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Abstract

This paper investigates event extraction and early event classification in contiguous spatio-

temporal data streams, where events need to be classified using partial information, i.e.

while the event is ongoing. The framework incorporates an event extraction algorithm and

an early event classification algorithm. We apply this framework to synthetic and real prob-

lems and demonstrate its reliability and broad applicability. The algorithms and data are

available in the R package eventstream, and other code in the supplementary material.

1 Introduction

Early detection and classification of emerging events in data streams is an important challenge

in our data-rich world. Data streams may arise from many different applications including

social media, Internet of Things, video surveillance, epidemiology and wireless sensors, to

name a few. In each of these diverse applications, there are typically events that occur and are

of interest because of their disruptive behaviour to the system.

In particular, we are interested in events that start, develop for some time, and stop at a

certain time. Such events can be characterised by measurable properties or features, including

the “age” of the event. It is a challenge to classify these events while they are still developing

because only partial information is available at this stage. Once the events have stopped devel-

oping—when the events are finished—it is easier to classify them as the complete event fea-

tures are now available. For example, it is easier to differentiate a daffodil from a tulip when

both are in full bloom, but more difficult to differentiate a daffodil bud from a tulip bud with-

out resorting to other information such as characteristics of leaves. Another example is identi-

fying a network intrusion attack in its early stages. While it may be easier to identify a breach

after it has happened, it is more difficult to identify which bits of network traffic is causing the

breach while it is happening [1].

In this regard, we can think of these events as having two states: developing and finished

(Fig 1). The partial information contained in the developing events give rise to partial or pre-

mature observations, while the finished events give rise to complete observations. As the event

develops, it gives rise to a series of partial observations—each partial observation encapsulating

more information than its predecessor—culminating with the complete observation (Fig 2).
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Thus partial observations vary with the age of the event, the difference between the current

time and the start time of the event. If early classification is important, one needs to take partial

observations into account in the classification process. While event detection in data streams

has received much attention from different disciplines ranging from video surveillance to

social media [2, 3], there has been little exploration on developing/premature event classifica-

tion to the best of our knowledge.

A general framework for event classification in data streams comprises different stages: 1.

data pre-processing; 2. event detection and extraction; 3. feature computation; and 4. event

classification. This framework, augmented with partial observations, gives the additional func-

tionality of early event classification as depicted in Fig 3. In our framework we do not explicitly

consider data pre-processing as a separate stage as this is highly dependent on the application.

Fundamentally, early event classification can be tackled by embedding age-varying coeffi-

cients in a learned model [4]. A linear model with age-varying coefficients is given by

yt ¼ a0ðtÞ þ a1ðtÞx1ðtÞ þ � � � þ abðtÞxbðtÞ þ εt; ð1Þ

where yt is the output at age t, ai(t) are the age-varying coefficients, and xi(t) are the attributes

of the event at age t; i.e. the partial/premature observation. A logistic model with age-varying

coefficients is given by Eqs (1) and (2):

zt ¼ eyt=ð1þ eytÞ; ð2Þ

where zt is the probability of the event being of a given class. As an event develops, the features

xi(t) change with the age of the event, while keeping the class label constant. Thus, it is clear

that the coefficients ai(t) need to change with the age of the event.

Fig 1. Event states and partial observations.

https://doi.org/10.1371/journal.pone.0236331.g001

Fig 2. Partial observations growing with event-age.

https://doi.org/10.1371/journal.pone.0236331.g002
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Concept drift [5] or non-stationarity of data streams [6] is different from age-varying

events. For non-stationary data streams the distribution of data changes with time. For exam-

ple consider a fixed part of a river, which is monitored for fluctuations in water volume and

for animals. In months of heavy rains, the water volume increases changing the distribution

compared to previous months. This is an example of non-stationarity. In contrast, age-varying

events are about the extracted events and not the data-stream. To continue with the same

example, consider a log appearing on this portion of the river. When the log comes closer and

the image becomes clearer, suppose it becomes apparent that it is not a log, but a crocodile.

This is an example of an age-varying event. Clearly, from the time when the log appeared to

the time when it was detected that it was a crocodile, no significant changes in water volume

or the animal distributions took place. The volume of water and the average number of croco-

diles in the river does not need to change when the perception of the log changed to that of a

crocodile as a result of more information. Thus age-varying events comprise change within the

event as a result of maturing partial observations, while non-stationarity concerns change

within the data stream.

