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Abstract
In 2018, the pan-Janus kinase (JAK) inhibitor tofacitinib was launched for the 
treatment of ulcerative colitis (UC). Although tofacitinib has proven efficacious in 
patients with active UC, it failed in patients with Crohn’s disease (CD). This 
finding strongly hints at a different contribution of JAK signaling in both entities. 
Here, we review the current knowledge on the interplay between the JAK/signal 
transducer and activator of transcription (STAT) pathway and inflammatory 
bowel diseases (IBD). In particular, we provide a detailed overview of the 
differences and similarities of JAK/STAT-signaling in UC and CD, highlight the 
impact of the JAK/STAT pathway in experimental colitis models and summarize 
the published evidence on JAK/STAT-signaling in immune cells of IBD as well as 
the genetic association between the JAK/STAT pathway and IBD. Finally, we 
describe novel treatment strategies targeting JAK/STAT inhibition in UC and CD 
and comment on the limitations and challenges of the new drug class.
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Core tip: The pan-Janus kinase (JAK)-inhibitor tofacitinib is efficacious in patients with 
active ulcerative colitis (UC) but not Crohn’s disease (CD), which hints at different 
contributions of JAK-signaling in both entities. In this review, available data on 
differential JAK/signal transducer and activator of transcription (STAT)-signaling in UC 
and CD were analyzed. The literature review identified differential cell-subset specific 
JAK/STAT-signaling including increased T-cell-associated STAT1 signaling in CD and 
STAT6 signaling in UC, while in myeloid cells inflammatory STAT1 was increased in UC 
compared with CD indicating a less inflammatory role of myeloid cells in CD. 
Development of JAK/STAT-inhibitors with specific targeting of associated inflammatory 
pathways might further improve the efficacy and safety profiles of this drug class.
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INTRODUCTION
Inflammatory bowel diseases (IBD) comprise the entities ulcerative colitis (UC) and 
Crohn`s disease (CD) as well as unclassified IBD, which are chronic remitting diseases 
characterized by intestinal inflammation and the risk of uncontrolled disease activity 
which may lead to severe complications such as fistulas and strictures in CD, and 
colorectal neoplasia in both entities[1-5]. Despite the plethora of available medical 
treatment options for IBD, treatment of patients is still complex and often challenging 
due to loss of response as well as adverse events including opportunistic infections[6-8]. 
Population based studies report that 46% of patients with CD and 14% of patients with 
UC are still being treated with systemic corticosteroids for more than 6 months to 
achieve remission[9,10].

The introduction of biological therapy has improved the spectrum of anti-
inflammatory treatment. Nevertheless, the induction and maintenance of remission 
can still be challenging due to primary non response and secondary loss of response to 
biological therapy. Indeed, approximately one third of patients with CD and UC were 
classified as primary non-responders, and up to 50% of patients with IBD had a 
secondary loss of response to biological therapy or had to stop treatment due to severe 
side effects[6,11]. Anti-tumor necrosis factor (TNF) therapy has the risk of 
immunogenicity including provocation of an immune response with occurrence of 
neutralizing antibodies towards anti-TNFα resulting in secondary loss of response. 
These observations clearly underline the need for new therapeutic agents with 
improvement of tolerability and long-term efficacy[12].

Targeting cytokine signaling is already a proven therapeutic strategy as blockade of 
TNFα has been shown to have good efficacy in the treatment of IBD. However, aside 
from TNFα, a wide range of cytokines are crucially involved in maintaining intestinal 
inflammation and reveal a major role in the pathogenesis of IBD[13]. Thus, modulation 
of several IBD-associated cytokines simultaneously appears to be a promising 
therapeutic target in IBD[14-16]. Janus kinases (JAKs) mediate intracellular signaling of 
various cytokines and growth factors[17-20].

The JAK/STAT pathway
JAKs are potent therapeutic targets and blockade can potentially interfere with more 
than 50 cytokines[17,18]. JAKs are constitutively bound to cytokine receptors and are 
crucial in biological responses, mediating signals via signal transducers and activators 
of transcription (STATs)[21-23]. Four different JAK molecules (JAK1, JAK2, JAK3 and 
tyrosine kinase (TYK) 2) and seven members of the STAT family (STAT1, 2, 3, 4, 5a, 5b, 
6) are known[18,24-27]. STAT5a and STAT5b represent two proteins with almost identical 
amino acids but are encoded by different genes[28]. Binding of cytokines to their 
receptors mainly activates specific JAKs and subsequent STATs as final initiators of 
JAK signaling and can lead to specific cellular responses[29-31]. The general mechanisms 
of JAK/STAT-signaling are summarized in Figure 1. Due to the fact that JAK/STAT-
signaling is utilized by various cytokines, these pathways have become prominent 
targets for simultaneous inhibition of multiple pro-inflammatory cytokines[32-34]. 
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Figure 1  The JAK/STAT pathway. A: Canonical Janus kinase (JAK)/signal transducer and activator of transcription (STAT)-signaling initiates with the 
association of cytokines and their corresponding transmembrane receptors; B: Cytokine binding brings JAKs in proximity to the receptor, leading to phosphorylation of 
both the JAKs themselves and the cytoplasmic tails of the receptors, thereby creating docking sites for STAT monomers; C: STAT tyrosine phosphorylation (p-Tyr) is 
the major activating event, leading to dimerization of STATs, translocation to the nucleus, DNA binding of STAT dimers and subsequent target gene induction. JAK: 
Janus kinase; STAT: Signal transducer and activator of transcription.

