent-based models (ABM) [28]. ABMs represent host cells as spatially located, indi-

vidual agents, and propagation of the infection emerges from individual interactions between

agents. ABMs are also well suited for extending existing models by modular integration of bio-

logical subcomponents, and their model parameters should be validated by experiment and

studied through sensitivity analysis [17]. ABMs have been developed to account for infection

dynamics in different biological compartments (such as the lung and lymph nodes [29,30])

and to model disease progression of HIV [15,25,31–33] and dissemination of influenza virus

to the lower respiratory tract [18,34].

Spatial models often predict significantly different viral and immune dynamics, parameter

estimates and therapy efficacies from their non-spatial counterparts. Stochastic effects arising

from spatial conditions, such as local availability of target and immune cells, greatly influence

establishment of infection and lead to different infection outcomes [15]. Non-spatial models

generally produce viral load titers higher than spatial models, and the peaks of infection hap-

pen significantly earlier [17,18]. Homogenous recruitment of immune cells in spatial models

matches ODE models when the number of infected is large, but not at the beginning of the

infection when the number of infected cells is small [18]. These differences can lead to inaccu-

rate estimates of important parameters such as viral infectivity [35], viral diffusion [17] and

the basic reproductive ratio [35]. The basic reproductive ratio is clinically needed to determine

therapeutic effectiveness [35]. Microdosimetry is another area where spatial modeling is

important, since spatial variation in bioavailability can lead to low concentrations in some

regions of an infected tissue, which can promote the evolution of resistant viral strains [15].

In this paper, we consider primary infection, that is, infection by a virus which the immune

system has not previously encountered, so that there is no initial adaptive immune response.

We focus on acute cases (cases with relatively rapid onset and short duration), in which a prop-

erly functioning immune system eventually eliminates the virus completely (clearance). Here

we review relevant components of the immune system. Some of these components are

included in this work and some are not modeled. However, by constructing a modular, exten-

sible modeling framework and computational implementation, we enable the modeling of all

these components.

While the details of infection vary by virus and patient [36], infection generally begins

when a virus breaches the barrier of one or more tissues causing a limited number of target

cells to be exposed and then internalize the virus (Fig 1). The virus begins to replicate within

the initially infected target cells, but cells do not release any newly synthesized virus for a

period of hours to days (the eclipse or lag phase of infection). Within hours, infected cells

release proinflammatory cytokines and complement proteins as warning signals to neighbor-

ing cells [37,38]. Some of these cytokines, like Type 1 interferons, can induce autocrine and

paracrine anti-viral responses (e.g., inhibiting viral replication, viral entry or inducing cell

death) [39]. Cytokines recruit circulating immune cells from the blood to the infected tissue
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and attract immune cells within the tissue by chemotaxis [40–42]. The early innate immune

response activates a number of cell types including dendritic cells, macrophages, neutrophils,

mast cells, basophils, eosinophils, leukocytes, and natural killer (NK) cells [43]. Many of these

immune cells themselves release both pro- and anti-inflammatory signals. Immune signals

also recruit circulating neutrophils in the blood and, later, activate cytotoxic innate immune

cells like NK cells within the tissue, which kill infected cells through release of diffusible factors

and contact-mediated interactions, respectively.

The temporal dynamics of the concentration of extracellular virus varies greatly among

virus families, tissues and host species [44]. However, for many viruses, including influenza

and coronaviruses, once infected cells begin to release virus, the amount of extracellular virus

increases exponentially over a period of a few days, reaching a peak during an early phase of

infection [45]. As the viral load increases, immune signaling increases rapidly (this increase is

associated with the onset of fever and other symptoms) recruiting more circulating cells of the

innate immune system to the infection site [46].

Immune signals from infected cells and innate immune cells help trigger the adaptive

immune response. Macrophages and dendritic cells that have engulfed and degraded viral

Fig 1. Schematic of the innate and adaptive immune response during primary acute viral infection. Exposure to

the virus occurs at time 0 and extracellular viral load begins to rise (shaded green curve). Initial innate immune

responses include phagocytosis of virus by neutrophils and macrophages, Type I interferon-induced antiviral

resistance (IFN) (dark blue) and killing of infected cells by Natural Killer (NK) cells and other cell types (red). The

black vertical dashed line denotes the transition between innate and adaptive immune responses. The adaptive

immune response is triggered both by cytokine signaling to the lymph nodes and the migration of antigen-presenting

cells from the tissue to the lymph nodes (not shown). In the later phases of infection, innate immune responses

continue, but additional adaptive immune components come into play, including virus-specific cytotoxic T-cells (light

blue) kill infected cells directly and also kill nearby cells through a variety of mechanisms. The orange vertical dashed

line denotes the onset of the humoral adaptive immune response. B-cells produce virus-specific antibodies (orange

line) which bind and inactivate virus directly and also allow its clearance and clearance of infected cells by other cell

types. Tissue damage (shaded purple curve) accumulates due to cell death from direct responses to virus and from

immune-cell killing by contact-mediated, diffusible factor-mediated and bystander-mediated mechanisms and

eventually dissipates as cells proliferate to repair the damage (Adapted from [50,51]). The specific time course of all

components varies among viruses, host tissues and host species, but the general sequence of events and immune

response components are generally preserved.

https://doi.org/10.1371/journal.pcbi.1008451.g001
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pathogens or fragments of dead infected cells (i.e., phagocytosis) migrate over a period of days

to nearby lymph nodes and serve as viral antigen presenting cells (APCs) to naive T-cells. Anti-

gen presentation induces naive T-cell proliferation and differentiation into pathogen-specific

memory and effector T-cells [47]. Effector T-cells migrate to the site of infection and induce

apoptosis of infected cells by antigen recognition and contact killing. Both infected and unin-

fected cells in contact with dying cells can die through bystander-effect mechanisms. In acute

infections, adaptive immune response leads to pathogen neutralization and clearance [48].

Viral loads usually decrease rapidly as adaptive immune cells like CD8+ T-cells enter the tissue

and eliminate infected cells. Cells also begin to send out anti-inflammatory signals, shutting

down the immune response as viral clearance proceeds. Antigen presentation within the

immune system also induces activation of naive B-cell lymphocytes into antibody-producing

memory B-cells and plasma cells, which leads to the production of antibodies. The adaptive

immune response remembers its exposure to previous pathogens and provides the body with

pathogen-specific effector cells and antibodies which neutralize and clear them, providing

long term immunity [49]. Tissue damage results from virus and cytokine-induced cell death

(which is first noticeable after 2 or 3 days) and from killing of infected and uninfected cells by

immune cells, which increases steadily until the end of viral clearance (7–10 days). Tissue

recovery and healing start around the time of viral clearance and may last for several weeks.

In this paper we develop a framework for the multiscale multicellular spatiotemporal simu-

lation of the complex processes of infection and immune response in a small patch of epithelial

tissue. The model provides a representation of the complex biology that reproduces key

observed emergent behaviors of infection dynamics. We create representations of the main

types of components and biological mechanisms associated with acute, primary viral infection

and immune response, with a special emphasis on modularity of mathematical forms and

computational implementation to support the development of more detailed models in future

work (e.g., the creation of additional cell types, signals and detailed cell responses of various

aspects of the immune response). We illustrate such an activity of development by integrating

a detailed viral replication model for hepatitis C virus as an extension to the framework (see

Integration of an explicit RNA synthesis model allows the spatiotemporal modelling of hepatitis
C virus infection).

Our base model consists of three interconnected components (Fig 2A): an epithelium com-

ponent, an extracellular environment component and a lymph node component. The model

represents the epithelium as a compact monolayer of initially identical immobile (which is

appropriate for an epithelium) epithelial cells that it classifies by their current state of viral

infection (i.e., uninfected, infected, virus releasing, dead, Fig 2C). These epithelial cells are ini-

tially identical in their number of viral receptors (though we show how to include heterogene-

ity inHeterogeneous susceptibility inhibits spread of infection). The cells internalize

extracellular virus, modulate their number of surface receptors, replicate virus, release virus

and die in response to virus production, and release an extracellular cytokine signal when

infected. Our model omits interferon-induced antiviral resistance, which can be implemented

as a model extension using mechanisms demonstrated in this work (e.g., secretion of cytokine,

modulation of internalization parameters, see S2 Text, Developing a Model Extension in
CompuCell3D).

The model represents the extracellular environment as a space above the epithelium which

provides the space in which immune cells are recruited and move, and into which cells release

viruses and chemicals. We include a single type of immune cell that exhibits many key

immune-cell behaviors associated with macrophage, neutrophil, NK cell and T-cell roles,

including activation, chemotaxis, relaying and amplification of cytokine signals, contact kill-

ing, secretion of diffusible killing factors, and bystander killing, to represent the main types of
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Fig 2. Full model schematic. (A) Model objects, processes and interactions: Conceptual model of an epithelial tissue and lymph node. Schematic

representation of the model objects, processes and interactions. Epithelial and immune cells refer to the two main classes of cells. Interactions

occur within an extracellular environment, and a compartmental model of a lymph node controls immune-cell recruitment to the tissue.

Together the epithelial-cell, extracellular-environment and immune-cell components represent the epithelial tissue. Each model object has

associated processes that dictate its states and behaviors. Epithelial-cell processes include viral internalization (E1), viral replication (E2), viral

release (E3) and cell death (E4). Immune cell processes include activation (I1), chemotaxis (I2), contact cytotoxicity (I3) and oxidative

cytotoxicity (I4). Activated immune cells participate in oxidative cytotoxicity (I4) and secrete oxidative agents into the oxidizing-agent field (T3).

Activated cells become inactive after 1 hour. The virus field (T1), cytokine field (T2) and oxidizing-agent field (T3) describe spatially-varying

densities of extracellular components. Field processes describe diffusive transport and clearance of material in the extracellular environment and

activated transport to the lymph nodes. The lymph node is a single-compartment model whose pro- or anti-inflammatory state specifies the

recruitment or removal rate (L1) of immune cells in the epithelial tissue. The transport of cytokines to the lymph node promotes its

proinflammatory state. (B) Viral Life Cycle: Interactions in the viral internalisation, replication and release models. Schematic representation of

inputs, outputs and interactions between stages of the viral replication model. Extracellular viral particles (represented as continuous fields) are

internalized by the viral internalization model and initiate the viral replication model. The main stages of the viral replication model are:

unpacking, viral genome replication, protein synthesis and viral assembly and packaging. The output of the viral replication model passes to the

viral release model, which transfers newly assembled viral particles from the cells into the extracellular environment. (C) Cell types and

transitions. Epithelial cells are of type uninfected if they have not yet internalized any virus (E1). They are of type infected if they have internalized

virus, but are not releasing virus into the virus field (viral release E3 is inactive). They are of type virus releasing if they are releasing virus into the

extracellular virus field (i.e., viral release E3 is activated). Immune cells are initially inactive and do not participate in the oxidative cytotoxicity

(I4) or chemotax towards higher concentrations of the cytokine field (I2). They become activated when they experience activation (I1). In all

panels, dashed arrows with barbed heads represent transformations, solid arrows with barbed heads represent transport and solid arrows with

lollipop heads represent regulation.

https://doi.org/10.1371/journal.pcbi.1008451.g002
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immune-cell mediated cell killing, rather than any particular immune cell phenotype. We omit

macrophages, neutrophils and their phagocytosis and signaling, which can be represented

using simple extensions of the immune-cell type. We do not model contact interactions

between immune cells (e.g., by T-cells and APCs). We also do not model tissue recovery,

though we demonstrate examples of adding tissue recovery models inModel extensions.
We simulate extracellular-virus particle density as a continuum field and particle transport

and clearance as continuous diffusion and decay. We approximate the discrete process of a

cell’s internalization of a virus particle by a stochastic virus internalization event (E1) deter-

mined by time elapsed, the local concentration of the virus field, and the number of available

cell-surface receptors on the cell. We simplify the complexity of viral replication into four

steps: unpacking, viral genome replication, protein synthesis and packaging/assembly (E2, Fig

2B) [7,52–54]. The subcellular kinetics of viral replication determine the rate of release of new

virus particles into the extracellular environment (E3). To represent the combined effect of the

many types of virus-induced cell death, each infected epithelial cell has a probability of dying

that depends on the number of assembled viral particles inside the cell per unit time (E4).

We simplify the complex biochemistry of the many molecular signals active in epithelial tis-

sues, which include chemokines, interferons and viral fragments, into a single generic extracel-

lular cytokine field that acts both as a tissue-local and systemic pro-inflammatory signal.

Infected epithelial cells and immune cells both secrete cytokine (T2). The cytokine field pro-

duces local immune effects such as activation (I1) and chemotaxis (I2) of immune cells. Acti-

vated immune cells can revert back to inactive immune cells when the cytokine signal ceases.

The cytokine field also recruits immune cells to the tissue through long-distance signaling via

the lymphatic system (L1). We model recruitment of immune cells to the simulation domain

using an ordinary differential equation for the immune signal (S), which represents the balance

between pro- and anti-inflammatory signaling and the delay due to antigen-presenting cell

transport from the tissue through the lymphatic system to the lymph node and due to the time

required for T-cell amplification. In the absence of infection, the lymph node maintains a

small resident immune cell population in the tissue. Immune cells can cause epithelial cell

death (E4) by three mechanisms: 1) contact cytotoxicity; 2) the bystander effect; and 3)

through the release of an oxidative agent. Immune cells kill infected epithelial cells by contact

cytotoxicity, in which case neighboring uninfected, infected and virus-releasing epithelial cells

can also die through a bystander effect (I3). In regions of the tissue with high cytokine levels,

immune cells secrete a diffusive oxidative agent to the environment (T3) that kills uninfected,

infected and virus-releasing epithelial cells (I4).

Results

We begin by presenting our base multicellular model of viral infection in an epithelial tissue,

along with a simulation for a baseline set of parameters and basic analyses. We then explore

the simulation’s dependence on critical parameters that are important to the dynamics of

acute primary viral infection in airway epithelial cells. All simulations and spatial, population

and system-level metrics presented in this section follow the specifications in Simulation Speci-
fications. We performed simulations using the open-source modeling environment Compu-

Cell3D [55]. Instructions on how to run these simulations are provided in our publicly

available repository at https://github.com/covid-tissue-models/covid-tissue-response-models/

tree/master/CC3D/Models/BiocIU/SARSCoV2MultiscaleVTM.

