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Properties of structural variants and short tandem
repeats associated with gene expression and
complex traits
David Jakubosky1,2, Matteo D’Antonio 3, Marc Jan Bonder4,5, Craig Smail6,7, Margaret K. R. Donovan2,8,

William W. Young Greenwald8, Hiroko Matsui3, i2QTL Consortium*, Agnieszka D’Antonio-Chronowska3,

Oliver Stegle4,5,9, Erin N. Smith10, Stephen B. Montgomery 7,11, Christopher DeBoever 3 &

Kelly A. Frazer 3,10✉

Structural variants (SVs) and short tandem repeats (STRs) comprise a broad group of diverse

DNA variants which vastly differ in their sizes and distributions across the genome. Here, we

identify genomic features of SV classes and STRs that are associated with gene expression

and complex traits, including their locations relative to eGenes, likelihood of being associated

with multiple eGenes, associated eGene types (e.g., coding, noncoding, level of evolutionary

constraint), effect sizes, linkage disequilibrium with tagging single nucleotide variants used in

GWAS, and likelihood of being associated with GWAS traits. We identify a set of high-impact

SVs/STRs associated with the expression of three or more eGenes via chromatin loops and

show that they are highly enriched for being associated with GWAS traits. Our study provides

insights into the genomic properties of structural variant classes and short tandem repeats

that are associated with gene expression and human traits.

https://doi.org/10.1038/s41467-020-16482-4 OPEN

1 Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0419, USA. 2Department of Biomedical Informatics,
University of California San Diego, La Jolla, CA 92093-0419, USA. 3 Institute of Genomic Medicine, University of California San Diego, 9500 Gilman Dr, La
Jolla, CA 92093, USA. 4 European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge, UK. 5 Genome Biology Unit,
European Molecular Biology Laboratory, Heidelberg, Germany. 6 Department of Biomedical Data Science, Stanford University School of Medicine, Stanford,
CA 94305, USA. 7Department of Pathology, Stanford University, Stanford, California 94305, USA. 8 Bioinformatics and Systems Biology Graduate Program,
University of California San Diego, La Jolla, CA, USA. 9Division of Computational Genomics and Systems Genetics, German Cancer Research Center,
Heidelberg, Germany. 10 Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA. 11 Department of Genetics, Stanford
University, Stanford, California 94305, USA. *A list of authors and their affiliations appears at the end of the paper. ✉email: kafrazer@ucsd.edu

NATURE COMMUNICATIONS |         (2020) 11:2927 | https://doi.org/10.1038/s41467-020-16482-4 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16482-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16482-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16482-4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-020-16482-4&domain=pdf
http://orcid.org/0000-0001-5844-6433
http://orcid.org/0000-0001-5844-6433
http://orcid.org/0000-0001-5844-6433
http://orcid.org/0000-0001-5844-6433
http://orcid.org/0000-0001-5844-6433
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-5200-3903
http://orcid.org/0000-0002-1901-2576
http://orcid.org/0000-0002-1901-2576
http://orcid.org/0000-0002-1901-2576
http://orcid.org/0000-0002-1901-2576
http://orcid.org/0000-0002-1901-2576
http://orcid.org/0000-0002-6060-8902
http://orcid.org/0000-0002-6060-8902
http://orcid.org/0000-0002-6060-8902
http://orcid.org/0000-0002-6060-8902
http://orcid.org/0000-0002-6060-8902
mailto:kafrazer@ucsd.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Structural variants (SVs) and short tandem repeats (STRs)
are important categories of genetic variation that account for
the majority of base pair differences between individual

genomes and are enriched for associations with gene expression1–3.
SVs and STRs are comprised of several diverse classes of variants
(e.g., deletions, insertions, multi-allelic copy number variants
(mCNVs), and mobile element insertions (MEIs)), and multiple
algorithmic approaches and deep whole genome sequencing are
required to accurately identify and genotype variants in these dif-
ferent classes4. Due to the complexity of calling SVs and STRs,
previous genetic association studies have generally not identified a
comprehensive set of these variants but rather have focused on one
or a few of the class types, and therefore the genomic properties of
SVs and STRs associated with gene expression and/or complex
traits are not well characterized.

SV classes and STRs vary in genomic properties including size,
distribution across the genome, and impact on nucleotide
sequences, but previous studies have not investigated whether
these differences influence the likelihood of being an expression
quantitative trait locus (eQTL), eQTL effect sizes, or the prop-
erties of eQTL genes (eGenes) such as gene type or level of
evolutionary constraint3,5–7. Further, it is unknown if the variant
classes may affect gene expression through different mechanisms
such as altering gene copy number or three-dimensional spatial
features of the genome. A comprehensive SV and STR data set
generated using high-depth whole genome sequencing (WGS)
from a population sample with corresponding RNA-sequencing
data could be used to assess whether genomic features of SV
classes and STRs are associated with properties of eGenes
and eQTLs.

SVs and STRs have also been associated with complex traits,
though they have been studied considerably less often in genome-
wide association studies (GWAS) than single nucleotide variants
(SNVs), and the overall contribution of SVs and STRs to complex
traits is not well understood8–15. One difficulty with studying
differences between SV classes and STRs in GWAS is that it is
unknown whether the SV classes are differentially tagged by
SNVs on genotyping arrays. A collection of hundreds of subjects
genotyped for a full range of SVs, STRs, SNVs, and insertion/
deletions (indels) could be used to assess the functional impact of
SVs and STRs on complex traits using existing SNV-based GWAS
and identify dark regions of the genome not captured by
array GWAS.

In this study, as part of the i2QTL Consortium, we use RNA-
sequencing data from induced pluripotent stem cells (iPSCs)
from the iPSCORE and HipSci collections7,16,17 along with a
comprehensive call set of SVs and STRs from deep WGS data4 to
identify variants associated with iPSC gene expression and
characterize the genomic properties of these SV and STR eQTLs.
We observe that SVs are more likely to act as eQTLs than SNVs
when in distal regions (> 100 kb from eGenes) and that dupli-
cations and mCNVs are more likely to have distal eQTLs and
multiple eGenes compared to other SVs classes and STRs. eGenes
for mCNV eQTLs are also less likely to be protein coding and
more likely to have strong effect sizes relative to other SV classes
and STRs. We examine the LD of SVs and STRs with GWAS
variants and find that mCNVs and duplications are poorly tagged
by GWAS SNVs compared to other variant classes. 11.4% of
common SVs and STRs are in strong LD with a SNV associated
with at least one of 701 unique GWAS traits; and deletion, rMEI,
ALU, and STR lead eQTL variants are enriched for GWAS
associations establishing that these variant classes have under-
appreciated roles in common traits. Finally, we find a highly
impactful set of SVs and STRs located near high complexity loop
anchors that localize near multiple genes in three dimensional
space and are enriched for being associated with the expression of

multiple genes and GWAS traits. This work establishes that dif-
ferent classes of SVs and STRs vary in their functional properties
and provides a valuable, comprehensive eQTL data set for iPSCs.