Nevertheless, targeting JAK/STAT-signaling is highly complex as overlapping 
JAK/STAT activation by various cytokines with induction of more than one specific 
downstream signaling pathway is known[35-37]. In detail, similar JAK/STAT 
components can be activated by varying cytokines of related receptor families, which 
include cytokines of the interferon (IFN) receptor family i.e., type I/II/III IFNs, IL-10, 
IL-19, IL-20, IL-22), the common γ-chain receptor family (i.e., IL-2, IL-4 IL-7, IL-9, IL-15, 
IL-21), the gp130 receptor family (i.e., IL-6, IL-11, IL-12, IL-23), the common β-chain 
receptors (i.e., GM-CSF, IL-3, IL-5) and the single chain receptor family (i.e., Epo, 
GH)[29,30,38]. Besides these classical canonical pathways, which include subsequent 
JAK/STAT activation, non-canonical pathways with independent activation of either 
JAKs or STATs for signal transduction have been described[39-41]. Furthermore, JAKs 
can also activate other downstream targets separate to the classical STATs[42]. It is 
incompletely understood how specific signaling can be achieved regarding the 
complexity of JAK/STAT activation, but a cell subtype-associated specificity of 
JAK/STAT-signaling has been suggested[31] as activation of the same STATs can lead to 
partially opposing effects in cells of the innate compared to the adaptive immune 
system. For instance, STAT3 mediates regulatory signaling in epithelial or myeloid 
cells[43], while in lymphocytes, STAT3 activation results in predominantly pro-
inflammatory responses such as Th17 differentiation and inhibition of regulatory T-
cells[44-46], which further underlines the great plasticity and complexity of JAK/STAT-
signaling in regulatory or inflammatory responses of different cell compartments.

Clinical efficacy of JAK inhibition in RA and IBD
The JAK/STAT pathway has been associated with several immune-mediated diseases 
besides its important impact in cellular signaling[47-50]. The pan-JAK inhibitor tofacitinib 
results in predominant inhibition of JAK1/JAK3 at adequate dosage[51,52], leading to 
inhibited JAK-associated intracellular signaling of various cytokines and growth 
factors[17,18] and was first developed and approved as a synthetic disease-modifying 
anti-rheumatic drug (DMARD)[53-56] for the treatment of moderate to severe rheumatoid 
arthritis (RA) in 2017 throughout Europe[53-55,57]. Due to its clinical efficacy in RA, 
tofacitinib was subsequently investigated as a treatment option for IBD[58-61].

In a recently published phase III RCT, tofacitinib demonstrated efficacy for 
induction and maintenance of remission in patients with UC[61], which led to its 
approval for treatment of moderate-to-severe UC[62]. More specifically, 40.6% of 
patients treated with 10 mg tofacitinib twice daily achieved remission at week 52 as 
the primary endpoint as compared to 11.1% of patients treated with placebo[61]. Of 
note, in patients with CD, tofacitinib did not reach its primary endpoints including 
clinical response or remission at week 26 of maintenance in a phase IIb clinical trial[58]. 
In detail, clinical response or remission rates for treatment with 10 mg twice daily were 
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55.8% compared to 38.1% with placebo treatment, which was not significantly 
different. The lack of clinical response to tofacitinib treatment in patients with CD was 
further confirmed by the observation of worsening disease activity in 19.3% of patients 
treated with 10 mg twice daily in an open-label 48-week extension phase II clinical 
trial[63] which led to premature termination of the trial. However, in the phase IIb trial, 
biomarkers of inflammation such as C-reactive protein were different in both cohorts 
with increasing levels in the placebo group and stable levels in the treatment group 
indicating a likely treatment effect of tofacitinib even in patients with CD[58]. There is 
ongoing debate regarding the possibility of lack of therapeutic efficacy being 
explained by an unusually high placebo rate and the small sample size of the study. 
On the other hand, the lack of superiority of tofacitinib over placebo in patients with 
CD in clinical trials might also reflect different pathogenic roles of JAK/STAT-
signaling in UC and CD[64,65].

Previous data from our own group demonstrated that a more regulatory monocyte 
phenotype was induced by tofacitinib at adequate dosage under inflammatory 
conditions[66]. In line with the observations from clinical trials, the regulatory impact of 
tofacitinib was stronger in monocytes derived from patients with UC as compared to 
CD[66]. These observations led to the hypothesis that the JAK/STAT pathway might be 
differentially activated in UC, mediating stronger inflammatory responses compared 
to CD. Therefore, we summarize and discuss the available evidence on JAK/STAT-
signaling in patients with UC and CD in different cell compartments as well as the 
genetic association and further discuss the clinical implications.

JAK/STAT-SIGNALING IN IBD: T-CELLS
The JAK/STAT pathway has a crucial impact on the regulation of T-cell 
differentiation. Additionally, dysregulated JAK/STAT-signaling leading to aberrant T-
cell differentiation as well as defective regulatory T-cell activity has been suggested as 
important in IBD pathogenesis[43,67-70]. Excessive T-cell activation and infiltration of the 
colonic mucosa has been observed in both CD and UC[70,71], but the precise role of T-
cells in both phenotypes is still a matter of debate. Historically, aberrant Th1 
differentiation and associated cytokines (like IFNγ and IL-2) were predominantly 
associated with the pathogenesis of CD[72] and Th2-cell-associated cytokines with 
UC[73]. However, this concept has partially been abandoned as the contribution of 
different T-cell subsets infiltrating the intestinal mucosa is far more complex and has 
been demonstrated as a core player in the pathogenesis of both entities[69,74,75]. 
Differences in the JAK/STAT-signaling in T-cells obtained from UC and CD have also 
been described, which may lead to similar but incongruent T-cell differentiation in 
both entities.

