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Abstract

Chronic tinnitus is a debilitating condition which affects 10–20% of adults and can severely

impact their quality of life. Currently there is no objective measure of tinnitus that can be

used clinically. Clinical assessment of the condition uses subjective feedback from individu-

als which is not always reliable. We investigated the sensitivity of functional near-infrared

spectroscopy (fNIRS) to differentiate individuals with and without tinnitus and to identify

fNIRS features associated with subjective ratings of tinnitus severity. We recorded fNIRS

signals in the resting state and in response to auditory or visual stimuli from 25 individuals

with chronic tinnitus and 21 controls matched for age and hearing loss. Severity of tinnitus

was rated using the Tinnitus Handicap Inventory and subjective ratings of tinnitus loudness

and annoyance were measured on a visual analogue scale. Following statistical group com-

parisons, machine learning methods including feature extraction and classification were

applied to the fNIRS features to classify patients with tinnitus and controls and differentiate

tinnitus at different severity levels. Resting state measures of connectivity between temporal

regions and frontal and occipital regions were significantly higher in patients with tinnitus

compared to controls. In the tinnitus group, temporal-occipital connectivity showed a signifi-

cant increase with subject ratings of loudness. Also in this group, both visual and auditory

evoked responses were significantly reduced in the visual and auditory regions of interest

respectively. Naïve Bayes classifiers were able to classify patients with tinnitus from controls

with an accuracy of 78.3%. An accuracy of 87.32% was achieved using Neural Networks to

differentiate patients with slight/ mild versus moderate/ severe tinnitus. Our findings show

the feasibility of using fNIRS and machine learning to develop an objective measure of tinni-

tus. Such a measure would greatly benefit clinicians and patients by providing a tool to

objectively assess new treatments and patients’ treatment progress.
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Introduction

Tinnitus is a condition characterised by hearing unwanted sounds that are not present exter-

nally. Chronic tinnitus affects around 6–20% of adults with approximately 20% of these

experiencing it in a severe form with symptoms such as depression, cognitive dysfunction and

stress [1, 2]. Despite its wide prevalence, there is currently no clinically used objective test that

can measure changes in brain activity related to tinnitus. There is no objective way to deter-

mine the presence or severity of tinnitus, or assess whether treatments are effective [3]. Devel-

oping an objective measure of tinnitus, the primary aim of this study, will allow more accurate

assessment of this condition and is an important step in developing and measuring the effec-

tiveness of potential treatments currently being developed.

Both experimental animal and human studies have shown changes in the central nervous

system associated with tinnitus [1, 2, 4, 5]. These changes have been identified at a variety of

locations along the auditory pathway, in the auditory cortex and more recently in non-audi-

tory brain areas [1, 2, 6]. A review by Elgoyhen et al. proposed that tinnitus results from abnor-

mal activity in multiple overlapping brain networks with variation in involvement of each of

these networks leading to the diverse manifestation of this condition [7]. Activation of the

auditory cortex in the resting state has been proposed to reflect the loudness of the tinnitus [7].

Co-activation of non-auditory regions such as frontal areas and the limbic system have been

associated with aspects of tinnitus such as distress [8]. Neural changes shown to be associated

with tinnitus include changes in the level of spontaneous neural activity, changes in neural

synchrony and reorganisation of cortical tonotopic maps [2].

Different functional imaging techniques have been used to localise brain areas related to

tinnitus [2, 9]. The most common methods are electroencephalography (EEG) [10], magneto-

encephalography (MEG) [11, 12], positron emission tomography (PET) [13] and functional

magnetic resonance imaging (fMRI) [4]. In this study we used functional near-infrared spec-

troscopy (fNIRS) to record resting state and evoked responses, two widely used paradigms

used in functional neuroimaging of tinnitus [2]. fNIRS has great potential to transform clinical

practice as it is non-invasive and non-radioactive (unlike PET) and, importantly for routine

clinical use, is quiet, portable and cost-effective. Similar to fMRI, fNIRS measures changes in

blood oxygen levels in the brain; however, fNIRS has better temporal resolution and does not

produce scanner noise making it more suited to hearing related research. A limitation of

fNIRS is its inability to image deep cortical regions; however, in the research described below,

we have focused on cortical regions accessible using fNIRS which have been associated with

tinnitus using other imaging techniques.

A number of cortical regions identified in tinnitus neuroimaging studies, include the audi-

tory cortex, frontal cortex and cuneus regions [9, 14, 15]. In particular, increased resting state

activity in frontal regions has been attributed to tinnitus distress, salience or attentional focus

[9]. A meta-analysis of nine studies comparing resting state brain activity in patients with tin-

nitus compared to controls, found reduced activity in the cuneus in tinnitus patients [9]. The

cuneus is located in the occipital part of the brain and is involved in visual processing. It has

been proposed that, due to the existence of neural pathways between auditory and visual

regions, tinnitus-related abnormal activity in the auditory cortex can lead to altered activity in

the cuneus [9, 16]. The subjective loudness of tinnitus has been proposed to be associated with

integration of multi-sensory, i.e. audio-visual, information [17].

