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Abstract 

Background: Cerebellar ataxia refers to the disturbance in movement resulting from cerebellar dysfunction. It 
manifests as inaccurate movements with delayed onset and overshoot, especially when movements are repetitive or 
rhythmic. Identification of ataxia is integral to the diagnosis and assessment of severity, and is important in monitoring 
progression and improvement. Ataxia is identified and assessed by clinicians observing subjects perform standard-
ised movement tasks that emphasise ataxic movements. Our aim in this paper was to use data recorded from motion 
sensors worn while subjects performed these tasks, in order to make an objective assessment of ataxia that accurately 
modelled the clinical assessment.

Methods: Inertial measurement units and a Kinect© system were used to record motion data while control and 
ataxic subjects performed four instrumented version of upper extremities tests, i.e. finger chase test (FCT), finger 
tapping test (FTT), finger to nose test (FNT) and dysdiadochokinesia test (DDKT). Kinematic features were extracted 
from this data and correlated with clinical ratings of severity of ataxia using the Scale for the Assessment and Rating of 
Ataxia (SARA). These features were refined using Feed Backward feature Elimination (the best performing method of 
four). Using several different learning models, including Linear Discrimination, Quadratic Discrimination Analysis, Sup-
port Vector Machine and K-Nearest Neighbour these extracted features were used to accurately discriminate between 
ataxics and control subjects. Leave-One-Out cross validation estimated the generalised performance of the diagnostic 
model as well as the severity predicting regression model.

Results: The selected model accurately ( 96.4% ) predicted the clinical scores for ataxia and correlated well with clini-
cal scores of the severity of ataxia ( rho = 0.8 , p < 0.001 ). The severity estimation was also considered in a 4-level scale 
to provide a rating that is familiar to the current clinically-used rating of upper limb impairments. The combination of 
FCT and FTT performed as well as all four test combined in predicting the presence and severity of ataxia.

Conclusion: Individual bedside tests can be emulated using features derived from sensors worn while bedside tests 
of cerebellar ataxia were being performed. Each test emphasises different aspects of stability, timing, accuracy and 
rhythmicity of movements. Using the current models it is possible to model the clinician in identifying ataxia and 
assessing severity but also to identify those test which provide the optimum set of data.
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Background
Cerebellar ataxia (CA) describes the dysfunctional bal-
ance, gait [1, 2] and limb function [3] that results from 
cerebellar dysfunction. Ataxia is assessed by observing 
the performance of standard motor tasks described by 
Holmes [4, 5] and others almost a century ago. These 
pioneering clinicians recognised that ataxic movements 
could not easily be reduced to Newtonian terms but fun-
damentally manifest as disturbances in accuracy, timing, 
rhythmicity and stability of the proximal motor platform 
which they described using terms such as dysmetria, dys-
synergia and dysrhythmia.

The standard motor tasks used to assess upper limb 
ataxia, referred to here as “tests” include the finger chas-
ing test (FCT), finger tapping test (FTT), finger to nose 
test (FNT) and alternating hand movements looking for 
dysdiadochokinesia (DDKT) [6, 7]. Scales such as the 
Scale for the Assessment and Rating of Ataxia (SARA) 
[6] have been developed to codify the assessment of 
these tests and require specific aspects of motor dysfunc-
tion to be considered when scoring ataxia. For example, 
the SARA stipulates the overshoot/undershoot distance 
between subject’s finger and clinician’s finger in the fin-
ger chase test. However, there will inevitably be subjec-
tivity and variation in the severity that human observers 
rate deficits in performance of these tests. The SARA 
and conventional teaching also recommend administer-
ing several tests to characterise upper limb ataxia. How-
ever, it is unclear whether this is because each test carries 
unique information necessary for establishing the pres-
ence and severity of ataxia or whether it is because the 
performance of several different tests provides clinical 
security despite the redundant information.

Several sensing and information extracting systems 
have been proposed for quantifying the assessment of 
upper limb ataxia and thus overcoming subjectivity. For 
example, a push-button system to evaluate the variation 
in timing of ataxic movements was considered for the 
FTT [8–10]. Inertial measurement units (IMUs) have 
been used to capture movement kinematics in multiple 
signal domains [11] to objectively assess the FNT [12, 13] 
and DDKT [12]. The movement of the finger performing 
the FCT has been tracked using optoelectronic devices 
ranging from video cameras [14] to VICON [15] and 
recently Kinect© in our previous study [3] to assess delay 
in initiating movement and accuracy in reaching the 

target. While this test identified deficits in accuracy and 
timing, neither the maintenance of rhythm nor the sta-
bility of the execution platform of the moving distal limb 
were assessed [4]. Thus, it has been possible to emulate 
individual bed side tests through objective assessments 
but none of these tests appear to fully assess all aspects 
of upper limb ataxia (timing, accuracy, rhythmicity and 
proximal stability). Even in those tests that addressed 
similar aspects of ataxia, the extent to which they meas-
ure the same aspect similarly (i.e. are redundant) is 
unclear.

In this study, our primary aim is to:

• Develop an Instrumented System for the objective 
assessment of Upper Limb Ataxia (ISULA). The sys-
tem includes an IMU sensor module(BioKin™) and 
Kinect camera to capture movement information 
from subjects while performing the four conven-
tional tests; namely FCT, FTT, FNT and DDK.

• Identify the minimum combination of tests that pro-
vide sufficient information to assess the disability.

• Quantify the heterogeneous aspects intrinsic to 
ataxia by grouping the extracted features from the 
system according to clinical domains described by 
Holmes and others: stability, timing, accuracy, and 
rhythmicity (referred to here as STAR dimensions).

Methods
Participants
Fourteen control subjects (“controls”: mean age, 55; 
range, 25–68 years) and 41 subjects with cerebellar ataxia 
(CA or “ataxics”: mean age, 64; range, 28–78 years) par-
ticipated in this study (Table  1). All ataxics were previ-
ously diagnosed with a progressive neurodegenerative 
ataxia (with genotyping or other confirmatory inves-
tigations when relevant, see Table  1—Diagnosis). This 
study was approved by the Human Research and Eth-
ics Committee, Royal Victorian Eye and Ear Hospital, 
East Melbourne, Australia (HREC Reference Number: 
11/994H/16). Written consent was obtained from all 
participants.

