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Abstract: Over the past 20 years, there has been a drastically increased understanding of the genetic
basis of Amyotrophic Lateral Sclerosis. Despite the identification of more than 40 different ALS-causing
mutations, the accumulation of neurotoxic misfolded proteins, inclusions, and aggregates within motor
neurons is the main pathological hallmark in all cases of ALS. These protein aggregates are proposed
to disrupt cellular processes and ultimately result in neurodegeneration. One of the main reasons
implicated in the accumulation of protein aggregates may be defective autophagy, a highly conserved
intracellular “clearance” system delivering misfolded proteins, aggregates, and damaged organelles
to lysosomes for degradation. Autophagy is one of the primary stress response mechanisms activated
in highly sensitive and specialised neurons following insult to ensure their survival. The upregulation
of autophagy through pharmacological autophagy-inducing agents has largely been shown to reduce
intracellular protein aggregate levels and disease phenotypes in different in vitro and in vivo models
of neurodegenerative diseases. In this review, we explore the intriguing interface between ALS and
autophagy, provide a most comprehensive summary of autophagy-targeted drugs that have been
examined or are being developed as potential treatments for ALS to date, and discuss potential
therapeutic strategies for targeting autophagy in ALS.
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1. Introduction

1.1. Amyotrophic Lateral Sclerosis

Motor neuron (MN) diseases are a group of neurodegenerative diseases where MNs selectively
degenerate. Amyotrophic Lateral Sclerosis (ALS, known as motor neuron disease in United Kingdom
and Australia, and Lou Gehrig’s disease in the USA) is the most common form [1,2], with approximately
1–2 newly diagnosed cases in every 100,000 people internationally every year [3].

In ALS, both the upper MNs in the motor cortex and the associated corticospinal tract, and the
lower MNs in the brainstem and spinal cord selectively degenerate. As a result, neuromuscular
function deteriorates, evoking weakness, muscle wasting, and paralysis [2,4–6]. In the majority of cases,
the disease manifests itself between the ages of 50 and 60 [5]. Typically, 3–4 years after symptom onset,
respiratory muscles also atrophy, culminating in death [2,4–6]. However, in approximately one-third
of patients where symptoms begin at the bulbar level with dysarthria and dysphagia, survival is
shortened to an average of 2 years [7–9].

ALS is a complex and heterogeneous disorder with likely multiple causes. More than 90% of cases
are sporadic (SALS) with no obvious family history of disease, and 10% of cases are familial (FALS)
with one or more identifiable genetic mutations (Figure 1). The first discovered ALS-associated gene
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was superoxide dismutase 1 (SOD1) [10]. However, more recently, an intronic hexanucleotide (GGGGCC)
repeat expansion in the non-coding segment of the chromosome 9 opening reading frame 72 (C9orf72) gene
was identified as the most prevalent cause of FALS [11,12]. After C9orf72 and SOD1, the two most
common mutations implicated in FALS are in the genes TAR DNA binding partner 43 (TARDBP) [13]
and fused in sarcoma (FUS) [14,15].
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chromosome 21 open reading frame 2 (C21orf2), cyclin F (CCNF), NIMA related kinase 1 (NEK1), 
neurofilament heavy (NEFH), dnaJ heat shock protein family (DNAJ), EWS RNA binding protein 1 
(EWSR1), senataxin (SETX), calcium- responsive transactivator (CREST), elongator acetyltransferase 
complex subunit 3 (ELP3), charged multivesicular body protein 2B (CHMP2B), alsin rho nucleotide 
exchange factor ALS2 (ALS2), sigma non-opioid intracellular receptor 1 (SIGMARI), FIG4 
phosphoinositide 5-phosphatase (FIG4), spastic paraplegia 11 (SPG11), peripherin (PRPH), 
neuropathy target esterase (NTE), serum paraoxonase and arylesterase 1-3 (PON1-3), cholinergic 
receptor nicotinic alpha 3 (CHRNA3), cholinergic receptor nicotinic alpha 4 (CHRNA4), cholinergic 
receptor nicotinic beta 4 (CHRNB4), erb-b2 receptor tyrosine kinase 4 (ERBB4), coiled-coil-helix-
coiled-coil-helix domain containing 10 (CHCHD10), amyotrophic lateral sclerosis 3 (ALS3), 
amyotrophic lateral sclerosis 7 (ALS7), amyotrophic lateral sclerosis 6-21 (ALS6-21), amyotrophic 
lateral sclerosis-frontotemporal dementia (ALS-FTD) [16]. 

SALS and FALS are clinically indistinguishable, and the predominant cytoplasmic accumulation 
of ubiquitinated, hyaline, and skein-like aggregates within degenerating MNs and glial cells is a 
hallmark of both forms of ALS [17–20]. With the exception of SOD1- and FUS-linked ALS, the major 
pathological protein in all cases of ALS is TDP-43 and analysis of post-mortem tissues from ALS 
patients and mouse models has established that there is a direct correlation between MN loss and 
TDP-43 pathology [21,22]. 

Intracellular protein aggregates form when the level of misfolded proteins reaches a critical 
concentration, subsequently assembling into small soluble oligomers. Eventually, with time and 
increasing concentration of proteins, oligomers convert into the more metabolically stable insoluble 
aggregates [23–25]. According to the “seeding-nucleation” model, oligomerisation is a slow process 
as it is thermodynamically unfavourable. However, once an oligomeric seed is formed, it grows 