Most studies assess STAT-signaling as a surrogate marker for JAKs. Before we focus 
on IBD-related aberrant STAT-signaling in the T-cell compartment, we summarize the 
impact of JAK/STAT-signaling on T-cells in experimental colitis. Available data on T-
cell attributed STAT expression/activation in UC and CD has also been summarized 
in Figure 2.

Experimental colitis
T-cell-associated IFNγ induced a reduction in epithelial integrity and Paneth cells in 
mouse crypt enteroids, and led to exacerbation of radiation colitis[76]. This effect could 
be abolished by JAK1,2 inhibition indicating the important impact of the JAK/STAT 
pathway in T-cell-mediated impairment of the intestinal barrier. Furthermore, several 
anti-inflammatory molecules ameliorating disease activity in experimental colitis are 
associated with modulation of JAK/STAT-signaling in lymphocytes. In detail, 
decreased expression or activation of JAK1 and JAK2[77], STAT1[77], STAT3[77-79] and 
STAT4[77,79] as well as enhancement of STAT5[78] phosphorylation in T-cells, have been 
linked to effective pharmacological treatment of DSS-induced murine colitis and 
TNBS-induced rat colitis. Additionally, inflammatory activity was reduced by general 
STAT1 knockout in DSS-treated STAT1-null mice[80] and by specific inhibition of 
STAT1 in T-cells in TNBS-induced colitis[81]. Furthermore, knockdown of TYK2 
ameliorated DSS-induced and TNBS-induced murine colitis possibly due to reduced 
Th1 and Th17 activity[82]. In addition, in murine colitis, STAT6/Th2-linked cytokine IL-
4 is associated with reduced Treg induction[83,84]. In contrast to this, STAT6-deficient 
mice were shown to be protected against experimental colitis, partially due to reduced 
Th2 cytokines[85].
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Figure 2  Differentially regulated STATs in T-cells from patients with inflammatory bowel disease. In T-cells, signal transducer and activator of 
transcription (STAT)1 signaling is increased in Crohn`s disease (CD) but not ulcerative colitis (UC), while STAT3 is associated with a critical role in both UC and CD 
pathogenesis and overactivation is linked to increased intestinal inflammation. There is stronger evidence of STAT4 signaling in CD but STAT4 induction is also 
apparent in UC, while the STAT6 pathway seems to be more affected in UC. Down-regulation of STAT5 in CD leads to inhibition of regulatory T-cells. Strength of 
arrows indicates available supporting data. CD: Crohn’s disease; IFN: Interferon; IFNγ-R: Interferon γ receptor; IL: Interleukin; IL4R: Interleukin 4 receptor; IL12R: 
Interleukin 12 receptor; STAT: Signal transducer and activator of transcription; Th: T-helper cell; Treg: Regulatory T-cell; UC: Ulcerative colitis.

STATs
STAT1 is closely linked to IFNγ-receptor signaling and has an important involvement 
in Th1 differentiation[86]. Mudter et al[87] found increased IFNγ-induced STAT1 but not 
phospho-STAT1 in lamina propria T-cells of CD compared to patients with UC. 
Similarly, elevated gene expression of STAT1 as well as that of other IFNγ-Th1-related 
genes was detected by Wu et al[88] in colonic biopsies of patients with CD but not UC. 
Of note, the latter study did not provide cell specific investigations or analysis of 
STAT1 on protein level. Taken together, these data confirm an important role for 
STAT1-associated Th1 response in CD.

STAT2 is associated with type I IFN signaling[89]. So far, only a trend towards 
decreased STAT2 gene expression in lamina propria mononuclear cells (LPMC) from 
patients with active UC and CD has been reported[87] without further available data on 
STAT2 signaling in IBD.

In contrast, the impact of STAT3 in T-cell differentiation has been widely 
investigated. JAK1, JAK2 and TYK2 are involved in the activation of STAT3[29] and 
increased STAT3 activation and signaling contributes to pathogenic Th17 
differentiation and promotion of inflammation[45], and is involved in the pathogenesis 
of UC and CD[74,75]. However, STAT3 has also been linked to IL-10-dependent 
regulatory features of Tregs[90,91] and the definitive role of STAT3 in T-cell regulation 
and its contribution to IBD has not been finally elucidated. Various studies on T-cell-
associated STAT3 signaling have demonstrated increased levels of STAT3 and 
phospho-STAT3 in mucosal tissue samples from patients with UC and CD[67,68,87,92]. 
Furthermore, Jin et al[93] performed transcriptomic and proteomic analyses of colonic 
biopsies and demonstrated that the inflammatory response of the IL-6-JAK/STAT3 
signaling pathway was positively enriched in CD and UC samples. T-cells represent a 
large population of immune cells in the intestinal mucosa[94] but whether these data 
could be attributed to only T-cells is not clear, as no cell compartment specific analysis 
was performed. Specific analyses of STAT3 signaling in CD-derived intestinal T-cells 
revealed constitutive STAT3 activation[68] with IL-6-attributed induction of 
downstream anti-apoptotic genes[67]. Furthermore, impaired STAT3-regulating 
mechanism has been identified in IBD. In a healthy environment, the phosphatase 
DUSP2 is induced by activation of T-cells and inhibits STAT3. Impaired DUSP2 
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expression is associated with enhanced STAT3 signaling and Th17 induction[45]. It is 
noteworthy that DUSP2 has been demonstrated to be decreased in peripheral blood 
samples derived from patients with UC and active disease flare[45]. However, no direct 
comparison with CD patients has been performed to date and no studies have 
investigated the role of DUSP2 in CD to date. Another STAT3-regulating factor is the 
protein tyrosine phosphatase PTPN2, which is linked to prevention of auto-reactivity 
in the context of T-cell homeostasis by STAT3 dephosphorylation[95]. Deficiency of 
PTPN2 is associated with autoimmunity by increased lymphocyte activation[96] and 
PTPN2 genetic risk locus with loss of function has been linked to CD[95]. Taken 
together, impaired direct or indirect STAT3 regulation leading to increased STAT3 
activation seems to be involved in both UC and CD pathogenesis, even though 
underlying mechanisms might partially differ.