Clinical assessments
The severity of ataxia was assessed using SARA [6], on 
the same day that objective measurements were made. 

Trial registration Human Research and Ethics Committee, Royal Victorian Eye and Ear Hospital, East Melbourne, Aus-
tralia (HREC Reference Number: 11/994H/16).

Keywords: Cerebellar ataxia, Finger chase, Finger tapping, Finger to nose, Dysdiadochokinesia, Objective assessment, 
Feed backward feature elimination
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The same clinician, experienced in assessing ataxia, 
provided all SARA scores to avoid the inevitable scor-
ing variation that occurs when subjects are assessed 
by different clinicians. SARA assessment is comprised 
of eight sub-scores: three for the lower limbs (No. 
1-2-8), three for the upper limbs (No. 5-6-7), one for 
sitting (No. 3) and one for speech (No. 4). The SARA 
scores of upper limb function tests used in this study 
are: FCT (No. 5), FNT (No. 6) and DDKT (No. 7). Each 
sub-scores can be scored from 0 to 4 points (5 levels) 
according to the clinicians assessment of the sever-
ity of ataxia when performing the specific test. Hence 
the upper limb SARA score (SARA-UL) is from 0 to 
15 points. The SARA total score (SARA-Total) is cal-
culated by the summation of the eight sub-scores 
resulting in a maximum of 40 points. In this study, 
the SARA-Total ( 14.23± 9.84 ) and the SARA-UL 
( 3.58± 2.62 ) were correlated with the objective assess-
ment of severity of ataxia.

Automated assessment protocols and apparatus
The ISULA requires the performance of four tests 
measured by instrumented devices: FCT, FTT, FNT 
and DDKT. The FCT used a depth sensing camera 
(Kinect©) to capture the movements of the subject’s fin-
ger (while reaching a target on the screen) while in the 
other three tests, kinematic information was acquired 
from a 3-dimensional (3D) IMU system, BioKin™ [16] 
system. The test descriptions and protocols are summa-
rised in Table 2. All the tests were performed under the 
supervision of an expert clinician (LP). During the test, 
the clinician wirelessly started and stopped record-
ing and applied markers into the data stream, denot-
ing specific points during the performance through a 
mobile application. At the end of each trial, the sensor 
data were uploaded to a cloud-based storage and com-
puting platform for further analysis.

Manifestations of ataxia
Following Holmes [4], we describe four domains of 
ataxia (using the acronym STAR). The purpose is to 
develop a system of assessing ataxia that reflect the fol-
lowing generic domains of CA manifestations:

• Stability (S): Lack of stability in the platform dur-
ing the execution of the task (the oscillations of the 
movement that is not preferred).

• Timing (T): Error between the goal/time objective 
against what is achieved in a temporal context. This 
is likely to be affected by:

• The time for the subject to initiate a movement.
• The time to complete a movement/speed.

• Accuracy (A): Error between the goal/space objec-
tive against what is achieved in a spatial context.

• Rhythmicity (R): The regularity in repeated move-
ment

Data preprocessing
Accelerations and angular velocities from the IMU sen-
sor were sampled at 50 Hz in the three orthogonal X ,Y  
and Z axes. These signals were filtered by a 2nd order 
band-pass Butterworth filter with the cut-off frequency 
from 0.3 to 20  Hz where the base band frequencies 
were excluded to minimise drift effects and the high 
frequencies were restricted to the bandwidth of human 
movements [17]. In the Kinect© system, the location 
of each randomly generated instantaneous position 
change was stored as a pair of position coordinates. 
The target position remained constant between each 
change in the target location, while the marker position 
changed. The Kinect© captured the marker position 
at a sampling rate of 30  Hz. The maximum frequency 
of human movement is approximately 20 Hz [17], and 
for ataxic subjects this can be lower [3]. Especially for 
peripheral limb motion, the requencies are even less. 
Therefore, the sampling rate of Kinect is sufficient to 
capture the motion of subjects in this study.

Data analysis
Relevant objective measures extracted from each 
ISULA test were described and associated with the cor-
responding STAR classification in Table  3. For nota-
tional simplicity, the feature names are denoted as: 
(FeatureName)

Axis(L/R)
Test  with L/R indicating performance 

by the left or right hand.

Table 1 Participant demographics

Controls Subj. with CA

Total subjects (M/F) 14(5/9) 41(21/20)

Dominant hand, (L/R) 2/12 2/39

Age, mean ± SD (years) 55± 18 64± 15

SARA score, mean± SD

 Total score – 14.23± 9.84

 Upper limb score – 3.58± 2.62

Diagnosis

 CABV/CANVAS – 8/5

 FA/SCAs/Others – 4/10/14
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Finger chase test (FCT)
When assessing the FCT, the clinician subjectively esti-
mates the extent of under/overshooting in the subject’s 
movements relative to the moving target [6]. The ISULA 
system automates the assessment of FCT by consider-
ing the space–time trajectory of the marker and target. 
The overshoot/undershoot information of the subject 
movement was measured by the Dynamic time warp-
ing (DTW)-based error. The DTW was used to find the 
shortest path between the marker Sm and target St tra-
jectories via their distance matrix DS using dynamic 
programming

The error DTWErr is calculated by summing the value of 
the shortest path P obtained by going from the last (n; n) 
to the first (1; 1) element of DS via adjacent elements with 
the smallest values. The time from establishing a new tar-
get position to the subject’s initiation of movement was 
defined as reaction time (ReTi). This feature was obtained 
by cross correlating the two time sequences representing 
the marker and the target movement.

The kinematic delay was obtained from the index of 
performance measurement described by Fitts’ law [18]. 
The feature is intended to capture the performance of 
the subject in reaching a target position outlined by 
KiDe = ID/MT  , where ID = log2(di/ra) is the index 
of difficulty of the task while di is the distance between 
the current and previous position of the target, ra is 
the radius of the target circle and MT is the execution 
time of the task by the subject. The acceleration altera-
tion (AcAlt) computed the number of times the subjects 
changed their acceleration while reaching the target. The 
feature measures the efficiency of force applied to per-
forming the task.