Figure 1. The prevalence of the most commonly known genetic causes of Amyotrophic Lateral
Sclerosis (ALS). Other genes that are more rarely associated with ALS are not included in the diagram
above are: sequestosome 1 (SQSTM1), dynactin subunit 1 (DCTN1), VAMP associated protein B and
C (VAPB), D-amino acid oxidase (DAO), TATA-box binding protein associated factor 15 (TAF15),
ubiquilin 2 (UBQLN2), heterogenous nuclear ribonucleoprotein A1 (hnRNPA1), heterogenous nuclear
ribonucleoproteins A2/B1 (hnRNPA2B1), matrin 3 (MATR3), tubulin alpha 4a (TUBA4A), sec1 family
domain containing 1 (SCFD1), myelin associated oligodendrocyte basic protein (MOBP), chromosome 21
open reading frame 2 (C21orf2), cyclin F (CCNF), NIMA related kinase 1 (NEK1), neurofilament heavy
(NEFH), dnaJ heat shock protein family (DNAJ), EWS RNA binding protein 1 (EWSR1), senataxin (SETX),
calcium- responsive transactivator (CREST), elongator acetyltransferase complex subunit 3 (ELP3),
charged multivesicular body protein 2B (CHMP2B), alsin rho nucleotide exchange factor ALS2 (ALS2),
sigma non-opioid intracellular receptor 1 (SIGMARI), FIG4 phosphoinositide 5-phosphatase (FIG4),
spastic paraplegia 11 (SPG11), peripherin (PRPH), neuropathy target esterase (NTE), serum paraoxonase
and arylesterase 1-3 (PON1-3), cholinergic receptor nicotinic alpha 3 (CHRNA3), cholinergic receptor
nicotinic alpha 4 (CHRNA4), cholinergic receptor nicotinic beta 4 (CHRNB4), erb-b2 receptor tyrosine
kinase 4 (ERBB4), coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10), amyotrophic
lateral sclerosis 3 (ALS3), amyotrophic lateral sclerosis 7 (ALS7), amyotrophic lateral sclerosis 6-21
(ALS6-21), amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) [16].

SALS and FALS are clinically indistinguishable, and the predominant cytoplasmic accumulation
of ubiquitinated, hyaline, and skein-like aggregates within degenerating MNs and glial cells is a
hallmark of both forms of ALS [17–20]. With the exception of SOD1- and FUS-linked ALS, the major
pathological protein in all cases of ALS is TDP-43 and analysis of post-mortem tissues from ALS
patients and mouse models has established that there is a direct correlation between MN loss and
TDP-43 pathology [21,22].

Intracellular protein aggregates form when the level of misfolded proteins reaches a critical
concentration, subsequently assembling into small soluble oligomers. Eventually, with time and
increasing concentration of proteins, oligomers convert into the more metabolically stable insoluble
aggregates [23–25]. According to the “seeding-nucleation” model, oligomerisation is a slow process as
it is thermodynamically unfavourable. However, once an oligomeric seed is formed, it grows rapidly
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into high-molecular-weight protein complexes [26,27]. Consequently, the process of protein misfolding
might begin years before the appearance of protein aggregates [28,29].

The exact role of these different aggregates in cells remains unknown. They can be initially
cytoprotective by sequestering harmful protein species and burying the hydrophobic core of misfolded
proteins, as opposed to having them exposed to the hydrophilic environment. Animal studies have
supported this hypothesis, showing aggregates to be less toxic to cells than diffuse misfolded proteins [25].
Nonetheless, large intracellular aggregates disturb protein homeostasis, trigger cellular stress, and are
closely associated with cell degeneration [17,24,25,30–32].

1.2. Cytoplasmic Protein Homeostasis and Degradation Pathways

Under normal physiological conditions, the protein quality control system circumvents aggregate-
mediated toxicity by re-folding misfolded proteins using molecular chaperones or targeting them to one of
two degradation pathways, the ubiquitin–proteasome system (UPS) or autophagy–lysosomal system [33].

The UPS degrades misfolded and short-lived soluble proteins through the protease complex [34].
The substrates have to be small enough to pass through the narrow pore of the proteasomal barrel.
Studies in mouse models [35–38] and patients [39] indicate that the proteasome function is impaired in
ALS spinal cord MNs.

In contrast to the UPS, autophagy does not have a size limitation for substrate clearance and
can process large protein aggregates, not to mention organelles and intracellular bacteria [40–43].
The remainder of this review focuses on autophagy, its role in the pathogenesis of ALS, and its
modulation as a possible therapeutic approach for the treatment of ALS.

There are three major sub-types of autophagy, namely, microautophagy, chaperone-mediated autophagy
(CMA), and macroautophagy [41]. The major degradative autophagy pathway is macroautophagy
(hereafter referred to as autophagy).

Autophagy is an evolutionary conserved intracellular process that purges cells of insoluble
proteins, entire organelles that are damaged or superfluous such as mitochondria via mitophagy,
or endoplasmic reticulum via reticulophagy, as well as toxic metabolites; cancerous cells; and intact
invading microorganisms such as bacteria, viruses, and protozoa [44,45]. Basal autophagy plays
a pivotal role in protein and organelle quality control [46], innate and adaptive immunity [47],
metabolism [48], development, and differentiation [49–52]. As well as its housekeeping functions,
autophagy is vital under conditions of stress or starvation [44,53].

Neuronal autophagy is particularly crucial as neurons are terminally differentiated and
non-proliferating cells. Their non-dividing feature does not allow their intracellular contents such
as protein aggregates to become diluted by cell division. Hence, in a study of autophagy-deficient mice,
protein aggregates accumulated predominantly in neurons [54,55]. Moreover, the high energetic demands
of neurons necessitate the efficient turnover of proteins and organelles for proper cell functioning [56–58].

The autophagy dynamic process, referred to as autophagy flux, comprises multiple steps (Figure 2).
Autophagy-inducing signals are recognised by AMP-activated protein kinase (AMPK), the central
regulator of cellular energy balance. Subsequently, the autophagy-activating kinase Unc-51 like
autophagy activating kinase 1 (ULK1) is upregulated, and the autophagy-inhibitory kinase mammalian
target of rapamycin complex 1 (mTORC1) is downregulated [59–61]. The ULK1 complex recruits
phosphatidylinositol 3-kinase class 3 (PI3KC3) comprising vacuolar protein sorting 34 (Vps34),
P150, and the core protein Beclin 1 to produce phosphatidylinositol 3-phosphates (PI3Ps) [62–64].
Thus, a cup-shaped pre-autophagosomal structure forms where essential autophagy-related proteins
(Atgs) are recruited [65]. One such protein is C-terminus of microtubule-associated protein 1A/1B-light
chain 3 (LC3), which is cleaved, activated, and lipidated to LC3-II and transferred to the phospholipid
bilayer of the pre-autophagosomal structure [66]. For selective autophagy, membrane-bound LC3-II
recruits autophagy receptors such as p62, which recognise and target specific cargo to the forming
autophagosome [67–69]. Thereupon, LC3-II hemi-fuses membranes to expand and surround cargo,
forming the double-membrane vesicle called the autophagosome (Figure 2) [70–74].
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mammalian target of rapamycin complex I; ULK1, Unc-51 like autophagy activating kinase 1; 
p150/Vps15, vacuolar protein sorting 15; Vps34, vacuolar protein sorting 34; LC3-II, C-termini of 
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Figure 2. The two main stages of the autophagy pathway. Stage 1 involves autophagy induction
where autophagy signals result in the formation of the Unc-51 like autophagy activating kinase 1
(ULK1) complex followed by the phosphatidylinositol 3-kinase class 3 (PI3KC3) complex. This leads
to pre-autophagosomal structure formation and autophagosome formation and expansion. Stage 2
involves autophagosome transport for fusion with lysosomes. This leads to autolysosome formation and
degradation of its contents. ALS-associated proteins that impair autophagy are indicated beside each
step of the pathway. FIP200, FAK family kinase-interacting protein of 200 kDa; mTORC1, mammalian
target of rapamycin complex I; ULK1, Unc-51 like autophagy activating kinase 1; p150/Vps15, vacuolar
protein sorting 15; Vps34, vacuolar protein sorting 34; LC3-II, C-termini of microtubule-associated
protein 1A/1B-light chain 3B; UVRAG, UV radiation resistance associated; Atg13, autophagy-related
protein 13; Atg14L, autophagy-related protein 14.