We initialize the simulations with periodic boundary conditions parallel to the plane of the

sheet and Neumann boundary conditions perpendicular to the plane of the sheet. Initially, the

extracellular environment does not contain any extracellular virus, cytokines, oxidative agents
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or immune cells. We introduce infection by creating a single infected epithelial cell at the cen-

ter of the epithelial sheet, comparably to (but less than) initial conditions of similar works that

model discrete cellular distributions [18,31]. To illustrate the full range of dynamics of viral

infection in the presence of an immune response, we established a baseline set of parameters

(Table 1) for which the immune response is strong enough to slow the spread of the infection,

but insufficient to prevent widespread infection and death of all epithelial cells (Fig 3). While

we have adjusted the parameters for the viral replication model to agree with reported time

scales for SARS-CoV-2 replication in vitro [56], and we have selected parameter values in

physiologically reasonable ranges, we have not attempted to match other model parameters to

a specific tissue, virus or host species. Furthermore, this baseline parameter set is not unique

with respect to its purpose, in that many sets of parameters can generate appreciable but insuf-

ficient inhibition of spread of infection (see S12–S17 Figs). Rather, as is shown in subsequent

sections, this parameter set presents emergent dynamics of a theoretical virus and host

immune response near, but not in, a regime of successful prevention of widespread infection,

which is critical to showing the effects of underlying mechanisms on emergent dynamics and

resulting outcomes.

The infected cell immediately starts releasing cytokines into the extracellular environment.

After an incubation period (~150 minutes, 2 ½ hours), the first infected epithelial cell (green)

transitions from infected to virus releasing (red), and starts releasing viruses into the extracel-

lular environment. Initial release of extracellular virus causes additional epithelial cells to

become infected. Release of cytokines leads to delayed addition of immune cells to the simula-

tion domain (Fig 3D). By 4000 minutes (67 hours, 2 ¾ days), the number of infected cells

increases 10-fold and the epithelial cells start undergoing virally-induced death as the infection

spreads radially outward from the initial site. The increase in the number of infected cells and

the local cytokine concentration is accompanied by a similar increase in the local immune cell

population. By 8000 minutes (133 hours, 5 ½ days), the number of dead epithelial cells around

the initial infection site increases sharply. Following this phase of rapid cell death, the number

of infected, virus-releasing and dead epithelial cells continues to increase exponentially but at a

slower rate. This transition results in the formation of an annular region of infected cells

spreading radially outwards from the initial infection site (Fig 3A), analogous to the Fisher

equation for deterministic front propagation [58]. Total extracellular virus and cytokine con-

tinue to increase exponentially. The increase in cytokine results in continued recruitment of

additional immune cells. By 16000 minutes (267 hours, 11 days), the number of uninfected

epithelial cells reaches zero and the number of infected and virus-releasing cells peaks. Despite

the declining number of infected and virus-releasing epithelial cells, the delayed immune

response continues to add immune cells to the tissue. After about 16000 minutes (267 hours,

11 days), the extracellular virus and the amount of cytokine decrease exponentially as the

remaining virus-releasing epithelial cells die. By 20000 minutes (333 hours, 14 days), all epithe-

lial cells die and many immune cells leave the tissue.

Classification of spatiotemporal infection dynamics

The rate at which infection propagates and the strength (speed and amplitude) of the immune

response depend on multiple model parameters. Interplay between these rates leads to a wide

spectrum of qualitatively-distinct spatiotemporal dynamics. The virus-receptor binding affin-

ity kon and the immune response delay coefficient βdelay are critical parameters affecting the

rate of infection of epithelial cells and the strength of the immune response, respectively.

Larger kon corresponds to a higher rate of infection propagation (increasing kon increases the

rate of internalization of extracellular viral particles into epithelial cells, see Eq (3) inModels
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Table 1. Parameter values in baseline parameter set.

Conversion Factors Value References / Justification

Simulation step Δt 1200.0 s Selected for approximately 14 days of simulation time in

1k simulation steps

Lattice width 4.0 μm Selected according to cell diameter

Scale factor for concentration 1×10−14 mol Selected for conversion from mol L-1 to mol μm-1

(10−15) with 10x adjustment for fewer concentrations

less than 1

Simulation parameters Value References / Justification

Cell diameter 12.0 μm Selected according to typical epithelial cell size

Replication rate rmax (1/12)×10−3 s-1 Calibrated to timescale of SARS-CoV-2 [56]

Translating rate rt (1/18)×10−3 s-1 Calibrated to timescale of SARS-CoV-2 [56]

Unpacking rate ru (1/6)×10−3 s-1 Calibrated to timescale of SARS-CoV-2 [56]

Packaging rate rp (1/6)×10−3 s-1 Calibrated to timescale of SARS-CoV-2 [56]

Release rate rs (1/6)×10−3 s-1 Calibrated to timescale of SARS-CoV-2 [56]

Scale factor for number of mRNA per

infected cell mRNAavg
1000 cell-1 Selected for average production of 2000 virions per cell

before death per influenza [69]

Viral dissociation coefficient rhalf 2000 Derived from mRNAavg, rmax and rt
Viral diffusion coefficient Dvir 0.01 μm2 s-1 Selected according to sensitivity analysis and estimated

from physiological ranges for lung mucus1

Viral diffusion length λvir 36 μm Selected according to sensitivity analysis

Viral decay rate γvir 7.71×10−6 s-1 Derived from λvir and Dvir
Cytokine diffusion coefficient Dcyt 0.16 μm2 s-1 [70,71] (IL-2 cytokine)

Cytokine diffusion length λcyt 100 μm [70] (IL-2 cytokine)

Cytokine decay rate γcyt 1.32×10−5 s-1 Derived from λcyt and Dcyt
Maximum cytokine immune secretion

rate σcyt(immune activated)

3.5×10−4 pM s-1 Estimated as 1/10 of σcyt(infected)

Immune secretion midpoint

Vcyt(immune activated)

1 pM [71]

Cytokine immune uptake rate

ωcyt(immune activated)

3.5×10−4 pM s-1 [70]

Maximum cytokine infected cell

secretion rate σcyt(infected)

3.5×10−3 pM s-1 [70]

Infected cell cytokine secretion mid-

point Vcyt(infected), Vcyt(virus
releasing)

0.1 Chosen from typical simulation values of assembled

virus. Values stay around 0.1 and increase as infection

progresses

Cytokine secretion Hill coefficient hcyt 2 Selected for simplest form with inflection of model

response

Immune cell cytokine activation

EC50cyt,act

10 pM [70]

Immune cell equilibrium bound

cytokine EQck
210 pM Chosen to be 2.1 x EC50cvt,act

Immune cell bound cytokine memory

ρcyt
0.99998 s-1 Derived from ωcyt(immune activated) and EQck

Immune cell activated time 10 h [72]

Oxidation Agent diffusion coefficient

Doxi
0.64 μm2 s-1 Selected to be 4 x Dcyt to model high diffusivity relative

to IL-2

Oxidation Agent diffusion length λoxi 36 μm Selected to be 3 cell diameters to model high reactivity

Oxidation Agent decay rate γoxi 1.32×10−5 s-1 Derived from λoxi and Doxi
Immune cell oxidation agent secretion

rate σoxi
3.5×10−3 pM s-1 Selected to be the same as σcyt(infected)

Immune cell Ccyt threshold for

Oxidation Agent release tsecoxi

10 A.U. =

1.5625 pM

Selected according to sensitivity analysis

(Continued)
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Table 1. (Continued)

Conversion Factors Value References / Justification

Tissue cell Coxi threshold for death tdeathoxi 1.5 A.U. =

0.234375 pM

Selected according to sensitivity analysis

Initial density of unbound cell surface

receptors Ro
200 cell-1 Selected for potential limiting factor (availability of

receptors) from typical simulation extracellular virus

field values

Virus-receptor association affinity kon 1.4×104 M-1s-1 [73,74]

Virus-receptor dissociation affinity koff 1.4×10−4 s-1 [73,74]

Infection threshold 1 Calibrated to timescale of SARS-CoV-2 [56]

Uptake Hill coefficient hupt 2 Selected for simplest form with inflection of model

response

Uptake characteristic time constant

αupt
20 min Selected to be the same as Δt

Virally-induced apoptosis Hill

coefficient hapo
2 Selected for simplest form with inflection of model

response

Virally-induced apoptosis dissociation

coefficient Vapo
100 Selected according to sensitivity analysis

Virally-induced apoptosis

characteristic time constant αapo
20 min Selected to be the same as Δt

Immune cell activation Hill coefficient

hact
2 Selected for simplest form with inflection of model

response

Immune response add immune cell

coefficient βadd
1/1200 s-1 Selected for sensitivity analysis of βdelay

Immune response subtract immune

cell coefficient βsub
1/6000 cell-1 s-1 Selected according to βadd for 5 resident immune cells

(mean of all immune cell counts per epithelial cell from

Control in [22] applied to 900 epithelial cells)

Immune response delay coefficient

βdelay
1.2×106 s Selected according to sensitivity analysis

Immune response decay coefficient

βdelay
1/12000 s-1 Selected for sensitivity analysis of βdelay

Immune response cytokine

transmission coefficient αsig
0.5 Selected for sensitivity analysis of βdelay

Immune response probability scaling

coefficient αimmune
0.01 Selected for sensitivity analysis of βdelay

Number of immune cell seeding

samples nseeding
10 Selected for sensitivity analysis of βdelay

Initial target volume 64 μm3 Derived from cell diameter and lattice width

Lambda volume λvolume 9 Selected for acceptable deformation of immune cells

Initial number of immune cells 0 Selected to demonstrate model feature of resident

immune cells

Lambda chemotaxis λchemotaxis 1 Selected for appreciable chemotaxis without excessive

cell deformation

Intrinsic Random Motility H�
10 [68]

Contact coefficients J (all interfaces) 10 Selected comparably to [68] for low adhesion immune

cell-immune cell and immune cell-medium interfaces

1 The diffusivity in water for a virus of radius 0.1 microns like SARS-CoV-2 according to Stokes-Einstein is about 3

microns2/s. The average steady-shear viscosity for lung mucus varies significantly and is shear thinning, but in the

more viscous regions is found to vary for frequencies between 10−4 and 102 Hz, spanning viscosity values as high as

103 Pa-s and as low as 10−2 Pa-s. In general, at low shear rates, the viscosity of human mucus is as high as 104−106

times that of water [75]. Thus the minimal diffusion constant possible would be 3 x 10−6 microns2/s and the maximal

rate in water would be 3 microns2/s. 0.01 microns2/s is a reasonable geometric interpolation.

https://doi.org/10.1371/journal.pcbi.1008451.t001
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and methods). Larger βdelay corresponds to weaker immune response (decreasing βdelay
increases the strength of immune-cell recruitment, see Eqs (12)–(14) inModels and methods).

Varying these two parameters around the baseline simulation values yields six patterns of

spatiotemporal infection dynamics, ranging from unopposed infection to clearance (Fig 4).

We defined these classes based on the transient dynamics and the final state of the simulation

at 20000 minutes (333 hours, 14 days). We terminated the simulations at 20000 minutes (333

hours, 14 days) because we assume that, in real tissues, additional adaptive immune responses

at this time generally lead to rapid viral clearance. As a result, any epithelial cells uninfected at

the end of the simulation would likely remain uninfected if we included these additional

immune mechanisms. We define the six patterns (classes) of infection dynamics as follows:

No immune response: a limiting case (corresponding to in vitro and organoid culture

experiments on viral infection, which lack immune cells) that serves as a reference simulation

showing the spread of unopposed infection. When the cellular immune response is absent, an

infection front travels across the epithelium until all epithelial cells have died due to intracellu-

lar virus (Fig 4A and S1 Fig).

Widespread infection: when the immune response is weak (large βdelay) or the rate of infec-

tion propagation is large (large kon), the immune cells kill enough infected epithelial cells to

reduce both the concentration of extracellular virus and the propagation of the infection front.

However, at the end of the simulation no uninfected epithelial cells survive (Figs 3 and 4B).

Slowed infection: for moderate immune response (moderate βdelay) and a moderate rate of

infection propagation (moderate kon), both uninfected and infected epithelial cells and some

extracellular virus remain at the end of the simulation (Fig 4C). These cases are functionally

distinct from widespread infection, since even a single remaining uninfected epithelial cell

could initiate tissue regeneration. In most cases of slowed infection, the numbers of infected

cells and the extracellular virus continue to increase. A special case of slowed infection occurs

when oscillations in the amount of virus (S2A Fig).

Containment: for strong immune response (small βdelay) and low to moderate rate of infec-

tion propagation (moderate kon), a few infected and virus-releasing cells are present for most

of the simulation. However, the immune cells eventually kill all infected and virus-releasing

epithelial cells. At the end of the simulation, no infected or virus releasing cells remain, while

uninfected cells survive and some extracellular virus remains in the extracellular environment

(Fig 4D).

Recurrence: for strong immune response (small βdelay) and a fast infection propagation

(large kon), relatively few epithelial cells become infected early in the simulation. All infected

and virus-releasing epithelial cells die. However, the remaining extracellular virus infects addi-

tional epithelial cells later on, restarting the spread of infection (Fig 4E).

Fig 3. Simulation of the progression of infection in a patch of epithelial tissue of size 360 μm x 360 μm starting from a single

infected cell for a representative simulation using the baseline parameters given in Table 1. (A) Snapshots of spatial configuration vs
time, showing progression of a simulated infection. Columns, left to right: 0 minutes (time of initial infection), 4000 minutes (67 hours,

2 ¾ days) after infection, 8000 minutes (133 hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓ days), 16000 minutes (267 hours, 11 days),

and 20000 (333 hours, 14 days) minutes. First row: epithelial-cell layer composed of uninfected (blue), infected (green), virus-releasing

(red) and dead epithelial cells (black). Second row: position of immune cells in the extracellular environment layer. Third row:

concentration of extracellular virus field. Fourth row: concentration of extracellular cytokine field. Fifth row: concentration of

extracellular oxidative agent field. Fields are shaded on a logarithmic scale: red corresponds to the chosen maximum value specified in

the first panel and blue corresponds to six orders of magnitude lower than the maximum value; colors saturate for values outside this

range. (B-D) Simulation time series. (B) Number of uninfected (orange), infected (green), virus-releasing (red) and dead (purple)

epithelial cells vs time on a logarithmic scale (0 values are overlaid at a non-logarithmic tick for clarity). (C) Total extracellular cytokine

(magenta) and total extracellular virus (brown) vs time on a logarithmic scale. (D) Value of the immune recruitment signal S (yellow)

and number of immune cells (grey) vs time on a linear scale. Simulations use periodic boundary conditions in the plane of the epithelial

sheet, and Neumann conditions [57] normal to the epithelial sheet.

https://doi.org/10.1371/journal.pcbi.1008451.g003
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Clearance: for strong immune response (small βdelay) and a slow infection propagation

(small kon), the number of infected and virus-releasing epithelial cells goes to zero without

recurrence and the extracellular virus drops below a threshold (of 1/900 per cell in our analy-

sis), rendering the frequency of recurrence negligible (Fig 4F). A special case of clearance

Fig 4. Patterns (classes) of spatiotemporal infection dynamics. First row: snapshots of spatial configurations of the epithelial cells. Color coded:

uninfected (blue), infected (green), virus releasing (red), dead (black). TImes from left to right 4000 minutes (67 hours, 2 ¾ days), 8000 minutes

(133 hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓ days), 16000 (267 hours, 11 days) and 20000 minutes (333 hours, 14 days). The right border

of each snapshot aligns with the corresponding time in the time series. Second row: number of uninfected (orange), infected (green), virus-

releasing (red) and dead (purple) epithelial cells vs time on a logarithmic scale (with 0 included for clarity). Third row: total extracellular cytokine

(magenta) and total extracellular virus (brown) vs time on a logarithmic scale. Fourth row: value of the immune recruitment signal S (yellow) and

number of immune cells (grey) vs time on a linear scale. (A) No immune response: infection propagates unopposed until all epithelial cells have

died from intracellular virus. (B) Widespread infection: weak immune response slows propagation of the infection, but no uninfected cells survive

at the end of the simulation. (C) Slowed infection: uninfected and infected epithelial cells coexist at the end of the simulation. (D) Containment of

infection: no infected or virus-releasing epithelial cells remain, uninfected cells survive and virus remains in the extracellular environment at the

end of the simulation. (E) Recurrence: the number of infected and virus releasing epithelial cells goes to zero, but persistent extracellular virus

infects new epithelial cells later on. (F) Clearance: the number of infected and virus-releasing epithelial cells goes to zero and the level of

extracellular virus is negligible at the end of the simulation. The model in (A) omits the immune response (components L1, I1-I4). All parameter

values are as in Table 1 and Fig 3 except for kon and βdelay (S1 Table).

https://doi.org/10.1371/journal.pcbi.1008451.g004
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(Failure to infect) occurs when the initially infected epithelial cells fail to infect any other epi-

thelial cells (S2B Fig).