Results
eQTL mapping. We performed a cis-eQTL analysis using RNA
sequencing data from iPSCs derived from 398 donors in the
iPSCORE and HipSci projects along with a comprehensive map of
genetic variation (37,296 SVs, 588,189 STRs, and ~48M SNVs and
indels (Supplementary Data 1)) generated using deep WGS from
these same donors4. These variants include several classes of SVs
including biallelic duplications and deletions; multi-allelic copy
number variants (mCNVs); mobile element insertions (MEIs)
including LINE1, ALU, and SVA; reference mobile element
insertions (rMEI); inversions; and unspecified break-ends (BNDs).
We identified 16,018 robustly expressed autosomal genes and
tested for cis associations between the genotypes of all common
(MAF ≥ 0.05) SVs (9,313), STRs (33,608), indels (~1.52M), and
SNVs (~5.83M) within 1 megabase of a gene body using a linear
mixed model approach (Fig. 1a and Supplementary Data 2,
“Methods” section). We detected associations between 11,197
eGenes (FDR < 5%, Methods) and 10,904 unique lead variants
(lead eVariants), including 145 SVs (1.3%), 140 STRs (1.3%), 2648
indels (24.3%), and 7971 SNVs (73.1%, Fig. 1b and Table 1). We
compared our eQTLs to those discovered by GTEx and 1000
Genomes and found that the number of eGenes we identified is
consistent with the expected power from using 398 samples
(Supplementary Figs. 1–3)1,3. While SVs and STRs accounted for
only 0.1 and 0.38% of tested variants respectively in our analysis,
they were highly enriched to be lead eVariants (SVs: OR= 17.9,
p= 3.3e-91; STRs: OR= 4.14, p= 1.5e-24; Fisher’s exact test
(FET)) and collectively formed lead associations with 3.25% of
eGenes (1.73% SVs and 1.52% STRs), indicating that these variant
classes have a disproportionate effect on gene expression com-
pared to SNVs and indels.

To conduct comparative analyses of the functional properties
of the different SV classes and STRs, we performed an SV/STR-
only eQTL analysis using the 42,921 common SVs and STRs and
excluding SNVs and small indels (Fig. 1a and Supplementary
Data 3). We identified 6,966 eGenes (FDR < 5%) associated with
5,343 unique lead eVariants (Table 1 and Fig. 1c). SVs were
enriched among lead variants compared to STRs (OR= 1.15, p=
1.7e-5, FET) though the majority of lead eVariants were STRs
(4087 eSTRs vs 1231 eSVs). Of the 11,197 eGenes identified in the
joint eQTL analysis, 6,507 were also identified in the SV/STR-
only eQTL analysis (Fig. 1d). Among these 6,507 shared eGenes,
94.6% (6,155) were mapped to a lead SNV or indel variant in the
joint analysis, while the remaining 5.4% (352) were mapped to the
same lead SV or STR identified in the SV/STR eQTL analysis. To
evaluate how many of the 6,155 shared eGenes were likely driven
by the same causal variant, we computed the linkage disequili-
brium (LD) between SNV/indel lead variants in the joint eQTL
analysis and eSVs and eSTRs from the SV/STR-only eQTL
analysis. We found that lead SNVs or indels from the joint
analysis were in strong LD (R2 > 0.8) with the lead eSV or eSTR
from the SV/STR-only analysis for 14.2% (872/6,155) of shared
eGenes. While the true causal variant at these loci is unknown,
these data suggest that a substantial number of eQTLs that can be
identified using SNVs may be explained by SVs or STRs.

Variant size influences eQTL associations. Given that SVs and
STRs have size ranges that span orders of magnitude4, we sought
to examine the relationship between variant length and the
likelihood of being an eVariant across the different variant clas-
ses. We tested whether STRs or deletions, duplications, and
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mCNVs longer than a particular length threshold were more
likely to be eVariants compared to variants shorter than the
length threshold. We found that longer deletions, duplications
and STRs were more likely to be eVariants and lead eVariants
than shorter variants (Fig. 2a and Supplementary Fig. 4). The
trend was especially strong for deletions where 36% of variants

longer than 50 kb were lead eVariants (OR= 3.11, p= 0.0095,
FET). Although a higher proportion of mCNVs were eVariants
compared to other classes (Fig. 2a), mCNV length was not
strongly associated with eQTL status; only mCNVs longer than
10 kb were significantly more likely to be lead eVariants (OR=
1.59, p= 0.01, FET).

204 Donors 273 Donors

WGS

SVs STRs

Joint
eQTLs

11,197 eGenes
10,904 eVariants

6966 eGenes
5343 eVariants

Joint eQTLs

4690 6507 459

SV/STR-only

16,018 Expressed genes

Covariates

SV/STR-only
eQTLs

Linear mixed model

SVs STRs

7.4M Variants

42,921 Variants

Genetic variants (>5% MAF)

Indels

STRs

STRs

SVs

SNVs

SVs

Indels SNPs

iPSC lines from 398 Donors

a

b c d

Fig. 1 eQTL mapping. a Overview of eQTL study design. We performed two eQTL analyses: a joint analysis that used all variants and identified 11,197
eGenes and an SV/STR-only analysis that only used SVs and STRs and identified 6,996 eGenes. b,c Pie charts showing the number of lead variants across
the different variant classes for (b) joint and (c) SV/STR-only eQTL analyses. d Venn diagram showing the intersection between the eGenes detected in
the joint and the SV/STR-only analysis.

Table 1 Summary of i2QTL variants and eQTL results.

Variant Class No. Variants No. Common Variants
(tested)

Lead SV/STR-Only QTLs Lead Joint QTLs

SNV 41,826,418 5,834,257 8,148
INDEL 7,040,457 1,520,762 2,685
Deletion (DEL) 16,238 3,073 661 51
Duplication (DUP) 2,693 391 55 9
Multiallelic CNV (mCNV) 1,703 947 294 111
Other SV (BND) 4,612 1,146 89 8
Inversion INV 210 84 11 0
Reference Mobile Element Insertions (rMEI) 2,343 1,448 243 3
ALU 7,880 1,932 294 9
LINE1 1,175 196 31 1
SVA 442 96 28 2
Short Tandem Repeats (STR) 588,189 33,608 5,260 170
Total SV 37,296 9,313 1,706 194
Total SV/STR 625,485 42,921 6,966 364
Total 49,492,360 7,397,940 6,966 11,197

Numbers in each category refer to the number of non-redundant variants that were within 1 Mb of a gene and used in the eQTL analyses. Variants used for eQTL mapping had ≥ 5% minor allele
frequency for SNVs and indels and ≥5% non-mode allele frequency for SVs and STRs. Lead SV/STR-Only QTLs column shows the number of lead variants in the eQTL analysis using only SVs and STRs
while Lead Joint QTLs column shows the number of lead variants in the eQTL analysis using SNVs, indels, SVs, and STRS.
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We next sought to examine whether eVariant length for SVs
and STRs was predictive of absolute eQTL effect size and if lead
eQTLs that overlap (exonic) or do not overlap (non-exonic)
exons of the eGene displayed similar effects (Fig. 2b, c). We found
that lead eVariant length was significantly associated with the
absolute effect size for non-exonic deletion, duplication, mCNV,
and STR eQTLs independent of variant distance to the
transcription start site and allele frequency (Fig. 2b). However,
among exonic eQTLs, only those mapping to deletions had a
significant correlation between length and effect size with longer
deletions having larger effect sizes (Fig. 2c). These data show that
longer variants are more likely to be eVariants for both SVs
(excluding mCNVs) and STRs and that among eVariants that do
not overlap exons, longer variants tend to have stronger effects on
expression.

mCNVs and deletions are enriched for associations with
multiple eGenes. We next investigated whether SVs from parti-
cular classes were more likely to be eVariants or associated with
multiple eGenes compared to STRs which comprised 78% of all
tested variants and 70% of eQTLs (Fig. 1c). We found that both
mCNVs and deletions were more likely to be eVariants for at least
one gene relative to STRs (mCNVs: OR= 2.81, q= 1.57e-50,

FET; deletions: OR= 1.35, q= 6.47e-12, FET) and were also
more likely to be lead eVariants compared to STRs (mCNVs:
OR= 1.70, q= 9.74e-9, FET; deletions: OR= 1.32, q= 4.56e-7,
FET) (Fig. 3a and Supplementary Fig. 5). Conversely, BNDs were
less likely to be eVariants (OR= 0.75, q= 2.18e-4, FET) or lead
eVariants (OR= 0.46, q= 3.63e-11, FET) compared to STRs
(Fig. 3a). We next examined how often eVariants from each
variant class were associated with multiple eGenes and found
that, while many of the SV classes were more likely to be asso-
ciated with multiple eGenes compared to STRs (Fig. 3b), mCNV
eVariants and deletion eVariants were associated with two or
more genes 61.7% (271/439) and 44.4% (401/902) of the time
respectively. Moreover, 31.2% (137/439) of mCNV eVariants and
13.4% (121/902) of deletion eVariants were associated with at
least 4 genes compared to only 7.2% (571/7,915) of STR eVariants
(Fig. 3b). These results show that mCNV and deletion eVariants
are more frequently associated with the expression of multiple
genes compared to STRs and other SVs.