The cortical regions discussed above are accessible using fNIRS as shown in previous stud-

ies [18–20]. Our previous research has shown feasibility of recording auditory responses using

fNIRS and has demonstrated responses to be dependent on the intensity of auditory stimuli

[18]. The auditory region is positioned relatively deep in the cortex and previous work suggests
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that recorded signals in adults do not originate from the primary auditory cortex and instead

are more likely to be from the auditory para-belt regions [21].

A number of studies have recently used fNIRS in participants with tinnitus to record brain

activity at rest or in response to sound, showing sensitivity of fNIRS to detect tinnitus-related

neural activity [5, 22–24]. Resting state data can be used to derive measures of connectivity

between different regions of the brain. It has been reported that there are differences in brain

connectivity between participants with tinnitus and those without [22]; however, the two

groups in that study were not age-matched. Promisingly, another study reported changes in

fNIRS auditory responses in participants with tinnitus as a result of applying transcranial mag-

netic stimulation, a potential tinnitus therapy [23].

Most reported findings in brain imaging studies on tinnitus are based on statistical analysis

of either resting state or evoked brain activity. Machine learning algorithms are used to find

patterns in complex data with non-linear relationships as is the case with brain imaging signals

[25]. Machine learning methods are well suited to rich datasets such as fNIRS features from

multiple channels, different conditions (i.e. resting state and evoked) and demographic data.

These methods are also suited for development of clinically usable measures as they enable a

reduction of the number of fNIRS channels or source-detector pairs required as the informa-

tion in some may be contained in others or channels might be identified that have no informa-

tion associated with tinnitus. Subjective ratings of tinnitus severity can be used with machine

learning techniques to map fNIRS signal features to severity levels (training phase). fNIRS fea-

tures from other individuals can then be classified to tinnitus severity levels based on past

observations. This method has been successfully used to classify similar conditions such as

pain type with an accuracy of 90% using 13 fNIRS features [26].

In this study, we aimed to apply statistical and machine learning algorithms to fNIRS sig-

nals to: 1) assess the sensitivity of fNIRS to differentiate individuals with tinnitus from con-

trols, and 2) identify fNIRS features associated with subjective ratings of tinnitus severity and

whether these could differentiate between perceived loudness of tinnitus and annoyance. To

avoid machine learning models becoming a ‘black box’ with little information about features

and parameters, we have first performed statistical analysis to gain a better understanding of

signal features, cortical regions and conditions that show group differences and changes with

tinnitus severity levels. This ensured that our machine learning models provided physiologi-

cally relevant information. A reliable objective measure of tinnitus will enable monitoring of

changes as a result of potential treatments. The clinical management of patients with tinnitus

would greatly benefit from such a tool.

Methods

Participants

The study was approved by the Royal Victorian Eye and Ear Hospital Human Research Ethics

Committee (project number 17/1332H). Written informed consent was obtained from all par-

ticipants. Twenty five participants with chronic subjective tinnitus (23 experiencing it bilater-

ally) were recruited via advertisement through local audiology clinics and Bionics Institute

social media. Twenty-one healthy adults with no history of tinnitus, neurological or hearing

disorders were also tested. Data from three healthy participants were excluded, two due to

long hair and poor signal quality and one due to technical issues with the cap. Participants

attended one testing session. Pure tone audiometry was performed on all participants at fre-

quencies of 0.25, 0.5, 1, 2, 4, and 8 kHz (Fig 1). For the participants included in the study, hear-

ing thresholds averaged across frequencies for each ear were not significantly different

between groups (left ear: t(41) = −1.13, p = 0.26; right ear: t(41) = −0.81, p = 0.42). Hearing
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thresholds at 4 and 8 KHz were also compared between groups as these showed higher loss in

the tinnitus group (Fig 1). No significant group difference was found at 4 (left: t(41) = −1.37,

p = 0.18; right: t(41) = −1.22, p = 0.23)) and 8 KHz (left: t(41) = −1.1, p = 0.28; right: t(41) =

−0.81, p = 0.42)). There was no significant difference in mean age between the two groups (t

(41) = -0.65, p = 0.51). Tinnitus severity was assessed using the Tinnitus Handicap Inventory

(THI) [27]. The THI is a 25-item test which quantifies the perceived severity of tinnitus on a

scale of 0–100. Score ranges are associated with different severity levels (e.g. 0–16 slight tinni-

tus, 58–76 severe). Participants with tinnitus were also asked to rate the loudness and annoy-

ance of their tinnitus on a scale of 1 to 10 before each recording. Demographic and clinical

data are shown in Table 1.

fNIRS recordings

A multi-channel continuous-wave fNIRS system operating at 760 and 850 nm (NIRScout,

NIRx Medical Technologies LLC) was used to collect data. A total of 16 sources and 16 detec-

tors were placed over the frontal, temporal and occipital cortical regions (Fig 2). Each source-

detector pair forms a channel. Sources and detectors were arranged using NIRSite software

(NIRx Medical Technologies LLC) which uses the ICBM-152 head model and allows exporting

MNI coordinates corresponding to channel locations. These coordinates were then used in

AtlasViewer software [28] to determine the brain region corresponding to each channel loca-

tion and to ensure the auditory and visual cortex in particular (due to the use of auditory and

visual stimuli) were covered. Channels over or around the auditory cortex were sited to achieve

Fig 1. Mean (SD) of hearing thresholds in participants with tinnitus and controls.

https://doi.org/10.1371/journal.pone.0241695.g001

Table 1. Participant demographics.