To quantitatively characterize simulation results, we measured the number of uninfected,

infected, virus-releasing and dead epithelial cells, the total number of immune cells, the number

of activated immune cells, the total amount of extracellular virus (integral over the virus field),

the total diffusive cytokine (integral over cytokine field), the maximum total extracellular virus

(over all simulation time) and the maximum total diffusive cytokine (over all simulation time).

Fig 4 shows these quantitative metrics, together with a series of spatial configurations for all

model components, corresponding to each pattern of infection dynamics.

In the absence of an immune response, spread of the infection follows the diffusion of extra-

cellular virus, resulting in concentric rings of different types of epithelial cells (see Fig 4A top

row for epithelial cell types, S1B Fig shows the extracellular virus field). The viral propagation

front, where uninfected epithelial cells transition to infected epithelial cells, moves radially out-

wards from the initial site of infection. Due to the stochastic internalization events, the front’s

outer contour is diffuse, with scattered infected epithelial cells ahead of the front, followed by a

dense rim of infected and virus-releasing epithelial cells and a core of dead epithelial cells at

the center. Similar waves, with a slower speed, are seen in the other cases where infection has

occurred (Fig 4B and 4C top row).

Stronger immune response and lower rates of virus internalization

promote containment of infection

To explore the effects of the rate of virus internalization and the strength of the immune

response, we performed a multidimensional parameter sweep of the virus-receptor association

affinity kon and immune response delay coefficient βdelay. Variations in virus receptor associa-

tion affinity represent factors that affect the binding affinity of cellular viral receptors (e.g.,
ACE2 and TMPRSS-2 in the case of SARS-CoV-2) with a virus (e.g., mutations in viral coat

protein or drugs to block viral entry). Variations in immune response delay coefficient repre-

sent factors that affect the strength of the systemic immune response (e.g., anti-inflammatory

corticosteroids, IL-7 treatment or age, since older individuals tend to have slower adaptive

immune responses)[36].

We ran ten simulation replicas for each parameter set, increasing and decreasing the base-

line parameter values 10-fold and 100-fold (Figs 5–7). For each simulation replica, we exam-

ined the number of uninfected epithelial cells (Fig 5), the number of infected epithelial cells

(Fig 6), the total extracellular virus (Fig 7), the number of dead epithelial cells (S3 Fig), the

number of virus-releasing cells (S4 Fig) and the number of immune cells (S5 Fig). We identi-

fied regions of the parameter space where all ten simulation replicas resulted in either contain-

ment/clearance (green-shaded subplots) or widespread infection (orange-shaded subplots). In

the intermediate regions (unshaded subplots) different replicas for the same set of parameters

exhibited other (and sometimes multiple) classes of dynamics.

For large kon and large βdelay (Figs 5–7, orange-shaded regions), all simulation replicas result

in widespread infection and variability between simulation replicas is small. In this region, the

initial release of virus into the extracellular environment results in a rapid increase in the num-

ber of infected and virus releasing epithelial cells early during the simulation, between 0 and

2000 minutes (0 to 33 hours, 0 to 1 ½ days) (Fig 6 and S4 Fig). Between 5000 and 20000 minutes

(83 to 333 hours, 3 ½ to 14 days), the number of uninfected epithelial cells rapidly decays to

zero. As in all simulation replicas with a large βdelay, the immune recruitment signal (S6 Fig) is

less responsive to the cytokine signal produced by infected and virus-releasing epithelial cells

and no significant recruitment of immune cells occurs throughout the simulations (S5 Fig). The
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number of virus-releasing epithelial cells peaks around 7500 minutes (125 hours, 5 days), the

level of extracellular virus peaks around 9000 minutes (150 hours, 6 ¼ days) and the number of

dead epithelial cells peaks around 10000 minutes (167 hours, 7 days, S3 Fig). With no remaining

uninfected epithelial cells to infect, all remaining infected epithelial cells become virus-releasing

epithelial cells, which then die, causing the total amount of extracellular virus to decrease.

For small kon and small βdelay (Figs 5–7, green-shaded subplots), all simulation replicas

result in either clearance or containment and variability between simulation replicas is small.

Initial release of virus to the extracellular environment results in a small change in the number

of uninfected and infected epithelial cells. As in all simulation replicas with a small βdelay, the

immune recruitment signal (S6 Fig) is very sensitive to the cytokine produced by virus-releas-

ing epithelial cells, resulting in rapid recruitment of immune cells and an early first peak in the

population of immune cells around 2000 minutes (33 hours, 1 ⅓ days, S5 Fig). In these simula-

tions, the increase in the number of immune cells is followed by a rapid increase in the number

of dead epithelial cells (S3 Fig). The number of immune cells and the number of dead epithelial

cells peak around the same time (2000 minutes, 33 hours, 1 ⅓ days), after which the number of

immune cells decreases. With no remaining virus-releasing epithelial cells, the total extracellu-

lar virus decays until the infection is cleared. Increasing βdelay primarily increases the time

when all infected epithelial cells have died.

For moderate to high kon and moderate to low βdelay (right unshaded subplots in Figs 5–7),

the rate of new infection nearly balances the rate of elimination of infected and virus-releasing

Fig 5. Sensitivity analysis of the number of uninfected epithelial cells vs time for variations in virus-receptor

association affinity kon and immune response delay coefficient βdelay, showing regions with distinct infection

dynamics. Logarithmic pairwise parameter sweep of the virus-receptor association affinity kon and the immune

response delay βdelay (×0.01,× 0.1,× 1,× 10,× 100) around their baseline values, with ten simulation replicas per

parameter set (all other parameters have their baseline values as given in Table 1). The number of uninfected epithelial

cells for each simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in minutes. See

Fig 4 for the definitions of the classes of infection dynamics.

https://doi.org/10.1371/journal.pcbi.1008451.g005
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epithelial cells, resulting in replicas showing clearance, contaminant, recurrence and slowed

infection for the same parameter values, with very few cases of widespread infection. The ini-

tial release of virus into the extracellular environment by the first virus-releasing epithelial cell

infects a moderate number of uninfected epithelial cells. The resulting cytokine secretion elic-

its a moderate to high response of the immune recruitment signal (S6 Fig) and number of

immune cells (S5 Fig). The early recruitment of immune cells leads to many epithelial cells

dying before 4000 minutes (66 hours, 2⅔ days) (S3 Fig). For a high probability of virus inter-

nalization (high kon), even low amounts of extracellular virus are sufficient to cause recurrence.

For moderate to low kon and moderate to high βdelay (upper left unshaded subplots in Figs 5–

7), rate of new infection of epithelial cells is slightly faster than the immune system’s response,

resulting in a combination of widespread infection, slowed infection and containment, and a

few cases of clearance. The immune system is only moderately responsive to the cytokine sig-

nal, resulting in a slow to moderate increase in the immune recruitment signal (S6 Fig) and in

the number of immune cells (S5 Fig). Cases of clearance and containment occur for a smaller

final number of dead epithelial cells (S3 Fig) compared to previously discussed cases.

Even moderate inhibition of genomic replication by antiviral therapies

significantly reduces the spread of infection, but only when initiated soon

after infection

Optimal therapeutic use of antiviral drugs requires considering the relationship between

molecular efficacy (how effectively the drug blocks a particular aspect of the viral life cycle at

saturation concentration), potency of therapy (the effect of the drug at a molecular level at a

Fig 6. Sensitivity analysis of the number of infected epithelial cells vs time for variations in virus-receptor

association affinity kon and immune response delay coefficient βdelay, showing regions with distinct infection

dynamics. Same parameter sweep as Fig 5. The number of infected epithelial cells for each simulation replica for each

parameter set, plotted on a logarithmic scale, vs time displayed in minutes. See Fig 4 for the definitions of the classes of

infection dynamics.

https://doi.org/10.1371/journal.pcbi.1008451.g006
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given dose) and clinical effectiveness (how well the drug reduces the severity or duration of the

infection), as well as the tradeoff between side effects and bioavailability. One drug might have

moderate efficacy but have few side effects. Another drug might have high efficacy, but have

severe side effects at high doses that limit the maximum tolerated dose or use of even moderate

doses in prophylaxis. A drug might also have a combination of beneficial and adverse effects

(e.g., it might reduce viral replication early in infection, but also be immunosuppressive)

[13,37]. Antiviral drugs like Tamiflu retain their ability to block aspects of the viral life cycle

(efficacy), but become much less clinically effective as the time before treatment increases: (in

adults Tamiflu is most effective when given within 48 hours after exposure and thus is often

used prophylactically) [38].

In this section we use our model to show the trade-offs between time-of-use and potency of

a drug that targets viral genome replication in a host cell. Several antiviral medications for

RNA viruses reduce the net viral replication rate by inhibiting synthesis of viral RNA by the

viral RNA polymerase. We focus on RNA-synthesis blockers in this paper because viral

genome synthesis exponentially increases the production rate of viruses per cell, while the

other stages of viral replication have linear amplification effects (see Eqs (6)–(9) inModels and
methods).

To simulate the effects of treatment that targets RNA synthesis using different drug effica-

cies and times of administration, we generated a series of simulations in which we reduced

rmax, the replication rate of genomic material in the viral replication model (Eq (7) inModels
and methods), by different amounts and at different times in the simulation. The “viral replica-

tion multiplier” represents the potency of the treatment, the factor by which rmax is reduced

Fig 7. Sensitivity analysis of the total amount of extracellular virus vs time for variations in virus-receptor

association affinity kon and immune response delay coefficient βdelay, showing regions with distinct infection

dynamics. Same parameter sweep as Fig 5. The total amount of extracellular virus for each simulation replica for each

parameter set, plotted on a logarithmic scale, vs time displayed in minutes. See Fig 4 for the definitions of the classes of

infection dynamics.

https://doi.org/10.1371/journal.pcbi.1008451.g007
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(either a low dose with high efficacy, or a high dose with a less efficacy). The “time delay of

application” is the simulation time at which rmax is reduced, which corresponds to the time

after infection at which the treatment is administered. To characterize therapeutic effective-

ness, we distinguished three classes of simulation outcomes:

Positive outcomes: effective treatment, where at least 50% of the epithelial cells remain

uninfected at the end of the simulation (green-shaded subplots).

Negative outcomes: ineffective treatment, where less than 10% of the epithelial cells remain

uninfected at the end of the simulation (orange-shaded subplots).

Intermediate outcomes: partially effective treatment, where between 10–50% of the epithe-

lial cells remain uninfected at the end of the simulation (unshaded or intermediate-shaded

subplots).

To characterize how the potency and time of initiation of treatment affect the dynamics of

the simulation and treatment effectiveness, we examined the time courses of the number of

uninfected epithelial cells (Fig 8), virus-releasing epithelial cells (Fig 9), the total amount of

extracellular virus (Fig 10), the number of dead epithelial cells (S7 Fig), the number of infected

cells (S8 Fig), the number of immune cells (S9 Fig) and the immune response state variable

(S10 Fig). Intensity of green indicates the percent of simulation replicas that produced positive

outcomes for a given set of parameters. Intensity of orange indicates the percent of simulation

replicas that produced negative outcomes.

When the treatment is given early, while the level of extracellular virus is increasing rapidly

and exponentially (before 6000 minutes, 100 hours, 4 days) after infection, most of the simula-

tion replica outcomes are positive, showing effective treatment (Figs 9–11, green-shaded sub-

plots). If the drug is administered prophylactically or very soon after infection (at 0 minutes)

the treatment potency needs to be only 25% to achieve mostly positive outcomes (effective

treatment). Increasing the time to treatment increases the potency required to achieve similar

numbers of positive outcomes: the treatment is effective for a potency of at least 37.5% if

administered by 4000 minutes (67 hours, 2 ¾ days), and at least 87.5% if administered by 6000

minutes (100 hours, 4 days). For all potencies greater than 12.5%, early intervention prevents

significant increase in the number of virus-releasing cells (Fig 9, green-shaded subplots), and a

small number of immune cells suffices to stop the spread of infection (S9 Fig, green-shaded

subplots). In this region, delaying treatment results both in a higher level of extracellular virus

(Fig 10, green-shaded subplots) and more dead epithelial cells at the end of simulation (Fig 8,

green-shaded subplots). With inhibited viral replication in the infected epithelial cells, the

extracellular virus decays until it is mostly cleared by the end of simulation (Fig 10). Variability

between simulation replicas for a given parameter set increases with both decreasing potency

and increasing time of initiation of treatment.