Finger tapping test (FTT)
There is greater temporal variability when ataxic subjects 
tap repetitively than when controls do [19]. This can be 
observed in the inter-tap interval (ITI) and “movement 
variability”. The ITI is defined as the duration between 
successive contacts with the table and its coefficient of 
variation (CITI). This quantifies the variability of the tap-
ping rhythm with respect to the tapping rate [19, 20]. 
Movement variability is quantified using fuzzy entropy 
(FuEn), obtained for each movement time series (accel-
erations and angular velocities). Given a N-sample time 
series y = {xt |

N
t=1} , FuEn defines a states of m embedding 

(1)
DS(i, j) = dist(Sm(i), St(j))+min{DS(i − 1, j),

DS(i − 1, j − 1),DS(i, j − 1)}.

(2)ReTi = argmax

(

∞
∑

i=−∞

S∗m[i]St [i + j]

)

.

dimensions such that Xm
t = {xt , xt+1, . . . , xt+m−1} in the 

phase space and the distance dpq = d[Xm
p ,Xm

q ] is meas-
ured by Chebyshev distance. Instead of using a Heavi-
side function to count the number of matched pairs of 
states, the similarity degree Dm

pq between any two states 
( t = p and t = q ) is quantified using a fuzzy function 
Dm
pq = exp(−(dpq/r)

2) of order 2 and radius r. FuEn 
allows variability to be quantified by calculating the 
reduction of information when the embedding dimen-
sion m increases by one [11, 21].

where,

The reduced entropy values are in accordance to the com-
plexity loss theory of disease which attributes to reduced 
adaptive capabilities of individuals owing to the effect of 
the disease [22]. The parameters for the entropy calcula-
tion is generally selected as, m = 3 and r = 0.2 ∗ std(y).

Finger to nose test (FNT) and tests of dysdiadochokinesia 
(DDKT)
There are movement characteristics in FNT and DDKT 
that can be considered together in analysis. They are 
both repetitive movements that require a stable platform 
(shoulder in both cases). In both tests, ataxia is not only 
characterised by variability in rhythm but also by pro-
longed task duration resulting from displacement errors 
when moving. Such characteristics are amenable to 
investigation using frequency domain techniques. Meas-
urements from the accelerometer and gyroscope were 
analysed in terms of the resonant frequency (RF) and its 
magnitude (MR) using Fast Fourier Transforms (FFT) 
with appropriate filtering parameters (6th order band-
pass Butterworth filter with the cut-off frequency region 
of 2–5 Hz). In the FNT, the angular accelerations and lin-
ear accelerations can be effectively used to characterise 
ataxia [12]. The RF and MR of angular accelerations in 
the three axes were calculated as well as the linear accel-
eration in the X axis. Only RF was applied to the linear 
acceleration in the Y  and Z axes. In the case of the DDKT, 
RF and MR of angular acceleration and linear accelera-
tions in all axes best distinguished between ataxics and 
controls [12].

Statistical inferences
Statistically significant difference between ataxics and 
controls were identified using hypothesis tests. Normal-
ity in the variables was tested using the Shapiro–Wilk 

(3)FuEn = ln φm(r)− ln φm+1(r)

(4)

φm(r) =
1

N −m

N−m
∑

i=1

[

1

N −m− 1

N−m
∑

p=1,p �=q

Dm
pq

]

.
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test. The t-Student’s test was applied for normally distrib-
uted variables. The Wilcoxon rank-sum test or Mann–
Whitney U test was applied for variables that were not 
normally distributed. To test for validity, Spearman cor-
relation was used to measure the relationship between 
objective measurements and clinical scales. The sample 
size used in this study was determined to detect the min-
imum effect size of 0.88 with 80% statistical power and 
significance level ( α ) of 5%. Similarly, for testing correla-
tion, the effect size (r) of 0.30 was used. The power analy-
sis was performed using G*Power version 3.1.9.4 [23].

Feature selection
The four tests of upper limb ataxia produced many fea-
tures. As the feature space was unlikely to be uniformly 
populated, there was a risk of overfitting a learning 
model. To overcome this and improve the prediction 
power the number of features were reduced using feature 
selection (FS) techniques. The Feed Backward Feature 
Elimination (FBE) [24] was employed along with three 
other widely-used methods involving Random Forest 
[25], RELIEF [26] and LASSO [27]. The central idea of 
FBE is to find a subset of features that increases the mod-
el’s performance. In each iteration of the process, 90% of 
the data was randomly selected and a feature elimination 
decision was made using a threshold α (significance level) 
on the p-value of the feature (with the null hypothesis 
H0 that the examining feature is independent of the pre-
dicted score given the set of currently selected features). 
Therefore, only features that significantly impacts the 
output (p-value < α ) are selected for the feature subset.

In our experiment, we repeated the process 100 times 
to obtain the selection frequency of each feature in esti-
mating its significance in the assessment/diagnosis 
problem. Details of the process were explained in the 
flowchart in Fig. 2a. Since the process is time consuming, 
computational performance was improved by employ-
ing the Parallel Computing Toolbox of MATLAB version 
2019b to simultaneously execute the computations.

Discrimination and severity analysis
Features with high selection frequency from the FBE 
were used to classify control and CA groups and pre-
dicting the severity of ataxia. Classification models for 
diagnosis included Linear Discrimination (LD) [28], 
Quadratic Discrimination Analysis (QDA) [29], Sup-
port Vector Machine (SVM) [30], K-Nearest Neighbour 
(KNN) [31]. Leave-One-Out (LOO) cross validation 
estimated the generalised performance of the diagnos-
tic model as well as the severity predicting regression 
model [32]. The effectiveness of the model was evalu-
ated through a number of statistical measurements 
including accuracy (ACC), F1-score, the stability of the 

model by the area under the Receiver Operating Char-
acteristics curve (AUC), the sensitivity measure (or 
Recall), and Precision.

For regression analysis, we employed the Ridge 
regression method to correlate the proposed features 
with the SARA scores. This model avoids over-fitting 
when working with small data sets by forming a lin-
ear model to estimate the severity for the given input 
feature vector. In order to generate a general instru-
mented score, a severity scale that mirrored the SARA 
upper limb scores was developed. As there were not 
any ataxic subjects in the cohort who were rated with 
a SARA score of 4 (i.e all subjects ranged from 0 to 3), 
the instrumented severity scale was limited to 4 levels 
defined as follows:

• Level 0 : Normal, no dysmetria, tremor or irregulari-
ties.

• Level 1: Minimal dysmetria or low amplitude tremor 
or slight irregular motion.