Controls Tinnitus

No. of participants 18 25

gender (male: female) 11:7 16:9

Age, mean (SD), range 45.5 (16.7), 25–76 48.4 (12.9), 25–68

Handedness R: 18 R: 21, L: 2, both: 2

THI, mean (SD), range N/A 26.2 (17.1), 4–60

Tinnitus duration, mean (SD), range N/A 11.5 (8.8), 0.5–25

Tinnitus laterality N/A R: 2, bilateral: 23

THI, Tinnitus Handicap Inventory; R, right; L, left; Tinnitus duration: length of time patients have experienced

tinnitus.

https://doi.org/10.1371/journal.pone.0241695.t001

PLOS ONE Measurement of tinnitus using fNIRS and machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0241695 November 18, 2020 4 / 20

https://doi.org/10.1371/journal.pone.0241695.g001
https://doi.org/10.1371/journal.pone.0241695.t001
https://doi.org/10.1371/journal.pone.0241695


good fNIRS response signals to auditory stimuli based on our previous work which showed

fNIRS responses to auditory stimuli at different intensities [18]. Source-detector pairs were

placed 30mm apart, forming 36 long channels. In each of the four cortical regions, a ‘short’

channel was formed by placing a source-detector pair 11mm apart. fNIRS signals contain sys-

temic signals from superficial layers of the head including the scalp and skull, which interfere

with detecting deeper cortical signals. Using source-detector pairs which are placed closer

together, systemic signals from superficial layers can be recorded. These can then be used to

remove the systemic artefacts from the long channels as described below.

Auditory stimulation

Auditory stimuli were delivered binaurally via audiometric insert earphones (ER-3A insert

earphone, E-A-RTONE™ 165 GOLD, USA). Stimuli consisted of 15-second segments of pink

noise calibrated using a Norsonic sound level meter (Norsonic SA, Norway) and delivered at

65 dB Sound Pressure Level (SPL). The power in pink noise is inversely proportional to the sig-

nal frequency with equal power in different octaves (i.e. doubling of frequencies). This is simi-

lar to how the human auditory system perceives sound.

Fig 2. fNIRS montage. Sixteen sources (red circles) and 16 detectors (grey circles) forming channels were placed on

frontal, temporal and occipital regions of the scalp. Channel numbers are shown. 36 long and 4 short channels

(marked by � and yellow source-detector links) were formed.

https://doi.org/10.1371/journal.pone.0241695.g002
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Visual stimulation

The visual stimulus was a reversing display of circular checkerboard patterns with pattern

reversal at a temporal frequency of 7.5 Hz (15 reversals per second). This pattern was used as it

produces strong cortical responses in people with good visual acuity [19]. The images were

radial in nature and consisted of rings, divided into sectors with neighbouring sectors of oppo-

site colour (black and white).

Experimental design

fNIRS testing was performed in a sound-treated booth. Participants sat on a comfortable chair

and auditory and visual stimuli were presented using Presentation software (Neurobehavioral

Systems, USA).

The fNIRS test session consisted of three recording periods with short rest breaks given in

between (Fig 3). The first recording period was a six-minute resting-state recording. During

this recording period, participants were instructed to sit still with their eyes closed but not fall

asleep. The second and third recording periods were composed of auditory or visual stimulus

blocks (Fig 3). Stimuli were randomised across blocks with no more than two blocks of the

same type in a row and 20 or 25 second non-stimulus intervals between stimuli. In total, each

stimulus type was repeated 10 times (six in recording period 2 and four in recording period 3).

The total recording time (excluding short rest breaks) was approximately 20 minutes. Data

was recorded at a sampling rate of 7.8125 Hz per channel.

Analysis

Data processing was performed in Matlab 2019a (Mathworks, USA). Pre-processing of fNIRS

signals was performed using NIRS Brain AnalyzIR Toolbox [29] and custom written Matlab

scripts. Channels with poor signal quality were identified using the following criteria and

excluded from further analysis. First, channels with gains over 7 showing inadequate detected

light intensity were rejected. The gain is calculated by the NIRx device during a calibration

Fig 3. fNIRS experiment block design. Three recordings were performed during each testing session with 3–5 minute rest breaks in-between. In

‘recording period 2’, six 15-second auditory and six 15- second visual stimuli were applied. A 3–5 minute break was then given to participants and then

‘recording period 3’ was performed to collect a further four auditory and four visual trials. All together, 10 trials of each stimulus type were collected.