If the potency of the treatment is 12.5% (or less), most of the simulation replicas have nega-

tive outcomes (low effectiveness), even if the drug is administered prophylactically or soon

after infection (at 0 minutes) (Figs 9–11, bottom row). In these cases, the time after infection at

which the drug is given makes no significant difference to the treatment effectiveness. When

the treatment is given late (time delay of application of at least 10000 minutes, 167 hours, 7

days), regardless of the potency of the drug, most simulation replicas have negative outcomes

(Figs 9–11, orange-shaded regions). By the time of treatment, a significant number of epithelial

cells have been infected (more than 10% in most cases–Fig 9, orange-shaded regions) and a

significant amount of virus has been released into the extracellular environment (Fig 10,

orange-shaded regions). In addition, a significant number of epithelial cells have died (more

than 10% in most cases–S7 Fig, orange-shaded regions) and significant recruitment of

immune cells has occurred (S9 Fig, orange-shaded regions). For higher treatment potency, the

level of virus in the extracellular environment starts decreasing immediately after treatment,
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Fig 8. Number of uninfected cells vs time in simulations of a hypothetical drug treatment reducing the viral genome (e.g. RNA for

SARS-CoV-2) replication rate (rmax) as a function of treatment potency and time of initiation of treatment. Drug therapy is

administered at a fixed time after infection and remains activated for the duration of the simulation. (A) Sample treatment, showing the

time course of rmax. rmax is reduced by a multiplier which is one minus the potency of the drug at the given dose, 75% in (A), at a particular

time of initiation of treatment (time delay of application), 12000 minutes (200 hours, 8 ⅓ days) in (A). (B) A parameter sweep of the

potency of treatment (reduction in baseline viral replication rate rmax, vertical) and the time of treatment (dashed lines, horizontal) shows

parameter regions where the majority of simulation replicas produce positive outcomes (green-shaded subplots), negative outcomes

(orange-shaded subplots) and intermediate cases (intermediate shading or unshaded). Intensity of green and orange indicates the number

of positive and negative outcome replicas for each parameter combination (treatment effectiveness). Green regions show that early

intervention leads to positive outcomes (is effective) for most ranges of treatment potency, with high numbers of uninfected epithelial cells

at the end of the simulation for almost all simulation replicas. Orange regions show that late interventions result in mostly negative

outcomes (ineffective treatment) regardless of the potency, and that outcomes are more variable between replicas, with both positive and

negative outcomes for most parameter sets. The number of uninfected epithelial cells for each simulation replica for each parameter set,

plotted on a logarithmic scale, vs time displayed in minutes.

https://doi.org/10.1371/journal.pcbi.1008451.g008
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even when a significant number of virus-releasing epithelial cells remain, indicating that viral

replication inside cells has been significantly reduced. Later intervention also increases vari-

ability between simulation replicas and, although most simulation replicas have negative out-

comes, the same set of parameter values produced two distinct qualitative outcomes (some

more and some less favorable) for higher potency (S11 Fig, orange-shaded regions). Thus in a

few cases, even late treatment can be effective.

When the treatment is given at intermediate times (times between 6000 and 10000 minutes,

100 to 167 hours, 4 to 7 days), most simulation replicas have intermediate outcomes. For

potencies above 50%, the fraction of uninfected epithelial cells at the end of simulation is rela-

tively high (around 50%) and the treatment is usually moderately effective (Fig 8). For poten-

cies below 50%, the number of virus-releasing epithelial cells remains approximately constant

or continues to increase after treatment (Fig 9) and significant levels of extracellular virus

remain at the end of the simulation, and so in most cases the treatment is ineffective (Fig 10).

In this regime, variability between outcomes for the same parameter values is higher than for

potencies above 50%.

Fig 9. Number of virus releasing cells vs time in simulations of a hypothetical drug treatment reducing the viral genome (e.g. RNA

for SARS-CoV-2) replication rate (rmax) as a function of treatment potency (one minus the viral replication rate multiplier) and

time of initiation of treatment. The number of virus-releasing epithelial cells stays low when the intervention occurs early during

infection (when the amount of extracellular virus is increasing rapidly), but continues to increase when the intervention occurs later

(when the level of extracellular virus is at or near its maximum in the untreated case). Parameter values, axis types and time-scale and

shading as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008451.g009
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A particular parameter set (time delay of application of 10000 minutes, 100% potency) pro-

duced simulation replicas that had instances of all three outcomes (Fig 11). In a simulation

replica with a positive outcome (Run 2, Fig 11A), the first uninfected epithelial cell dies (as

well as a few uninfected epithelial cells) before 4000 minutes (67 hours, 2 ¾ days), after which

the total extracellular virus gradually decreases. At around 4000 minutes (67 hours, 2 ¾ days),

an epithelial cell near the initially-infected cell becomes infected, causing a recurrence of infec-

tion, whose spread was stopped by the treatment. In contrast, simulation replicas with inter-

mediate and negative outcomes (Runs 8 and 4, respectively, Fig 11A) have comparable, and

significantly more, numbers of infected and virus-releasing epithelial cells at 4000 minutes (67

hours, 2 ¾ days), while total extracellular virus is greater in the replicas with a negative out-

come than in the replicas with an intermediate outcome. For the positive outcome replica,

after 10000 minutes (167 hours, 7 days), the remaining extracellular virus infects just a few

individual epithelial cells throughout the tissue. For the intermediate outcome replica, after

10000 minutes (167 hours, 7 days) the number of infected epithelial cells continues to increase

until around 12000 minutes (200 hours, 8 ⅓ days) and then declines, while the number of

uninfected epithelial cells slightly decreases at the end of the simulation. For the negative

Fig 10. Levels of extracellular virus vs time in simulations of a hypothetical drug treatment reducing the viral genome (e.g. RNA for

SARS-CoV-2) replication rate (rmax) as a function of drug potency (one minus the viral replication rate multiplier) and time of

initiation of treatment. Extracellular virus is cleared or near-cleared when intervention occurs soon after infection. Parameter values, axis

types and time-scale and shading as in Fig 8.

https://doi.org/10.1371/journal.pcbi.1008451.g010
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Fig 11. Difference in treatment effectiveness for different simulation replicas for perfect treatment potency (0 viral replication rate multiplier)

near the time when the extracellular virus amount would reach its maximum in the untreated case (10000 minutes, 167 hours, 7 days). (A)

Select simulation replicas for this parameter set showing the variety of possible outcomes (treatment effectiveness). Spatial results show the epithelial

and immune cell layers, and the extracellular virus field, at 4000, 8000, 12000, 16000, and 20000 minutes (67, 133, 200, 267 and 333 hours, 2 ¾, 5 ½, 8

⅓, 11 and 14 days). Cell type colors are the same as in Fig 3A. Virus field values are scaled as in Fig 3A. (B) Time series for all simulation replicas for

the selected parameter set: Right column, from top to bottom, number of uninfected epithelial cells, number of infected epithelial cells, number of

virus-releasing epithelial cells, number of dead cells. Left column, from top to bottom: total amount of extracellular virus, total amount of cytokine,

number of immune cells and immune response state variable. All variables except the immune signal plotted on a logarithmic scale vs time.

https://doi.org/10.1371/journal.pcbi.1008451.g011
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outcome replica, after 10000 minutes (167 hours, 7 days) the already depleted number of unin-

fected epithelial cells continues to rapidly decrease to near zero.

Model extensions

In this section we demonstrate the deployment of extensions to the framework described in

Models and methods, which we will refer to as the “main framework” when discussing exten-

sions in this and subsequent sections, as well as particularization of the framework to specific

biological problems like a different virus. We accomplish this through integration of an exist-

ing model in the literature of hepatitis C virus (HCV), and elementary examples of adding

models of heterogeneous epithelia and tissue recovery, one model of which is constructed

from another. We include schematic representations where appropriate of the software imple-

mentation according to the architecture we have developed (and will continue to develop) to

support broad scientific use through rapid, parallel model development, flexible model inte-

gration, and model sharing through our publicly available online repository (see S2 Text for an

overview of basic deployment, implementation, and public distribution of extensions and S1–
S3 Code Snippets for specific examples).

Heterogeneous susceptibility inhibits spread of infection. To demonstrate basic extensi-

bility of the framework to model additional complexity associated with viral infection, we

introduced a basic notion of heterogeneity to the epithelium of simulated scenario with the

premise that not all epithelial cells can be infected (i.e., some cells are unsusceptible, as in an

actual heterogeneous respiratory epithelium) [22]. We implemented heterogeneous suscepti-

bility by randomly selecting a fraction of the epithelial cell population at the beginning of sim-

ulation and setting the number of surface receptors of each to zero (i.e., these cells have no

surface receptors for internalization of the virus). Otherwise, all mechanisms and model

parameter values used in simulations of heterogeneous susceptibility were the same as those

used to generate results shown in Fig 3 (i.e., all mechanisms described inModels and methods
using the baseline parameter set). Implementation of randomly selected heterogeneous suscep-

tibility is available in the add-on modules library and is hosted on our repository for public use

with the module name “RandomSusceptibility”. For each set of replicas we simulated ten repli-

cas using the RandomSusceptibility module while varying the fraction of unsusceptible cells

(like different locations in the lungs), from 10% to 50% unsusceptible in intervals of 10% (Fig

12).

For all fractions of unsusceptible cells, infection spread throughout the epithelial sheet (Fig

12A). No replica produced the exact definition of widespread infection, since all replicas had

at least some remaining uninfected cells at the end of simulation. However, only eight out of

fifty total replicas had a few epithelial cells that were not either uninfected or dead at the end of

simulation (for infected cells, 1 replica for 10% unsusceptible, and for virus-releasing 1 replica

for 10% and 20% unsusceptible, and 2 replicas for 30%, 40% and 50% unsusceptible). The dis-

tributions of infected and virus-releasing cells were notably different from all previous simula-

tions with appreciable infection in that both subpopulations were noticeably intermixed with

uninfected (presumably unsusceptible) cells and increasingly so with increasing fraction of

unsusceptible cells. Most of these intermixed, uninfected cells (particularly those nearer to the

initial site of infection) also died due to immune response mechanisms (i.e., bystander effect

and oxidative killing).

The final number of uninfected cells at the end of simulation increased with an increasing

fraction of unsusceptible cells (Fig 12B). The rate of spread of infection decreased with an

increasing fraction of unsusceptible cells (as observed by inspection in a rightward shift in the

total number of uninfected cells). One replica for 20% unsusceptible cells exhibited
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significantly delayed spread of infection, though this was not observed in other replicas for any

other fraction of unsusceptible cells.

Integration of an explicit RNA synthesis model allows the spatiotemporal modelling of

hepatitis C virus infection. The viral replication model described inModels and methods
describes the viral life cycle, from internalization to release, as occurring over four stages and

Fig 12. Randomly distributed unsusceptible cells inhibit but do not stop spread of infection throughout the tissue. (A) Distributions of

epithelial cells during simulation time (columns) for varying fraction of unsusceptible cells (rows). From top to bottom, replicas were simulated

with 10%, 20%, 30%, 40% and 50% of epithelial cells unsusceptible to viral internalization. Cell type colors are the same as in Fig 3A. (B)

Number of uninfected cells during simulation time for ten replicas of each fraction of epithelial cells unsusceptible.

https://doi.org/10.1371/journal.pcbi.1008451.g012
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in unitless quantities. As such, it is possible to integrate detailed models of various stages of the

viral life cycle into the main framework through appropriate substitution of viral replication

model terms and assignment of unit quantities as necessary (i.e., one unit in the original viral

replication model corresponds to a physical unit in an integrated model that explicitly

describes a lifecycle process). Integration of a detailed model of some viral process then partic-

ularizes the virus represented in the main framework to the level of biological information

introduced by the integrated model.

As a demonstration of model integration, we particularized viral replication of the frame-

work to hepatitis C virus (HCV) using an existing model of subgenomic HCV RNA synthesis

in Huh-7 cells [59]. The model of HCV RNA synthesis describes various aspects of subge-

nomic HCV replication like translation of HCV polyprotein in the cytoplasm, replication

kinetics in vesicular-membrane structures and availability of host ribosomes, and explicitly

models quantities of HCV RNA molecules, translation complexes, HCV polyprotein mole-

cules, and necessary enzymes in both the cytoplasm and vesicular-membrane structures.

Integration of the HCV replication model casts the viral genome taking part in genome rep-

lication R of the viral replication module described inModels and methods as the cytoplasmic

plus-strand HCV RNA molecules of the HCV replication model (denoted RcytP , see S1 Text).
We assumed that internalized virus from the viral internalization module converts into cyto-

plasmic RNA, and that some of the decay of cytoplasmic RNA molecules described in the

HCV model leads to the production of quantities produced by replicating viral genome from

the viral replication module. To relate the unitless viral replication model described in E2—
Viral Replication to the biological quantities of the HCV replication model, we assumed that

one unit of replicating viral genome corresponds to 100 HCV RNA molecules, which was

found to produce total infection dynamics comparably to the main framework (for compari-

son with results of this work, rather than for reproduction in silico of any specific HCV data)

when using both the baseline parameter set demonstrated in Fig 3 and all model parameters

reported in [59] when the virus-receptor association affinity coefficient kon was increased by a

factor of 100 (S2 Table). The integrated HCV model is implemented in the add-on modules

library using the aforementioned software architecture and is hosted on our repository for

public use with the module name “HCVIntegrated” (Fig 13A).

Ten simulations were executed using the integrated HCV model for a simulation time of

two weeks using initial conditions similar to some used in [59], where the initially infected cell

was seeded with 500 cytoplasmic viral RNA molecules (i.e., initial R = 5, rather than initial U
=1 as in all other simulations). Spread of infection with the integrated HCV model produced

comparable patterns of spread of infection, where an infection front radially advanced outward

from the initial site of infection (Fig 13B). However, one notable difference was that the promi-

nent band of virus-releasing cells during spread of infection only occurred in some simulation

replicas (Fig 13B, replica “a”), while in other replicas only small, isolated groups of cells became

virus releasing (Fig 13B, replicas “b” and “c”). Variability of outcomes was particularly notable

among the ten simulation replicas. Some simulation replicas produced widespread infection at

a comparable timescale to that of the baseline parameter set, between one and two weeks (Fig

13C). Such simulation replicas were those that produced comparable spatial distributions of

infected and virus-releasing cells (specifically, with a prominent band of virus-releasing cells)

to those of the main framework using the baseline parameter set. In other simulation replicas

(e.g., Fig 13B, replica “c”), slowed infection occurred due to early elimination of many virus-

releasing cells. In such cases, the epithelial sheet had very few virus-releasing cells and scattered

infected cells around the region of dead cells.

PLOS COMPUTATIONAL BIOLOGY A multiscale model of viral infection in epithelial tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008451 December 21, 2020 25 / 51

https://doi.org/10.1371/journal.pcbi.1008451


Fig 13. Basic integration of an explicit model of hepatitis C virus subgenomic replication in a spatial context

presents stochastic outcomes in ten simulation replicas. (A) Schematic of implementing the integrated HCV model

using the available modules described inModels and methods (“Main modules”) and add-on modules libraries hosted in

the framework public repository. All main modules are imported except Viral Replication, which is replaced with

Integrated HCV. Modules used in a simulation are specified in model specification. The integrated HCV model module

is available in the add-on modules library. (B) Distributions of epithelial cells during simulation time for select replicas

(labeled “a”, “b” and “c”) using the integrated HCV model. Cell type colors are the same as in Fig 3A. (C) Number of

uninfected cells (left) and total extracellular virus (right) during simulation time for ten replicas using the integrated

HCV model. Select results shown in (B) are annotated according to replica labels “a”, “b” and “c”.

https://doi.org/10.1371/journal.pcbi.1008451.g013
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Many infected cells remained infected over a period of over a week, which was not observed

using the viral replication model of the main framework. Such infected cells did not contribute

to spread of infection, but rather diminished the likelihood of widespread infection by increas-

ing the distance between uninfected and virus-releasing cells. By the end of simulation in repli-

cas that produced slowed infection, total extracellular virus was negligible despite a significant

number of infected cells, which presents an outcome not described in Classification of spatio-
temporal infection dynamics that could be called “benign infection”.