The role of STAT4 in T-cells has been well described and various studies 
demonstrated an IL-12-triggered STAT4-dependent development of IFNγ-secreting 
Th1-cells[97,98]. Available data on STAT4 in colonic tissue samples from patients with 
IBD are controversial; while increased IL-12-dependent expression and activation of 
STAT4 in T-cells from colonic mucosa was found in CD[68] associated with IL-12-
dependent Th1 polarization[99], no increased T-cell-associated STAT4 signaling was 
detected in patients with UC[99]. In contrast to these studies, increased STAT4 was 
found in the mucosa of adult[100] and pediatric patients with UC but not in patients 
with CD[101]. However, subtype analyses of intestinal cells were not performed in the 
latter studies, thus data can only speculatively be linked to STAT4 signaling in T-cells. 
In summary, published evidence of increased T-cell-associated STAT4 signaling in CD 
is strong, emphasizing the important role of Th1 response in CD pathogenesis. In UC, 
increased STAT4 signaling was also detected, but direct linkage to T-cells was not 
investigated: Thus, Th1 response may also play a distinct role in intestinal 
inflammation in UC but still remains a matter of debate.

STAT5 is mainly linked to induction of regulatory FoxP3+T-cells (Tregs)[102] and 
limitation of Th17 differentiation via IL-2[103], while Treg development is negatively 
controlled by STAT3[104] and thus disruption of the STAT3/STAT5 balance might shift 
T-cell differentiation towards Th17 development[46]. Tregs can limit autoimmunity, but 
in IBD, Tregs are not able to control inflammation due to increased induction and 
differentiation of effector T-cells[105,106]. Direct data on STAT5 in IBD T-cells are scarce. 
In CD, α4β7+CD4+cells, which are strongly associated with gut-homing lymphocytes, 
show decreased induction of pSTAT5 in response to IL-2, while pSTAT3+cells were 
increased after specific stimulation[107]. However, data on T-cell-associated STAT5 
signaling in UC are still missing.

STAT6 is associated with Th2 differentiation[108,109]. Although Mudter et al[87] found no 
increased STAT6 expression in LPMCs in IBD patients, there was increased activation 
of STAT6 in colonic tissue of inactive UC[110] as well as specifically in LPMCs in UC, in 
contrast to lower levels in CD[111]. It is noteworthy that T-cells represent the largest 
immune cell population of LPMCs; however, no specific T-cell analysis was 
performed. Nevertheless, both studies point to the overactivation of STAT6 in UC, 
which further underlines the importance of the Th2 response in UC pathogenesis, 
while in CD the role of STAT6 remains unclear.

JAK/STAT-SIGNALING IN IBD: MONOCYTES AND MONOCYTE-DERIVED 
CELLS
Monocytes are central to our health as uncontrolled and sustained inflammation can 
lead to auto-inflammatory syndromes and sometimes to autoimmune diseases. 
Monocytes can be a driving force in such diseases when their ability to also contribute 
to the resolution of inflammation is impaired. Therefore, anti-inflammatory 
mechanisms of monocytes, are of vast importance for downregulation and resolution 
of inflammation[112-115]. As an example, we recently demonstrated that GM-CSF-
activated monocytes also have regulatory capabilities such as in the induction of Tregs 
from naïve T–cells in in vitro co-cultures thus leading to amelioration of experimental 
colitis in mice in vivo[116,117]. Furthermore, in IBD, monocytes are key players and 
function as effectors of inflammation[118-120], presumably because most intestinal 
macrophages are replenished by peripheral monocytes from the circulation[121,122]. In 
the intestine, recruited monocytes immediately adapt to the local environment. When 
they replenish intestinal monocytes during homeostasis, they become tolerogenic, but 
they differentiate into inflammatory drivers in the presence of intestinal 
inflammation[123] which turns monocytes into important targets for treatment.
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JAK/STAT-signaling does play decisive roles in monocyte-differentiation and 
regulation of monocyte-activation[66,124]. For example, de Vries et al[124] demonstrated 
that JAK1/STAT1 inhibition resulted in a prominent switch of macrophages from pro-
inflammatory M1-like to a more regulatory M2-like phenotype, which leads to an 
enhanced recovery in acute rescue DSS-colitis. Similarly, JAK1/3 inhibition dose-
dependently leads to a predominant M2-like phenotype shift of human monocytes 
derived from healthy volunteers and patients with IBD accompanied by an increased 
anti-inflammatory potential reflected by enhanced Treg induction[66].