Autophagosomes mature and are trafficked to the lysosome-rich microtubule-organising
centre (the perinuclear region) where they dock and fuse with lysosomes for the formation of
autolysosomes [75–81]. Autolysosomal contents, including entrapped LC3 and p62, are degraded,
and generated micromolecules such as amino acids and fatty acids are released back into the cytosol for
reuse (Figure 2). As autophagy products become abundant, mTORC1 signalling switches on anabolic
pathways for protein synthesis and cell growth [82–84].

1.3. Autophagy in ALS

Increasing evidence suggests that ALS is a disease of protein dyshomeostasis, with autophagy
dysfunction playing an important role in the pathogenesis of ALS. Autophagy appears to be highly
induced in ALS, similar to other neurodegenerative diseases such as Parkinson’s, Huntington’s,
and Alzheimer’s diseases [85]. Autophagy proteins, particularly those that are involved in the early
stages of autophagy, such as LC3, Beclin 1, p62, and Atg5–Atg12 complex, are elevated in spinal MNs
of SALS and FALS patients [86,87] and animal models [86–90]. As the disease progresses to the late
symptomatic stages, accumulation of these autophagic factors is also observed in glial cells such as
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astrocytes and microglia [88]. The upregulation of these proteins is not accounted for by an increase
of their transcripts [88]. There is also evidence from studies using electron microscopy showing
the build-up of autophagosomes, but not of their matured form, autolysosomes, in spinal MNs of
late-symptomatic ALS animal models and autopsied patients [89,91]. In vivo autophagy imaging of
the spinal cord of ALS mice has also shown an elevated green fluorescent protein (GFP)-LC3 signal in
MNs, indicative of autophagosome accumulation, from early to late symptomatic stages of disease [88].

In contrast, autophagy degradation appears to be reduced in ALS, as there is a build-up of
protein aggregates in MNs and surrounding glial cells in the brain and spinal cord of ALS animal
models [92] and patients [17–20]. The accumulation of morphologically altered mitochondria [93–99]
and dysfunctional endoplasmic reticulum (ER) [86,100–104], which are typically cleared through
autophagy [105], further reinforces this view.

Autophagy represents a stress adaptation pathway. Therefore, the presence of stressors that are
prominent in diseased cells such as damaged DNA, abnormal protein and organelle accumulation, and
ER and oxidative stress can over-induce autophagy and autophagosome formation and impair the
degradation process [106]. It has been postulated that excessive autophagosome formation/accumulation,
exceeding their clearance rate, causes stress and leads to type II autophagic cell death [107] and
apoptosis [108]. In fact, inhibiting autophagy induction has beneficial effects in some neurodegeneration
disease conditions [109]. Similarly, suppressing autophagosome formation genetically or by administering
n-butylidenephthalide at the pre-symptomatic stage of disease in ALS mice attenuated their pathology and
extended their lifespan [110–112].

Multiple ALS-linked genes, such as SQSTM1, OPTN, and TBK1, encode for core autophagy proteins
and others, such as C9orf72, FUS, TDP-43, VAPB, UBQLN2, VCP, CHMP2B, ALS2, FIG4, TUBA4A,
PFN1, and DCTN have a functional role in autophagy. Therefore, mutations of these genes can cause
impairment in different stages of the autophagy pathway (Table 1, Figure 2). Moreover, the misfolded
or aggregated protein products of some ALS-causing genes that are not directly involved in the
autophagy process, such as SOD1, can abnormally interact with autophagy proteins to dysregulate
their activity [90,113–121] (Table 1).

Moreover, any of the 40 mutant genes that have been associated with ALS to date [16,122,123]
(Figure 1) can potentially overwhelm the autophagy pathway, as mutations can decrease the
stability of their protein products and increase their misfolding and aggregation propensity [124–126].
Compensatory mechanisms that upregulate the translation of the aggregate-entrapped proteins to
prevent their loss-of-function further exacerbate aggregate formation as the prion-like characteristic of
these proteins corrupts and converts the newly synthesised proteins into misfolded replicates [127–136].

Furthermore, akin to other neurodegenerative diseases, ALS is an age-related disease. During
normal ageing in the human brain, autophagy genes such as Atg5, Atg7, and Beclin 1 are transcriptionally
downregulated [137,138]. In addition, in aged animal models and human MNs, there is a build-up of
intra-lysosomal aggregates in the form of lipofuscin granules, extra-lysosomal aggregates, and defective
mitochondria, which can overwhelm and impede autophagy [139]. Therefore, the age-related decline
of autophagy proteins and lysosomal proteolytic activity [140,141] and the upsurge of autophagy
substrates could reduce autophagy activity and potentially explain the late manifestation of ALS.
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Table 1. The association between ALS genes and autophagy.

Gene Protein Function Effect on Autophagy Reference

SOD1 Superoxide
dismutase 1

Antioxidant enzyme:
convert superoxide radical

anions to
oxygen/hydrogen

peroxide.