• Level 2: Moderate, clear dysmetria, tremor or clearly 
irregular motion.

• Level 3: Severe, dysmetria in large range, high ampli-
tude tremor or very irregular motion.

Results
Feature significance
Table 4 shows the 31 (out of 62) objective features gen-
erated during the performance of FCT, FTT, FNT and 
DDKT that reached statistical significance ( p < 0.05 ). 
These features represent movement characteristics of 
ataxic subjects that differ significantly from controls. 
Movements performed by subjects with CA were sig-
nificantly slower (e.g. KiDe, p < 0.001 ) with longer reac-
tion times (e.g. ReTi, p < 0.001 ) suggesting that a longer 
time is required to recognise the new target and react. 
The movements of controls were relatively more complex 
movements (entropy measures, p < 0.05 ) than move-
ments of ataxic subjects and had less functional variabil-
ity (e.g. DTWEr, p < 0.001 ). There were measures in the 
non-primary axis whose values in controls differed signif-
icantly from ataxic subjects. These difference most likely 
arose from instability in proximal or stabilising joints of 
individuals with CA. The clinical validity of these meas-
ures was assessed by correlating with the SARA scores 
(SARA-Total and SARA-UL: see last two columns of 
Table  4). Some FCT movement characteristics were 
moderately ( p < 0.01 ) to significantly ( p < 0.001 ) cor-
related with the SARA ratings. Entropy features of FTT 
correlated moderately with SARA, while DDKT and FNT 
features correlated weakly with SARA ( p < 0.05).
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Selection frequency of features
Figure  2e shows the selection frequency following 100 
iterations of the FBE process applied to 22 features with 
the highest contribution (first 22 features) in the com-
bined test model. The frequency implies the contribution 
of each feature in estimating severity of ataxia. Higher 
selection frequency, implies a greater possibility of the 
feature’s selection in the final subset. Of note, FCT pro-
vided more important features (including ReTi, the fea-
ture with the highest selection frequency) than other 
tests and all FCT movement features appear in the chart. 
As discussed later this reflects the importance of FCT’s 
contribution to the objective ataxia score. In comparison, 
FNT contributed the least to the selected feature subset. 
Despite fewer features (3), FTT features were selected 
with higher frequency than DDKT or FNT related 
features.

Figure 3 plots the classification performance (Y axis) of 
the four feature selection methods against the number of 
selected features (X axis). Here, the aim was to find the 
smallest subset of features that produced a high perfor-
mance (accuracy) in diagnosing CA. FBE outperformed 
LASSO, RELIEF and Random Forest, providing a 96.4% 
accuracy with the first 22 of the 64 (top 34%) features 
with the highest selection frequency. The accuracy was 
low (ACC 83%) with the first 5 features. As the number 
of features increased, the performance of FBE fluctuated 
around 95.4% (std. ± 1.4%) with a similar performance to 
other methods. List of selected features are shown in the 
bar chart of Fig. 2e.

“Diagnosis” of ataxia and SARA based Severity Estimation
The accuracy of the system in making a binary diag-
nostic classification (into ataxics and controls) can be 
considered with Precision and Recall values. Precision 
is measured by expressing the number of correctly 
identified ataxic subjects as a fraction of the number of 
identified ataxic subjects. Recall expresses the number 
of correctly identified ataxic subjects as fraction of the 
total number of actual ataxic subjects. Therefore, the 
closer a mode’s Precision and Recall are to 1, the more 
effective the model is in sorting (“diagnosing”) ataxic 
subjects from controls. The effect of the higher number 
of ataxic subjects on the model’s accuracy was assessed 
using Matthew’s Correlation Coefficient (MCC). The 
MCC ranges from −  1 to 1, where 1 depicts a perfect 
prediction. The diagnostic performance of four learning 
models (QDA, LD, SVM, KNN) and four feature selec-
tion methods (FBE, LASSO, RELIEF, RF) were com-
pared (Table  5). The QDA  +  FBE pair outperformed 
the others in diagnostic performance with a greater 
accuracy (ACC 96.4%, Recall 0.98, Precision 0.98) and 

reliability (AUC 0.97 and MCC 0.90). This classification 
can be visualised by plotting the first three principle 
components of a Principal Component Analysis (PCA) 
(Fig. 4a). In summary, ataxic subjects can be identified 
(diagnosed) from controls with a high degree of accu-
racy [ACC > 92%, Precision and Recall > 0.9, MCC 
> 0.7 (Table  5)] using several models (QDA  +  FBE, 
QDA +  RF, KNN +  LASSO, KNN +  FBE) generated 
from extracted features.

QDA provided a flexible decision boundary for 
assessing the influence of each clinical test on the 
capacity to accurately separate ataxic subjects from 
controls. Table  6 shows that FCT performed best 
(ACC 92.7%, Recall 0.95, Precision 0.95), despite fewer 
rhythmicity features in the selection (Table  4). Not-
withstanding FCT’s performance, combining all tests 
provided a model with greater accuracy in “diagnosing” 
ataxic subjects (ACC 96.4% compared to ACC 92.7%, 
Table  6) and less affected by the imbalance between 
ataxic and control subjects (MCC 0.90 compared to 
MCC 0.81, Table  6). This superior performance of the 
combined tests implies that a contribution from all 
domains is required for best “diagnostic” performance: 
rhythmicity features missing from FCT were provided 
by other tests. However, domains can be provided by 
more than one test; for instance, rhythmicity is con-
tributed by FTT, FNT and DDKT and stability is pro-
vided by all 4 tests. This raises the question whether all 
tests are required to accurately assess the severity of 
ataxia. Thus, we mapped features and tests to the STAR 
dimensions and then different combinations of tests are 
investigated in the last subsection.