An extensible framework architecture enables the inclusion of tissue recovery. As a

demonstration of modularity and extensibility, we developed, implemented and tested two

models of tissue recovery, where dead cells are replaced over time with uninfected cells. Since

epithelial cells in the simulated epithelial sheet are static, removal of dead cells and prolifera-

tion of uninfected cells was modeled as the changing of the type of a dead cell to uninfected

(rather than explicitly modeling mitosis, [18]). To generate a scenario of viral clearance and

significant tissue damage, we simulated the baseline parameter set with the parameter varia-

tions in the top-right corner of Figs 5–7, where viral internalization is severely inhibited and

the immune response is very strong and fast (i.e., parameters kon and βdelay were reduced by a

factor of 100 so that the virus is cleared but many uninfected cells die).

In the first model of tissue recovery, called “Simple Recovery”, dead cells are replaced by an

assumed layer of proliferative cells underneath the simulated epithelial patch, and so each dead

cell has a fixed probability of recovering. We approximated the probability of recovery based

on an assumed onset of tissue recovery of 7 days, in which case the probability of recovery for

each dead cell over a 20-minute simulation step was 1.98×10−3. In the second model of tissue

recovery, called “Neighbor Recovery”, dead cells are replaced by nearby uninfected cells simi-

larly to wound healing, and so each dead cell has a probability of recovery equal to the number

of neighboring uninfected cells multiplied by a coefficient. For comparison of results to those

from the Simple Recovery add-on module, we used the same probability coefficient value such

that the probability of recovery according to Simple Recovery for each dead cell over a 20-min-

ute simulation step was 1.98×10−3 per unit of contact area with neighboring uninfected cell

(measured in number of neighboring lattice sites).

Both models were implemented in CompuCell3D in the add-on modules library using the

aforementioned software architecture and is hosted on our repository for public use. The Sim-

ple Recovery model is hosted with the module name “RecoverySimple”, and the Neighbor

Recovery model is hosted with the module name “RecoveryNeighbor”. Since the only differ-

ence between the two recovery models is the criterion for cell recovery (i.e., whether a fixed

probability, or a probability according to the neighborhood of a cell), the implementation of

the Neighbor Recovery model inherits all features of the Simple Recovery model implementa-

tion using basic Python class inheritance, and required overwriting only one function that

implements a criterion of cell recovery during development (Fig 14A, see S2 Text, Extending a
model in CompuCell3D).

All simulation replicas for each recovery model began with tissue insult due to oxidative

killing by a strong and fast immune response through the first few days (Fig 14B). All simula-

tion replicas experienced a loss of approximately 100–200 uninfected cells (Fig 14C). An

increasing number of uninfected cells clearly demonstrated immediate effects of modeling

recovery after oxidative killing subsided (a trend not seen in previous results), where the Sim-

ple Recovery model almost completely replenished all killed uninfected cells by the end of sim-

ulation, and the Neighbor Recovery model replenished all killed uninfected cells between

8,000 and 13,000 minutes. Neighbor-dependence of the Neighbor Recovery model generated a

significantly different distribution of dead cells after oxidative killing, where dead cells were

scattered throughout the original region where cells died when using the Simple Recovery

PLOS COMPUTATIONAL BIOLOGY A multiscale model of viral infection in epithelial tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008451 December 21, 2020 27 / 51

https://doi.org/10.1371/journal.pcbi.1008451


Fig 14. Even simple model extensions and extensions of extensions can produce notably different spatiotemporal emergent features. (A)

Schematic of implementing a modified epithelial cell model using the available modules described inModels and methods (“Main modules”)

and add-on modules libraries hosted in the framework public repository. Modules used in a simulation are specified in model specification.

The Simple Recovery and Neighbor Recovery model modules are available in the add-on modules library. (B) Distribution of epithelial cells

during simulation time using the Simple Recovery (top) and Neighbor Recovery (bottom) models. Cell type colors are the same as in Fig 3A.

(C) Number of uninfected cells during simulation time for ten simulation replicas using the Simple Recovery (left) and Neighbor Recovery

(right) models.

https://doi.org/10.1371/journal.pcbi.1008451.g014
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model while the region where cells died shrank over time when using the Neighbor Recovery

model.

Discussion

Our spatial, multicellular model of primary acute viral infection of an epithelial tissue includes

key aspects of viral infection, viral replication and immune response. By investigating sensitiv-

ity to model parameters and simulating drug therapies, we identified six distinct spatiotempo-

ral classes of infection dynamics based on the model’s transient behaviors and final

configurations. Each of our simulation-defined classes corresponds to biologically or clinically

observable factors and outcomes. The case of no immune response would be useful for analyz-

ing in vitro experiments (e.g., organoids). Widespread infection corresponds to an initial infec-

tion that is likely to spread to surrounding tissue and cause major tissue damage. Slowed

infection corresponds to an initial infection whose spread is more likely to be eliminated by

the adaptive immune response. Containment corresponds to immune-cell elimination of all

infected cells but where remaining extracellular virus could result in new sites of infection else-

where. Recurrence corresponds to the situation when new lesions form within the observed

tissue patch. Clearance corresponds to immune-cell-based elimination of all infected cells and

extracellular virus (classical viral clearance).

We showed that key parameters of the model, such as those affecting viral internalization (i.
e., virus-receptor association affinity kon), can lead to both containment/clearance (e.g., small

kon, Figs 5–7) and widespread infection (e.g., large kon, Figs 5–7). Multidimensional parameter

sweeps showed how the interplay between immune response (e.g. immune response delay

coefficient βdelay) and viral spread could lead to widespread infection (e.g., large βdelay, large

kon, Figs 5–7), rapidly cleared infection (e.g., small βdelay, small kon, Figs 5–7) or containment/

clearance after substantial damage (e.g., small βdelay, moderate kon, Figs 5–7). Some of these

outcomes would be expected biologically (e.g., very fast internalization with a slow immune

response is likely to lead to widespread infection; faster and stronger immune responses should

control the spread of viral infection within the tissue [Figs 5–7]) and would also occur in deter-

ministic non-spatial models. Others, like the coexistence of replicas with containment/clear-

ance or failure to control for the same parameter set, are less expected, and could not occur in

a deterministic non-spatial model (though they might occur in some stochastic non-spatial

models). We have observed this interplay of parameters, as well as the potential for stochastic

outcomes, in variations of other parameters of the model, whether related to spatial (e.g., viral

and cytokine diffusion coefficients) or deterministic and stochastic cellular aspects (oxidative

agent threshold for death and virally-induced apoptosis dissociation coefficient, see S12–S17
Figs).

We studied the influence of timing and potency of an RNA-polymerization inhibitor like

remdesivir [60] on the spread of viral infection within tissue (Figs 9–11). As expected, in our

model, drugs with this mode of action can improve viral control in tissue if administered pro-

phylactically at high potency, and their effectiveness decreases the later they are administered.

Less obviously, the lower-left region of Figs 9–11 shows how therapies with even reduced

potency could control the infection when administered sufficiently early, consistently with

predictions from a deterministic, non-spatial ODE model (though the mode of action is not

explicitly described) [61]. While we expect prophylactic or early treatment at the same potency

to be more effective than later treatment, our model suggests that, for antivirals, time of treat-

ment is a more significant factor than potency in determining the effectiveness of the therapy.

Our model thus suggests that drugs that interfere with virus replication are significantly more

effective if used even at very low doses prophylactically or very soon after infection, than they
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would be if used even at a high dose as a treatment given later after exposure. Specifically, a

prophylactic treatment in simulation which reduces the rate of viral RNA synthesis by only

35% (35% potency) is more effective than a treatment with 100% potency given two and a half

days after infection, and has about the same efficacy as a treatment with 50% potency given

one day after infection. Our model also showed that because of stochasticity in viral spread,

later treatment at moderate to high potency may still be effective in a subset of individuals.

Both parameter sweeps had regions with little variation in outcome between replicas (e.g.,
the upper-right and lower-left corners of Fig 5). In regions of the parameter space between

these extremes (e.g., the unshaded areas in Figs 5 and 9), different replicas showed dramatically

different outcomes. One such parameter set in our drug therapy simulations produced three

distinct qualitative outcomes (i.e., positive, intermediate and negative outcomes, Fig 11). For

these parameters, replica outcomes were particularly sensitive to stochasticity early in infection

when only a few cells were infected (Fig 11A), with delayed spread of infection from the first

infected cell producing more positive outcomes. Simulation replicas with negative outcomes

(Fig 11A, Run 8) had higher extracellular virus levels at earlier times than those with interme-

diate outcomes (Fig 11A, Run 4), even though the fraction of each cell type was similar. Since

the viral replication module is deterministic, the primary cause of this difference is the spatial

distribution of cells. Spatial structure (e.g., infection of neighboring cells), stochastic events (e.
g., early cell death of infected cells before significant virus release) and cell-to-cell variation (e.
g., difference in viral release between cells) all affect the variation between replicas.

Differences in spatiotemporal dynamics and variability of outcomes thus critically depend

on the ability of the model to resolve the spread of virus and immune response spatially. The

intrinsic stochasticity of many model processes makes the spatial patterns of the infection

front and distribution of tissue damage nontrivial. The spectrum of outcomes in our parameter

sweeps (Figs 5–7 and 9–11) depends not only on parameter values and model immune

response, but also on the emergent spatial patterns of cytokine and virus fields (e.g., variations

within the infection front expose different numbers of uninfected epithelial cells to the

immune response). Such stochastic and spatial aspects can also introduce new considerations

to ODE models that have been primarily employed in a non-spatial context. For example, as

described in the original presentation of the HCV model that was integrated in Integration of
an explicit RNA synthesis model allows the spatiotemporal modelling of hepatitis C virus infec-
tion, the subgenomic kinetics of the HCV model require a minimum number (seven) of cyto-

plasmic viral RNA molecules to reach a saturated state. When employing the HCV model in a

multicellular, heterogeneous context, insufficient internalization of a spatially heterogeneous

extracellular viral field for subgenomic replication to produce rampant viral production, lead-

ing to insufficient cytokine signaling to invoke further immune response, makes possible the

so-called outcome of benign infection.

Future perspectives

Our modeling framework can improve with the inclusion of additional cellular and immune

mechanisms discussed in Fig 1. The modularity of model modules and built-in extensibility of

the publicly available software implementation enables us, and other interested members of

the scientific community, to accomplish such activities collaboratively or independently, con-

currently, and even when in theoretical disagreement (see S2 Text). Modules accounting for

viral clearance, tissue recovery and persistent adaptive immune response can be added to

model later stages of disease progression (as demonstrated inModel extensions). The current

immune model does not include important signaling factors (e.g., interferon-induced viral

resistance in epithelial cells) and the different roles of tissue-local and systemic signals (e.g.,
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various cytokines). It also omits many cell types associated with both innate and adaptive

immune response and their roles (e.g., viral scavenging by macrophages, relaying and amplifi-

cation of immune signals by dendritic cells). Of special interest to results like those presented

in this work is the effect of specific roles by individual immune cell phenotypes on emergent

dynamics and outcomes, considering that the timing of their activities during progression of

events can be quite different (e.g., early neutrophil release of oxidative agent contrasted with

later effector T-cell contact-mediated killing). Such details, which we are currently pursuing,

are particularly important for using framework to interrogate the spatiotemporal details of the

immune response, which are poorly understood. The model does not currently consider the

production and role of antibodies in the humoral immune response or tissue recovery after

damage (like the demonstration models presented in An extensible framework architecture
enables the inclusion of tissue recovery). The model also greatly simplifies the structure of the

epithelium and its environment, but could be easily generalized to a detailed, three-dimen-

sional geometry, albeit at the cost of computational performance.

Our current results suggest priorities for improving the biological realism within existing

modules, and for including modules representing additional biological components and

mechanisms. We are currently implementing virus-scavenging by immune cells and local anti-

viral resistance due to Type 1-IFN paracrine signaling by epithelial cells. We are calibrating the

virus replication module to existing experimental data for SARS-CoV-2 and influenza A.

Because different tissues within the body have different responses to local viral infection, devel-

oping our framework to support the modeling and simulation of multi-organ disease progres-

sion (e.g., by identifying model parameters corresponding to specific tissues and physiological

compartments) would allow us to understand the highly variable whole-body progression of

many viral diseases.

The immune response to viral infection depends on locus of infection, degree of infection

and patient immune state. Understanding the reasons for immune failure to contain infection,

or pathological responses like cytokine storms or sepsis, requires models of immune response

at multiple locations and scales. The same is true for understanding and predicting the possible

protective or adverse effects of coinfection. The number of permutations of infection timing

and combination of pathogens is too large to address purely by experiments, but could be

addressed by simulations. Spatial modeling is also important because the spatiotemporal

dynamics of coinfection within tissues may be important to the outcome (e.g., whether indi-

vidual cells can be superinfected, whether viral lesions with a tissue are disjoint or overlap,

whether the main foci of the pathogens are in the same or different tissues).

We can also study the systemic effects of possible therapies with known molecular modes of

action (as seen in Results). Evaluating therapies in a simulated context prior to performing ani-

mal or human trials could lead to more effective and rapid drug discovery and to optimized

dosage and timing of treatments. Understanding the origins of population variability in disease

progression is crucial to providing optimal personalized treatment. While the simulations pre-

sented here begin with a single infected cell, a simulation which begins with multiple infected

cells might better represent the infection dynamics of patients that have been subject to high

level exposure, such as healthcare workers. Factors such as hypertension, immunosuppression

and diabetes affect tissue state and immune response and could also be incorporated into our

model. More detailed studies of these factors using our model could reveal more about the

effects of population variability (due to age, genetic variation, prior drug treatment or immune

status) on disease progression. Such computational studies could be accomplished using

recently published concomitant, calibrated ODE-based simulations of COVID-19 treatment

[61].
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We are working to implement validated non-spatial models of viral infection and immune

response as agent-based spatial models (e.g., viral production, cytokine secretion, tissue dam-

age). By starting with a validated model that uses ordinary differential equations and adding

spatial components gradually, we can calibrate our spatial models and validate our results. In

ongoing work, we have developed a formal method for spatializing ODE models and employ-

ing their parameters such that these analogous spatial models reproduce the ODE results in

the limit of large diffusion constants. Using this method, we can combine the ability to do

rapid formal parameter identification of ODE-based models and to leverage published ODE

model parameters with the flexibility of spatial modeling. In these cases, any differences

between the ODE results and the spatial model can be definitively attributed to spatialization

(e.g. the local spread of virus or cytokine or the limited speed of movement of immune cells),

or to additional factors which are difficult to include in an ODE model (e.g., the variability of

individual cells or the complex time course of virus release by individual infected cells). We

have developed formal spatializations of a number of interesting ODE models of COVID, such

as [61,62], to explore the effects of stochasticity of outcomes, the effects of spatial mechanisms,

and infection dynamics at a particular site of infection on the predictions of these models. An

additional benefit of our approach is that we can easily and consistently combine and integrate

ODE models which focus on different aspects of the complex process of infection, spread and

clearance (e.g., combining published models of intracellular INF-induced viral resistance with

spatial models of plaque spread in vitro [20,63]). We illustrate both of these strengths in Inte-
gration of an explicit RNA synthesis model allows the spatiotemporal modelling of hepatitis C
virus infection, where we integrate a published HCV model of subgenomic replication into our

framework. We can also conduct simultaneous, cross-platform validation of spatial models by

building multiple implementations of the same conceptual and quantitative models on inde-

pendent modeling platforms (here Chaste [64,65] and Morpheus [66]).