Stimuli were randomised across blocks with no more than two stimuli of the same type in a row. Non-stimulus intervals between stimuli within a

recording period were 20 or 25 seconds long. NSI: non-stimulus interval.

https://doi.org/10.1371/journal.pone.0241695.g003
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procedure performed prior to each experiment. In the NIRx system, gain values below 7 are

defined as optical signals within the range 0.09–1.4 V and noise levels less than 2.5% (NIRstart

14.2 User Manual). Channels were also checked for their cardiac signal content as this is a sign

of good contact between optodes and the scalp [30, 31]. This was done using a scalp coupling

index (SCI) which is calculated by band-pass filtering the two detected signals at 760 and 850

nm between 0.2 to 2.5 Hz [30]. Signals from optodes with good skin contact will mainly con-

tain heart rate data and hence be highly correlated. Channels with SCI values less than 0.75

were rejected. On average 13% of channels were rejected.

For the remaining channels the following processing was applied. For resting state record-

ings, the original unfiltered signals from each channel were down-sampled to 1Hz and con-

verted to optical density [32]. For evoked response recordings, conversion to optical density

was performed at the original sampling rate. Short channel correction was applied to optical

density data using the function ntbxSSR.m in the NIRS toolbox (parameter task set to 0) [33,

34] to remove extracerebral signals from long channels. The corrected optical density in each

long channel was calculated by subtracting a fraction of the closest short channel [33]. This

subtraction removes two sources of interference, fluctuations measured from the scalp and

global fluctuations such as systemic responses and respiration. Concentration changes of oxy-

genated and de-oxygenated haemoglobin (HbO and HbR respectively) were then estimated

using the modified Beer-Lambert law [35].

Resting state

Seed analysis is commonly used to investigate resting-state functional connectivity networks

in the brain [4, 5]. In this method, a cortical region is selected as the seed and its connectivity

with other regions is examined by finding correlations between the seed region and other

brain regions (e.g. see [5]). In this study, two channels over the temporal cortex were chosen

on each side of the head. Channels 9 and 10 on the left side and 30 and 31 on the right, were

estimated to cover the superior temporal and Heschl’s gyrus (Table 2). Signals from the two

channels on each side were then averaged and used as a seed. Correlations between seed chan-

nels and the other channels were calculated using whitened correlations (NIRS

toolbox function nirs.sFC.ar_corr.m) [32]. This robust correlation method addresses the sensi-

tivity of fNIRS to false correlations due to the slow hemodynamic signal, systemic physiologi-

cal noise such as heart rate and breathing (serial correlations) and motion artefacts which can

introduce non-normal noise structures. Values obtained for channels comprising frontal and

occipital regions of interest (ROI) were then averaged for statistical analysis. The frontal ROI

included channels over the superior frontal gyrus, medial, superior frontal gyrus, medial

Table 2. Anatomical region associated with each channel number.

Left side Right side

Channel no. Cortical region Channel no. Cortical region

9 Superior temporal gyrus 30 Superior temporal gyrus

10 Superior temporal gyrus 31 Heschl’s gyrus

11 Supramarginal gyrus 32 Supramarginal gyrus

13 Middle temporal gyrus 34 Middle temporal gyrus

14 Middle temporal gyrus 35 Superior temporal gyrus

16 Inferior temporal gyrus 37 Middle temporal gyrus

17 Angular gyrus 38 Angular gyrus

18 Middle temporal gyrus 39 Middle temporal gyrus

https://doi.org/10.1371/journal.pone.0241695.t002
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orbital and middle frontal gyrus (channels 1, 3, 4, 5, 6, 7, 8, 26, 27, 28, 29). The occipital ROI

chosen covered the cuneus and superior occipital gyrus (channels 20, 21, 23, 24, 25, 41, 42).

Whitened correlations were derived from both HbO and HbR signals and compared between

groups.

Evoked responses

To analyse evoked responses, motion artefacts were removed using the function WaveletFilter
(outlier threshold set to 3). Signals were band-pass filtered between 0.01–0.12 Hz by applying

zero-phase 8th order Butterworth high-pass (at 0.01 Hz) and low-pass (0.12 Hz) filters respec-

tively. HbO and HbR concentrations were then estimated using the modified Beer-Lambert

law. For each channel, HbO and HbR signals were epoched from t = -5 to t = 30 relative to

stimulus onset using the EpochExtraction function which removes linear trends and baseline

corrects epochs by subtracting the baseline mean. Based on an outlier detection function [36]

epochs with amplitudes exceeding 2.5 standard deviations above the epoch mean were

rejected. For each of the conditions recording auditory and visual responses, mean HbO and

HbR activation across time windows 0 to 5 seconds (for auditory responses) and 10–15 sec-

onds (visual) were calculated. These time windows were chosen to capture the initial rising

phase of the response based on grand averaged group responses and waveform morphology

(further described in the results section). fNIRS features from evoked responses were averaged

over ROIs for statistical analysis. Left and right temporal ROIs included channels listed in

Table 2 along with the estimated anatomical regions these channels covered. Visual evoked

responses were averaged over the occipital ROI mentioned for resting data, with channels cov-

ering the cuneus and superior occipital gyrus (channels 20, 21, 23, 24, 25, 41, 42).