As previously shown, the values predicted by the 
model were highly correlated with the mean SARA 
score. The predicted scores, ps (all tests, Table 9), of the 
subjects were plotted against their corresponding mean 
SARA scores (the rounded average of the scores of the 
upper limb tests: mean SARA_UL ) in Fig. 5a). The box-
plots represent the distribution of the ps in each of the 
four severity levels (0–3—see "Methods"). For compari-
son, the predicted scores were classified into the 4-level 
scale as follows: ps < 4 belongs to the normal group 
(level 0), 4 ≤ ps < 7 belong to the mild group (level 1), 
7 ≤ ps < 10 belongs to the moderate group (level 2) 
and ps ≥ 10 belongs to the severe group (level 3). The 
agreement matrix in Fig. 5b outlines the mapping of the 
predicted scores into each clinical severity levels. In par-
ticular, subjects scored ‘0’ by SARA can be predicted with 
a high degree of accuracy (90%) from the underlying sys-
tem. No subject scored ‘0’ or ‘1’ by SARA was classified 
to moderate (level 2) nor to severe group (level 3) by the 
model and no subject scored ‘1’/‘2’/‘3’ by SARA was clas-
sified as normal (level 0) by the model.
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Disability association to The STAR dimensions
The extracted features were assigned to one of the pro-
posed Holmesian dimensions (STAR) of ataxia. Details of 
this clustering are presented in Table 3. Selected features 

in each dimension of the STAR together with their con-
tribution to the feature selection process can also be 
related to the presence and severity of ataxia. Using this 
approach, it is possible to attribute the contribution of 
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Fig. 1 Instrumented version of the upper limb assessments and the movement waveform of a control and a patient diagnosed with CA. a Finger 
Chase (ballistic, FCT) using Kinect© system. b I. An IMU sensor with tri-axial accelerometer directions (Ax,Ay,Az) with a gyroscope directions 
(Gx,Gy,Gz) b II. Sensor placement around the wrist b III. Sensor placement around the palm. Testing with the IMU system denoting the direction of 
the primary movement; movement along the direction of effective axis in order to accomplish the task objectives: c Finger tapping (FTT), d Finger 
to nose (FNT), e dysdiadochokinesia (DDKT)

Table 2 Experimental setup and description of tests in ISULA system

Test Device Setup Description

Finger chase test (FCT) Kinect© A Microsoft Kinect© V2, a 23 in. screen and a 
processing computer (Intel core i5) are installed 
approximately 1.5 m away the subject. The Kinect© 
captures movements from a 14 mm retro-reflective 
marker attached on the subject’s index finger. A 
program randomly generates the target point 20 
times on the monitor while projecting the finger 
movement on the screen

The subject is required to point at and follow a target 
point on the screen using the index finger. As soon 
as the projected marker point touches the target 
point, the target disappears and reappears at a new 
position. The test is concluded after 20 iterations 
(Fig. 1a)

Finger tapping test (FTT) IMU A sensor was worn on the dorsum of the hand as 
depicted in Fig. 1(b)III

The subject is required to tap on a tabletop using the 
index finger at a self-selected and uniform pace. 
Tapping is performed for approximately 15 s with 
the elbow and shoulder joints unsupported to 
assess the stability of the platform (shoulder and 
elbow) (Fig. 1c)

Finger to nose test (FNT) IMU Similar to the setup of finger tapping test The subject’s index finger moves repeatedly between 
the the clinician’s finger and the subject’s nose for 
approximately 15 s. The clinician’s finger is held 
stationary at a position approximately 50 cm in front 
of the subject (Fig. 1d)

Dysdiadochokinesia (DDKT) IMU A sensor was worn on the wrist as depicted in Fig. 1(b) 
II

The subject alternates between placing one hand 
palm-up and palm-down on the other hand as 
fast and precisely as possible for approximately 10 
cycles (Fig. 1e)
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each STAR dimension to the overall diagnosis of ataxia 
(Fig.  2a), with the stability features contributing most 
(41% compared to 25% from Rhythmicity, 20% Timing 
and 14% Accuracy). Most of the stability features were 
derived from the DDKT and FNT.

Considering dimensional aspects of the extracted fea-
tures, Table 8 records the correlation between the STAR 
features and the three SARA scores, i.e. the SARA-Total 
and the SARA-UL (in terms of sum and mean). Features 
corresponding to timing provided the highest correlation 
with the SARA scores (0.77, 0.87 and 0.85) whereas fea-
tures corresponding to rhythmicity had the lowest corre-
lations (0.35, 0.47 and 0.38).

Combination of tests
In order to determine whether SARA scores can be pre-
dicted with fewer clinical tests, the performance of differ-
ent test combinations was investigated. As discussed in 

the STAR analysis, only the FCT provided features that 
corresponded to the accuracy dimension. Assuming that 
all STAR dimensions of ataxia will be required for the 
best prediction of SARA, the presence of FCT features 
will be essential. The test groupings are considered as 
follows:

• Group 1 (G1): FCT and FTT
• Group 2 (G2): FCT and FNT
• Group 3 (G3): FCT and DDKT
• Group 4 (G4): FCT and FNT and DDKT
• Group 5 (G5): FCT and FTT and DDKT
• Group 6 (G6): FCT and FTT and FNT

The highest accuracy in sorting ataxics from control 
subjects was provided by Group 1 (Table  9). This com-
bination also performed best in terms of AUC, sensi-
tivity, and precision. Clear separation between ataxic 
and control subjects is evident in Fig.  4b. Additionally, 

Table 3 Description and STAR classification of ataxic features

Test (device) Feature Description STAR 

FCT (Kinect©) AcAlt
X ,Y(L,R)
FCT

Acceleration alteration counts the number of times the acceleration is altered Stability

ReTi
X ,Y(L,R)
FCT

Reaction time reflects the cross correlation of the two time sequences representing the 
marker and the target

Timing

KiDe
(L,R)
FCT

Kinematic delay measures the ratio of the index of difficulty and the movement time Timing

DTWEr
X ,Y(L,R)
FCT

Dynamic time warping based error measures the displacement between the performance 
marker and the target

Accuracy

FTT (IMU) CITI
(L,R)
FTT

Coefficient of variation of inter-tap interval describes variability with respect to speed Timing

FuEn
AcX(L,R)
FTT

Fuzzy entropy describes the irregularity of the acceleration on X axis Stability

FuEn
AcZ(L,R)
FTT

Fuzzy entropy describes the irregularity of the acceleration on Z axis Rhythmicity

FuEn
GyX(L,R)
FTT

Fuzzy entropy describes the irregularity of the of gyroscopic measurement on X axis Rhythmicity