Genomic localization of SV and STR eQTLs. We examined how
eVariants for each variant class were distributed with respect to
genes and promoters by evaluating the distance of eVariants to
their eGenes (5′-UTR or TSS) and their overlap with genic
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elements. We found that, for all SV classes and STRs, most eQTLs
were located near eGenes (<250 kb, Fig. 3c); however, a sig-
nificantly larger proportion of eQTLs that were mCNVs or
duplications were located far from their eGenes (>250 kb) com-
pared to STRs (mCNVs: 40.5%, OR= 2.26, q= 1.76e-41, dupli-
cations: 37.1%, OR= 1.96, q= 3.46e-5; FET) suggesting increased
distal regulatory activity for these variant types. SNV and indel
eQTLs were generally closer to eGenes than all clases of SV and

STR eQTLs (Fig. 3c). We next annotated each variant-gene pair
tested for whether the variant overlapped an exon, promoter, or
intron for the paired gene; overlapped an exon, promoter, or
intron for a different gene; or was intergenic (Fig. 3d and Sup-
plementary Fig. 6). Overall, we observed that 23.1% of lead eQTL
variants directly overlapped the eGene with 205 overlapping
exons (2.9%), 224 overlapping promoters (8.5%), and 1,180
overlapping only introns (17%) in the associated eGene.
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Interestingly, mCNVs were the only eQTL variant class whose
lead variants were enriched for overlapping exonic regions of
eGenes compared to all other variant classes (17.7%, OR= 9.16,
q= 4.7e-26, Fig. 3d, e). mCNV lead variants were more likely to
overlap gene exons even though a substantial number of mCNV
eQTLs were also located far from their eGene (Fig. 3c) suggesting
that a subset of mCNV eQTLs may be distal regulatory variants
and a subset may affect expression by directly altering eGene copy
number. Lead mCNVs, duplications, and deletions were also
enriched for overlapping exonic regions of other genes besides
their associated eGenes compared to other variant classes
(mCNVs: OR= 11.64, q= 1.81e-57; duplications: OR= 5.95,
q= 3.29e-6; deletions: OR= 2.34, q= 1.42e-8; FET); conversely,
STRs were depleted in other gene exons (3.82%, OR= 0.26, q=
7.7e-37, FET, Fig. 3d, e) and eGene exons (1.98%, OR= 0.32, q=
8.7e-14). Overall, lead mCNV eVariants were more likely than
other eVariants to overlap eGene exons while mCNVs and
duplications had more distal eQTLs than other variant classes.

We next compared the direction and absolute effect sizes of
lead eQTLs that overlapped or did not overlap exons of the eGene
(exonic and non-exonic eQTLs) from each variant class to
determine whether variants that alter gene copy number differ
from regulatory region variants. Exonic and non-exonic lead
eQTLs mapped to mCNVs and exonic lead eQTLs mapped to
duplications had primarily positive associations with gene
expression while exonic lead eQTLs mapped to deletions had
mostly negative effects (Fig. 3f). Lead eQTLs mapped to all other
variant classes, including SNVs and indels, had bimodal effect size
distributions. Comparing the absolute effect sizes of lead eQTLs
mapped to each variant class, we found that mCNV lead eQTLs
also had significantly larger effect sizes in both exonic (Fig. 3g)
and non-exonic (Fig. 3h) contexts compared to lead variants from
other SV classes, STRs, SNVs, and indels (Fig. 3g, h). These data
show that mCNV eQTLs are unique in that they tend to exert
strong positive effects on gene expression, especially mCNV
eQTLs that overlap exons which are almost always positively
correlated with gene expression.

eVariant type is associated with eGene type and constraint. We
next investigated whether the eGene type, such as protein coding
or pseudogene, was associated with the variant class of lead
variants. We annotated all eGenes with Gencode gene types and
calculated whether a given variant class was more or less likely to
be a lead variant for eGenes of a particular gene type (Fig. 4a, b
and Supplementary Fig. 7a). Notably, a lower proportion of
mCNV eGenes were protein coding (OR= 0.23, q= 1.52e-28,
FET) and a higher proportion were pseudogenes (OR= 8.57, q=
4.72e-34, FET) or lincRNAs (OR= 2.5, q= 2.29e-4, FET)

compared to other variant classes. Duplication and deletion
eGenes followed the same trends but did not reach significance.
However, STR eQTLs had the opposite pattern and were enriched
for protein coding genes (OR= 1.83, q= 8.38e-16, FET) and
depleted for pseudogenes (OR= 0.36, q= 1.19e-16, FET) and
lincRNAs (OR= 0.62, q= 8.68e-4, FET). We looked at the effect
sizes of associations among different gene types and found that
lead eQTLs for protein coding eGenes tended to have lower effect
sizes compared to lead eQTLs for genes that are not protein
coding (Fig. 4c) which is consistent with non-protein coding
genes being more tolerant of disruption18. Furthermore, the
observation of higher effect sizes among mCNV eQTLs and their
increased likelihood to overlap exons of their eGenes may be
partly explained by their association with fewer protein coding
genes, while the opposite properties were observed among lead
eQTLs attributed to STRs, which were less frequently exonic.

Given the differences in eGene types between different variant
classes, we hypothesized that eGenes might be under different
levels of evolutionary constraint compared to non-eGenes. To test
this, we obtained pLI scores (probability that a gene is intolerant
to loss of one allele), pRec scores (probability that a gene is
intolerant to loss of both alleles), and pNull scores (probability
that a gene is tolerant of loss of both copies of gene) from ExAC
for 13,012 of the 16,018 genes that were tested for eQTLs18,19. We
examined the distributions of these constraint scores for eGenes
with lead eVariants from each variant class and observed that
eGenes were skewed towards low (<0.9) pLI and pNull scores but
more evenly distributed between low and high pRec scores
(Fig. 4d and Supplementary Fig. 7b). We found that across
variant classes eGenes were significantly depleted for having high
pLI scores (> 0.9) and generally enriched to have high pRec and
pNull scores compared to non-eGenes (Fig. 4e). This result
demonstrates that genes that are intolerant to mutation are less
frequently eGenes while genes tolerant of heterozygous or null
alleles are more likely to be eGenes, consistent with SNV
eQTLs20. Examining this trend among variant classes, mCNVs
had the lowest proportion of high pLI eGenes suggesting that
mCNV protein coding eGenes are less constrained. Interestingly,
eGenes mapped to deletions were most likely to be high pNull
suggesting that, due to their severe negative effects on expression,
deletion eVariants are under greater selection to affect dispensible
genes. Given that some eGenes were classified as under high levels
of constraint (pLI > 0.9), we sought to understand whether these
genes are also sensitive to high levels of expression modulation.
We compared the absolute effect size of lead QTLs to the pLI
score of the eGene and found a strong and significant negative
correlation between effect size and pLI (Fig. 4f) consistent with a
previous report that there is less variation in the expression of