Statistical analysis

Data normality was tested using residual normal probability plots. For resting state and visual

response measures, group comparisons were performed using Independent sample t-tests.

Auditory responses were compared among regions (left and right temporal) using paired t-

tests and among groups using independent sample t-tests. Multiple linear regression was used

to investigate relationships between fNIRS features which showed significant between-group

differences, with behavioural measures and demographics.

Statistical analyses were performed using IBM SPSS Statistics for Windows, V26 (IBM

Corp.). A value of p< 0.05 was considered statistically significant.

Machine learning

To combine features from resting state and evoked response signals from fNIRS channels over

different cortical regions, machine learning methods including feature selection and classifiers

were used. Features input to these algorithms included auditory and visual response ampli-

tudes and frontal and occipital connectivity measures described above. Here, features from all

channels were used as individual inputs (and not averaged over ROIs) to allow the feature

selection algorithms to automatically select channels which can best distinguish between

groups. Both HbO and HbR- derived features were used. Information Gain was used to select

the most relevant features by ranking them based on their weight or importance in classifica-

tion. Information Gain is a measure of entropy in the data and enables identification of chan-

nels and HbO/ HbR features with the most relevant information for classification. These

features were then used with four different classification methods to classify participants as

controls or experiencing tinnitus. Classifiers were also used to differentiate the patients with

tinnitus as having slight/ mild versus moderate/ severe tinnitus (based on THI ratings). In the
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latter analysis data was categorised into two groups only, to increase the sample size in each.

The four classifiers used were Naïve Bayes, K-nearest neighbor (KNN), Rule Induction and

Artificial neural networks (ANN). These established algorithms have been previously used for

similar applications such as medical diagnosis and classification of types of human pain [26,

37].

Connectivity measures and evoked response amplitudes described above and derived from

both HbO and HbR were used with classifiers. Classifier performance was assessed using only

connectivity measures, only evoked response features or using both connectivity and evoked

features to assess the relative importance of the different features. To calculate the performance

of these algorithms, 10-fold cross validation was used. This validation method randomly parti-

tions the dataset into 10 subsets. One subset is kept for testing while the other nine are used for

training. This process is iterated throughout the whole 10 subsets (each time using one of the

10 subsets for testing) and the average sensitivity (true positive rate), specificity (true negative

rate) and accuracy of the classifier is calculated. Classification accuracy or predictive perfor-

mance was calculated as the number of correctly predicted samples over the total number of

samples.

Results

Group comparisons

Resting state: Differences between measures of connectivity between temporal seeds with fron-

tal and occipital ROIs are shown in Fig 4. More detailed connectivity patterns with individual

channels in frontal and occipital channels are shown in S1 and S2 Figs. Connectivity measures

between both left and right seeds with frontal HbO signals were higher in the tinnitus group,

with right seed differences reaching significance (right seed: t(41) = −2.125, p = 0.040; left seed:

t(41) = −1.856, p = 0.071; uncorrected p). Right seed- occipital connectivity values derived from

HbR signals were significantly higher in the tinnitus group t(41) = −2.266, p = 0.029; uncor-
rected p). This was not found for left seed connectivity.

Evoked responses. Group averaged auditory and visual evoked responses are shown in

Figs 5 and 6.

Auditory response amplitudes averaged over the first five seconds following stimulus onset

were compared between left and right auditory regions using paired t-tests and between

groups using independent sample t-tests. This period was chosen to capture rise time or onset

of the response which has been shown in previous work to last on average 5–6 seconds [38,

39]. Our previous research on fNIRS auditory evoked responses, identified a transient

response showing a clear peak within the stimulation period [18]. There was no significant dif-

ference between left and right auditory responses. Averaged across both sides, the auditory

response was smaller in the tinnitus group (t(39) = −2.199, p = 0.034; uncorrected p). This

group difference was not found for HbR responses.

As seen in Fig 6, the visual response was more sustained in duration following stimulus

onset compared to the auditory response. This is in agreement with previous fNIRS research

on activation of the occipital cortex to checkerboard stimuli which showed a rise in HbO and

fall in HbR concentration for around 10 seconds after stimulus onset as well as a slow return to

baseline following stimulus offset which lasted around 10 seconds [19].

A t-test showed response amplitudes averaged over 10–15 seconds following stimulus onset

were significantly larger in the control group (t(41) = 2.301, p 0.027; uncorrected p).

Fig 7 shows responses averaged over channels in left and right temporal regions and the

occipital region. Since statistical analysis was performed with response amplitudes averaged

over regions, this figure allows visual inspection of the waveforms averaged over the auditory
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and visual channels. Auditory responses showed a clear onset or rise lasting around 5 seconds

after stimulation. Visual responses were more sustained with a slower rise lasting around 15

seconds after stimulation.