Mutant associates with Beclin1–B cell lymphoma 2 (Bcl2)
complex to disrupt the activity of Beclin1→ impairing

autophagosome formation/expansion.
[121]

Mutant and misfolded wild-type sequesters dynein
proteins into inclusions→ impairing retrograde

transport and autolysosome formation.
[90,119,120]

Mutant binds voltage-dependent anion-selective channel
protein 1 (VDAC1) and Bcl2→ impairing mitophagy. [114–118]

Mutant binds to optineurin→ impairing mitophagy. [113]

C9ORF72
Chromosome 9

opening reading
frame 72

Guanine nucleotide
exchange factor (GEFs) for

Rab GTPases—allows
trafficking via actin,
regulates lysosome

biogenesis and maturation.

Deficiency disrupts ULK1 complex trafficking→
impairing autophagosome formation. [120]

Deficiency disrupts transfer of lysosomal proteins to
lysosomes→ impairing autolysosome formation. [142]

Deficiency disrupts its association with early endosomes
for lysosome maturation→ impairing autolysosome

formation.
[142]

FUS Fused in sarcoma

RNA-binding
protein—regulates RNA

splicing, processing,
transport, and translation.

Mutant disrupts ER–Golgi transport and
ER–mitochondrial interactions→ impairing

autophagosome formation.
[143,144]

Deficiency decreases Parkin→ impairing mitophagy. [145,146]

TDP-43
TAR DNA binding

partner 43

RNA-binding
protein—regulates RNA

splicing, processing,
transport, and translation.

Mutant disrupts ER–Golgi transport and
ER–mitochondrial interactions→ impairing

autophagosome formation.
[143,144]

Deficiency decreases Parkin→ impairing mitophagy. [145,146]

Deficiency destabilises Atg7 mRNA and proteins→
impairing autophagosome expansion. [147]

Mutant inhibits dynactin and HDAC6→ impairing
retrograde transport for autolysosome formation. [148,149]

SQSTM1 Sequestosome
1/p62

Autophagy
receptor—recruit cargo to

autophagy.

Mutant disrupts recognition of ubiquitinated cargo and
their delivery to autophagosomes→ impairing cargo

degradation.
[120]

OPTN Optineurin
Autophagy

receptor—recruits cargo to
autophagy.

Mutant disrupts recognition of ubiquitinated
cargo/mitochondria and their delivery to

autophagosomes→ impairing cargo degradation and
mitophagy.

[120]

Deficiency disrupts its interaction with myosin VI→
impairing retrograde transport for autolysosome

formation.
[120]

TBK1 Tank-binding
kinase 1

Autophagy receptor
activator—phosphorylates

p62, OPTN, etc. for
selective autophagy.

Mutant disrupts its kinase activity of autophagy
receptors→ impairing cargo/mitochondria degradation. [150,151]

Mutant disrupts its kinase activity of
microtubule-binding proteins→ impairing retrograde

transport for autolysosome formation.
[120]

VAPB
and

VAPC

VAMP-associated
protein B and C

ER proteins—activate
endoplasmic

reticulum-associated
protein degradation

(ERAD) and autophagy.

Mutant disrupts its interaction with PTPIP51 to allow
ER–mitochondrial contact→ impairing autophagosome

formation.
[152,153]

UBQLN2 Ubiquilin
ER protein—recognises
ubiquitinated misfolded

proteins.

Mutant disrupts recognition of ubiquitinated cargo and
their delivery to autophagosomes→ impairing cargo

degradation.
[154,155]

VCP
Valosin-containing

protein

ER protein—forms
aggresomes and

translocates them out of
ER for degradation.

Mutant disrupts formation of aggresomes and
translocates out of ER→ impairing cargo degradation [120,156]

Mutant disrupts granulophagy (degradation of stress
granules). [157,158]

Mutant disrupts its recruitment to damaged
mitochondria→ impairing mitophagy. [159,160]
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Table 1. Cont.

Gene Protein Function Effect on Autophagy Reference

CHMP2B
Charged

multivesicular
body protein 2 B

Endosomal
protein—generates

multi-vesicular bodies
(MVBs).

Mutant disrupts Rab5 conversion to Rab7→ impairing
retrograde transport for autolysosome formation. [161–163]

Mutant disrupts dissociation of its ESCRT-III complex
from the endosomal membrane MVB generation→

impairing autophagosome maturation.
[161–163]

Mutant disrupts biogenesis and maintenance of
lysosomes→ impairing autolysosome formation. [161–163]

ALS2 Alsin Endosomal
protein—generates MVBs.

Mutant disrupts its GEF activity of Rab5→ impairing
autophagosome maturation. [164]

FIG4 Polyphosphoinositide
5-phosphatase

Endosomal
protein—generates MVBs.

Mutant disrupts PI3P production→ impairing
autophagosome maturation. [165]

TUBA4A Tubulin alpha 4A
Cytoskeleton

protein—allows transport
within cells.

Mutant disrupts the dynamic and stability of
microtubules→ impairing retrograde transport for

autolysosome formation.
[120,166,167]

PFN1 Profilin1
Cytoskeleton protein—
allows transport within

cells.

Mutant disrupts its interaction with actin→ impairing
retrograde transport for autolysosome formation. [120,166,167]

DCTN Dynactin
Cytoskeleton

protein—allows transport
within cells.

Mutant disrupts its complex formation with dynein to
bind to microtubules→ impairing retrograde transport

for autolysosome formation.
[120,166,167]

1.4. Autophagy-Targeted Treatments for ALS

Thus far, no effective treatment exists for ALS, despite the discovery of this disease nearly two centuries
ago. Designing treatments that target specific ALS-causing genes to reduce the protein aggregation load
is a potentially valid therapeutic approach. However, multifactorial diseases such as ALS with various
aetiologies, from genetic to environmental and age-related, require treatments that target pathogenic
processes and their progression in a timely and appropriate manner. The disappointingly modest effect
of riluzole [168] and edaravone, the only two approved treatments available for patients that act to
rectify excitotoxicity and oxidative stress, respectively, implies that a more central pathway needs to
be targeted [169,170].

Dysregulation in autophagy is emerging as a significant contributor of pathogenesis in diverse
neuropathologies, including ALS. Therefore, interest continues to grow in autophagy as a likely
beneficial therapeutic target [171]. Different autophagy-modulating agents have been tested in ALS
patients and disease models, and their findings are summarised below (Figure 3, Table 2).