Fig. 3 Properties of SV and STR eQTLs. a Percentage of tested variants from each class that are eVariants (eV), left) or lead eVariants (right) in the SV/
STR-only eQTL. Asterisks indicate significant enrichment or depletion of variants among eVariants relative to STRs (FET two-sided, BH alpha < 0.05). b Left
panel is a balloon plot where color indicates number of eVariants and size indicates fraction of eVariants in each bin. Right panel shows average number of
eGenes per eVariant with 95% confidence intervals. Red points indicate significantly higher numbers of eGenes per eVariant (Mann–Whitney U one-sided,
Bonferonni p < 0.05) compared to STRs. c Distribution of the distance of eQTL (left) and lead eQTL (right) variants to the boundary of their eGenes.
Percentages indicate the proportion of eQTLs that were at least 250 kb distal to eGene, red asterisks indicate that eQTLs tended to be localized farther
from eGenes as compared to STRs (Mann–Whitney U Test one-sided, Bonferonni p < 0.05). Distributions for lead SNV and indel eQTLs were not examined
for significant differences relative to STRs. d Fraction of lead eQTLs that were intergenic or overlapped exons, promoters, or introns of their associated
eGene or other genes. e Enrichment of lead eQTLs for each class that overlap each genic element compared to variants from all other classes (FET two-
sided, BH alpha < 0.05). f Distribution of effect sizes for lead eQTLs that overlapped or did not overlap an exon of their eGene. (G,H) Distribution of
absolute effect sizes for SV classes, STRs, and SNV/indels for exonic (g) and non-exonic (h) eQTLs. Vertical dashed lines indicate means. P values are
derived from comparing the effect size distributions for mCNVs to the distributions for STRs, SVs, SNVs, and indels (Mann–Whitney U test one-sided,
Bonferonni p < 0.05). All p values and odds ratios for (a) and (e) are in Supplementary Figs. S5 and S6. eQTL statistics for SNV and indels are from the joint
analysis for all panels.
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highly constrained genes20. Taken together, these results suggest
that while eGenes tend to be less constrained than other genes,
the eGenes with mCNV or deletion lead eVariants are particularly
tolerant of loss-of-function variation.

Multi-eGene eQTLs colocalize with distal chromatin loop
anchors. Since chromatin looping has been shown to play a key
role in the regulation of genes by positioning regulatory regions

near gene promoters21–24, we sought to determine whether distal
eVariants are located near the promoters of their eGenes in three-
dimensional space via chromatin looping. We obtained chro-
matin loop calls from iPSC promoter capture Hi-C data25 that
define promoter loops between gene promoters (promoter
anchors) and distal sequences (distal anchors, Fig. 5a). We
observed that 13,575 of the 16,018 genes tested for eQTLs had at
least one promoter loop and that 29.2% of SVs and 30% of STRs
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regressing out variant class and mean log10(TPM) expression level of the gene among expressed samples. p value is for the eQTL effect size term (t test).
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tested for eQTLs overlapped a distal anchor. Interestingly,
mCNVs were significantly less likely to overlap a distal anchor
than other variant classes with only 13.5% of mCNVs overlapping
(OR= 0.37, p < 1e-25, FET) likely due to the difficulty of iden-
tifying loop anchors near segmental duplications, which fre-
quently overlap mCNVs (Supplementary Fig. 8). Among the
13,575 genes that had at least one loop and were tested for SV/
STR eQTLs, we identified 177,571 (31.8%) variant-gene pairs for
which the variant was: (1) closer to the distal anchor than to the
promoter anchor; (2) at least 50 kb away from the gene body; (3)
did not overlap the exon of the tested gene; and (4) was a max-
imum of 200 kb from a distal anchor, which we defined as distal
variant-gene pairs (Fig. 5a). Among these distal variant-gene

pairs, we observed 1,598 eGenes (22% of all eGenes) with at least
one eVariant located in the distal anchor of a loop to their pro-
moter, 963 (12.4% of all eGenes) of which were mapped to a lead
eVariant in the distal anchor; 82% (788/963) of these lead variants
were STRs (Fig. 5b, c). Within each variant class, distal variant-
gene pairs that overlapped the distal anchor of a loop to the
promoter of the tested gene were highly enriched to be eQTLs or
lead eQTLs (OR= 3.5–5.4; q= 0.022-9.7e-197; FET, Fig. 5d). The
fraction of eQTLs from the joint analysis with SNVs/indels that
were loop-acting was nearly the same as the SV/STR only analysis
with 12.5% of eGenes having at least one loop-acting eVariant
and 10.4% whose lead variant was loop-acting (Supplementary
Figs. 5b and 9a,b). The majority of loop-acting eQTLs in the joint
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analysis are SNVs or indels reflecting the large number of SNV/
indel eQTLs (Supplementary Fig. 9c,d). The fraction of all eQTLs
versus lead eQTLs that were loop-acting was similar for SNVs
and indels but differed for SV classes in the joint analysis such as
MEI, rMEI, and duplication lead eQTLs which generally did not
intersect loop anchors (Supplementary Fig. 9e,f). Overall, these
results indicate that many eQTLs include variants that overlap
distal chromatin loop anchors, that variants that overlap distal
anchors are more likely to be eQTLs and lead variants, and that
there are differences in the fraction of eQTLs and lead eQTLs that
are loop acting between variant classes.

We next hypothesized that if variants near loops impact gene
expression, the location of variants relative to the distal anchor
should be related to the chance of that variant being an eQTL. We
tested if the distance of a variant to the distal anchor or the
variant’s position inside or outside of the loop was predictive of
whether the variant is an eVariant using a logistic model (Fig. 5a).
For this model, we subsetted the variant-gene pairs to those
whose variants were at least 100 kb away from the nearest TSS or
3′-UTR and a maximum of 200 kb from the nearest distal anchor
to ensure we were examining interactions around the distal
anchor. We observed that variants closer to the distal loop anchor
were significantly more likely to be lead eQTLs (p= 0.0005) and
that distal variant-gene pairs with a variant inside the loop were
more likely to be lead eQTLs than those with variants outside the
loop (Fig. 5e, OR= 1.5, p= 2.1e-8, FET). This suggests that
variants near distal loop anchors are more likely to affect
expression of the looped gene and that variants that do not
directly overlap the loop anchor can still affect gene expression,
potentially through changes in regulatory elements or loop
structure.

Given that variants overlapping distal anchors are more likely
to be eQTLs, we hypothesized that variants that are looped to
multiple gene promoters may be associated with the expression of
many of their looped targets. To examine this, we tested whether
the number of looped genes to an eVariant was associated with
the number of eGenes for that eVariant. We observed that
variants overlapping distal anchors that were connected to
multiple genes via chromatin loops tended to be multi-gene
eVariants (Fig. 5f). We also found that the likelihood of a variant
being an eQTL or lead eQTL increased significantly as the
number of genes that the variant was looped to increased (Fig. 5g,
h). For example, 41% of variants linked to 6 or more genes by a
distal loop anchor were lead eVariants as compared to only 8.5%
of distal variants that were not linked to an eGene by loop anchor
(OR= 7.62, q= 6.97e-232, FET). One possible explanation of
these results is that variants looping to multiple genes are located
in gene-dense regions and are therefore tested for more eGenes.

To address this, we compared, for each variant, the number of
genes that were tested and the number that were identified as
eGenes, stratified by whether the genes were connected by loops
or not connected by loops, and found variants tended to have
more eGenes among looped genes than genes not connected by
loops (Fig. 5i, p < 1e-200, t-test, Methods). This trend was
consistent across SV classes (Supplementary Fig. 10). These
results suggest that variants located in high complexity loop
anchors are more likely to be multi-gene eQTLs than variants
simply located near many genes.