Change in fNIRS measures with demographics and tinnitus severity

Changes in fNIRS measures with tinnitus severity as assessed by the THI score, age, duration

of tinnitus, hearing thresholds at 4 and 8 KHz and subjective ratings of loudness and annoy-

ance were assessed using multiple linear regression. HbO-derived connectivity between left

and right seeds and frontal channels increased with duration of tinnitus (Fig 8A) with the cor-

relation on the right side approaching significance (β = 0.021, SE = 0.011, p = 0.078). HbR-

derived connectivity between the right seed and occipital channels (Fig 8B) increased signifi-

cantly with subjective ratings of loudness (β = 0.036, SE = 0.012, p = 0.01, uncorrected p). All

other comparisons were non-significant.

Feature combination using machine learning

Individual channel, rather than ROI averaged, auditory, visual and resting state fNIRS feature

sets, either alone or in combination, were used with classifiers. Features were weighted (or

ranked) by applying the feature extraction method, Information Gain. The best accuracy using

only a single feature set was able to separate tinnitus participants from controls using auditory

alone features weighted above 0.45 and a Naïve Bayes classifier, resulting in an accuracy of

78.3% (Table 3). The weighting criterion resulted in 36 auditory features being used (20 HbO

and 16 HbR derived auditory response amplitudes). Combining auditory, visual and resting

Fig 4. Hbo and HbR-derived whitened Correlations (measure of connectivity) between left and right seeds with

frontal and occipital channels. Mean and SEM of correlations between seeds and channels in each region are shown.
� p< 0.05.

https://doi.org/10.1371/journal.pone.0241695.g004
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Fig 5. Group averaged auditory responses recorded from channels over the left and right temporal cortex. HbO (A) and HbR (B) responses shown.

Channel numbers are shown above plots. Vertical lines show stimulus onset and offset times at 0 and 15 seconds.

https://doi.org/10.1371/journal.pone.0241695.g005

Fig 6. Group averaged visual responses recorded from occipital channels over the cuneus and superior occipital gyrus. HbO (A) and HbR (B)

responses shown. Channel numbers are shown above plots. Vertical lines show stimulus onset and offset times at 0 and 15 seconds.

https://doi.org/10.1371/journal.pone.0241695.g006
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state features weighted above 0.56 and using Rule Induction, Naïve Bayes and Neural Net-

works classifiers also resulted in accuracies above 70%. Features used included 19 auditory, 17

visual and 22 resting state connectivity measures. Of these total 58 features, 35 were derived

from HbO and 23 from HbR signals. Connectivity measures in the selected features contained

more right-seed features than left and more temporal-occipital features compared to tempo-

ral-frontal ones. The highest accuracy for classifying tinnitus participants from controls was

achieved using Naïve Bayes classifier with auditory features (Table 3). The highest sensitivity

was also achieved using Naïve Bayes with features from all three conditions selected using

Information Gain. The Artificial Neural Network algorithm resulted in similar sensitivity and

specificity values of 71.41% and 74.62% respectively. KNN was also used to classify tinnitus

participants from controls however resulted in a low accuracy (~60%).

Table 4 shows classification results for differentiating slight/ mild (n = 18) from moderate/

severe (n = 7) tinnitus. To categorise these tinnitus participants, the highest accuracies (above

75%) were achieved using connectivity measures weighted above 0.45, with Neural Network,

KNN and Rule Induction classifiers (Table 4). A total of 48 features (23 HbO and 25 HbR

derived auditory response amplitudes) were included with most features from right-seed HbR

temporal- frontal and temporal occipital measures. Highest sensitivity (correctly predicting

those with moderate/ severe tinnitus) and accuracy was achieved using the Neural Network

classifier although low specificity of 51.23% was obtained.

Discussion

Results from this study demonstrate that fNIRS can be used to differentiate patients suffering

from tinnitus from controls and have identified fNIRS features that are associated with subjec-

tive ratings of tinnitus severity. In comparison to the control group, higher temporal-frontal

HbO connectivity as well as higher right seed temporal-occipital HbR connectivity was found

in the tinnitus group. The former measure showed an increase with duration of tinnitus while

the latter increased significantly with subjective ratings of loudness. Auditory and visual

Fig 7. Group averaged auditory and visual responses. HbO (A) and HbR (B) responses averaged over auditory and visual ROIs. ROI: region of

interest.

https://doi.org/10.1371/journal.pone.0241695.g007
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responses were found to be reduced in the tinnitus group compared to controls but did not

change significantly with tinnitus severity. In agreement with this, the machine learning algo-

rithms have classified individuals with tinnitus and controls using features from resting state

and evoked responses while the highest classification accuracy for patients with tinnitus at dif-

ferent severity levels was achieved using only connectivity features.

Fig 8. Change in connectivity with duration of tinnitus and loudness. (A) Change in HbO derived temporal- frontal

connectivity with duration of tinnitus. (B) Change in HbR derived temporal- occipital connectivity with subjective ratings of

loudness.

https://doi.org/10.1371/journal.pone.0241695.g008

Table 3. Classifiers and features with highest accuracy for predicting participants with tinnitus and controls.