1.1 Fibre optic cable example

Fig 4a shows the heatmap of a dataset produced from a fibre optic cable, illustrating age-vary-

ing events. A pulse is periodically sent through the cable and this results in a data matrix where

each horizontal row gives the strength of the signal at a fixed location x0, and each vertical col-

umn gives the strength of the signal along the cable at a fixed time t0. In this dataset the yellow

parts represent high intensity values and the blue parts represent low intensity values.

Fibre optic sensor cables are used in many applications including optical communications,

detecting undersea cable faults [7], detecting oil leakages [8], detecting intruders on secured

premises [9], and monitoring health of infra-structure such as bridges and pipe-lines [10].

Events in these applications can often be grouped into two classes. For example, a cable lying

on the sea bed can produce spatio-temporal events that are either cable faults (A), or non-fault

events due to the activity in the ocean (B). Due to its sensitivity, fibre optic cables are also

prone to noise. In a setting where early classification is important, we need to classify these

events quickly, preferably while they are still ongoing.

In the dataset in Fig 4a, events are seen in the lighter-coloured parts. The event at approxi-

mately location 30 between the time interval 45 to 60 is of class A while other events that

Fig 3. Framework for event extraction and classification for spatio-temporal data.

https://doi.org/10.1371/journal.pone.0236331.g003
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appear between locations 150 and 400 are of class B. Fig 4b shows an event feature, which is

the length to width ratio of the event, computed on two events belonging to each class. As

the event matures, we see this feature change with event-age and also that no single threshold

can differentiate between the two events for all event ages. Due to the commercially sensitive

nature of the dataset, we refrain from giving details about the actual application.

Even for applications which can represent a dataset as an image, event classification is dif-

ferent from image classification. One difference is that an event is generally defined relative to

the background signal, whereas in image classification it is generally not relative to the back-

ground. For example a flower is a flower regardless of the background in which it is taken. But

a signal that is considered an event in a quiet background may not be considered an event in a

noisy background. Another reason is that there is a natural grouping of objects in image classi-

fication. For example it is natural for an image with flowers to have leaves and stems that are

associated in a certain way. It is unusual for parts of the stem to be disjoint and appear scat-

tered over the image. However, in event detection and classification, there is no natural group-

ing of events, non-events and background noise. As a result, event extraction and classification

are two separate stages of the general framework as shown in Fig 3.

Furthermore, we have not used deep learning methods such as LSTM for the following rea-

sons. 1. For the fibre-optic application, the whole dataset, shown in Fig 7, is too small to train

and test a deep neural net. 2 Even if the amount of data is not a limitation, the hyperparameter

tuning of a deep neural net is an additional challenge that needs to be addressed from application

to application. With our proposed model we do not have this problem. 3. Deep neural nets have

serious limitations such as being vulnerable to adversarial samples [11], learning spurious fea-

tures that do not align with human perception [12] and performing poorly on out-of-distribu-

tion samples [13]. This makes their use problematic in applications such as intrusion detection.

1.2 Contributions

We propose the framework depicted in Fig 3, which is summarized in Algorithm 1, for early

event detection, extraction and classification in contiguous spatio-temporal data streams using

the partial observation structure.

Fig 4. Fig 4a shows data from a fibre optic cable. We extract events from this dataset and compute event features. We consider two events belonging to

two different classes and an event feature that changes with event-age. Fig 4b shows this event feature, which is the length to width ratio of the event,

and how it changes with event-age.

https://doi.org/10.1371/journal.pone.0236331.g004
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Specifically, our contributions in this paper are:

1. We introduce an algorithm for event detection and extraction from contiguous spatio-tem-

poral data. We use change point analysis and density based clustering to detect events. We

call this algorithm Change-Point Density-Based Event Extraction (CPDBEE).

2. We introduce a partial observations classifier suitable for early event classification. This

classifier comprises multiple base classifiers, which are connected together using L2 penalty

terms. We refer to this Connected Classifier as CC.

3. We demonstrate the validity of these algorithms on synthetic and real data and make the

algorithms and data available in the R package eventstream [14]

Algorithm 1: Early event extraction and classification framework.
input: a 2 or 3-dimensional array denoting contiguous spatio-temporal
data.
output: events, event features and early classification results
1 Detect and extract developing and complete events from the data
stream using CPDBEE (Sections 4 and 5).
2 Compute event features. These are either partial or complete fea-
tures computed from the extracted events (Section 6.1).
3 Use the Connected Classifier CC for early classification of events
(Sections 6.3–7).