LD tagging and GWAS associations differ between variant
classes. SVs and STRs are typically not assessed in GWAS, so the
contribution of classes of non-SNV variation to complex traits
and diseases is currently unclear. To examine the extent by which
the different SV classes and STRs have been assayed by proxy in
GWAS, we calculated LD between i2QTL variants and SNVs
present in the UK Biobank (UKBB, ± 50 kb of each SV and STR).
We observed strong LD (R2 > 0.8) with UKBB SNVs for a large
proportion of STRs (81.7%), ALU and LINE1 elements (79% and
83.7%), and deletions (71.1%), but a markedly lower proportion
of duplications (29.2%) and mCNVs (24.2%) were in strong LD
with a nearby variant (Fig. 6a). We stratified our analysis of
duplications and mCNVs by whether they overlapped a seg-
mental duplication (SD) and found that those that overlapped
SDs were less likely to be in strong LD with UKBB variants
(18.9% duplications and 16.8% of mCNVs R2 > 0.8) than those
that did not overlap SDs (33.3% duplications and 65.7% mCNVs
R2 > 0.8, Supplementary Fig. 11), indicating that poor tagging for
these classes may in part be due to the presence of repetetive
sequences. We also found that only 59% of multi-allelic STRs
with four or more alleles were well-tagged by UKBB SNVs. These
results suggest that the duplications and mCNVs are generally not
assayed by proxy in GWAS, especially when located in segmental
duplications.

Next, we investigated the extent to which SVs and STRs
associated with gene expression were tagged by nearby UKBB
SNVs (R2 > 0.8) or linked to diseases and traits via GWAS. We
observed that deletions, rMEI, and STR lead eVariants were more
likely to be in strong LD with UKBB variants compared to non-
lead eVariants of the same class (Fig. 6b and Supplementary
Fig. 12a). While >65% of lead eVariants for most SV classes were
in strong LD with any nearby UKBB variant, only 26% of mCNV
and 21% of duplication lead eVariants were strongly tagged,
further supporting that most mCNVs and duplications are not
assayed by proxy in GWAS. We then examined how often
variants in strong LD with UKBB variants were significantly
associated with at least one GWAS trait (p < 5e-8) and found that

Fig. 5 Localization of eQTLs near chromatin loops. a Diagram showing localization of SVs and STRs at loop anchors. eVariants closer to the distal anchor
(right of grey dotted line) than the promoter anchor were considered loop-acting eQTLs. b Proportion of eQTLs that were genic (yellow), overlapping or
close to distal anchors (green), or distal acting by some other mechanism (grey). c Distal loop-acting eQTLs (n= 2,327 eQTLs for 1,598 eGenes) per SV
class. d Percentage of eVariant-eGene pairs where the eVariant (left) or lead eVariant (right) overlaps or does not overlap the distal anchor. p values
derived by comparing proportions for each class (FET two sided, Benjamini–Hochberg). e Fraction of tested distal variant-gene pairs (a) that were lead
eQTLs versus their distance to the distal anchor. Points represent the means of equally-sized bins; errors bars 95% confidence intervals. Curves are logistic
regressions using distance to the loop anchor to predict whether the variant-gene pair was a lead association. Regressions were computed separately for
variant-gene pairs inside the loop (left, n= 47,831) or outside the loop (right, n= 294,796). Center panel shows fraction of variant-gene pairs that
overlapped distal anchors and were lead eQTLs (n= 41,794). f Number of eVariants connected to gene promoters through chromatin loops (x-axis) and
number of these connected genes that are eGenes (y-axis). g,h Percentage of tested variants that were eVariants (g) or lead eVariants (h) stratified by
number of genes the variant was linked to through a distal anchor. p values for each bar were derived by comparing the proportion of tested variants that
were eVariants and linked to genes to the proportion of variants that were eVariants and not linked to genes (first bar). i Number of eGenes versus number
of tested genes per eVariant stratified by whether the genes are linked by loops to the eVariant (blue) or not linked by loops (grey). Lines indicate
relationship between number of eGenes per eVariant and number of genes tested for genes that were or were not linked by loops. p value is for loop/
nonloop term (t-test).
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11.4% of common STRs and SVs were by proxy associated with at
least one of 701 UKBB traits (Fig. 6c and Supplementary
Fig. 12b). Lead eVariants were more likely to be in strong LD with
significant GWAS variants across all classes; however, enrichment
was only significant in STRs, deletions, rMEIs, and ALU elements
likely because other classes had too few variants to reach
significance (Fig. 6c). As a whole, SVs and STRs were respectively
linked to 425 and 625 of 701 distinct GWAS traits, with 412 traits

linked to variants of both types. Traits linked to eSVs and eSTRs
included diseases such as type 1 diabetes, multiple sclerosis,
arthritis, cancers, and heart disease, as well as quantitative traits
such as height, body mass index and white blood cell count
(Supplementary Data 4).

We hypothesized that multi-eGene eVariants may have greater
impact on common traits and examined the LD of these eQTLs
with GWAS variants. Interestingly, we found that multi-eGene
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eVariants were highly enriched to be in strong LD (>0.8 R2) with
GWAS variants (Fig. 6d). ~40% of eVariants associated with two
or more eGenes were in strong LD with a GWAS variant while
only 20% of eVariants associated with one eGene were in strong
LD with a GWAS variant. We also observed that ~70% of
eVariants associated with three or more eGenes and localized
near the eGenes’ promoters via chromatin loops were in strong
LD with GWAS traits. For example, a 20 bp eSTR was associated
with nine eGenes (seven lead) connected via distal loops (Fig. 6e)
and was in strong LD with a UKBB variant linked to 19 distinct
traits including asthma and body fat percentage; two of the genes
associated with this variant (TCF20 and POLR3H) have also been
previously linked to autism26,27. We observed that this variant
appears to overlap a chromatin subdomain boundary visible in
Hi-C data from iPSCORE22 which is notable given that disease-
causing STRs, such as the causal variant for Fragile X syndrome,
have been reported to localize to subdomain boundaries28.
Additionally, we found a 13 kb deletion on chromosome 7 linked
to five eGenes via looping that was also linked to 14 traits
(Fig. 6f). These data suggest that multi-gene associations
mediated by chromatin looping are frequently linked to common
traits, reflecting the impact of modulating the expression of
several genes.

Discussion
We identified SVs and STRs associated with gene expression
using a comprehensive SV/STR variant call set (Companion
Paper) and RNA-sequencing from 398 iPSC samples. We dis-
covered several genomic properties that were associated with gene
expression. For deletions, duplications, and STRs, we found
increased length was associated with a higher likelihood of being
an eVariant and increased effect size for noncoding eVariants.
We investigated the properties of eGenes associated with SVs and
STRs and showed that they were less constrained than non-
eGenes and that highly constrained protein coding eGenes tended
to have smaller effect sizes. Distal SV and STR eVariants were
enriched for being located near the promoters of their eGenes in
three-dimensional space via chromatin looping. We have pre-
viously shown that loop detection may be affected by the presence
of SVs22, and therefore we have likely underestimated the pro-
portion of distal SV eVariants that mediate their effects on gene
expression via chromatin loops. We also show that SV and STR
eVariants near high complexity loop anchors with multiple
promoter-distal regulatory element interactions are more likely to
affect the expression of several genes. These results demonstrate
that chromatin looping may be an important mechanism by
which SVs and STRs regulate gene expression. Our study presents
one of the largest sets of SVs and STRs associated with gene

expression and reveals important general genomic properties of
both SV and STR eVariants and their corresponding eGenes.