JAK/STAT
In monocytes, STAT1 activation via i.e., IFNγR is believed to be strongly 
inflammatory[125,126]. Schreiber et al[127] showed that patients with active UC had 
significantly higher levels of STAT1 expression and activation in colonic tissue 
compared to active CD, which could be predominantly attributed to infiltrating 
peripheral neutrophils and monocytes/macrophages. Among other regulatory 
mechanisms, STAT activation is inhibited by proteins of the suppressor of cytokine 
signaling (SOCS) family[128-131] and SOCS3 and SOCS1 are involved in STAT1 
regulation. Indeed, Schreiber and colleagues[127] further detected that increased STAT1 
activation was associated with distinctly lower mucosal SOCS3 protein levels in UC 
compared to patients with CD. In contrast, Soendergaard et al[132] found SOCS1 and 
SOCS3 mucosal RNA level to be upregulated in an inflammation-dependent manner 
in UC compared to controls; however, no patients with CD were included in this study 
and direct comparison is missing.

Opposite to STAT1, STAT3 is associated with a more protective role in myeloid cells 
against inflammation and seems to be important for mucosal homeostasis[43,133,134]. In 
their mouse study, Takeda et al[43] genetically disrupted STAT3 in macrophages and 
neutrophils resulting in chronic enterocolitis induced by high levels of pro-
inflammatory cytokines. Furthermore, the suppressive effects of IL-10 on macrophages 
and neutrophils were completely abolished in mice lacking STAT3 in these cells, 
further emphasizing the importance of STAT3 signaling in the regulation of 
inflammation[43]. Depending on the environmental stimuli, monocytes, when leaving 
the bloodstream, can differentiate into macrophages and dendritic cells (DCs). An 
analysis of STAT activation in subsets of DCs from patients with CD revealed 
enhanced IL-10-induced STAT3-signaling in myeloid DCs[135]. The study did not 
include patients with UC, so the role of STAT3 in UC-derived DCs remains unclear. 
Monocyte-specific expression of other STAT members including STAT2, STAT4, 
STAT5 and STAT6 has not yet been studied in IBD in detail. Available data on STAT 
expression/activation in monocytes and –derived cells in UC and CD are summarized 
in Figure 3.

Taken together, the contribution of JAK/STAT in IBD-derived myeloid cells in 
driving inflammation cannot be elucidated yet due to the scarcity of available data. 
However, STAT1 seems to be particularly increased in monocytes/macrophages in UC 
but not CD, which is possibly linked to an insufficient mechanism to regulate STAT1 
signaling, and hints at a more pro-inflammatory phenotype of monocy-
tes/macrophages in UC compared to CD.

GENETIC ASSOCIATION OF IBD AND THE JAK/STAT PATHWAY
For IBD, more than 250 genome susceptibility loci could be specified, of which some 
reveal an association with the JAK/STAT pathway[136-139]. However, systematic analysis 
and comparison of the JAK/STAT components and associated genetic risk loci in UC 
and CD are scarce. We therefore summarize the available studies on JAK/STAT-
associated susceptibility genes in IBD and elucidate the similarities and differences in 
UC vs CD in the next paragraphs and in Table 1[136,138-158].

JAKs
To date, the genetic risk loci associated with JAK1 have not been identified in IBD. 
This appears reasonable, as JAK1-deficient mice are non-viable[159,160], which underlines 
the fundamental involvement of JAK1 in cell signaling as essential for survival[160,161]. 
Similarly, JAK3-linked genetic risk loci have not been detected in IBD so far. Patients 
suffering from genetic defects in JAK3 develop severe combined immunodeficiency 
without specificity for IBD[161,162].

In contrast, an association of JAK2 gene variants with both UC and CD has been 
clearly shown in various studies[136,138,140]. Especially the IBD risk locus rs10758669 
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Table 1 Genetic association between JAK/STAT-signaling and the development of inflammatory bowel disease

Ulcerative colitis Crohn’s disease

JAK1 No association found to date No association found to date

Yang et al[140], 2011 Yang et al[140], 2011

Barrett et al[136], 2008 Barrett et al[136], 2008

Wellcome trust case control Wellcome trust case control

Consortium[138], 2007 Consortium[138], 2007

Anderson et al[141], 2009 Anderson et al[141], 2009

Zhang et al[142], 2014 Zhang et al[142], 2014

Hedl et al[143], 2016 Hedl et al[143], 2016: N/A

Cleynen et al[144], 2013: N/A Cleynen et al[144], 2013

Ferguson et al[145], 2010: N/A Ferguson et al[145], 2010

JAK2

Prager et al[146], 2014: No association Prager et al[146], 2014

JAK3 No association found to date No association found to date

Can et al[147], 2015 Can et al[147], 2015

Lian et al[148], 2013 Lian et al[148], 2013: No association

TYK2

Sato et al[149], 2009: No association Sato et al[149], 2009

STAT1 No association found to date No association found to date

STAT2 No association found to date No association found to date

Barrett et al[136], 2008 Barrett et al[136], 2008

Wellcome Trust Case Control Wellcome Trust Case Control

Consortium[138], 2007 Consortium[138], 2007

Anderson et al[150], 2011 Anderson et al[150], 2011

Willson et al[151], 2012: N/A Willson et al[151], 2012 (pediatric patients)