The remainder of the paper is organised as follows. Section 2 discusses related work in

event detection, extraction and classification. In Section 3 we introduce the datasets: synthetic

data, fibre optic cable data, of which a portion is shown in Fig 4, and NO2 data from NASA’s

NEO (NASA Earth Observations, 2004) website. We use all these datasets to demonstrate the

effectiveness of the proposed event extraction and classification algorithms in subsequent Sec-

tions. We introduce our event detection and extraction algorithm CPDBEE in Section 4 and

discuss event extraction results in Section 5. Section 6 presents the early classification frame-

work by starting with event features in Section 6.1, followed by an explanation of partial obser-

vations in Section 6.2, and culminating with the connected classifier CC in Section 6.3. We

discuss the early classification results in Section 7 and present our conclusions and discuss

future work in Section 8. Section 9 gives details on S1 File, which can be used to reproduce the

results and S1 Appendix gives additional graphs of CPDBEE results.

2 Related work and their applicability

Spatio-temporal event detection is studied in many application related research areas such as

epidemiology [15], deforestation [16], video streaming [17], and social media research [18]. In

these applications the focus is on detecting “events of interest”. For some applications events

of interest are rare events, while for others they are specific events, which match certain criteria

[17]. Typically these events form a subgroup of data rather than a single data-point and their

early detection has a strong societal impact [19].

2.1 Change-point detection

Univariate event detection has much overlap with change-point detection methods in time

series [20]. Killick et al. [21] introduces change-point analysis as “the identification of points

within a dataset where statistical properties change”. They formally consider a time series

y1:n = (y1, . . ., yn) withm change-points τ1:m = (τ1, . . ., τm), with τi< τj for i< j, resulting in

m + 1 segments of the time series with the ith segment containing yðti� 1þ1Þ:ti
. They identify
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change-points by minimizing

Xmþ1

i¼1

Cðyðti� 1þ1Þ:ti
Þ þ bm;

where C is the cost function for a segment and βm is the penalty term for havingm segments.

An example cost function is the negative log-likelihood. Their method PELT identifies

change-points with linear computational time.

Multivariate change-point detection extends this framework to multiple time series measur-

ing different quantities. Bardwell et al. [22] consider multivariate change-point detection in a

panel data setting. They define GiðrÞ as the cost of segmenting time series i with the most

recent change point r and minimize a penalized version of

C K ¼ min
I1 ;...;IK r1;...;rK

XK

k¼1

X

i2Ik

GiðrkÞ;

where K denotes the number of change-points, Ik� {1, 2, . . ., N} and N the number of time

series, such that for all time series i 2 Ik the most recent change-point is located at rk.
Even though change-point detection methods detect changes, they do not generally identify

a subset of changed observations, i.e. they do not perform event extraction. For our applica-

tions we need event detection as well as event extraction.

2.2 Scan statistics

In epidemiology, the scan statistic introduced by Kulldorff [15] and its later versions [23, 24]

have gained much popularity. Using patient counts for each zip-code or similar region, the

scan statistics approach detects events or clusters of interest, which may correspond to

regions affected by a disease outbreak. The underlying assumption is that a true event will

significantly increase patient counts, which is not accounted for by seasonality effects or ran-

dom noise. Thus, events detected by the scan statistic approach are candidate regions for dis-

ease outbreaks.

The spatial scan statistic model [15] considers the null hypothesisH0 representing no events

and alternative hypothesesH1(S) representing an event in a region S for some S. They compute

the score function

FðSÞ ¼
Pr½DatajH1ðSÞ�
Pr½DatajH0ðSÞ�

using Bernoulli and Poisson models, for different regions S, with circular scanning windows of

varying radii centred at each spatial location. To account for multiple hypotheses testing, they

conduct Monte Carlo simulations. They perform 9999 replications of the dataset under the

null hypothesis and compute the test statistic for each replicated dataset and region S. Then

they rank the actual test statistic for region S with the replicated test statistics and consider the

actual to be significant if it is within the top 5% of replicated test statistic values. This is a time

intensive algorithm.

The focus here is mainly on event detection and extraction and not on event classification.

For example every event detected may not correspond to a disease outbreak. There may be

some other explanation for an event.
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2.3 Deforestation studies

A popular use of Landsat images is the study of deforestation and changes in land cover [25].