The COVID-19 crisis has shown that drug discovery and therapy development both require

new predictive capabilities that improve their effectiveness and efficiency. We have developed

our framework to explore the relationship between molecular, cellular-level and systemic

mechanisms and outcomes of acute viral infections like SARS-CoV-2, and to support develop-

ment of optimal, patient-specific treatments to combat existing and new viruses.

Models and methods

In this section we first present our model as a high-level conceptual model where we list each

process included in an implementation-independent manner. We then detail the quantitative

model and its computational implementation, which uses a Cellular Potts representation of

cellular dynamics. All quantitative models are implemented in a modular, extensible simula-

tion architecture built using the CompuCell3D simulation environment, which is publicly

available for download and further development by interested members of the scientific com-

munity (see S2 Text).

Conceptual model: Biological hypotheses and assumptions

As discussed in Introduction (Fig 2A) we consider viral propagation in an epithelial tissue and

a lymph node. The tissue contains two interacting spatial components: an epithelium compo-

nent (consisting of a monolayer of epithelial cells), and an extracellular environment compo-

nent (containing immune cells, extracellular virus and chemicals). The lymph node

component (whose state is affected by signaling from the tissue) adds immune cells to the

extracellular space when in a proinflammatory state and removes them when in an anti-

inflammatory state. A set of processes and interactions govern how the states of these
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components evolve in time. We detail these components, processes and interactions in the fol-

lowing subsections and in Fig 2.

Epithelium component. The epithelium component of the model represents the layer of

epithelium in the tissue, and is composed of epithelial cells of four types: uninfected, infected,

virus-releasing and dead (Fig 2C). We assume that the epithelial cells are immobile. We

implicitly model the ECM by considering its influence on all processes in the epithelium com-

ponent. The epithelial cells contain modules that describe the viral life cycle and approximate

the amount of virus as a continuous quantity (Fig 2B), including: binding and internalization

of viral particles from the extracellular environment (E1), intracellular replication (E2) and

release (E3) of synthesized virus into the extracellular environment, as well as cell death caused

by viral-replication-associated damage, immune-cell killing and oxidative agent killing (E4).

E1—Viral internalization. Module E1 models extracellular virus binding to epithelial cell

receptors and internalization (including endocytosis-dependent and -independent routes).

Internalization of viral particles involves binding of the viral spike protein to target cell-surface

receptors, truncation by surface proteins and receptor-mediated endocytosis or fusion with

the host plasma membrane. We assume the dynamics of internalization can be represented by

describing the dynamics of virus-surface-receptor binding, determined by the amount of

extracellular virus and target surface receptors, and by the binding affinity between them

(T1!E1). We also consider the dynamic depletion of unbound target surface receptors on a

cell when it internalizes a virus and superinfection of infected cells. Internalized viral particles

initiate the viral replication process (E1!E2 and Fig 2B).

E2—Viral replication. Module E2 models the viral replication cycle inside a host epithelial

cell (Fig 2B). Individual cells infected with many non-lytic viruses show a characteristic three-

phasic pattern in their rate of viral release. After infection and during an eclipse phase, a cell

accumulates but does not yet release newly assembled viruses. In a second phase, the rate of

viral release increases exponentially until the virus-releasing cell either dies or, in a third

phase, saturates its rate of virus synthesis and release. Viral replication hijacks host synthesis

pathways and may be limited by the availability of resources (amino acids, ATP, etc.), synthesis

capability (ribosomes, endoplasmic reticulum, etc.) or intracellular viral suppression. A quanti-

tative model of viral replication needs to be constructed and parameterized such that it repro-

duces these three phases.

We model viral replication based on processes associated with positive sense single-

stranded RNA (+ssRNA) viruses. +ssRNA viruses initiate replication after unpacking of the

viral genetic material and proteins into the cytosol (E1!E2). The viral RNA-dependent RNA

polymerase transcribes a negative RNA strand from the positive RNA strand, which is used as

a template to produce more RNA strands (denoted by “Viral Genome Replication” in Fig 2B).

Replication of the viral genome is the only exponential amplification step in the growth of

most viruses within cells. Subgenomic sequences are then translated to produce viral proteins

(“Protein Synthesis” Fig 2B). Positive RNA strands and viral proteins are transported to the

endoplasmic reticulum (ER) where they are packaged for release. After replication, newly syn-

thesized viral genetic material is translated into new capsid protein and assembled into new

viral particles (“Assembly and Packaging” in Fig 2B). These newly assembled viral particles ini-

tiate the viral release process (E2!E3). We assume the viral replication cycle can be modeled

by defining four stages: unpacking, viral genome replication, protein synthesis, and assembly

and packaging. Fig 2B illustrates these subprocesses of replication and their relation to viral

internalization and release.

E3—Viral release. Module E3 models intracellular transport of newly assembled virions and

release into the extracellular environment (E3!T1 and Fig 2B “Release”). We conceptualize

the virus being released into the extracellular fluid above the apical surfaces of epithelial cells.
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Newly assembled virions are packed into vesicles and transported to the cell membrane for

release into the extracellular environment (E2!E3). We assume that no regulation occurs

after assembly of new virus particles, and that release into the extracellular environment can be

modeled as a single-step process (E3!T1).

E4—Cell death. Module E4 models death of epithelial cells due to various mechanisms.

Models the combined effect of the many types of virus-induced cell death (e.g., production of

viral proteins interferes with the host cell’s metabolic, regulatory and delivery pathways) as

occurring due to a high number of assembled viral particles in the viral replication cycle

(E2!E4). Models cell death due to contact cytotoxicity (I3!E4). Models cell death due to

oxidizing cytotoxicity (T3!E4).

Extracellular environment component. The extracellular environment contains the

immune cells, extracellular virus, cytokines and oxidative agent, and is the space where trans-

port of viral particles (T1), cytokine molecules (T2) and the oxidizing agent (T3) occurs. We

implicitly model the ECM in the extracellular environment by subsuming its geometrical, bio-

chemical and biophysical influences on immune cell motility and virus/cytokine/agent spread-

ing in the chosen rate laws and parameter set. Immune cells are mobile and can be either

activated or inactive (I1). Inactive immune cells move through random cell motility and acti-

vated immune cells chemotax along the cytokine field (I2). The immune cell modules also

account for cytotoxic effects of immune cells on contact due to antigen recognition (I3) and

through the secretion of oxidizing agents (I4).

T1—Viral transport. Module T1 models diffusion of viral particles in the extracellular envi-

ronment and their decay. Viral particles are transported by different mechanisms (e.g., ciliated

active transport, diffusion) and media (e.g., air, mucus) at different physiological locations and

through different types of tissue (e.g., nasopharyngeal track, lung bronchi and alveoli). Viral

particles are eliminated by a variety of biological mechanisms. We represent these mechanisms

by modeling transport of viral particles as a diffusive virus field with decay in the extracellular

environment. We model transport in a thin layer above the apical surfaces of epithelial cells.

Viral internalization results in the transport of a finite amount of virus from the extracellular

environment into a cell and depends on the amount of local extracellular virus and number of

cell surface receptors (T1-E1). Infected cells release viral particles into the extracellular envi-

ronment as a result of the viral replication cycle (E3-T1).

T2—Cytokine transport. Module T2 models diffusion and clearance of immune signaling

molecules in the extracellular environment. The immune response involves multiple signaling

molecules acting upon different signaling pathways. We assume that the complexity of

immune signaling can be functionally represented using a single chemical field that diffuses

and decays in the extracellular environment. Once infected, epithelial cells secrete signaling

molecules to alert the immune system (E2-T2). Locally, exposure to cytokine signaling results

in activation of immune cells (T2-I1). Upon activation, immune cells migrate towards infec-

tion sites guided by cytokine (T2-I2). Lastly, activated immune cells amplify the immune sig-

nal by secreting additional cytokines into the extracellular environment (I1-T2). We model

long-range effects by assuming that cytokine exfiltrates tissues and is transported to immune

recruitment sites (T2-L1).

T3—Oxidizing agent burst and transport. Module T3 models diffusion and clearance of a

general oxidizing agent in the extracellular environment. One of the cytotoxic mechanisms of

immune cells is the release of different oxidizing agents, reactive oxygen species like H2O2 and

nitric oxide. The mechanism of action of such agents varies but we assume that we can general-

ize such effects by modeling a single diffusive and decaying oxidizing agent field in the extra-

cellular environment. The oxidizing agent is secreted by activated immune cells after

persistent exposure to cytokine signals (I4!T3). We assume that the range of action of the
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oxidizing agent is short. Cell death is induced in uninfected, infected and virus-releasing epi-

thelial cells when sufficiently exposed to the oxidizing agent (T3!E4).

I1—Immune cell activation. Module I1 models immune cell maturation due to cytokine sig-

naling. Immune cells mature at the recruitment site before being transported to the infection

site as inactive immune cells (L1!Immune Cells). After infiltration, immune cells need to be

exposed to local cytokine signals before activating (T2!I1). Once activated, immune cells che-

motax along the cytokine field (I2) and amplify immune signaling by releasing cytokine mole-

cules into the extracellular environment (I1!T2). Immune cells can also deactivate after a

period of activation (I1 and Fig 2C).

I2—Immune cell chemotaxis. Module I2 models activated immune cell chemotactic migra-

tion towards infection sites. We assume that upon activation (I1!I2), immune cells move

preferentially towards higher concentrations of local cytokine (T2!I2).

I3—Immune cell direct cytotoxicity and bystander effect. Module I3 models immune cell

cytotoxicity when immune cells (both activated and inactive) identify and induce death in epi-

thelial cells with internal virus. Immune cells identify epithelial cells with internal virus on con-

tact by antigen recognition and induce cell death by activating the caspase cascade (I3!E4).

Uninfected, infected, and virus-releasing epithelial cells in contact with an epithelial cell that is

killed by direct cytotoxicity can die through a bystander effect.

I4—Immune cell oxidizing agent cytotoxicity. Module I4 models activated immune cell kill-

ing of target cells through the release of a diffusive and decaying oxidizing agent into the envi-

ronment. Cell death is induced in uninfected, infected and virus-releasing epithelial cells when

sufficiently exposed to the oxidizing agent (T3!E4).

Lymph node component. The lymph node component models the net pro- or anti-

inflammatory state of the immune system. It responds to cytokines received from the tissue

and adds or removes immune cells from the tissue (L1).

L1—Immune cell recruitment. Module L1 models immune cell recruitment and infiltration

into the tissue in response to cytokine signaling by infected cells and activated immune cells.

Infected cells secrete signaling molecules into the extracellular environment (E2!T3), which

alerts resident immune cells and recruits new immune cells from the blood, distant lymph

nodes and bone marrow. We model the local strength of the cytokine signal as causing an

increase in the strength of the signal at the immune recruiting sites. We model long-distance

signaling by assuming that cytokine molecules in the extracellular environment exfiltrate the

infection site and are transported through the lymphatic system to the lymphatic system to

lymph nodes and through the bloodstream to initiate immune-cell recruitment (T2!L1). A

delay on the order of minutes to hours would represent semi-local recruitment (e.g., at the

blood vessels). A delay on the order of days would represent long-range, systemic recruitment

(e.g., the time required for a dendritic cell to reach a lymph node and an induced T cell to

return). Recruited immune cells are then transported and infiltrate the infection site

(L1!Immune Cell).

Quantitative model and implementation

For model construction and integration we use the open-source multicellular modeling envi-

ronment CompuCell3D (www.compucell3d.org) which allows rapid and compact specifica-

tion of cells, diffusing fields and biochemical networks using Python and the Antimony

language [55,67]. CompuCell3D is specifically designed to separate model specification (con-

ceptual and quantitative models) from the details of model implementation as a simulation

and to make simulation specification accessible to biologists and others not specializing in soft-

ware development. In this paper, we specifically designed the Python modules and their cross-
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scale integration to have clear and stable APIs, allowing modules to be rapidly swapped out by

collaborating developers. CompuCell3D runs on Windows, Mac and Linux platforms without

change of model specification, and allows cluster execution for parameter exploration.

Cellular Potts model (CPM). Cell types. Cells are divided into two broad groups, epithe-

lial and immune cells, and have a type (see Fig 2C) which determines their properties, the pro-

cesses and interactions in which they participate, and their events and dynamics. Epithelial

cells can have one of four types (uninfected, infected, virus releasing and dead). Immune cells

can have one of two types (activated and inactive). Cell types can change according to out-

comes of various modules, and a module specifying such an event describes both the initial

and final cell types of the transition. A cell type in the model is not a phenotype in the biologi-

cal sense (e.g., epithelial cell), but an identifier for the various states that a particular cell can

assume (e.g., dead epithelial cell). When an epithelial cell changes to the dead type, all epithelial

modules are disabled and the cell is generally inactive.

Cellular dynamics. Cellular spatial dynamics is modeled using the Cellular Potts model (also

known as CPM, or Glazier-Graner-Hogeweg model), which represents generalized cells and

medium as occupying a set of sites in a lattice [68]. Random cell motility is modeled as the sto-

chastic exchange of sites at intercellular and cell-medium interfaces. Configurations evolve to

minimize the system’s effective energy H,

H ¼
P

s
lvolumeðvðsÞ � VðtðsÞÞÞ

2
þ
P

x

P
x02NðxÞð1 � dsðxÞ;sðx0ÞÞJðtðsðxÞÞ; tðsðx0ÞÞÞ

þHchemotaxis: ð1Þ

Here σ is the integer identification of a cell and τ(σ) is the type of cell σ. v(σ) and V(σ) are

the current and target volumes of cell σ, respectively, and λvolume is a volume constraint coeffi-

cient. N(x) is the neighborhood of site x, δi,j is the Kronecker-delta, and J(τ, τ0) is the effective

contact energy per unit surface area between cells of types τ and τ0. The final term, Hchemotaxis;

models chemotaxis-directed cell motility, and is prescribed by module I2. The cell configura-

tion evolves through asynchronous lattice-site copy attempts. A lattice-site copy attempt starts

by random selection of a site x in the lattice as a target, and a site x0 in its neighborhood as a

source. A configuration update is then proposed in which the value x0 from the source site

overwrites the value of x in the target site. The change in total effective energy DH due to the

copy attempt is calculated, and the update is executed with a probability given by a Boltzmann

acceptance function,

PrðsðxÞ ! sðx0ÞÞ ¼ e� max 0;DH
H�f g: ð2Þ

Here the intrinsic random motility H�
controls the stochasticity of accepted copy attempts.