Classifier features Sensitivity Specificity Accuracy

Naïve Bayes Auditory response 72.33% 64.25% 78.3%

Rule Induction Combined auditory, visual and connectivity 80.66% 67.33% 75.09%

Naïve Bayes Combined auditory, visual and connectivity 86.42% 61.25% 74.75%

Neural Network Combined auditory, visual and connectivity 71.41% 74.62% 72.33%

https://doi.org/10.1371/journal.pone.0241695.t003
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Resting state temporal-frontal connectivity

A number of recent neuroimaging studies investigated altered resting state brain connectivity

in patients with tinnitus [1, 4, 9]. Our study is in agreement with most of these studies, in dem-

onstrating an increased connectivity among auditory and non-auditory brain regions such as

the frontal and dorsolateral prefrontal cortex [1]. Connectivity among auditory and non-audi-

tory brain regions such as the prefrontal region is known to play an important role in con-

scious sound perception including tinnitus [1, 40, 41]. Some studies have suggested the

increased connectivity to be associated with the distress experienced by tinnitus patients [1].

Our findings have shown an increasing trend between temporal-frontal connectivity and dura-

tion of tinnitus (Fig 8A). This difference may be due to differences in how distress is measured

(here we have only asked about annoyance). Duration has been identified as an important fac-

tor in tinnitus studies as it has possible effects on plasticity and habituation [15]. A study by

Schmidt et al. comparing patients with tinnitus with a control group, showed disruption to the

default mode network (a resting state network in the brain) in the tinnitus group that appeared

to occur over time in patients [42]. Although this measure would need to be explored further

to highlight what aspect of tinnitus it is measuring, an important finding is its independence of

the tinnitus loudness experienced by patients suggesting the two can be measured separately.

Resting state temporal-occipital connectivity and visual responses

In our study, right seed temporal-occipital connectivity was found to be increased in patients

with tinnitus. The fNIRS channels in the occipital region covered the cuneus and superior

occipital gyrus. The cuneus is located in the occipital part of the brain and is involved in visual

processing. It is proposed that due to the existence of neural pathways between auditory and

visual regions, tinnitus-related abnormal activity in the auditory cortex can lead to altered

activity in the cuneus [9, 16]. Activation of the auditory cortex and integration of multi-sen-

sory audio-visual information has been suggested to affect the perceived loudness of tinnitus

[1, 7]. This is in agreement with our findings showing temporal-occipital connectivity to be

associated with subjective ratings of loudness but not annoyance (Fig 8B). As mentioned ear-

lier, this suggests that loudness and annoyance can be measured independently using fNIRS.

This is important as studies on the delivery of tinnitus services have shown it is the perception

of loudness that patients specifically want reduced [3]. Altered activity in the cuneus may also

lead to the reduced visual responses observed in our study (Fig 7).

The increase in connectivity of the right temporal seed with frontal and occipital channels,

but not left, is of interest as asymmetry in brain activity has been reported as a feature in many

tinnitus imaging studies [1, 2, 14]. Comparison of resting state activity in participants with tin-

nitus and those without using positron emission tomography (PET), has shown stronger

asymmetry in auditory cortex activity in participants with tinnitus compared to controls [43,

44]. Asymmetry in brain activity in different frequency bands has also been shown in tinnitus

electroencephalography (EEG) and magnetoencephalography (MEG) resting state studies [10,

45]. A number of functional magnetic resonance imaging (fMRI) studies measuring sound

Table 4. Classifiers and features with highest accuracy for predicting severity of tinnitus (slight/ mild n = 18, versus moderate/ severe n = 7) as rated using the Tinni-

tus Handicap Inventory (THI).

Classifier features Sensitivity Specificity Accuracy

Neural network Connectivity features 51.23% 95.12% 87.32%

KNN(K = 1) Connectivity features 50.86% 90.21% 81.22%

Rule Induction Connectivity features 34.63% 90.06% 76.53%

https://doi.org/10.1371/journal.pone.0241695.t004
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evoked activity in participants with tinnitus and those without have shown lateralised

responses in the auditory cortex in participants with tinnitus [9]. It remains inconclusive

whether asymmetry in activity is dependent on which side tinnitus is perceived or whether it is

perceived unilaterally or bilaterally [2].

Sound evoked auditory responses

Contrasting findings have been reported from studies measuring sound-evoked activity in

patients with tinnitus and controls using fMRI [2]. Melcher et al. showed smaller responses in

the inferior colliculus of patients with tinnitus whereas other studies showed increased

responses [46, 47]. Although scanner noise has been suggested as contributing to the smaller

evoked response, another explanation has been the increased background neural activity pres-

ent in tinnitus leading to saturation of the hemodynamic response [48]. Since fNIRS involves

no background noise, the latter could explain the reduced auditory responses in patients with

tinnitus compared to controls. The negative variation seen in Fig 7 (right auditory ROI) could

be explained by reduced neural activity. Negative hemodynamic responses are attributed to

two main mechanisms [49]. The first is a reduction or suppression of neural activity and the

second, a ‘blood stealing’ effect [50, 51]. The latter effect proposes that an increase in blood

flow in an activated cortical region causes a decrease in blood flow in an adjacent region.