Verbesselt et al. [26] discusses changes in land cover caused by 1. seasonal effects driven by

annual temperature and rainfall patterns, 2. gradual changes such as forest regrowth after fire,

or 3. abrupt changes caused by deforestation, bushfires or urbanisation. Detecting abrupt

changes, while accounting for seasonal variations is an important research problem in this

domain.

However, all detected changes may not be due to deforestation. In order to detect only

deforestation, Hamunyela et al. [27] calibrate their change detection algorithm using training

data. In their paper, they tune the detection algorithm to capture certain activities of interest,

i.e. detection and classification are performed as a single task.

The study conducted by Zhu and Woodcock [28] considers detection and classification as

two separate tasks. After detecting changes, they classify the land cover (not the event) using a

Random Forest classifier on the time series model coefficients. Furthermore, these studies do

not consider event extraction; they treat each pixel separately and report results at a pixel level.

Another related research area is traffic incident studies, which are used to enhance trans-

portation safety and security in a variety of ways including the identification of accident hot-

spots and factors contributing to vehicle crashes [e.g., [29]. Additionally, social media research

[30] also investigates event detection. However, their focus is on text analysis and related tech-

niques, which is quite different from ours.

2.4 Detection, extraction and classification

In our framework, event detection and extraction are different tasks from event classification.

Events of interest—class A events in Section 1.1—may not necessarily have higher signal values

compared to class B events as in disease outbreak scenarios. Furthermore, it is not desirable to

improve the accuracy of the event extraction algorithm at the expense of missing class A

events. Missing a class A event has a much higher cost than detecting a non-event for applica-

tions such as intrusion detection. Moreover, some applications require faster response times

than is feasible by scan statistics methods.

Unlike in deforestation studies, analysis at a pixel level is not beneficial for the fibre optic

application discussed in Section 1.1. A contiguous block of space-time pixels comprising an

event needs to be considered for effective classification. Furthermore, even applications that

consider event classification as well as extraction do not modify the original classifier to suit

partial observations. This may be partly because they do not classify the event while it is taking

place.

3 Applications and datasets used

We use three sets of datasets to evaluate the event extraction and classification algorithms: syn-

thetic data, fibre optic cable data and NO2 data.

3.1 Synthetic data

The synthetic data was motivated from the fibre optic application and can be generated using

the R package eventstream. The synthetic data contains events of two classes: A and B. All

events belonging to class A look similar, that is they have one single non-standard shape or

visual pattern. In contrast, events belonging to class B can have one of three different non-stan-

dard shapes, including the shape of events of class A. This is a characteristic of the fibre-optic

application data, which prevents effective early classification of events based on shape alone.
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Fig 5a contains two events of class A, and Fig 5b contains 3 events of class B. The shapes are

labelled as 1, 2 or 3 in both Fig 5a and 5b, with shape 1 being the common shape.

The number of events of class A and B, and their positions, are randomly generated. The

other difference between the events of class A and B, apart from the shape, is that values of the

pixels belonging to events of class A and B come from different probability distributions. For

both classes the intensity of pixel values increase linearly with the age of the event. We list the

differences between class A and B events in Table 1.

These events are buried in a background of white noise, i.e. pixels having a probability dis-

tribution N ð0; 1Þ. Fig 6 shows the starting and ending distributions for event A and B pixels

along with the background pixel distribution.

3.2 Fibre optic cable data

The data for the first real application is from a fibre optic cable, and is shown in Fig 7. The data

set is available in the R package eventstream. Again, for commercially sensitive reasons, we

cannot provide more information about the application. The data set has dimensions

Fig 5. Class A events in Fig 5a and Class B events in Fig 5b.

https://doi.org/10.1371/journal.pone.0236331.g005

Table 1. Differences in class A and class B events.

Feature Class A value distribution Class B value distribution

Starting cell/pixel values N ð4; 2Þ N ð3; 3Þ

Ending cell/pixel values N ð8; 2Þ N ð5; 3Þ

Maximum age of event: shape 1 Uð20; 30Þ Uð20; 30Þ

Maximum age of event: shape 2 – Uð100; 150Þ

Maximum age of event: shape 3 – Uð100; 150Þ

Maximum location width of event: shape 1 Uð20; 26Þ Uð20; 26Þ

Maximum location width of event: shape 2 – Uð30; 38Þ

Maximum location width of event: shape 3 – Uð50; 58Þ

https://doi.org/10.1371/journal.pone.0236331.t001
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Fig 6. The probability distributions of the background and event A and B pixels. Fig 6a shows the starting distribution of event B pixels

distributed as N ð3; 3Þ in blue and event A pixels N ð4; 2Þ in green. Fig 6b shows the ending distribution of event B pixels N ð5; 3Þ in blue and event