FNT (IMU) RF
AAcX(L,R)
FNT

Resonant frequency (RF) at the angular acceleration on X axis Stability

RF
AAcZ(L,R)
FNT

RF at the angular acceleration on Z axis Stability

MR
AAcX(L,R)
FNT

Magnitude at resonance (MR) at the angular acceleration on X axis Stability

MR
AAcZ(L,R)
FNT

MR at the angular acceleration on Z axis Stability

RF
AAcY(L,R)
FNT

RF at the angular acceleration on Y axis Timing

MR
AAcY(L,R)
FNT

MR at the angular acceleration on Y axis Rhythmicity

DDKT (IMU) RF
AngX(L,R)
DDK

RF of the angle on X axis Stability

RF
AngZ(L,R)
DDK

RF of the angle on Z axis Stability

MR
AngX(L,R)
DDK

MR at angle on X axis Stability

MR
AngZ(L,R)
DDK

MR at the angle on Z axis Stability

RF
AcX(L,R)
DDK

RF at the acceleration on X axis Stability

RF
AcZ(L,R)
DDK

RF at the acceleration on Z axis Stability

MR
AcX(L,R)
DDK

MR at the acceleration on X axis Stability

MR
AcZ(L,R)
DDK

MR at the acceleration on Z axis Stability

RF
AAcY(L,R)
DDK

RF at the angular accelerations on Y axis Timing

MR
AAcY(L,R)
DDK

MR at the angular accelerations on Y axis Rhythmicity
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the classification achieved by Group 1 was similar to 
that achieved by the combination of all tests, but with 
a greater effect size of the correlation. The contribution 
of each STAR Domain to Group 1 is 32% timing, 31% 
stability, 22% accuracy and 15% rhythmicity (Fig.  2c). 
Sensitivity and accuracy are important for diagnostic 
accuracy and F1-score, which is the harmonic mean of 
the sensitivity and precision [33]. The F1-score of the 
combined tests (0.98) was marginally better than Group 
1’s F1-score (0.97). However, the correlation between 
the scores predicted by the regression model and the 
SARA-Total (Table 9), was higher for Group 1 (0.8) than 
the combined tests (0.68), coefficient of 0.8 compared to 
0.68 when using all tests). Therefore, in the instrumented 
system, the FCT and FTT combination provided the best 
agreement with the clinical assessment of ataxia in the 
upper limb.

Discussion
Previous studies have shown that each individual bedside 
test can be emulated using features derived from sensors 
worn while the bedside tests of CA were being performed 
[3, 11, 12]. However, each test emphasises different STAR 
domains and thus begs the questions of which are the 
most useful in identifying ataxia and how much redun-
dancy is there in these tests. This was achieved in this 
study by obtaining instrumented data while four bed-
side tests (FCT, FTT, FNT and DDKT) were performed 
and features from these data were used to model the 

SARA-Total and the SARA-UL scores. Approximately 
half of the features were significantly correlated with the 
two SARA scores with the highest correlation of indi-
vidual features being 0.68 with the SARA-Total and 0.66 
with the SARA-UL (Table 4). The feature set was further 
refined a smaller subset of 22 features that maintained 
a high performance (accuracy) in sorting ataxics from 
controls (Fig. 3). Using several different learning models 
it was possible to identify (diagnose) ataxics accurately 
using these 22 extracted features (Table 5).

Not all bedside tests contributed equally to the per-
formance of these models. FCT contributed the most 
features as well as the most frequently selected features 
(Fig.  2e). FCT combined with FTT provided enough 
features to performs as well as the combined feature 
set (Fig.  4). One conclusion is that FCT was necessary 
because it was the only test that included the accuracy 
domain from STAR (Table  3). This may be in part self-
fulfilling and reflect aspects of the STAR criteria but 
future studies exploring different definitions of accuracy 
or other tests which measure accuracy could address this 
issue. Even though accuracy was only present in FCT, 
features related to the accuracy dimension were not 
selected in the list of common features (Table  7). One 
possible explanation is that accuracy is highly correlated 
with timing features which may in turn have contrib-
uted to the exclusion of this dimension in LASSO. It is 
also noteworthy that kinematic delay in FCT contributed 
the most to the performance of the two models and the 

a

d

b c

e
Fig. 2 Feature selection and contribution. a FBE-based process of obtaining selection frequency of features. b, c STAR distribution of the selected 
features and test distribution in each partition: b All four tests and c FCT and FTT. d Feature contributions of FCT and FTT. e Feature contributions of 
the 4 tests (first 22 features)
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number of timing features significantly increased and 
were the highest proportion of features when FCT and 
FTT were combined (32% in Fig. 2c compared to 20% in 
Fig. 2b). Further, the predicted values from the regression 
model that used timing features demonstrated the high-
est correlation with the SARA scores (Table 8) indicating 
the important role of timing in the clinical assessment of 
ataxia. Consistently selected features were obtained by 
extracting common features from the four FS methods. 

It also should be noted that features belonging to the tim-
ing domain were consistently selected from 3 out of 4 
tests. They were also significant features in the combined 
model of G1 (Fig. 2d) and all the tests model (Fig. 2e).

Another conclusion from this study is that there is 
redundancy in the bedside tests and not all are required 
to identify the presence and severity of ataxia. Multiple 
tests generated a plethora of features, each representing 
aspects of ataxic movements but also likely containing 

Table 4 Mean, standard deviation, effect size measure and  correlation coefficient values with  SARA scores 
of the extracted features from CA subjects and controls

Data are shown in mean ± standard deviation

CA subjects with cerebellar ataxia, HC controls, ES effect size, CC correlation coefficient (Spearman)

*p-value < 0.05

Test Feature name Unit Subjects with CA 
n = 41

Controls n = 14 ES and p-value CA 
vs HC

CC and p-value SARA-
Total

CC and p-value 
SARA-UL

FCT KiDe(L) bits/s 2.683 ± 0.511 3.494 ± 0.431 1.646 (< 0.001*) − 0.572 (0.003*) − 0.663 (< 0.001*)

KiDe(R) bits/s 2.517 ± 0.553 3.575 ± 0.352 2.070 (< 0.001*) − 0.504 (0.010*) − 0.380 (0.061)

ReTiX(L) ms 1074 ± 292 761 ± 83 1.217 (< 0.001*) 0.610 (0.001*) 0.659 (< 0.001*)

ReTiX(R) ms 1166 ± 332 740 ± 84 1.462 (< 0.001*) 0.358 (0.079) 0.223 (0.284)