Cells 2020, 9, 2413 8 of 30

Cells 2020, 9, x FOR PEER REVIEW 9 of 32 

 

 
Figure 3. Autophagy-targeted treatments that have been studied in ALS. For autophagy to be 
activated, pathways depicted in red need to be upregulated and pathways depicted in blue need to 
be downregulated. The pathway that is targeted by the treatment is depicted in green (arrow if its 
effect is stimulatory and flathead if its effect is inhibitory). InsP, inositol phosphate; IMPase, inositol 
monophosphatase; PIP2, phosphatidylinositol 4,5- biphosphate; DAG, diacylglycerol; PKC, protein 
kinase C; MAPK, mitogen-activated protein kinase; cAMP, cyclic adenosine monophosphate; PLC, 
phospholipase C; IP3, inositol triphosphate; IP3R, inositol triphosphate receptor; CaMKKβ, 
calcium/calmodulin-dependent protein kinase 2; TAK-1, transforming growth factor beta-activated 
kinase 1; NAD+, nicotinamide adenine dinucleotide; SIRT1, NAD-dependent deacetylate sirtuin-1; 
LKB1, liver kinase B1; PKA, protein kinase A; AKT/PKB, protein kinase B; GF, growth factor; FOXO4, 
forkhead box 4, FOXO1, forkhead box 1; GF, growth factors; RTK, receptor tyrosine kinase; PI3KI, 
class I phosphoinositol 3-kinase; PIP3, phosphatidylinositol-3,4,5-triphosphate; GSK3, glycogen 
synthase kinase 3; TIP60, tat-interactive protein 60 kDa; TSC1–TSC2, tuberous sclerosis complex; 
Rheb, Ras homolog enriched in brain; mTORC1, mammalian target of rapamycin complex I; ULK1, 
Unc-51 like autophagy activating kinase 1; PI3KIII, class III phosphoinositol 3-kinase; S6K, ribosomal 
protein S6 kinase beta-1; 4E-BP, eukaryotic translation initiation factor 4E-binding protein 1; eIF4E, 
eukaryotic translation initiation factor 4E; EP300, E1A binding protein P300. 

 

Figure 3. Autophagy-targeted treatments that have been studied in ALS. For autophagy to be
activated, pathways depicted in red need to be upregulated and pathways depicted in blue need to
be downregulated. The pathway that is targeted by the treatment is depicted in green (arrow if its
effect is stimulatory and flathead if its effect is inhibitory). InsP, inositol phosphate; IMPase, inositol
monophosphatase; PIP2, phosphatidylinositol 4,5- biphosphate; DAG, diacylglycerol; PKC, protein
kinase C; MAPK, mitogen-activated protein kinase; cAMP, cyclic adenosine monophosphate;
PLC, phospholipase C; IP3, inositol triphosphate; IP3R, inositol triphosphate receptor; CaMKKβ,
calcium/calmodulin-dependent protein kinase 2; TAK-1, transforming growth factor beta-activated
kinase 1; NAD+, nicotinamide adenine dinucleotide; SIRT1, NAD-dependent deacetylate sirtuin-1;
LKB1, liver kinase B1; PKA, protein kinase A; AKT/PKB, protein kinase B; GF, growth factor;
FOXO4, forkhead box 4, FOXO1, forkhead box 1; GF, growth factors; RTK, receptor tyrosine kinase;
PI3KI, class I phosphoinositol 3-kinase; PIP3, phosphatidylinositol-3,4,5-triphosphate; GSK3, glycogen
synthase kinase 3; TIP60, tat-interactive protein 60 kDa; TSC1–TSC2, tuberous sclerosis complex;
Rheb, Ras homolog enriched in brain; mTORC1, mammalian target of rapamycin complex I; ULK1,
Unc-51 like autophagy activating kinase 1; PI3KIII, class III phosphoinositol 3-kinase; S6K, ribosomal
protein S6 kinase beta-1; 4E-BP, eukaryotic translation initiation factor 4E-binding protein 1; eIF4E,
eukaryotic translation initiation factor 4E; EP300, E1A binding protein P300.
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Table 2. The effect of autophagy-targeted treatments on ALS models. Sur., survival; Ref., reference; F, female mice; M, male; ↑, increased/restoration; ↓, decreased;↔,
unaffected; co, combination of treatments; *, p62 remained unchanged.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

C
al

or
ic

R
es

tr
ic

ti
on

SOD1-G93A
mice

Long-term
(pre-symptomatic) ↑function ↓ [172]

SOD1-G93A mice Short-term
(pre-symptomatic) ↓ (M) [173]

SOD1-H46R/H48Q
mice

Long-term
(pre-symptomatic) ↑function ↑ [174]

C
al

or
ic

R
es

tr
ic

ti
on

M
im

et
ic

s

Rapamycin

0.5 µg/mL N2A and SH-SYSY cells
TDP-25 24 h ↑flux [175]

I.P. injection
2.24 mg/kg/day SOD1-G93A mice Long-term

(pre-symptomatic) ↔ [174]

I.P. injection
2.24 mg/kg/day

SOD1-H46R/H48Q
mice

Long-term
(pre-symptomatic) ↔ [174]

I.P. injection
10 mg/kg 3×/week FTLD-U mice (M) Short-term

(symptomatic) ↑flux ↑function [176]

I.P. injected
2 mg/kg/day SOD1-G93A mice Long-term

(pre-symptomatic)
↑induction
↓degradation ↓number ↓ [177]

Oral
2.33 mg/kg/day SOD1-G93A mice Long-term

(pre-symptomatic) ↑induction ↔ [178]

Oral
2.33 mg/kg/day

RAG1(-/-) x
SOD1-G93A mice

Long-term
(pre-symptomatic) ↑degradation ↑ [178]
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Table 2. Cont.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

Trehalose

I.P. injection
2 g/kg 3×/week SOD1-G86R mice Long-term

(pre-symptomatic) ↑flux ↑function ↑ [179]

100 mM NSC-34 cells
SOD1-G86R 24 h ↑flux [179]

Oral
2% w/v/day SOD1-G93A mice (F) Short-term

(pre-symptomatic) ↑flux ↑function [180]

Oral
2% w/v/day SOD1-G93A mice (F) Long-term

(pre-symptomatic) ↑induction ↔ [180]

100 mM NSC-34 cells
SOD1-G93A 24 h ↑flux [180]

Oral 2% w/v/day SOD1-G93A mice (M) Long-term
(pre-symptomatic) ↑degradation ↑number ↑ [181]

10 mM NSC-34 cells
SOD1-G93A 72 h ↑degradation [182]