A pixels N ð8; 2Þ in green. In both figures the background pixel distribution N ð0; 1Þ is shown in red.

https://doi.org/10.1371/journal.pone.0236331.g006

Fig 7. Data stream from a fibre optic cable.

https://doi.org/10.1371/journal.pone.0236331.g007
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379 × 587, with class A events labeled with letter A. All other events belong to class B. These

events are buried in noise. All blue colored pixels in Fig 7 have values lower than the yellow

colored pixels and have random fluctuations of unknown distribution.

3.3 Nitrogen dioxide monitoring

The second real world application uses Nitrogen Dioxide (NO2) data obtained from NASA’s

NEO website [31]. Nitrogen Dioxide is a major factor of air pollution [32], which causes

approximately 7 million deaths per year according to the World Health Organisation [33].

The Ozone Monitoring Instrument (OMI) [34] aboard the Aura satellite records a variety

of air quality measures including NO2 concentrations around the world. This is a 3-dimen-

sional data stream with two spatial and one time dimension.

We use OMI NO2 monthly data from March to June for 10 years from 2010 to 2019 to

detect and classify NO2 clusters. For each month the data comes in a matrix of 180 × 360

dimensions. The OMI NO2 data for March 2018 is shown in Fig 8.

4 Event detection and extraction

We extract events from data streams of two or three dimensions having one time dimension

and one or two spatial dimensions. We employ a method for event extraction using change

point detection [35] and DBSCAN [36], which is a density based clustering algorithm.

Change point detection is used for event detection purposes and clustering for event extrac-

tion purposes.

4.1 Event detection

Change point detection in time series is a well studied topic as seen from the survey by Amini-

khanghahi and Cook [37]. Killick and Eckley [35] discuss the R package changepoint, which

includes three change point detection algorithms: a binary segmentation algorithm [38, 39], a

segment neighborhood algorithm [40, 41] and PELT [21]. These algorithms are capable of

detecting structural changes in time series based on mean and/or variance.

As we work with two or three-dimensional data streams we transform the data to suit uni-

variate change point detection methods described in the R package changepoint. For a two-

Fig 8. NO2 data from March 2018.

https://doi.org/10.1371/journal.pone.0236331.g008
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dimensional dataset we perform Principal Component Analysis (PCA) twice on the data simi-

lar to Sadia et al. [42]. Consider, a dataset Xn×t having n contiguous spatial points and t equi-

distant time points. First we consider each location as an observation and perform PCA on

Xn×t. We are interested in the first set of PC scores of this analysis. Second, we consider each

time point as an observation and perform PCA on XT. For each analysis, we consider the first

set of PC scores and find change points using PELT as it is faster.

For a three-dimensional dataset Xn×m×l we compute averages ~Xn�m and ~Xm�l and perform

PCA twice on each of these averaged matrices as in the two-dimensional case.

Fig 9 shows the coordinates of the first PC vector of the dataset illustrated in Fig 4. This data-

set has 587 contiguous location points and 100 time points, and can be denoted as X587×100. By

performing PCA on X, we obtain 100 PC vectors for 587 observations, where each observation

denotes a location. We consider the coordinates of these observations in the direction of first

PC vector, i.e. the first set of PC scores, and find their change points. PELT detects the following

location change points: 2, 24, 33, 138, 163, 181, 192, 212, 230, 250, 276, 286, 372, 382, 412, 434,

458 and 533. Fig 9a illustrates the first set of PC scores and the location change points. Similarly,

performing PCA on XT considers each time point as an observation. PELT detects time change

points at 34, 39, 43, 59 and 82 using the first set of PC scores of XT. Fig 9b illustrates the first set

of PC scores and the associated time change points. Fig 10 shows the time and location change

points as vertical and horizontal lines drawn on the heatmap of this dataset.

We see that the class A event at location 30 between time intervals 45 and 60 is detected by

PELT in time and location using the first set of PC scores. In addition, the events denoted by

lighter-coloured parts between locations 150 and 300 are also detected by location change

points. However, the location change points that are greater than 400 do not correspond to

any lighter-coloured parts in Fig 10a. In our framework summarized in Algorithm 1, event

extraction precedes event classification. Thus, it is preferred to detect and extract candidate

events which may not correspond to real events, rather than employ stringent event extraction

methods and miss real events, i.e. type 1 errors are preferred at the event extraction stage.