Updates that reduce the system’s effective energy are always accepted. The unit of simulation

time is the Monte Carlo step (MCS)–taken to be 20 minutes in this work. One MCS corre-

sponds to considering a number of copy attempts equal to the number of lattice sites.

Epithelial component modules. Processes E1-E4 describe epithelial cell functions as

defined below. E1, E2 and E4 govern the cell-type transitions of epithelial cells (see Fig 15). E1

transforms an uninfected epithelial cell into an infected epithelial cell. E2 transforms an

infected epithelial cell into a virus-releasing epithelial cell. E4 transforms a virus-releasing epi-

thelial cell into a dead cell.

E1—Viral internalization. To capture the stochasticity associated with internalization of

discrete virus particles in terms of discrete binding events, we assign each uninfected, infected

and virus-releasing epithelial cell a probability of absorbing diffusive viral particles from the

extracellular virus field (T1). The uptake probability Pr(Uptake(σ)>0) for each cell σ is given
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by a Hill equation of the total amount of diffusive viral particles in the domain of the cell

cvir(σ), the number of unbound cell surface receptors SR(σ) and the binding affinity between

them.

PrðUptakeðsÞ > 0Þ ¼
Dt
aupt

ðcvirðsÞÞ
hupt

ðcvirðsÞÞ
hupt þ Vhupt

upt

; where Vupt ¼
Rokoff

2konvðsÞSRðsÞ
: ð3Þ

Here hupt is a Hill coefficient, Ro is the cell’s initial number of unbound receptors, kon is the

virus-receptor association affinity, koff is the virus-receptor dissociation affinity, αupt is a char-

acteristic time constant of uptake and Δt is the time represented by one MCS. At each simula-

tion time step, the uptake probability is evaluated against a uniformly-distributed random

variable. When uptake occurs, the uptake rate is proportional to the local amount in the virus

field (T1), and the probability of uptake is used to define the amount (Uptake) of virus taken

up during the MCS,

Uptake sð Þ ¼
1

Dt
PrðUptakeðsÞ > 0Þcvir sð Þ; ð4Þ

dSRðsÞ
dt

¼ � Uptake sð Þ: ð5Þ

The amount absorbed by each cell (Uptake) is uniformly subtracted from the virus field

over the cell’s domain and the cell’s number of cell surface receptors is reduced by the same

Fig 15. State diagram and interactions of epithelial cells.Epithelial cells can have one of four “cell types”:

uninfected, infected, virus-releasing and dead. Uninfected cells become infected cells when the viral uptake model

(E1) internalizes viruses from the extracellular virus field (T1). Infected cells continue internalizing viruses from the

extracellular virus field and become virus-releasing cells when the viral replication model (E2) produces sufficient

newly assembled virions. Virus-releasing cells secrete viruses into the extracellular virus field (T1) according to the

viral release module (E3) and secrete cytokines directly into the extracellular cytokine field (T2). Virus-releasing cells

can die if the conditions of the virally induced cell-death model (E4) are met.

https://doi.org/10.1371/journal.pcbi.1008451.g015
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amount. The amount of virus taken up (Uptake) is also passed to the cell’s instance of the viral

replication model (E2). Infected epithelial cells continue taking up viral particles from the

environment until their cell surface receptors are depleted.

E2—Viral replication. Our viral replication model combines equations and parameters

from several sources to represent the replication of a generic virus [7,9,52,53]. The model con-

tains four variables representing viral quantities in different states of the viral replication pro-

cess: internalized virus U (Eq (6), the process of unpacking), viral genome taking part in

genomic replication R (Eq (7), the process of viral genome replication), synthesized protein P
(Eq (8), the process of protein synthesis), and assembled and packaged virions A (Eq (9), the

process of assembly and packaging). Biologically, the only process which can exponentially

increase the rate of virus production by a single cell is viral genome replication, so the equa-

tions include the positive feedback by R in Eq (7). Biologically, factors like the cell’s metabo-

lism, limited number of ribosomes, maximum rate of endoplasmic reticulum function and

activation of intracellular viral suppression pathways all limit production of viral components,

so we include a Michaelis-type saturation term for the rate of replication in Eq (7). Each unin-

fected, infected and virus-releasing cell in the simulation contains an independent copy of the

system of ordinary differential equations modeling the viral replication process,

dU
dt
¼ Uptake � ruU; ð6Þ

dR
dt
¼ ruU þ rmaxR

rhalf
Rþ rhalf

� rt R; ð7Þ

dP
dt
¼ rtR � rpP; ð8Þ

dA
dt
¼ rpP � Release: ð9Þ

Here ru is the unpacking rate, rmax is the viral replication rate, rt is the translating rate (rate

at which viral genomes turn into RNA templates for protein production) and rp is the packag-

ing rate. Uptake is defined in E1 and Release is defined in E3. The saturation of the rate of viral

genome replication is represented by a Michaelis-Menten function,
rhalf

Rþrhalf
, where rhalf is the

amount of R at which the viral genome replication rate is reduced to
rmax

2
(and the flux is

reduced to 1

2
rmax rhalf Þ. The duration of the eclipse phase of single-cell infection (the time

between the first entry of the virus into the cell and the first release of newly synthesized virus)

is approximately teclipse � 1

ru
þ 1

rmax
þ 1

rt
þ 1

rp
(11.7 hours for the reference parameter set in

Table 1), with the additional complication that in our model, an epithelial cell does not release

virus until A reaches a threshold value. The timescale for tenfold increase of virus release when

viral replication is maximal is t10 �
logð10Þ

rmax
(7.7 hours for the reference parameter set in Table 1).

The number of newly assembled virions is passed to the cell’s instance of the viral release mod-

ule (E3). See Fig 2B for a schematic of the viral replication process and Fig 16 for a representa-

tive time series from the viral internalization, replication and release modules.

E3—Viral release. Virus releasing cells release viral particles into the extracellular virus field

(T1). The amount of virus released by a cell per unit time is proportional to the state variable
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for assembled virions in the viral replication module (E2),

Release ¼ rsA: ð10Þ

Here rs is the release rate of viral particles and A is the level of assembled virus in the cell

(defined in E2). The total amount released by each cell rsAΔt is subtracted from the cell’s state

variable for assembled virions A and passed to the source term of the extracellular virus field

(T1) to maintain mass balance.

E4—Cell death. For cell death due to virally-induced apoptosis, each infected and virus-

releasing cell can die due to the amount of intracellular virus. The rate of death is defined as a

stochastic function of the state variable for assembled new virions from the viral replication

module (E2). If a virus releasing cell dies then it changes its cell type to dead and the cell’s

instances of the viral internalization, replication and release modules are disabled. The proba-

bility of virus-induced apoptosis per simulation step is a Hill equation of the current load of

assembled virus,

PrðtðsÞ ! DeadjtðsÞ ¼ Virus releasingÞ ¼
Dt
aapo

ðAðsÞÞhapo

ðAðsÞÞhapo þ Vhapo
apo

: ð11Þ

where A(σ) is the number of assembled virions in cell σ, hapo is a Hill coefficient, Vapo is the

amount of assembled virions at which the apoptosis probability is 0.5 per unit time and αapo is

a characteristic time constant of virally-induced apoptosis. For modeling of cell death due to

contact cytotoxicity, see I3—Immune cell direct cytotoxicity and bystander effect. For modeling

of cell death due to oxidizing cytotoxicity, see I4—Immune cell oxidizing agent cytotoxicity.

Fig 16. Representative time series of viral internalization, replication and release models from Fig 2B. A sample

simulation of the viral replication model in a single epithelial cell. The model is initialized with one unit of internalized

virus (U = 1), and the rest of the state variables set to zero (R = 0, P = 0, A = 0). No additional virus internalization

occurs during this sample simulation. Dashed line indicates the time of the cell’s transition from the infected to virus-

releasing cell type.

https://doi.org/10.1371/journal.pcbi.1008451.g016
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Regardless of the death mechanism the internally assembled virions are not released to the

environment and do not take action in further infection. We assume that in the process of

death the assembled virus and viral particles are either damaged or deactivated.

Lymph node modules. L1—Immune cell recruitment. The total immune cell population is

governed by an ordinary differential equation of a dimensionless state variable S that repre-

sents immune response due to local conditions and long-distance signaling. Our convention is

that when S>0, immune cells are recruited to the simulation domain; likewise, immune cells

are removed from the simulation domain when S<0. Probability functions of S describe the

likelihood of immune cell seeding and removal,

Prðadd immune cellÞ ¼ erfðaimmuneSÞ; S > 0; ð12Þ

Prðremove immune cellÞ ¼ erfð� aimmuneSÞ; S < 0: ð13Þ

Here the coefficient αimmune is the sensitivity of immune cell addition and removal to the

state variable S. The dynamics of S are cast such that, in a homeostatic condition, a typical

number of immune cells can be found in the simulation domain, and production of cytokine

(T2) results in additional recruitment via long-distance signaling (i.e., with some delay). We

model this homeostatic feature using the feedback mechanism of the total number of immune

cells Nimmune in the simulation domain. Cytokine signaling is modeled as perturbing the

homeostatic state using the term αsigδ. Here δ is the total amount of decayed cytokine in the

simulation domain and αsig>0 models signaling by transmission of cytokine to some far-away

source of immune cells. We write the rate of change of S as

dS
dt
¼ badd � bsubNimmune þ

asig

bdelay
d � bdecayS: ð14Þ

Here βadd and βsub control the number of immune cells in the simulation domain under

homeostatic conditions. βdelay controls the delay between transmission of the cytokine to the

lymph node and corresponding immune response by adjusting the rate of recruitment due to

total cytokine (i.e., increasing βdelay increases the resulting delay). βdecay regulates the return of

S to an unperturbed state (i.e., S = 0, increasing βdecay increases the rate of return to S = 0). To

determine the seeding location, the simulation space is randomly sampled nseeding times, and

an immune cell is seeded at the unoccupied location with the highest amount of the virus field.

If no location is unoccupied, then the immune cell is not seeded. The removal probability is

evaluated for each immune cell at each simulation step. Immune cells are removed by setting

their volume constraint to zero.

Immune cell modules. The four processes I1-I4 capture immune cell functions which are

defined below. These processes control how immune cells are activated, translocate, and kill

other cells. Their interactions with epithelial cells and other model components are illustrated

in Fig 17.

I1—Immune cell activation. Inactive immune cells become activated with a probability

according to a Hill equation of the total cytokine bound to the cell Bcyt(σ,t),

Prðtðs; tÞ ! activated immunejtðs; tÞ ¼ inactive immuneÞ

¼
ðBcytðs; tÞÞ

hact

ðBcytðs; tÞÞ
hact þ ðEC50cytactÞ

hact
:ð15Þ

After ten hours, an activated immune cell becomes inactive, in which case evaluations of

activation (Eq (15)) recommence. The immune cells “forget” a percentage (1−ρcyt) of the
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bound cytokine each time step while taking up an amount of cytokine from the environment

(ωcyt(τ(σ),t) defined in T2),

Bcytðs; tÞ ¼ rcytBcytðs; t � DtÞ þ ocytðtðsðxÞÞ; tÞ: ð16Þ

I2—Immune cell chemotaxis. Activated immune cells experience a motile force as a

response to a signaling field. Immune cells chemotax along concentration gradients of the

cytokine field. The chemotactic effective energy Hchemotaxis associated with the gradient is calcu-

lated according to a chemotactic sensitivity parameter λchemotaxis and calculated chemotactic

force Fchemotaxis. The contribution of Hchemotaxis to the change in the system’s total effective

energy is calculated using Fchemotaxis when considering copy attempts. The chemotactic force at

a location x is saturated by normalizing the chemotactic sensitivity parameter by the concen-

tration of cytokine at the center of mass of the cell at x, ccyt,CM(σ(x)),

Fchemotaxis xð Þ ¼
lchemotaxis

1þ ccyt;CMðsðxÞÞ
rccyt xð Þ: ð17Þ

I3—Immune cell direct cytotoxicity and bystander effect. Immune cells, whether activated or

not, have the ability to kill infected cells by direct contact. At each simulation step, immune

cells trigger cell death in the infected and virus-releasing epithelial cells with which they come

in contact. When an infected cell is killed by direct cytotoxicity, each of its first-order neigh-

bors is evaluated for cell death by a bystander effect model. Each of those neighbors σ02N(σ) in

the first-order neighborhood N(σ) of a cell σ killed by direct cytotoxicity has a probability kbys-
tander of dying from the bystander effect given by,

Prðtðs0; tÞ ! DeadjDirect CytotoxicityðsÞ ¼ TrueÞ ¼ kbystander8s
0 2 NðsÞ: ð18Þ

Fig 17. State diagram and interactions of Immune cells. Immune cells can adopt two different generalized types:

inactive and activated. Inactive immune cells are recruited by the cytokine levels according to the immune recruitment

module (L1).Transition from inactive to activated immune cells is determined by the immune activation module (I1)

when cells are exposed to cytokines in the tissue. Activated immune cells amplify the cytokine signal by secreting

cytokines to the extracellular environment. Activated immune cells chemotax towards virus-releasing cells (I2).

Immune cells induce death of epithelial cells by direct cytotoxicity when coming into contact with infected cells (I3),

bystander effect by killing neighbors of infected cells (I3) and through oxidative cytotoxicity (I4) by releasing cytotoxic

oxidizing agents (T3) into the extracellular environment.

https://doi.org/10.1371/journal.pcbi.1008451.g017
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I4—Immune cell oxidizing agent cytotoxicity. Immune cells release a short-range, diffusive

oxidizing agent when exposed to high cytokine concentration (T3). The oxidizing agent kills

an epithelial cell of any type when the total amount of oxidizing agent in the domain of the cell

coxi(σ) exceeds a threshold for death tdeathoxi ,

Prðtðs; tÞ ! DeadjcoxiðsÞ > tdeathoxi Þ ¼ 1: ð19Þ

Extracellular environment modules. T1—Viral transport. The change in concentration

of the virus field cvir is calculated at each location in the simulation domain by solving the fol-

lowing reaction-diffusion equation,

@cvirðxÞ
@t

¼ Dvirr
2cvir xð Þ � gvircvir xð Þ þ

1

vðsðxÞÞ
ReleaseðsðxÞÞ � UptakeðsðxÞÞð Þ: ð20Þ

Here Dvir is the diffusion constant of the extracellular virus and γvir is the decay rate is the

decay rate. Uptake and release by a cell at each location are determined using the viral internal-

ization (E1) and the viral release (E3) modules, and are uniformly applied over all sites of the

domain of the cell.