While previous studies have cataloged SV eQTLs, the extent to
which different SV classes and STRs differentially impact gene
expression has not been thoroughly investigated3,6,7,22. We
identified substantial differences between the different SV classes
in their genomic locations relative to eGenes; their likelihood of
being associated with multiple eGenes; the types of associated
eGene (i.e., coding, noncoding, evolutionary constraint); their
effect sizes; the extent of linkage disequilibrium with tagging
single nucleotide polymorphisms (SNPs) used in GWAS; and
their likelihood of being associated with GWAS traits. Interest-
ingly, mCNV eQTLs differed in several respects compared to
eQTLs for other variant classes. mCNVs eQTLs were more likely
to be associated with the expression of multiple genes, had larger
effect sizes, tended to affect noncoding genes, and were more
likely to overlap the corresponding eGene or be located far from
the eGene. mCNV eQTLS that overlapped exons were also highly
enriched for positive associations between copy number and
expression relative to other variant classes. Unlike other SV
classes, the length of mCNVs was not strongly associated with the
probability of being an eQTL. The differences in likelihood of
being an eQTL, location, effect size, and types of eGenes for
mCNVs are likely related; for instance, less constrained genes
tend to have larger eQTL effect sizes, mCNVs tend to be eQTLs
for less constrained genes, and mCNV eQTLs tend to have larger
effect sizes. Our results indicate that a previous finding that
mCNVs were enriched among predicted causal eQTL variants
might be driven by the fact that mCNVs often overlap genes and
likely cause eQTLs1. We also observed that deletion eQTLs were
more likely to be associated with the expression of multiple genes
but tended to have smaller effects on gene expression, not overlap
genes, and affect less constrained genes. These observations are
consistent with gene deletions and subsequent loss of expression
having strong deleterious effects. Future studies may focus on
whether the differences in eQTLs between variant classes are
driven by selective pressures, genomic property differences
between the SV classes, or some combination thereof.

The extent to which SVs and STRs contribute to variation in
complex traits is not fully known because prior GWAS have
generally not assessed SVs and STRs. We used our comprehensive
SV/STR call set to estimate how well these variants are tagged by
GWAS SNPs and whether they are associated with 701 traits from
the UK Biobank. We found that only 26% of mCNV and 21% of
duplication lead eVariants were tagged (R2 > 0.8) by a SNP in the
UK Biobank, likely due in part to these variants being located in
or near segmental duplications, indicating that these variants are
generally missed in GWAS studies based on genotyping arrays.
Multiallelic STRs are also not tagged well by SNPs and are likely

Fig. 6 Associations between SVs, STRs and GWAS. a Distribution of maximum LD score per i2QTL variant with UKBB variants within 50 kb for each
variant type. p values calculated for the LD distribution of each SV class relative to STRs (Mann––Whitney U, Bonferroni). b Fraction of variants of each
class that are tagged by a UKBB variant (R2 > 0.8) for lead eVariants (green) versus all other variants in that class (black). Q values indicate enrichment of
lead eVariants to be in LD with a UKBB variant versus all other variants tested in the eQTL in the class (FET two-sided, Benjamini–Hochberg). c Fraction of
variants of each class that are tagged by a UKBB variant that is associated with at least one trait in the UKBB (p < 5e-8). q values indicate enrichment of
lead eVariants to be in strong LD with a UKBB variant that is associated with at least one trait versus all other variants tested in the eQTL in the class (FET
two-sided, Benjamini–Hochberg). d Percentage of variants in LD (R2 > 0.8) with a variant significantly linked to at least one GWAS trait when significantly
associated with 0, 1, or 2 eGenes or more. To compute annotated q values, we utilized all variants tested in the SV/STR-only eQTL, and for each variant
class we performed logistic regression to determine whether the number of eGenes for a variant was associated with whether the variant was in strong LD
with a significant GWAS variant (z-test, Benjamini–Hochberg). e Example multi-gene eSTR on chromosome 22 with nine unique eGenes (pink/red)
including four genes that the STR loops to. Genes for which the variant is a lead variant are colored red. iPSC Hi-C data is visualized as a heatmap of
interaction frequencies. The variant is located between two chromatin subdomains that span ~100 kb on the left side of the variant and ~25 kb on the right
side of the variant22. f Example of an mCNV on chromosome 7 that is a multi-gene eQTL associated with seven unique eGenes by looping. Exact p values
and odds ratios for (b) and (c) are in Supplemental Fig. 12.
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not well-studied by current GWAS. We observed that 11.4% of
common SVs and STRs are in strong LD with at least one sig-
nificant GWAS SNP in the UK Biobank and that lead eSVs were
more likely to be associated with traits compared to non-lead
eSVs. We also identified a set of high-impact SVs and STRs
associated with the expression of multiple genes and localized
near the promoters of these genes via chromatin loops which are
also highly enriched for GWAS associations. These high-impact
variants that are associated with several seemingly unrelated
GWAS traits may underly some of the observed pleiotropy in
contempary genetic studies29 and indicate that future fine-
mapping efforts will greatly benefit from including SVs and STRs.

Our study demonstrates that SVs and STRs play an important
role in the regulation of gene expression and that eQTLs for
different classes of SVs and STRs differ in their effect sizes,
genomic locations, and the types of eGenes they impact. We have
also demonstrated that high-impact SVs and STRs, i.e., those
associated with the expression of multiple genes via chromatin
looping, are associated with a wide range of human traits. We
anticipate that these properties of SV and STR eQTLs will be
useful for identifying causal variants underlying eQTLs and
delineating mechanisms by which structural variation can impact
gene expression. The collection of eQTLs identified here, along
with the catalog of high-quality SVs and STRs described in a
companion paper4, provide a powerful resource for future studies
examining how these variants regulate gene expression and
contribute to variation in complex traits.

Methods
Variant calls. Single nucleotide variant (SNV), insertion/deletion (indel), struc-
tural variant (SV) and short tandem repeat (STR) variant calls for iPSCORE and
HipSci samples were discovered and rigorously analyzed in a companion paper
(dbGaP: phs0013254). The iPSCORE collection was approved by the Institutional
Review Board of the University of California at San Diego (Project #110776ZF). We
have complied with all relevant ethical regulations for work with human partici-
pants and obtained informed consent. We used five variants callers to identify SVs
and STRs. We used the SpeedSeq (SS) SV pipeline30 that combines LUMPY31 read-
pair evidence with read depth support from CNVnator32. We also used the Gen-
ome STRiP CNVDiscovery pipeline (GS) and Genome STRiP LCNVDiscovery
pipeline (GS LCNV)33 that detect SVs based on read depth evidence. We used
MELT34 for mobile element insertion discovery and HipSTR6 to identify and
genotype short tandem repeats. LUMPY, GS, and GS LCNV each identified bial-
lelic deletions (DEL), biallelic duplications (DUP), and multi-allelic copy number
variants (mCNVs). mCNVs are defined as variants that have at least 3 predicted
alleles. LUMPY identified inversions (INV) and generic breakends (BND) that can
include deletions and duplications that lack read-depth evidence, balanced rear-
rangements (INVs), MEIs, or other uncategorized breakpoints. As part of the
SpeedSeq pipeline we also identified reference mobile elements (rMEIs). For non-
reference mobile element insertions we used MELT to identify Alu element
insertions (ALU), LINE-1 element insertions (LINE1), and SINE-R/VNTR/Alu
element insertions (SVA). HipSTR identifies short tandem repeats (STRs) where at
least one individual differed in STR length compared to the reference. We con-
sidered copy number variants (CNVs) to include deletions, duplications, and
mCNVs. We considered MEI to encompass non-reference mobile element inser-
tion ascertained by MELT, including ALU, LINE1, and SVA elements.