Zhang et al[142], 2014 Zhang et al[142], 2014

STAT3

Prager et al[146], 2014: No association Prager et al[146], 2014

Glas et al[152], 2010: No association Glas et al[152], 2010

Diaz-Gallo et al[153], 2010 Diaz-Gallo et al[153], 2010: No association

STAT4

Liu et al[139], 2015 Liu et al[139], 2015: No association

STAT5 Huang et al[154], 2015 (STAT5A/STAT3 haplotypes): No association Huang et al[154], 2015 (STAT5A/STAT3 haplotypes)

Klein et al[155], 2015: No association Klein et al[155], 2015

Xia et al[156], 2003: No association Xia et al[156], 2003: No association

Chua et al[157], 2016: No association Chua et al[157], 2016: No association

STAT6

de Jong et al[158], 2003: No association de Jong et al[158], 2003: No association

JAK: Janus kinase; N/A: Not investigated in this cohort; STAT: Signal transducer and activator of transcription.

within the JAK2 region has been widely investigated. Alongside associations with both 
UC and CD[136,141,142], gain of function of this gene variant including increased JAK2 
signaling in macrophages of patients with UC and healthy donors carrying the 
rs10758669 CC genotype was shown[143]. Furthermore, in CD, the JAK2 variant 
rs10758669 was associated with a more complicated disease course and shorter time 
interval to stenosis occurrence[144,145]. Increased intestinal permeability was detected in 
patients with CD with the C risk allele within this JAK2 variant, which might hint at 
JAK2 being involved in increasing permeability in IBD as a possible 
pathomechanism[146].

The available data of TYK2 gene polymorphism and IBD association are rare and 
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Figure 3  Differentially regulated STATs in monocytes and monocyte-derived cells from patients with inflammatory bowel disease. Signal 
transducer and activator of transcription (STAT)1 activation seems to be different in myeloid cells of patients with Crohn’s disease (CD) and ulcerative colitis (UC). 
Although induced in CD, STAT1 is greatly elevated in monocytes and monocyte-derived cells from UC. There is evidence for increased STAT3 signaling in CD, while 
UC was not investigated. For STAT2, STAT4, STAT5, and STAT6 there are no solid data available from patients with IBD. Count of arrows indicates strength of 
increase in a direct comparison of UC and CD. CD: Crohn’s disease; IFN: Interferon; IFNAR: Interferon α receptor; IFNγ-R: Interferon γ receptor; IL: Interleukin; 
IL10R: Interleukin 10 receptor; STAT: Signal transducer and activator of transcription; UC: Ulcerative colitis.

divergent. Although TYK2 has been identified as a susceptibility gene for both UC and 
CD in the Turkish population[147], in Malaysian patients no association between CD and 
TYK2 genes has been detected[148]. Conversely, in the Japanese population, a strong 
association of TYK2 with CD, but not UC was found[149].

STATs
Contrary to STAT1/STAT2, for which no genetic association for UC or CD has been 
found to date, STAT3 gene variants have been distinctly associated with susceptibility 
for both, CD and UC[136,138,150,163]. Willson et al[151] analyzed STAT3 genetic variant 
rs744166 and demonstrated that pediatric patients with CD carrying STAT3 “A” risk 
allele revealed enhanced STAT3 activation in intestinal tissue and increased signaling 
linked to intestinal leukocyte homing. A meta-analysis including 10298 patients with 
CD and 4244 patients with UC, which further evaluated this STAT3 variant, confirmed 
the (A) allele to increase susceptibility for both UC and CD[164]. Of note, Caucasian 
carriers of the (A) allele were more susceptible to UC and CD as compared to other 
ethnicities[164].

Available data on STAT4 genetic variants linked with UC or CD are divergent. 
Jostins et al[137] detected an increased association of STAT4 polymorphisms with IBD in 
general without specific association with either UC or CD. Glas et al[152] investigated 
STAT4 genetic variant rs7574865 and found an association with colonic disease 
manifestation and early onset of disease in CD without increased UC susceptibility. 
Conversely, two studies identified an association of rs7574865 with increased risk for 
UC but not CD[139,153].

Specific polymorphisms in the STAT5 gene locus have not been detected for IBD to 
date. However, Huang and colleagues[154] identified that STAT5A/STAT3 haplotypes 
were generally linked to IBD and to CD.

The data on STAT6 genetic variants and IBD susceptibility are also rare: In a small 
study, comprising 243 patients with CD and 100 patients with UC, Klein et al[155] 
detected a link between STAT6 gene risk locus G2964A (rs324015) and the subgroup of 
patients with CD, which revealed no variation in the CARD15 gene. However, the 
association of CD with STAT6 polymorphism rs324015 could not be confirmed by 
other studies[156-158], which suggests that STAT6 gene variants may not have an 
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important involvement in IBD susceptibility.