Spermidine I.P. injection 50 mg/kg 3×/week FTLD-U mice (M) Short-term
(symptomatic) ↑flux ↑function

↑number [176]

Resveratrol

Oral 160 mg/kg/day SOD1-G93A mice
Short-term

(pre-symptomatic and
symptomatic)

↑induction ↑function
↑ [183]

I.P. injection 20 mg/kg 2×/week SOD1-G93A mice (M) Long-term
(pre-symptomatic) ↑function ↑ [184]

Oral 25 mg/kg/day SOD1-G93A mice (F) Long-term
(pre-symptomatic) ↔ [185]

10 µM VSC4.1 cells
SOD1-G93A 24 h [186]

I.P. injection 25 mg/kg/day SOD1-G93A mice (M) Long-term
(pre-symptomatic) ↑number ↑ [187]

Metformin Oral 2 mg/mL SOD1-G93A mice Short-term
(pre-symptomatic)

↑number ↔ (M)
↓ (F) [188]
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Table 2. Cont.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

H
or

m
on

e
T

he
ra

py

Raloxifene 0.1 µM NSC-34 cells
TDP-25 24 h ↑degradation [189]

Tamoxifen S.C. injection 50 mg/kg 3×/week FTLD-U mice (M) Short-term
(symptomatic) ↑flux ↑function

↑number [176]

Progesterone I.P. injection 4 mg/kg/day SOD1-G93A mice (M) Long-term
(pre-symptomatic) ↑degradation ↑ [190]

C
an

ce
r

T
he

ra
py Bosutinib

10 µM

Patient iPSC derived
MNs

SOD1-L144FVX,
SOD1-G93S,

TDP-43 M337V, TDP-43
Q343R, TDP-43 G298S,

C9orf72, SALS

7 days ↑degradation ↑number [191]

I.P. injection 5 mg/kg/day SOD1-G93A mice Short-term ↑degradation ↑number ↑ [191]

Dasatinib

Oral gavage
25 mg/kg/day SOD1-G93A mice Long-term

(pre-symptomatic) ↑function ↑ [192]

Oral gavage
5 mg/kg/day SOD1-G93A mice Long-term

(pre-symptomatic) ↔ [192]
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Table 2. Cont.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

Ps
yc

ho
tr

op
ic

T
he

ra
py

Lithium

I.P. injection 1 mEq/kg/day SOD1-G93A mice (M) Long-term (symptomatic) ↑flux ↑function ↑ [193]

Plasma range of 0.4–0.8 mmol/L Patients 15 months ↑ [193]

Plasma range of 0.4–0.8 mmol/L Patients 18 months ↔ [194]

Plasma range of 0.4–0.8 mmol/L Patients 12 months ↔ [195]

Lithium carbonate 200 mg/kg/day
OR

Neu2000 30 mg/kg/day OR
combination

SOD1-G93A mice Long-term
(pre-symptomatic)

↑function
↑number
↑↑co

↑

↑↑co [196]

Plasma range of 0.4–0.8 mmol/L Patients 15 months ↔ [197]

Plasma range of 0.4–0.8 mmol/L Patients 16 months ↔ [198]

Plasma range of 0.3–0.8 mmol/L Patients 13 months ↔ [199]

Valproate or
valproic acid

Oral 0.26% w/v 530 mg/kg/day SOD1-G93A mice (M) Long-term
(pre-symptomatic) ↑ [200]

1–2 mM SH-SY5Y cells TDP-25 48 h ↑ induction [201]

I.P. injection 250 mg/kg/day SOD1-G86R mice Long-term
(pre-symptomatic) ↑number ↔ [202]

1500 mg Patients 12 months ↔ [203]
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Table 2. Cont.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

Valproic acid +
lithium carbonate

0.3–0.75 mmol/L Patients 18 months ↑ [204]

I.P. injection lithium OR R
valproate

OR
combination

60 mg/kg/2× day

SOD1-G93A mice Long-term
(pre-symptomatic)

↑function
↑↑co

↑

↑↑co [205]

Carbamazepine 50 mg/kg
3×/week FTLD-U mice (M) Short-term

(symptomatic) ↑flux ↑function
↑number [176]

Fluphenazine 5 µM Primary neurons
TDP43-A315T 48 h ↑flux ↑ [206]

Methotrimeprazine 5 µM Primary neurons
TDP43-A315T 48 h ↑flux ↑ [206]

Pimozide

I.P. injection 1 mg/kg/every 2 days SOD1-G93A mice Long-term
(pre-symptomatic) ↓degradation ↓function

↔number ↓ [207]

I.P. injection 1 mg/kg/every 2 days SOD1-G93A mice Long-term (symptomatic) ↔degradation ↓function
↔number ↓ [207]

I.P. injection 1 mg/kg/every 2 days TDP43-A315T mice Short-term ↓degradation ↓function ↓ [207]

1 mg/day Patients 3–12 months ↑ [208]
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Table 2. Cont.

Treatment Treatment
Dosing Model Treatment Duration Autophagy MNs Sur. Ref.

A
nt

i-
hy

pe
rt

en
si

ve

Verapamil 240 mg/day Patients 6 months ↔ [209]

Rilmenidine

I.P. injection 10 mg/kg 4×/week SOD1-G93A mice Long-term
(pre-symptomatic) ↑induction ↓number ↓ [210]

10 µM NSC-34 cells
SOD1- A4V 24 h ↑degradation * [210]

10 µM Stem cells
SOD1-WT 24 h ↑flux [210]

Berberine 10–30 µg/ml N2a cells
TDP-25 6 h, 24 h ↑flux [211]

A
nt

i-
hi

st
am

in
e

Latrepiradine I.P. injection I µg/kg/day SOD1-G93A mice Short-term
(pre-symptomatic) ↑induction ↑function

(M) ↑ (M) [212]

Clemastine

I.P. injection 10 mg/kg/5×/week SOD1- G93A mice (F) Long-term
(pre-symptomatic) ↑number ↔ [213]

I.P. injection 50 mg/kg/5×/week SOD1-G93A mice (F) Short-term
(pre-symptomatic) ↑flux ↑function ↑ [214]

I.P. injection 50 mg/kg 5×/week SOD1-G93A mice (F) Long-term
(pre-symptomatic) ↔ ↔ [214]

30 µM NSC-34 cells
SOD1-G93A 6 h, 24 h ↑flux (6 hrs)