Using machine learning with fNIRS features

When comparing tinnitus participants with controls, three classifiers Naïve Bayes, Rule Induc-

tion and Neural Networks showed the highest accuracies (Table 3). Naive Bayes showed the

highest accuracy with only auditory response features however specificity with this method

was only ~64%. Also, auditory features alone did not result in high accuracy when used to pre-

dict severity level within the tinnitus group (Table 4). The Neural Network classifier resulted

in similar sensitivity and specificity (~71% and 74% respectively) when using features from all

three recording conditions. This classifier also resulted in high specificity when used to predict

severity of tinnitus within the tinnitus group (Table 4). While Neural Network and Rule Induc-

tion both resulted in accuracies above 70% to classify tinnitus from controls and tinnitus with

different severity levels, Neural Network has higher time complexity (i.e. time needed to run

the algorithm) compared to Rule Induction. Rule Induction can also produce understandable

rules which may help interpret findings. Both these classifiers will need to be explored with a

larger dataset of tinnitus patients with more heterogeneity in terms of severity in order to

determine their clinical applicability and to improve the sensitivity of the classifiers to separate

tinnitus severity levels as currently they only reach ~50% (Table 4).

When classifying tinnitus severity, the best performance was achieved when connectivity

features from resting state recordings alone were used (Table 4). This could be due to the sti-

muli, in particular the auditory stimulus, somewhat masking the tinnitus during recordings.

While evoked responses appear to contribute to the accuracy of detecting the presence of tinni-

tus, resting state recordings alone seem appropriate for grading tinnitus severity.

Both HbO and HbR features were used with feature extraction and classification. Based on

the results a similar number of each feature type contributed to the classification and therefore

using both HbO and HbR features appears to result in better performance compared to HbO

alone. This is despite most studies reporting only HbO findings as the signals have higher sig-

nal to noise ratio compared to HbR [52], which is consistent with our statistical analysis for

which HbO identified more group differences than HbR.

A reduction in the number of channels would assist in developing a more clinically usable

fNIRS cap with fewer sources and detectors. In this study, we have used features from all
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channels (Fig 2) allowing the feature extraction algorithm to select the most relevant, which

for evoked responses have been mostly from the relevant anatomical regions (e.g. auditory

response features from auditory channels). With further data, feature extraction can eliminate

redundant channels and features, leading to faster computation time.

The machine learning algorithms were run on an Intel Core i7 7600U system with 2.8GHz

CPU and 16 GB of RAM. The total time to run the algorithms included model training time

plus inference time. Inference time refers to the time taken to predict the classification of a test

sample. The inference time for all algorithms was negligible at less than 1 second. For Neural

Networks, the total processing time was 150 seconds while for the other algorithms presented

in Tables 3 and 4, it was less than 3 seconds. For clinical applications, the time taken to train a

model is not a limiting factor as this phase is done offline.

Our findings so far show feasibility of a machine learning model trained to classify an indi-

vidual’s fNIRS data to a tinnitus severity level. Repeating recordings after a certain treatment

and running these through the same model would be able to highlight changes in severity as a

result of intervention.

Limitations and future work

A limitation of the imaging technology used in this study is the limited cortical depth that

near-infrared light can penetrate; meaning changes in HbO and HbR levels in deep cortical

regions cannot be measured. In our study, we have focused on cortical regions accessible using

fNIRS that have been associated with tinnitus using other imaging techniques such as fMRI

and PET. However, there may be limitations in terms of subtypes of tinnitus that we are able

to measure using this technique.

An important aspect in tinnitus studies is the choice of the control group [1]. While we

have matched the two groups in age and hearing loss there may be other factors such as

depressive symptoms and hyperacousis which would need to be considered in future studies.

In the machine learning algorithms used in this study we have used fNIRS evoked response

amplitudes as well as measures of connectivity from resting state data. Evoked responses may

be better quantified using different features characterising temporal and spectral content of

the waveforms [26]. In regards to connectivity measures, our current analysis of resting state

data has used seed analysis as a time-domain method. Other methods both in time and fre-

quency domains are also used to investigate resting state connectivity and may provide further

insight into our data [32]. Using more advanced methods of feature extraction to improve

characterising time-series data could increase accuracy of our classification algorithms.

As with many objective clinical measures, in this study we are using subjective ratings of

tinnitus to develop an objective measure. Tinnitus by nature will always have a subjective com-

ponent however an objective measure will help measure certain aspects of tinnitus that will

assist with development and trial of new treatments.

Conclusion

Our statistical findings support previous research which has identified measures of brain con-

nectivity or evoked responses associated with tinnitus. We have built on these findings further

using fNIRS and machine learning and have identified visual and auditory evoked response

and resting state connectivity features which differentiate tinnitus patients from controls and

temporal-occipital connectivity features which classify tinnitus patients to a low versus high

severity level. Using fNIRS has a number of advantages over other imaging techniques such as

portability and lack of scanner noise which make it suited to eventual clinical use. This

approach will greatly assist in addressing a critical unmet need of developing an objective
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measure of tinnitus that can be used clinically. Findings from this study will have further appli-

cations in identifying subtypes of tinnitus, objectively assessing the effectiveness of tinnitus

treatments and a better understanding of brain networks involved in this condition.
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