JAK/STAT-associated signaling and regulation
A distinct genetic association has been shown for specific protein tyrosine 
phosphatases (PTPs) which are involved in regulation of JAK/STAT-signaling. 
Among those, PTPN22, which is linked to the regulation of STAT1 and Th1[69,165-167], has 
been detected as a risk gene for CD susceptibility without an association to UC[137,150]. 
Surprisingly, PTPN22 variant rs33996649 was identified as protective against CD, 
while it is associated with an increased risk for other autoimmune diseases[136,153,168]. 
Similarly, genetic variants of PTPN2, which is associated with regulation of STAT1 
and STAT3 phosphorylation, were found to be linked to CD but not UC[138]. In detail, 
patients with CD carrying PTPN2 loss-of-function variant rs1893217 showed increased 
Th1- and Th17-related transcription factors and cytokines. Similarly, STAT1/3 
activation, which is associated with Th1 and Th17 differentiation, was increased in 
PTPN2-/-CD4 T-cells[95]. However, in a large meta-analysis, associations between 
PTPN2 gene polymorphisms and both CD and UC were found, which emphasizes the 
importance of PTPN2 and associated regulation of STAT1/3-linked Th1 and Th17 
differentiation in both entities[169]. For PTPN11, regulating STAT1 signaling[81,170], a 
genetic association with UC but not CD was found[171]. Furthermore, in DSS-induced 
colitis, conditional PTPN11 knockout in T-cells increased colitis severity[172] stressing 
the important role of PTPN11 in colitis pathogenesis. Additionally, several studies 
have identified a marked association between the cytokine receptor IL-23R and IL-12R 
genes, which are both linked to Th17 differentiation, in both UC and CD[137,141,150,173]. The 
relevance of IL-23 and IL-12 signaling on IBD pathogenesis is further confirmed by the 
therapeutic efficacy of the IL-12/IL-23 blocker ustekinumab in both entities.

CLINICAL IMPLICATIONS
Regarding the summarized data, it becomes evident that aberrant signaling of various 
direct and indirect components of the JAK/STAT pathway are critically involved in 
initiation and/or perpetuation of inflammation in both UC and CD. Dysregulated 
JAK/STAT-signaling is possibly linked to specific JAK/STAT-associated genetic 
predispositions and is partially cell subset specific with different signaling aberrations 
in the innate vs adaptive immunity. With the regulatory drug approval of the pan-JAK 
inhibitor tofacitinib, therapeutic inhibition of the JAK/STAT pathway is available for 
the clinical management of patients with UC. While the OCTAVE study program has 
proven the efficacy of tofacitinib for UC, some questions regarding its safety in terms 
of herpes zoster infection[61] and pulmonary embolism have occurred recently as severe 
adverse events in patients treated twice daily with 10 mg tofacitinib were observed[174]. 
Furthermore, tofacitinib revealed no effective response in CD compared to placebo in a 
phase II RCT[58]. These data underline that adequate selection of patients with UC for 
tofacitinib treatment is key.

Selective JAK/STAT-inhibition
Targeting JAK/STAT components more precisely rather than inhibiting the complete 
pathway appears promising to limit adverse events and potentially improve clinical 
response in CD. Various compounds associated with selective JAK inhibition, 
including lgotinib and upadacitinib as predominantly JAK1-selective inhibitors, are 
currently under clinical investigation for IBD, while upadacitinib has most recently 
been approved for the treatment of RA[175,176]. Filgotinib has entered a phase III RCT 
due to promising results in moderate-to-severe CD including induction of clinical 
remission and mucosal healing[177]. Results from the phase II RCT with upadacitinib 
also show dose-dependent favorable outcomes with 27% clinical remission rates in 
patients with CD treated with 6 mg twice daily[178] and phase III studies in CD and UC 
are ongoing (NCT03006068, NCT03345836). Furthermore, the JAK3-selective inhibitor 
Pf-06651600 and dual JAK1/TYK2 inhibitor Pf-06700841 are currently being 
investigated in phase II RCTs for CD (NCT03395184) and UC (NCT02958865). 
Additionally, the agent BMS-986165 is a selective TYK2 inhibitor leading to blockade 
of IL-12-, IL-23-, and type I IFN signaling[179] and is being investigated in moderate-to-
severe CD in a phase II RCT (NCT03934216). The intestinally restricted pan-JAK 
inhibitor TD-1473 is also under investigation in a phase II RCT in CD (NCT03635112) 
and a phase II study is planned for UC (NCT03920254).

However, since all JAKs are involved in complex biological processes, which control 
a wide range of cellular responses, inhibition of a specific JAK may lead to imprecise 
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outcomes including both inhibition of regulatory and inflammatory pathways as well 
as unwanted side effects. Thus, specific inhibition of STATs as downstream effectors of 
JAK/STAT-signaling might be the next step in using the JAK/STAT pathway as a 
therapeutic target. However, therapeutic agents investigated in IBD still target JAKs 
and to our knowledge, no STAT inhibitor has been established for IBD treatment to 
date, which might be due to certain challenges: STATs lack catalytic activity and 
pharmacological targeting is complex compared to the kinase domains of JAK, which 
represent distinct targets for therapeutic inhibition[31]. Nevertheless, STAT inhibitors 
are currently under investigation in several oncologic diseases such as acute myeloid 
leukemia or recurrent malignant glioma[180]; thus, the investigation of pharmacological 
STAT targeting might also be prospectively possible in IBD.