T2—Cytokine transport. The change in concentration of the cytokine field ccyt is obtained

by solving a reaction-diffusion equation of the following general form,

@ccyt
@t
¼ Dcytr

2ccyt � gcytccyt þ scyt: ð21Þ

The decay term γcytccyt represents cytokine leaving the simulation domain (e.g., in immune

recruitment). To model immune signaling, the rate of cytokine secretion is described by an

increasing Hill function of csig(σ(x)) with Hill exponent hcyt = 2. The meaning of csig(σ(x))

depends on the cell type and the Hill exponent can differ for other cell types and states. The

rate of cytokine secretion scyt is written as,

scyt x; tð Þ ¼ scyt tðsðxÞ; tÞð Þ
ðcsigðsðxÞ; tÞÞ

hcyt

ðcsigðsðxÞ; tÞÞ
hcyt þ ðVcytðtðsðxÞ; tÞÞÞ

hcyt
� ocyt tðsðxÞ; tÞð Þ: ð22Þ

Here σcyt(τ(σ(x),t)) is the maximum cytokine secretion rate for the cell type at x, csig(σ(x)) is

a quantity that affects the cells cytokine secretion, ωcyt(τ(σ(x),t))is the cytokine uptake rate of

the cell type at x and Vcyt(τ(σ(x),t)) is a dissociation coefficient of cytokine secretion for the cell

type at x. σcyt is nonzero for infected epithelial cells, virus-releasing epithelial cells and activated

immune cells. For infected and virus-releasing epithelial cells csig is the amount of assembled

virus A in the viral replication module, and for activated immune cells csig is the total amount

of cytokine in the domain of the cell. Similarly, for epithelial cells Vcyt is the amount of assem-

bled virus, and for immune cells Vcyt is the amount of cytokine in the domain of the cell. ωcyt(τ
(σ(x),t)) is constant and nonzero for activated and inactive immune cells.

T3—Oxidizing agent transport. The oxidizing agent field diffuses according to the reaction-

diffusion equation,

@coxi
@t
¼ Doxir

2coxi � goxicoxi þ soxi: ð23Þ

Bursts of oxidizing agent are implemented as a source term for one time step according to a

rate coefficient σoxi, which is uniformly mapped onto the source term soxi over the domain of
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each activated immune cell. An oxidizing burst occurs in immune cells with an activated state

when the total cytokine in the immune cell’s domain exceeds a threshold tsecoxi.

Initial and boundary conditions. The domain of all simulations had dimensions of 90 x

90 x 2 lattice sites. The initial cell configuration consisted of a 30 x 30 sheet of uninfected epi-

thelial cells, each of size 3 x 3, on the lower layer of lattice sites (see S18 Fig for a demonstration

of the negligible effects of a non-uniform arrangement of epithelial cells). Epithelial cells were

“frozen”, in that they were immobile, leaving the remaining 90 x 90 subdomain for occupancy

by recruited immune cells. For cellular dynamics and mass transport, periodic boundary con-

ditions were applied in the plane of the epithelial sheet, and Neumann conditions were applied

along the direction orthogonal to the epithelial sheet. All field solutions for the diffusive viral,

cytokine and oxidizing agent fields were initialized as zero everywhere.

At each first simulation step, the epithelial cell in the center of the sheet was set to infected,

and the amount of internalized virus U of the viral replication model was set to a value of one.

All epithelial cells were initialized with a number of unbound surface receptors SR = Ro. All

immune cells, when introduced to the simulation by recruitment, were initialized in an inac-

tive state, and with a bound cytokine value equal to zero (Bcyt = 0). During transition of an

uninfected epithelial cell to the infected type, all state variables of the viral replication model

were initialized with a value of zero.

Simulation specifications. Model implementation and all simulations were performed

using CompuCell3D, which uses a non-dimensional lattice for CPM-based cellular dynamics

and non-dimensional explicit time integration of reaction-diffusion field solutions. As such, a

baseline parameter set was constructed for all CPM parameters and modules developed in this

work (Table 1). Non-dimensionalization was performed on model parameters for a lattice

dimension of 4 μm per pixel along each dimension, at 20 minutes (1/3 hours) per MCS. All

replicas were simulated for ten trials, each 1,000 MCS (20000 minutes, 333 hours, 14 days)

long. Simulation data was collected at a frequency of 10 MCSs (200 minutes, 3 hours) for all

simulations.

Supporting information

S1 Fig. No immune system. Simulation of the progression of infection in a patch of epithelial

tissue, with all parameters as in Fig 3, but with no cellular immune system response corre-

sponding to virus spread in an in vitro or organoid culture, or a severely immunosuppressed

individual. (A) Snapshots of spatial configuration vs time showing progression of simulated

infection. Columns, left to right: 0 minutes (time of initial infection), 4000 minutes (67 hours,

2 ¾ days) after infection, 8000 minutes (133 hours, 5 ½ days), 12000 minutes (200 hours, 8 ⅓
days), 16000 minutes (267 hours, 11 days), and 20000 minutes (333 hours, 14 days). First row:

epithelial cell layer composed of uninfected (blue), infected (green), virus releasing (red) cells

and dead cells (black). Second row: level of extracellular virus field. Third row: extracellular

cytokine field. Fields are color-coded on a logarithmic scale: red corresponds to the chosen

maximum value specified in the first panel, blue to six orders of magnitude lower than the

maximum value, and values outside this range are colored as their closest border value. (B-D)

Simulation time series. (B) Number of uninfected (orange), infected (green), virus releasing

(red) and dead (purple) epithelial cells on a logarithmic scale vs time vs time in minutes. (C)

Total extracellular cytokine (magenta) and total extracellular virus (brown) on a logarithmic

scale vs time in minutes. (D) Value of the immune recruitment signal S (yellow) and number

of immune cells (grey) on a linear scale vs time in minutes.

(TIF)
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S2 Fig. Special cases of spatiotemporal infection dynamics. (A) A border case of slowed

infection towards containment is Slowed Infection with constant virus: when the net effective-

ness of viral and immune dynamics are balanced, the number of infected cells and the total

extracellular virus fluctuate around steady state levels. (B) A limit case of Clearance is the fail-

ure to infect: initially infected cells may replicate and secrete virus, but insufficiently so to

infect other cells during simulation time such that any initially infected cells vanish and total

extracellular virus drops below a threshold of 10−3 per cell area.

(TIF)

S3 Fig. Time series of the number of uninfected cells for simulations in Fig 5. Logarithmic

multidimensional parameter sweep performed by running 10 simulation replicas increasing

and decreasing the baseline parameter values 10-fold and 100-fold for all parameter sets and

replicas in Fig 5. Results show consistent containment/clearance for small kon and small βdelay
(upper right, green-shaded subplots), widespread infection for high kon and small βdelay (lower

left, orange-shaded subplots), and multiple outcomes for the same parameter values (unco-

lored subplots). Number of cells are shown on a logarithmic scale vs time in minutes.

(TIF)

S4 Fig. Time series of the number of virus releasing cells for simulations in Fig 5. Logarith-

mic multidimensional parameter sweep performed by running 10 simulation replicas increas-

ing and decreasing the baseline parameter values 10-fold and 100-fold for all parameter sets

and replicas in Fig 5. Results show consistent containment/clearance for small kon and small

βdelay (upper right, green-shaded subplots), widespread infection for high kon and small βdelay
(lower left, orange-shaded subplots), and multiple outcomes for the same parameter values

(uncolored subplots). Number of cells are shown on a logarithmic scale vs time in minutes.

(TIF)

S5 Fig. Time series of the number of immune cells for simulations in Fig 5. Logarithmic

multidimensional parameter sweep performed by running 10 simulation replicas increasing

and decreasing the baseline parameter values 10-fold and 100-fold for all parameter sets and

replicas in Fig 5. Results show consistent containment/clearance for small kon and small βdelay
(upper right, green-shaded subplots), widespread infection for high kon and small βdelay (lower

left, orange-shaded subplots), and multiple outcomes for the same parameter values (unco-

lored subplots). Number of cells are shown on a logarithmic scale vs time in minutes.

(TIF)

S6 Fig. Time series of the immune response state variable S for simulations in Fig 5. Loga-

rithmic multidimensional parameter sweep performed by running 10 simulation replicas

increasing and decreasing the baseline parameter values 10-fold and 100-fold for all parameter

sets and replicas in Fig 5. Results show consistent containment/clearance for small kon and

small βdelay (upper right, green-shaded subplots), widespread infection for high kon and small

βdelay (lower left, orange-shaded subplots), and multiple outcomes for some parameter sets

(unshaded subplots). S is shown on a linear scale vs time in minutes.

(TIF)

S7 Fig. Simulations from Fig 8, showing the number of dead cells. Time series of the num-

ber of dead cells for each simulation replica in Fig 8. Number of cells is shown on a logarithmic

scale vs time in minutes.

(TIF)

S8 Fig. Simulations from Fig 8, showing the number of infected cells. Time series of the

number of infected cells for each simulation replica in Fig 8. Number of cells is shown on a
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logarithmic scale vs time in minutes.

(TIF)

S9 Fig. Simulations from Fig 8 showing the number of immune cells. Time series of the

number of immune cells for each simulation replica in Fig 8. Number of cells is shown on a

logarithmic scale vs time in minutes.

(TIF)

S10 Fig. Simulations from Fig 8 showing the immune response state variable. Time series

of the immune response state variable S for each simulation replica in Fig 8. S is shown on a

linear scale vs time in minutes.

(TIF)

S11 Fig. Variation in time of first treatment after infection with a reduced viral RNA repli-

cation rate causes a bifurcation in simulation outcomes. Simulations and parameters are as

in Figs 9–11, for a viral replication rate multiplier of 0.375 and, from left to right, time delays

of application of 6000, 8000, 10000, and 12000 minutes (100, 133, 167 and 200 hours, 4, 5 ½, 7

and 8 ⅓ days) (dashed lines). Results from all simulation replicas are shown vs time in minutes

for, from top to bottom: number of uninfected cells, number of infected cells, number of virus

releasing cells, number of dead cells, total extracellular virus, total cytokine, number of

immune cells, and immune response state variable S. Parameter set subplots are shaded as in

Figs 9–11 according to simulation outcomes.

(TIF)

S12 Fig. Pairwise parameter sweep of the oxidative agent threshold for death τdeathoxi and the

virus-receptor association affinity kon (×0.01,× 0.1,× 1,× 10,× 100) around their baseline

values, with ten simulation replicas per parameter set (all other parameters have their

baseline values as given in Table 1). The number of uninfected epithelial cells for each simu-

lation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in min-

utes.

(TIF)

S13 Fig. Pairwise parameter sweep of the immune response delay βdelay (×0.01,× 0.1,× 1,×
10,× 100) and infection threshold (×0.1,× 0.2,× 1,× 5,× 10) around their baseline values,

with ten simulation replicas per parameter set (all other parameters have their baseline

values as given in Table 1). The number of uninfected epithelial cells for each simulation rep-

lica for each parameter set, plotted on a logarithmic scale, vs time displayed in minutes.

(TIF)

S14 Fig. Pairwise parameter sweep of the oxidative agent threshold for death τdeathoxi (×0.01,×
0.1,× 1,× 10,× 100) and the infection threshold (×0.1,× 0.2,× 1,× 5,× 10) around their base-

line values, with ten simulation replicas per parameter set (all other parameters have their

baseline values as given in Table 1). The number of uninfected epithelial cells for each simu-

lation replica for each parameter set, plotted on a logarithmic scale, vs time displayed in min-

utes.

(TIF)

S15 Fig. Pairwise parameter sweep of the viral diffusion coefficient Dvir and the cytokine

diffusion coefficient Dcyt (×0.1,× 0.2,× 1,× 5,× 10) around their baseline values, with ten

simulation replicas per parameter set (all other parameters have their baseline values as

given in Table 1). The number of uninfected epithelial cells for each simulation replica for

PLOS COMPUTATIONAL BIOLOGY A multiscale model of viral infection in epithelial tissues

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008451 December 21, 2020 45 / 51

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s009
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s010
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s011
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s012
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s013
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s014
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1008451.s015
https://doi.org/10.1371/journal.pcbi.1008451


each parameter set, plotted on a logarithmic scale, vs time displayed in minutes.

(TIF)

S16 Fig. Pairwise parameter sweep of the oxidative agent threshold for death τdeathoxi and the

virally-induced apoptosis dissociation coefficient Vapo (×0.01,× 0.1,× 1,× 10,× 100) around

their baseline values, with ten simulation replicas per parameter set (all other parameters

have their baseline values as given in Table 1). The number of uninfected epithelial cells for

each simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed

in minutes.

(TIF)

S17 Fig. Pairwise parameter sweep of the viral diffusion coefficient Dvir (×0.1,× 0.2,× 1,×
5,× 10) and the virus-receptor association affinity kon (×0.01,× 0.1,× 1,× 10,× 100) around

their baseline values, with ten simulation replicas per parameter set (all other parameters

have their baseline values as given in Table 1). The number of uninfected epithelial cells for

each simulation replica for each parameter set, plotted on a logarithmic scale, vs time displayed

in minutes.

(TIF)

S18 Fig. Simulation of viral infection using the baseline parameter set as in Fig 3 but with

a non-uniform epithelial sheet. (A) Widespread infection occurs with the same spatiotempo-

ral features as in Fig 3A in a non-uniform epithelial sheet. (B) Ten simulation replicas with a

non-uniform epithelial sheet showed no significant differences in transient metrics compared

to simulations with a uniform epithelial sheet.

(TIF)

S1 Table. Varying parameters in simulations shown in Fig 4. Virus-receptor association

affinity and immune response delay coefficient shown for no immune response (Fig 4A), wide-

spread infection (Fig 4B), slowed infection (Fig 4C), containment (Fig 4D), recurrence (Fig

4E) and clearance (Fig 4F). All other parameters are as in Table 1.

(DOCX)

S2 Table. Parameter values of integrated HCV model.

(DOCX)

S1 Code Snippet. Select import and load commands from Simulation/ViralInfectionVTM.

py.

(TIF)

S2 Code Snippet. API for the steppable implementing the Simple Recovery model, derived

from Models/RecoverySimple/RecoverySteppables.py. The exact code of the implementa-

tion is shown for the steppable function “cell_recovers” (Lines 32–36).

(TIF)

S3 Code Snippet. API for the steppable implementing the Simple Recovery model, derived

from Models/RecoveryNeighbor/RecoverySteppables.py.

(TIF)

S1 Text. Integration of an explicit RNA synthesis model.

(DOCX)

S2 Text. Collaborative viral infection modeling environment.

(DOCX)
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