RNA-Seq quality control and processing. As part of the i2QTL Consortium, we
have collected a set of RNA sequencing (RNA-seq) samples from 1,367 human
induced pluripotent stem cell (iPSC) lines derived from 948 unique donors from
five studies: iPSCORE7,17, HipSci16,35, Banovich et al.36, GENESiPS37, and
PhLiPS38. Sample processing and quality control was performed across all samples
as described below, but the eQTL analysis presented here uses a subset of the total
data set corresponding to 388 unique donors from iPSCORE and HipSci that have
variant calls from deep whole genome sequencing4. The RNA-seq data were
obtained from: (1) 210 iPSCORE RNA-seq samples from dbGaP (phs000924); (2)
288 HipSci cell lines (from 188 individuals) from the ENA project ERP007111 and
several EGA projects (Supplementary Table 1); (3) Banovich et al.36 (SRA:
SRP093633, http://eqtl.uchicago.edu/yri_ipsc/); (4) GENESiPS (SRA—SRP072417,
dbGaP: phs001139.v1.p1); (5) the PhLiPS projects (dbGaP: phs001341.v1.p1.). Data
was available from these sources as either FASTQ, BAM or CRAM files. To ensure
uniformity in processing, CRAM and BAM files were converted to FASTQ files.
The reads in the FASTQ files were then trimmed to remove adapters and low
quality bases (using Trim Galore!, http://www.bioinformatics.babraham.ac.uk/
projects/trim_galore/), followed by read alignment using STAR (version: 020201)39

with the two-pass alignment mode and default parameters as proposed by
ENCODE (c.f. STAR manual). All alignments were relative to the GRCh37
reference genome, using Ensembl 7540 for any of the necessary genome annota-
tions. Gene-level RNA expression was quantified from the STAR alignments using
featureCounts (v1.6.0)41, which was applied to the primary alignments using the -B
and -C options in stranded mode when applicable. In case multiple RNA-seq runs
per iPSC-line were generated these were summed to one set of gene-counts per
iPSC line.

After feature quantification high-quality RNA-seq samples were identified by
applying filters on both Picard (https://broadinstitute.github.io/picard/) and
VerifyBamID (http://csg.sph.umich.edu/kang/verifyBamID/) quality measures as
well as gene expression levels. We defined high-quality samples as those with > 15
million reads, > 30% coding bases, > 65% coding mRNA bases, a duplication rate
lower than 75%, Median 5′ bias below 0.4, a 3′ bias below 4, a 5′–3′ bias between 0.2
and 2, a median coefficient of variation of coverage of the 1000 most expressed
genes below 0.8, and a free-mix value below 0.05.

Subsequently, gene expression values were normalized across lines that passed
quality control. For this we derived edgeR42,43 corrected transcript per million
gene-level quantifications per iPSC line from the feature count information. After
this normalization we removed samples that had low expression correlation (<0.6)
with the average iPSC expression profile across our study, as measured per
chromosome. For the purpose of the eQTL analyses presented here, we used gene
expression estimates for 288 HipSci cell lines (188 individuals) and 210 iPSCORE
cell lines (210 individuals) that had corresponding deep whole genome sequencing
data (WGS) that allowed for comprehensive characterization of SNVs, indels, SVs,
and STRs4. This joint data set of variant calls and iPSC gene expression data for
398 individuals is referred to as the i2QTL data set in this manuscript. Additional
detail on these methods is described in a paper describing eQTLs on the full data
set44.

eQTL analysis. To find eQTLs we tested for associations between variants within a
cis-region spanning 1MB up- and downstream of the gene body and 16,018
robustly expressed autosomal genes (expressed in >20% of samples at an average
TPM > 0.5 among samples that expressed the gene) in 398 the HipSci and
iPSCORE donors (Supplementary Data 1). We performed association tests using a
linear mixed model (LMM), accounting for population structure and sample repeat
structure as random effects (using a kinship matrix estimated using PLINK45). All
models were fit using LIMIX46 (https://limix.readthedocs.io/).

Before QTL testing the gene expression-levels were log transformed and
standardized. Significance was tested using a likelihood ratio test. To adjust for
global differences in expression across samples, we included the first 50 PEER
factors (calculated across all 1,367 lines using log transformed expression values) as
covariates in the model. In order to adjust for multiple testing, we used an
approximate permutation scheme, analogous to the approach proposed in Ongen
et al.47. Briefly, for each gene, we ran LIMIX on 1,000 permutations of the
genotypes while keeping covariates, kinship, and expression values fixed. We then
adjusted for multiple testing using this empirical null distribution. To control for
multiple testing across genes, we used Storey’s q values48. Genes with significant
eQTLs were reported at an FDR < 5%.

eQTL input variants and post-processing. Because there are differences in types
of SVs (e.g., copy number variants, mobile element insertions) and the output of
SV variant callers, genotypes were preprocessed before use in the eQTL analysis.
Since some STRs are highly multi-allelic, we used the difference in the number of
base pairs with respect to the reference (expansion or contraction), as computed
from the sum of the GB format tag in the HipSTR VCF file, as genotypes for eQTL
analysis49. Genome STRiP CNVDiscovery and LCNVDiscovery33 variants were
encoded with integer diploid copy numbers (CN). SpeedSeq30,31 variants were
encoded using their allele balance (AB) fractions at each genotype, which ranges
from 0 to 1 based on the amount of evidence for the variant at a site, for greater
sensitivity and consistency with Genome STRiP variants, which use a continuous
copy number. Finally, for MEIs identified by MELT34, we used traditional geno-
types (0/0, 0/1, 1/1) outputted by the software, as these SVs are expected to be
largely biallelic and there is no continuous genotype outputs available. Before
performing the eQTL analysis, genotypes for all SV callers (excluding MELT) were
rank normalized and converted to a 0-2 scale. For MELT variants, reference,
heterozygous, and homozygous alternate genotypes were converted to 0, 1, and 2
respectively. Missing genotypes from all variant callers were filled with the mean
dosage among non-missing samples prior to the eQTL. GATK50 SNV and indel
genotypes were processed in the same way as MELT variants, converting them to 0,
1 and 2.

For the eQTL analysis, we utilized 5,834,257 SNVs, 1,520,762 indels that were
present at a minor allele frequency of at least 5% and 9,313 SVs and 33,608 STRs
that were present at a non-mode allele frequency of at least 5% among the 398
i2QTL donors with RNA-seq, passed QC, and were within 1MB of at least one of
16,018 expressed genes (see eQTL analysis). Notably, non-mode allele frequency
was used for SVs and STRs in order to account for multi-allelic variants. For STRs,
the non-mode allele frequency is computed from the difference in length of a
genotype from the reference, as detailed in Gymrek et al.49. The structural variant
call set includes variants generated from the same caller or different callers that
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pass QC but may be redundant (overlapping or highly correlated)4. In a
companion paper4, we identified these redundant clusters and selected high-quality
variants to create a non-redundant set of variants; here we chose to include all
variants that passed quality control filters in the eQTL analysis including those that
were marked as part of a redundancy cluster in order to maximize the chances of
SV associations. Additionally, STRs were required to have a 99% call rate in both
iPSCORE and HipSci samples in order to be included in the eQTL to prevent batch
effects from affecting eQTLs4. To compute the number of unique variants in
downstream analyses, variants were annotated with the redundancy clusters they
belonged to4 and variants in the same cluster were considered as a single variant.
We thus tested 9,313 non-redundant SVs that were in cis windows of expressed
genes. Because variants could be associated with multiple eGenes, we considered
eQTLs to be an SV/eGene pair. We performed two independent eQTL analyses: (1)
using STRs, SVs, small indels and SNVs (joint eQTL analysis) and (2) using only
STRs and SVs (SV/STR-only eQTL analysis; Fig. 1a).