↓flux (24 hrs) [214]
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1.5. Caloric Restriction and Its Mimetics

Caloric restriction through dietary intake reduction, starvation, or physical exercise can successfully
induce autophagy by reducing glucose and insulin levels and thus inactivating mTORC1 [215,216]
(Figure 3). However, this method is not considered a useful therapeutic approach because it can
have harmful effects if not tightly regulated. In particular, males can be vulnerable to nutritional
and metabolic stress, as caloric restriction or exercise reduces the lifespan of male, but not female
ALS mice (Table 2) [172,173,217]. Moreover, the caloric restriction approach is time-inefficient and
it fails to significantly affect brain autophagy, conceivably because of the stable nutrient supply to
the brain [218]. Nonetheless, caloric restriction mimetics such as rapamycin, trehalose, spermidine,
resveratrol, and metformin have been used to induce the beneficial effects of caloric restriction without
its adverse consequences (Figure 3, Table 2).

Rapamycin is the most well-known pharmacological inducer of autophagy. Its administration
has shown to be protective in several neurodegenerative disease animal models [219–222]. However,
the effect of rapamycin on ALS differs depending on the animal model tested. In mice overexpressing
human wild-type TDP-43 in the forebrain, rapamycin rescued motor neuron function [176]. However,
in mice expressing mutant SOD1, rapamycin had no effect [174,178] or had detrimental effects [177].
The negative impact of rapamycin treatment on mutant SOD1 mice was partly attributed to
immunosuppression of neuroprotective regulatory T cells [178], suggesting that global mTOR inhibition
may not be useful for ALS.

1.6. Hormone Therapy

Female sex hormones can increase mitochondrial efficiency; reduce oxidative stress; and,
more importantly, increase autophagy, as opposed to androgens, which decrease autophagy [223].
Hence, progesterone and oestrogen modulators such as raloxifene and tamoxifen have been used to
induce autophagy in ALS (Figure 3, Table 2). In fact, female contraceptives may have protective roles
in ALS [224] and ablating oestrogen production in female mutant SOD1 mice accelerates their rate of
disease progression [225,226] (Table 1).

Therefore, differences in gonadal hormones could explain the slightly higher prevalence of ALS
in men than in women [227]. Evidence to support this notion includes the equality of ALS ratio
between the two genders at menopause, possibly a result of the age-related decline in oestrogen
and progesterone levels in women [190], as well as the more infrequent susceptibility of ALS in
pre-menopausal women compared to postmenopausal women [189].

1.7. Anti-Cancer Therapy

Cancer treatment drugs such as bosutinib and dasatinib suppress the phosphorylation of two closely
related non-receptor tyrosine kinases, Src and c-Abl, to increase autophagy levels (Figure 3, Table 2).

The involvement of Src and c-Abl in the regulation of cell proliferation, apoptosis, and angiogenesis
make them fundamental for neuron development [191]. However, in mature and healthy neurons, their
kinase activity tends to be inactive, whereas, in sporadic and familial cases of ALS (and patients with other
neurodegenerative diseases), their level of activity is significantly elevated. This inappropriate activation
has been associated with neuroinflammation; cell cycle arrest; apoptosis; and, more intriguingly, autophagy
inhibition [191] (Figure 3).

1.8. Psychotropic Therapy

Several mood-stabilising drugs such as lithium, valproate/valproic acid, and carbamazepine
(Figure 3, Table 2) deplete inositol triphosphate (IP3) and thus have been used to stimulate autophagy.

IP3 interacts with its receptor (IP3R) on the ER to sequester the autophagy protein Beclin 1 and
abolish its autophagy-inducing properties. IP3R activation also releases calcium from ER stores,
which promotes calcium efflux to organelles such as mitochondria, leading to an increase in ATP
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production and subsequently autophagy inactivation [228]. An increase in intracellular calcium can
also activate calpains to cleave and inactivate autophagy proteins [229] (Figure 3).

It is interesting to note that the majority of the proposed autophagy activators have mood-stabilising
or antidepressant effects, raising the possibility for the involvement of protein dyshomeostasis in the
pathogenesis of affective disorders [230].

1.9. Anti-Hypertensive Therapy

Although the effect of calcium flux on autophagy is ambiguous [231], calcium channel antagonists
such as verapamil, and intracellular calcium modulating agents rilmenidine and berberine, used for
the treatment of hypertension, have been used to promote autophagy (Figure 3, Table 2).

As mentioned in the previous section, increased mitochondrial calcium levels have an inhibitory
effect on autophagy. However, under stressed conditions such as in ALS animal models, where there is
an accumulation of misfolded proteins, cytosolic calcium can also positively regulate autophagy [232].

1.10. Anti-Histamine Therapy

Anti-histamine medications such as latrepirdine and clemastine have been suggested as potential
autophagy inducers (Figure 3, Table 2).

The histaminergic system is involved in a plethora of processes such as smooth muscle contraction,
vasodilation, gastrointestinal tract, immunity, and circulation [233]. Recent evidence indicates that it
also modulates autophagy through AMPK [234,235].

2. Considerations for Effective Targeting Autophagy in ALS

The above-mentioned studies collectively suggest that a number of critical factors need to be
taken into account when considering autophagy treatments for ALS. Firstly, the stage of the disease
when treatment commences and duration of treatment. This is because genetic inhibition of autophagy
in motor neurons of mutant SOD1 mice revealed that autophagy can be protective early in disease
progression, but detrimental late in disease [110]. It is noteworthy to mention that some drugs such as
clemastine were beneficial with acute treatment, while long-term treatment to the late phases of disease
has no effect on disease progression or survival [214]. The stage of disease is likely to reflect differences
in pathological substrates accumulating in affected tissues, such as soluble and insoluble misfolded
proteins, oligomers, protofibrils, fibrils, aggregates, and inclusions, which could affect autophagy
capacity and efficiency in cells.