ReTiY(L) ms 1076 ± 294 762 ± 85 1.211 (< 0.001*) 0.595 (0.002*) 0.641 (< 0.001*)

ReTiY(R) ms 1170 ± 334 743 ± 83 1.456 (< 0.001*) 0.360 (0.077) 0.228 (0.272)

DTWErX(L) px 1978 ± 648 (× 10) 1237 ± 182 (× 10) 1.299 (< 0.001*) 0.433 (0.031*) 0.394 (0.051)

DTWErX(R) px 2362 ± 853 (× 10) 1.201 ± 291 (× 10) 1.539 (< 0.001*) 0.305 (0.138) 0.086 (0.682)

DTWErY(L) px 2277 ± 924 (× 10) 1.301 ± 253 (× 10) 1.202 (< 0.001*) 0.684 (<0.001*) 0.552 (0.004*)

DTWErY(R) px 2705 ± 117 (× 10) 1.471 ± 250 (× 10) 1.209 (< 0.001*) 0.290 (0.159) 0.109 (0.604)

AcAltX(L) times 33.5 ± 12.5 22.1 ± 4.7 0.984 (< 0.001*) 0.522 (0.008*) 0.507 (0.010*)

AcAltX(R) times 35.7 ± 14.5 20.9 ± 2.9 1.163 (< 0.001*) 0.553 (0.004*) 0.271 (0.191)

AcAltY(L) times 25.7 ± 11.7 16.1 ± 3.6 0.926 (< 0.001*) 0.275 (0.184) 0.317 (0.122)

AcAltY(R) times 26.7 ± 12.1 14.1 ± 2.5 1.191 (< 0.001*) 0.202 (0.332) 0.105 (0.618)

FTT FuEnAcX(L) nat 1.096 ± 0.321 1.422 ± 0.240 1.075 (< 0.001*) 0.345 (0.092) 0.117 (0.578)

FuEnAcX(R) nat 1.147 ± 0.299 1.512 ± 0.348 1.175 (< 0.001*) 0.161 (0.442) − 0.043 (0.837)

FuEnAcZ(R) nat 0.914 + 0.257 1.088 + 0.344 0.621 (0.049*) 0.569 (0.003*) 0.397 (0.049*)

FuEnGyX(R) nat 0.107 + 0.065 0.168 + 0.098 0.824 (0.019*) 0.138 (0.509) − 0.068 (0.746)

DDKT RFAngY(R) Hz 40.331 ± 15.166 23.212 ± 20.086 1.037 (0.002*) − 0.017 (0.936) − 0.033 (0.877)

MRAngX(R) mV 10.945 + 10.046 6.675 + 7.174 0.453 (0.028*) 0.256 (0.216) 0.373 (0.066)

MRAngY(R) mV 3.383 + 1.630 4.561 + 1.892 0.694 (0.029*) − 0.328 (0.110) − 0.292 (0.157)

RFAcZ(L) Hz 1.900 + 1.245 2.187 + 1.104 0.237 (0.049*) − 0.322 (0.116) − 0.220 (0.291)

MRAcX(L) mV 2.026 + 1.395 2.675 + 1.774 0.433 (0.033*) − 0.133 (0.527) − 0.068 (0.748)

MRAcX(R) mV 1.965 ± 1.225 3.492 ± 2.023 1.045 (0.002*) − 0.031 (0.885) 0.104 (0.621)

MRAcZ(L) mV 1.413 ± 0.441 1.892 ± 0.375 1.126 (< 0.001*) − 0.481 (0.015*) − 0.354 (0.083)

MRAcZ(R) mV 1.550 ± 0.551 1.964 ± 0.399 0.800 (0.002*) − 0.345 (0.093) − 0.148 (0.481)

FNT RFAAcX(R) Hz 3.289 ± 2.353 5.721 ± 3.417 0.916 (0.004*) 0.097 (0.644) 0.036 (0.866)

MRAAcX(L) mV 5.151 ± 3.174 8.022 ± 3.018 0.915 (0.003*) − 0.295 (0.152) − 0.283 (0.170)

MRAAcY(L) mV 7.879 ± 4.558 15.824 ± 5.116 1.690 (< 0.001*) − 0.429 (0.032*) − 0.483 (0.015*)

MRAAcY(R) mV 8.809 + 5.296 12.805 + 5.122 0.761 (0.014*) − 0.369 (0.069) − 0.344 (0.092)

MRAAcZ(L) mV 3.729 + 2.417 5.646 + 3.215 0.727 (0.028*) − 0.359 (0.078) − 0.467 (0.022*)
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redundancy. The performance analysis of subsets of the 
tests uncovered the optimal combination of information 
that essentially led towards the reduction of tests. Dif-
ferent groupings result in feature combinations that can 
improve or decrease the performance of learning models 
(Table 9) and decreasing the number of features without 
affecting the performance of the learning model infers 
that redundant information has been removed. Combi-
nation of FCT and FTT alone did not degrade diagnostic 
performance (Fig. 4) and slightly improved correlation in 
severity estimation in comparison to the performance of 
all tests combined (Table 9). On the other hand, the FCT 
and DDKT combination was the lowest accuracy in iden-
tifying ataxia.

While the SARA prescribes that the examiner should 
evaluate the (a) accuracy in reaching target in the FCT; 
(b) the speed or time required to perform the DDKT; (c) 
the amplitude of the kinetic tremor in the FNT, clinical 
assessment is blind in what features are found to best 
correlate with SARA scores. It is thus of interest that 

not only features that clinicians are explicitly directed to 
assess (e.g. accuracy in the FCT) were captured but there 
were also added features, e.g. initiation delay. As the 
instrumented test depends on these features to accurately 
model the SARA, this extra information is presumably 
identified and accounted for (possibly subconsciously) 
by an experienced clinician even if it is not part of their 
explicit evaluation. Despite stability, timing, accuracy and 
rhythmicity being dependent on each other as discussed 
in [34], in our study, we referred to the SARA to assess a 
range of different impairments which are related to each 
STAR dimensions. Further research is required to assess 
the interdependency of each of the STAR dimensions.