Association of variant length with likelihood and strength of eQTLs. To test
whether longer variants were more likely to be eQTLs we restricted our analysis to
tested variants from each variant class that was highly polymorphic in length
(spanning orders of magnitude within variant class): duplications, deletions,
mCNVs, and STRs. For variants of each of these classes, we computed the fraction
of variants that were eVariants or lead eVariants that were longer than a given
length threshold and calculated an enrichment p value by comparing the pro-
portion of variants that were eVariants or lead eVariants among variants longer
than the threshold to the proportion among variants smaller than the threshold
(Fisher’s Exact Test, Benjamini–Hochberg (BH)). To compare the association of
length of variants with effect size, we utilized all significant eQTLs from each of the
aforementioned variant classes and fit a logistic regression model comparing the
absolute effect size of these associations with the length of the associated variant
using the distance to the nearest TSS of the eGene and the non-mode allele fre-
quency of the variant as covariates. p values from the regression were estimated
with the Wald Test and then corrected using the Bonferroni correction.

Properties of SV-QTLs among different variant classes. To determine which
SV classes were more likely to be associated with eGenes, we compared the pro-
portion of variants that were eVariants for a given variant class to the proportion
that were eVariants for STRs (Fisher’s Exact Test, FDR < 5%, BH). To study the
localization of eSVs with respect to eGenes, we used Gencode v1951 annotations to
measure distance to the nearest transcription start site for tested genes, as well as
categorize variants based on their overlap of introns, exons, and promoters of
tested genes, or elements of other genes. A variant was considered to overlap a
particular genomic if feature if it overlapped by at least one base pair and each
variant was categorized hierarchically into one of the following 7 categories, in
order of precedence: 1) exonic eGene, 2) promoter eGene 3) intronic eGene 4)
exonic other 5) promoter other, 6) intronic other 7) intergenic (overlapping none
of the features).

eGenes properties and constraint. Gene types were annotated using Gencode v19
data for all expressed genes. We then performed enrichment analyses comparing
the proportion of eGenes of a specific type mapped to each class to the proportion
among all other variant classes (Fisher’s Exact Test, BH). To compare the effect
sizes of associations with each gene type, we compared the distribution of effect
sizes for lead associations for protein coding eGenes to those of pseudogenes,
lincRNA, antisense and all other genes (Mann–Whitney U test, BH). To investigate
the constraint of eGenes, we obtained ExAC (v0.3.1)20 pLI, pNull, and pRec esti-
mates for 13,012 expressed genes and restricted our analyses to lead associations
with these eGenes. We then compared the proportion of eGenes with high (> 0.9)
ExAC scores mapped to either deletions, duplications, mCNV, MEI (LINE1, SVA,
and Alu), STR, or all 13,012 eGenes to the proportion of genes with a high score
among the 7,337 non-eGenes that were tested in our data set using Fisher’s Exact
Test and adjusting for multiple testing with the Bonferonni method. Finally, we fit
a logistic model predicting the pLI of an eGene using the eGene’s absolute effect
size and including logTPM of the eGene as a covariate to test for an association
between eGene effect size and pLI.

eQTL localization near distal anchors of chromatin loops. To examine the
localization of SVs and eSVs with respect to chromatin loops in iPSCs, we
downloaded previously published iPSC promoter capture Hi-C loop calls25. For
this analysis, we obtained loops intersecting the promoter of 13,575 out of the
16,018 expressed genes included in the eQTL analysis, of which 5,803 were eGenes.
To identify variants that might affect chromatin looping, we first intersected loop
calls with all annotated Gencode v19 promoters. Then, for each variant, we
computed the distance from each loop anchor and retained only the variants closer
to the distal anchor (i.e. the anchor that does not overlap the promoter). We
subsetted this set of variant-gene pairs to those where the variant was: (1) closer to
the distal anchor than the promoter anchor (2) at least 50 kb from the promoter (3)
at most 200 kb from the distal anchor which comprised 177,571 variant-gene pairs
(31.8% of all tested variant-gene pairs). For all these variants, we determined
whether they were included in the Hi-C loop (i.e. between the promoter anchor

and the distal anchor) or outside the loop. To test whether variants that hit distal
loop anchors are enriched to be eQTLs, we categorized variants within 10 kb of a
loop anchor as intersecting that anchor. To calculate enrichment, we tested the
proportion of eVariants that intersected a distal loop anchor to at least one
expressed gene versus the proportion of eVariants that did not intersect distal loop
anchors (Fisher’s exact test). Next, we took this subset of variant-gene pairs and
restricted it further to cases where the variant was at also least 100 kb from the gene
body, to test whether the distance of a variant from the distal loop anchor was
associated with its likelihood of being associated with gene expression. We fit a
logistic model to this set of 161,793 variant gene pairs to see whether distance to
the distal anchor is predictive of the likelihood of being associated with gene
expression using distance to the gene body and non-mode allele frequency as
covariates. We also compared the proportion of variants that were eVariants
that were within 100 kb from the outside of the distal loop anchor to variants
that were within 100 kb from inside of the distal loop anchor (Fisher’s exact test).
To test whether overlapping loop anchors associated with multiple promoters was
more predictive of associations with multiple eGenes than variant localization in a
gene dense window, we modeled the number of eGenes versus the number of
genes tested for each eVariant, stratifying by the number of genes tested that were
either connected by loops to the promoter or not connected by loops to the
promoter (statsmodels.api.logit, statsmodels v0.9.0, https://pypi.org/project/
statsmodels/). To visualize these regressions, seaborn (regplot)(https://pypi.org/
project/seaborn/) was used in order to divide the X axis (number of genes tested
that were connected or not connected by loops) into bins with points drawn at the
center of the bin showing the mean and error bars indicating 95% confidence
intervals. The same bins were used for both groups in order to enable direct
comparison between groups, however, each bin does not contain equal numbers of
observations.

SV/STR LD tagging and GWAS associations. We downloaded summary sta-
tistics for 4,357 human traits from the UK BioBank (UKBB) GWAS Round 2
(http://www.nealelab.is/uk-biobank, 01 August 2018). For each of the 42,921 non-
redundant SVs and STRs, we used bcftools52 to extract all SNPs 50 kb upstream
and downstream. For each SV or STR, we calculated LD as the correlation (R2)
with the genotypes of each surrounding SNV or indel genotyped in i2QTL WGS.
We selected the variant with strongest LD overall, as well as the variant with the
strongest LD that was included in the UKBB data set (if the two were different). For
each UKBB variant linked to an SV or STR, we obtained p values for the variant in
all GWAS studies and considered it to be significantly associated with a trait if p < 5
× 10−8. For each variant type, we selected all lead SVs and STRs from the SV/STR-
only eQTL analysis and tested if the lead eVariants were: (1) more likely to be in
strong LD with UKBB variants in general, and (2) more likely to be in strong LD
with UKBB variants significantly associated with a GWAS trait, as compared to
non-lead eVariants, using the Fisher’s exact test. To test the association of multi-
eGene eQTLs with the likelihood of being in strong LD with a variant significantly
associated with a GWAS trait, we divided tested variants by class and modeled the
likelihood of a variant being linked to a trait versus the number associated eGenes
(statsmodels.api.logit, statsmodels v0.9.0, https://pypi.org/project/statsmodels/). p
values were calculated using the Wald test and then corrected for multiple testing
using Benjamini–Hochberg.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Variant calls for iPSCORE samples and full eQTL summary statistics are available at
dbGaP (phs001325 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs001325.v2.p1]). Variant calls for HipSci samples are available from the
Zenodo (https://doi.org/10.5281/zenodo.3835306). iPSCORE RNA-seq data are available
at dbGaP (phs000924 [https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?
study_id=phs000924.v4.p1]); HipSci RNA-seq data are available in ENA project
ERP007111 and several EGA projects (Supplementary Table 1). RNA-seq data from
Banovich et al.36 is available at SRA (SRP093633) and http://eqtl.uchicago.edu/yri_ipsc/.
GENESiPS RNA-seq data is available at the SRA (SRP072417) and dbGaP (phs001139.
v1.p1). RNA-seq data from the PhLiPS projects is available at dbGaP (phs001341.v1.p1).
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