Secondly, the pathway that the treatment targets to stimulate autophagy needs to be considered.
Drugs such as rapamycin, metformin, progesterone, tamoxifen, bosutinib, dasatinib, latrepiradine,
and clemastine act through the mTORC1 pathway to induce autophagy. However, mTORC1 is a
master regulator of many autophagy-independent pathways in the cell such as protein synthesis,
immunosuppression, cell cycle, and many more [236]. For example, the beneficial effects of rapamycin
might be negated by its immunosuppressive effects, which might explain why SOD1 mice lacking
mature lymphocytes show improved survival, compared to SOD1 mice with their immune system
intact [178]. Moreover, upon prolonged treatment with rapamycin, the second mTOR kinase complex
(mTORC2) becomes inhibited. This action can cause a reduction in the cell survival signalling
pathway, which accounts for the upregulated levels of apoptotic proteins observed in long-term studies
with rapamycin [237,238]. Therefore, autophagy-independent effects of mTOR inhibition must be
taken into account, or drugs that modulate autophagy independently of the mTOR pathway should
be considered [239,240]. Examples of these treatments include trehalose, spermidine, resveratrol,
raloxifene, lithium, valproate, pimozide, methotrimeprazine, fluphenazine, verapamil, and rilmenidine.
Despite this, treatment with mTOR-independent autophagy inducers such as trehalose [179–182] or
rilmenidine [210] have yielded contrasting outcomes in mutant SOD1 mice, highlighting that bypassing
mTOR signalling to invoke autophagy may not be straightforward.
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Thirdly, it is critical to consider the stage of the autophagy pathway that the drug is acting on.
Treatments that upregulated the autophagic flux/degradation such as trehalose [179–181], spermidine [176],
tamoxifen [176], progesterone [190], bosutinib [191], lithium [193,196], carbamazepine [176],
fluphenazine [206], and clemestine [213,214] showed beneficial effects in ALS mice. In contrast,
rapamycin [177,207] and pimozide [177,207] induced autophagy but suppressed autophagic
degradation, evidenced by accumulation of autophagosomes and autophagy substrates such as
p62 and protein aggregates. These treatments exacerbated disease in ALS animal models. It is also
worth noting that autophagic substrates, critically misfolded proteins and aggregates, are not always
measured in tissues of ALS mice treated with autophagy-modulating drugs, which is essential to
correlate with reported neuroprotective and clinical effects.

Fourthly, results of treatments may differ depending on the experimental model employed. In the
absence of a mutation, such as in FTLD-U/TDP-25 cell culture and animal models where there is
accumulation of substrates, autophagy can be successfully upregulated, irrespective of where it is
targeted [175,176,189,201,211]. However, in animal models driven by mutant transgenes, autophagy
may be impaired at different stages, and thus responses to treatments will differ. For example, loss of
Beclin 1 in SOD1G93A and SOD1G127X mice exacerbates disease [86], whereas it improves the phenotype
of SOD1G86R mice [86,121]. Similarly, the genotype of patients plays an important role in the outcome
of clinical trials [241].

Lastly, these drugs are repurposed, and their original target might not be the brain (e.g., metformin).
Therefore, they might not be able to sufficiently access the nervous system to affect neuronal
autophagy [242]. For the treatment of ALS, it is crucial to be able to efficiently and adequately
deliver therapeutics to the central nervous system, more specifically to MNs. This is one of the
great challenges of treating neurological diseases; however, significant progress has been made in the
development of various MN drug delivery systems [243–245].

Moreover, besides autophagy activation, some of these drugs target many other biological
processes. Some of these off-target effects are desired and consistent with the multifunctional
involvement of autophagy such as antioxidant, mitochondrial, and calcium effects (Figure 4), and some
of which are harmful and unfavourable. For example, where researchers were vigilant enough to test
the response of both male and female mice to a drug, it was shown that the effect of some treatments
are sex-specific. Trehalose [180,181] and resveratrol [184,185,187], which can compete with oestrogen
for binding with its receptor, and metformin [188] and latrepiradine [212], which inhibit oestrogen
production, all demonstrated more protective effects in male mice compared to females.
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Figure 4. The interrelationship between autophagy and other pathogenic mechanisms in ALS.
Dysfunction of autophagy, specifically, aggrephagy (aggregate-specific autophagy), mitophagy
(aggregate-specific autophagy), and reticulophagy (ER-specific autophagy) leads to the build-up
of protein aggregates, damaged mitochondria, and ER stress, respectively. Thus, inducing reactive
oxygen species (ROS) production, which persistently builds up in ALS to inhibit autophagy, stabilises
aggregates and induces inflammation and excitotoxicity. Excitotoxicity over-activates neurons, resulting
in cytoplasmic and mitochondrial calcium augmentation and hence further mitochondrial damage.
As a result of these impairments, cells undergo apoptosis and death.



Cells 2020, 9, 2413 18 of 30

3. Conclusions

In this review, we have summarised the main evidence for the enhancement of the autophagy
pathway as a possible therapeutic strategy for the treatment of ALS. However, site of autophagy
pathway dysfunction and the time at which autophagy becomes dysfunctional during the disease
process needs to be elucidated before autophagy treatments can be used as a therapy for ALS. To date,
there is no effective autophagy-inducing agent, and those currently being used are small molecules
and drugs that often lack selectivity and possess undesirable side effects. Future studies should seek
to develop more selective autophagy-enhancing drugs. Moreover, we speculate that autophagy is
impaired, not at the autophagosome formation step, but at the autophagosome maturation/degradation
step. Therefore, the late, degradative steps of autophagy may need to be targeted, rather than the
early steps. In short, promotion of waste clearance and diminution of cytotoxicity is conferred by
autophagosome accumulation.

Additionally, it is essential to note that currently there is no definitive diagnostic biomarker for ALS,
and by the time the disease clinically manifests itself, more than 50% of neurons are lost [240]. However,
the majority of the drugs discussed above were administered at pre-symptomatic or at the onset of
symptomatic stage of the disease. To enhance the translational value of animal models, the potential
drug needs to be administered to ALS mice at the post-symptomatic stage of the disease to better mimic
the pathological conditions of when patients are likely to commence treatment. Meanwhile, reliable
early diagnostic markers of disease onset need to be developed so that treatments can be initiated
promptly. For example, a sensitive assay that can detect the presence of ALS-associated misfolded
proteins early would allow their clearance before they accumulate into larger, degradation-resistant
cargo, thus preventing the pathological cascade mediated by aggregate accumulation (Figure 4). Lastly,
the effects of the drug should be studied in multiple models of ALS to account for heterogeneity of ALS
and to better assess drug suitability. A successful autophagy-enhancing agent would have a potential
therapeutic benefit to not only ALS patients but also patients with other proteinopathies that have
protein aggregates as their cardinal feature.
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