Features could be sorted into the four ataxia dimen-
sions (STAR). This was most straightforward in the case 
of FCT, whose features could be readily placed into a 
STAR domain according to its physical meaning. In the 
case of features from FTT, FNT and DDKT, their attribu-
tion to a specific STAR domain was according to whether 
the feature was more related to the primary or the 
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Fig. 3 Classification performance of the 4 feature selection methods

Table 5 Experimental results of different combination of feature selection and binary classification methods

Classifier FS Recall Precision MCC ACC AUC 

QDA FBE 0.98 0.98 0.90 96.4 0.97

RF 0.93 0.98  0.81 92.7 0.96

RELIEF 0.93 0.90 0.66 87.3 0.88

LASSO 0.85 0.90 0.54 81.8 0.87

LD FBE 0.90 0.93 0.67 87.3 0.85

RF 0.85 0.90 0.54 81.8 0.80

RELIEF 0.88 0.78 0.19 72.7 0.65

LASSO 0.83 0.79 0.20 70.9 0.82

SVM FBE 0.83 0.92 0.57 81.8 0.85

RF 0.88 0.92 0.64 85.5 0.89

RELIEF 0.90 0.97 0.78 90.9 0.95

LASSO 0.90 0.93 0.67 87.3 0.90

KNN FBE 0.95 0.98 0.86 94.5 0.97

RF 0.90 0.93 0.67 87.3 0.90

RELIEF 0.88 0.88 0.52 81.8 0.93

LASSO 0.95 0.95 0.81 92.7 0.94

Table 6 Performance of  classification models 
to  distinguish CA subjects from  controls from  features 
of individual test and of combined tests

Test Recall Precision MCC ACC AUC 

FCT 0.95 0.95 0.81 92.7 0.98

FNT 0.83 0.92 0.57 81.8 0.80

FTT 0.88 0.92 0.64 85.5 0.82

DDKT 0.90 0.92 0.78 90.9 0.96

All tests 0.98 0.98 0.90 96.4 0.97
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secondary axis of movement. The former corresponds to 
movements along the direction of the axis most related 
to accomplishing the task objectives, e.g. the upward/
downward movement in tapping or the rotation of the 
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AUC 0.97

ALL TESTS
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Fig. 4 Group classification in PCA. a All features. b FCT and FTT features
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Table 7 Common selected feature in  each test from  the  4 
FS methods

n/a not available

FCT FTT FNT DDKT

S n/a n/a MRAAcXFNT RF
AngX
DDK

RFAAcYFNT MR
AngX
DDK

RFAAcZFNT MR
AngZ
DDK

T KiDe
X ,Y
FCT

CITIFTT RFAAcYFNT
n/a

ReTi
X ,Y
FCT

A n/a n/a n/a n/a

R n/a FuEn
GyX
FTT

n/a n/a

Table 8 Statistical measurement of  regression analysis 
of features from each dimension in STAR with SARA scores

Statistical measure SARA-total SARA-UL (sum) SARA-UL 
(mean)

S Agreement (%) – – 57%

R-squared 0.52 0.61 0.62

Corr. coef. 0.6 0.69 0.69

T Agreement (%) – – 75%

R-squared 0.64 0.82 0.84

Corr. coef. 0.77 0.87 0.85

A Agreement (%) – – 56%

R-squared 0.48 0.54 0.61

Corr. coef. 0.6 0.55 0.52

R Agreement (%) – – 40%

R-squared 0.33 0.43 0.39

Corr. coef. 0.35 0.47 0.38
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forearm in DDKT (Fig.  1). Secondary-axis movements 
mostly occur because of instability of the execution plat-
form, i.e. the proximal joints (shoulder or elbow) which 
must be stable for accuracy of the moving distal hand 
or wrist. Therefore, significant differences in secondary 
axes motion in ataxic and control subjects were attrib-
uted to instability in this platform. Due to the factor of 
repetition, the primary movement is required to adhere 
to a self-defined rhythm [6]. Measures pertaining to this 
axis can be used to infer the deficits in rhythmicity or 
timing. In the frequency analysis, timing aspects or “how 
quick is the movement performed” were described by the 
RF, whereas MR indicated the intensity of the rhythmic 
movement [12] which was considered as a measure of 
rhythmicity.

Learning models will always be improved with more 
subjects. Nevertheless, a cohort of people with CA of 
this size is relatively large in comparison to earlier stud-
ies of ataxia [13, 15, 35]. Furthermore, power analysis 
and rigorous cross validation process validated the reli-
ability and statistical significance necessary for asser-
tions of clinical validity. There is an assumption that “all 
cerebellar ataxia is the same” and it is possible, indeed 
likely, that the presence of somatosensory impairment, 
vestibular involvement or other central nervous system 
(CNS) lesions may affect objective assessment of ataxia. 
One of the motivations for producing more precise 
means of assessing ataxia is to establish whether the fac-
tors that might differentiate ataxia associated with other 
neural lesions might differ from “pure” cerebellar ataxia. 
This would be a subject of future studies. In a similar vein 
more severe ataxia reflected by SARA scores > 3 would 
be important in future studies. Another potential direc-
tion of research would explore the combination of FCT 
and FTT as a mechanism of capturing the progression of 
disease in a longitudinal study. With the rapid advance-
ment in pervasive Internet-of-Things technologies, cap-
turing the severity of CA subjects more regularly in their 
natural environment (non-clinical setting) and monitor 

the progress remotely will inevitably enable more person-
alized health care with effective rehabilitation programs.

Conclusion
The instrumented assessment scheme proposed was 
based on the four widely-used motor tests of upper 
limb functionality. The system described here was able 
to support clinical decision making with a fewer num-
ber of features selected from the conventional execution 
of these tests. The features were grouped and evaluated 
through the proposed definition of the ataxic manifes-
tations (STAR) in a quantitative form which provided 
plausible interpretation of ataxia. In the scope of upper 
limb assessments, the characteristics belonging to timing 
resulted in the highest association with the SARA total 
score. A 4-level discrete form of severity rating scale was 
introduced to be in line with the conventional scale, the 
SARA. This further confirmed the agreement with the 
current practice of clinical assessments and provided 
a severity estimation within acceptable levels of devia-
tions. The other important finding of this study is that 
the FCT and FTT were identified as the most suitable 
combined assessments that presented highly accurate CA 
diagnosis and severity estimation, among other combi-
nations of tests. The reduction of tests would potentially 
lead to a more cost-effective assessment strategies to be 
performed in clinical practices where resources such as 
clinician time and the number of patient visits are often 
limited.
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CC Correlation coefficient (Spearman)
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