Cell specific targeting
Of note, in considering JAK/STAT-signaling as a therapeutic target, one should take 
into account that STATs are associated with partially counter-directional functions in 
different cell compartments. Namely, STAT3 has different function in monocytes and 
monocyte-derived cells (innate immune system) with rather regulatory features i.e., IL-
10 release, while in T-cells (adaptive immune system) STAT3 is strongly pro-
inflammatory involved in Th17 differentiation. It needs to be emphasized that an 
important regulatory impact of the innate immune system was suggested for CD[143]. 
This is supported by the fact that in myeloid cells of patients with CD, STAT3 reveals 
strong activation[135], while pro-inflammatory STAT1 is significantly lower in its 
expression and activation in myeloid cells of intestinal tissue of active CD compared to 
UC[127]. Furthermore, our own observations demonstrate higher levels of pro-
inflammatory cytokines including TNFα and IL-6 in a pro-inflammatory setting and a 
stronger susceptibility to regulatory tofacitinib treatment in UC compared to CD-
derived monocytes[66]. These data underline the suggestion of myeloid cells as part of 
the innate immune system which possibly plays a less inflammatory and more 
regulatory role in CD compared to UC. The pan-JAK inhibitor tofacitinib revealed no 
significant efficacy in CD and a possible explanation might be the broad JAK/STAT 
inhibition which targets T-cell associated inflammatory signaling[17] but might 
simultaneously inhibit important regulatory responses in myeloid cells in CD. Indeed, 
the impact of JAK inhibition specifically on myeloid cells is controversial: Some 
studies describe an effective inhibition of pro-inflammatory responses by JAK 
blockade[17,181], while conversely, upregulated pro-inflammatory signaling has also been 
described[182,183]. During intestinal injury, peripheral monocyte recruitment to intestinal 
tissues is increased, which are pro-inflammatory and primed in an inflammatory 
environment to contribute to inflammatory outcomes[66,184,185]. Thus, induction of pro-
inflammatory myeloid cells by broad JAK inhibition might contribute to its sustained 
impact on intestinal inflammation. With regard to that, cell subset-specific JAK/STAT 
targeting has been suggested as a future therapeutic strategy in IBD to improve 
efficacy[143], especially in CD.

Consideration of different genotypes
Last but not least, data on JAK/STAT components as genetic risk loci clearly indicate 
that patients with IBD reveal specific overlap and differences such as JAK2, STAT3 as 
common and STAT regulating PTP22 and PTPN11 as potential different genetic risk 
loci. In terms of an individualized therapy, genotypic adaptation of medical treatment 
or individualized drug dosing, which is already established for thiopurine treatment 
in patients with IBD by assessing TMPT genotypes, would be an elegant future clinical 
target for different JAK/STAT-associated genotypes. Hedl and coworker[143] already 
demonstrated that monocyte-derived macrophages (MDMs) of patients with the JAK2 
rs10758669 CC risk gene revealed enhanced JAK2 signaling and increased pro- and 
anti-inflammatory cytokines. In rs10758669 AA disease carrier-derived MDMs 
compared to C carrier-derived MDMs, lower doses of JAK2 inhibitor and tofacitinib 
changed decreasing to increasing inflammatory cytokines. These data further 
underline the need to adapt dosage or treatment to JAK-associated genotype. In 
addition to an improved individualized therapy, JAK-genotyping could be of use to 
anticipate disease course as was already shown for the JAK2 genetic variant 
rs10758669 and STAT4 genetic variant rs7574865, which were both associated with a 
complicated disease course in CD[144,145,152].
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SUMMARY
A clear assignment of JAK/STAT components to CD or UC pathogenesis is difficult 
due to pleiotropic and partially overlapping dysregulation of JAK/STAT molecules or 
its regulators. Nevertheless, some general conclusions can be drawn:

First, in T-cells, STAT3 is associated with a critical role in both UC and CD 
pathogenesis and over-activation is linked to increased Th17 response and intestinal 
inflammation. Aberrant T-cell linked STAT1 expression is predominantly detected in 
CD and STAT6 expression predominantly in UC, while there is evidence for 
dysregulation of STAT4 in both entities. These data indicate a partial confirmation of 
the Th1/CD and Th2/UC concept but also hint at a certain impact of Th1 in UC.

Secondly, the overlap of both UC and CD-associated risk genes STAT3, JAK2, IL23R 
and IL12R, all being involved in Th17-cell differentiation, further strongly underlines 
the contribution of dysregulated Th17 response to both UC and CD. Furthermore, risk 
loci of genes associated with Th1 differentiation were found in both UC and CD such 
as STAT4 in both entities and STAT1-regulating PTP22 in CD and PTP11 in UC, 
respectively. These data further underline the importance of Th1 response in CD but 
again emphasize an overlap of Th1-cells which also contributes to UC and weaken the 
hypothesis of the specific role of Th1 in CD.

Thirdly, in contrast to lymphocytes, the JAK/STAT pathway has a more regulatory 
impact on myeloid cells in IBD. Only STAT1, mainly increased in UC-derived myeloid 
cells, seems to be associated with rather inflammatory features which points to a more 
inflammatory role of the JAK/STAT pathway in UC than CD and might partially 
explain the clinical response to tofacitinib in UC compared to patients with CD.

CONCLUSION
To conclude, the summarized data strongly indicate that development of sophisticated 
JAK/STAT inhibitors might further improve the efficacy and safety profiles of this 
drug class and improve their positioning in the therapeutic algorithm. This might be 
achieved by specific targeting of JAK/STAT components or cell subset specific 
JAK/STAT inhibition in T-cells to minimize the effects of JAK/STAT blockade on 
myeloid cells. Finally, assessment of specific genotypes as part of a personalized 
treatment approach might not only increase safety and efficacy of JAK/STAT 
inhibition including optimized dosing, but could also serve as a predictive marker for 
disease course in CD.
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