4.2 Event extraction

Once the events are detected the next task is to extract them. For the dataset illustrated in Fig

4, the true events are light-coloured contiguous parts, which have higher signal values than the

Fig 9. Change points of the first PC scores of the dataset in Fig 4. Fig 9a shows the first PC scores when taking each location as an observation. The

horizontal red lines denote the levels and the change points correspond to the breaks or discontinuities of levels. Fig 9b shows the first PC scores when

taking each time point as an observation and the associated change points.

https://doi.org/10.1371/journal.pone.0236331.g009
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background. The change points computed in Section 4.1 alone are not sufficient to extract

these events as seen in Fig 10. Clustering is a tool that is often used in event extraction [43].

We use DBSCAN clustering in our event extraction process.

To extract events we consider pixels which have high signal values, defined by a percentile

α. That is, if xij is the signal value at (i, j) position of X, then we denote by q a signal value corre-

sponding to the percentile α. The default value of α is 95%. We consider pixels xij greater than

q and cluster these in time and location using DBSCAN. DBSCAN allocates pixels that are

close to each other to the same cluster. These clusters are our candidate events. However, some

candidate events may not have contributed to the change points discussed in Section 4.1. We

are interested in candidate events that are detected by change points. Thus, if a time or location

change point is detected within a candidate event or at the boundary of a candidate event, we

consider that candidate event as a legitimate event. We discard candidate events which do not

meet this criterion.

We summarize the event detection and extraction algorithm CPDBEE for two dimensional

datasets in Algorithm 2.

Algorithm 2: Algorithm CPDBEE for 2D datasets.
input: a 2 dimensional matrix Xn×m, and parameters α, � and minPts.
output: events and event ids
1 Compute PCA on Xn×m.
2 Let z1 denote the first set of PC scores of X.
3 Let C1 be the set of change points of z1 using PELT.
4 Compute PCA on XT.
5 Let z2 denote the first set of PC scores of XT.
6 Let C2 be the set of change points of z2 using PELT.
7 Let q denote the α-percentile of the signal values of X.
8 S = {(i, j) j xij > q}. S is a matrix of 2 columns, which gives loca-
tions of X, which have signal values greater than the αth percentile.
9 Let X(S) be signal values of X in S locations.
10 Using DBSCAN cluster S using � and minPts.
11 This clustering gives each (i, j) 2 S a cluster id. Noise points are
given cluster id 0.
12 Let T be the vector of cluster ids for each (i, j) pair in S, i.e.
the kth row of S denotes a pixel location in cluster T(k).

Fig 10. Location change points in Fig 10a and time change points in Fig 10b.

https://doi.org/10.1371/journal.pone.0236331.g010
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13 Consider each cluster as a candidate event and the cluster id as
the candidate event id.
14 Let S1 be the first column of S, i.e. S1 has the first coordinate of
each pair (i, j) in S. Similarly let S2 denote the second column of S.
15 Let I1 = S1 \ C1. These are x1 positions of candidate events that are
change points.
16 Let I2 = S2 \ C2. These are x2 positions of candidate events that are
change points.
17 Let E = {(i, j) 2 S j i 2 I1 or j 2 I2}. These are x1 or x2 positions
of candidate events that are also change points.
18 Find candidate event ids G which do not have any change points in E.
19 /� For example the kth candidate event may not have any pixels that
are change points. �/
20 Remove these candidate events from T and S. The remaining clusters
(S, X(S)) are considered events.

For a three dimensional dataset Xn×m×l with two spatial and one time dimension, DBSCAN

clustering is performed on the three dimensional matrix to find the candidate events, and PCA

is performed on two dimensional averaged matrices �Xn�m and �Xm�l to find the change points

in each dimension. Candidate events which contribute to change points are considered events

of the three dimensional dataset.

CPDBEE considers pixels which have high signal values for event extraction. For a different

application such as deforestation, true event pixels may have lower values compared to the

rest. For such applications, CPDBEE can be adapted to consider pixels that have signal values

less than the percentile α, or alternatively, used in its current form by multiplying the dataset

by −1.

For CPDBEE an event is a contiguous block of pixels in space and time. As such, for a cer-

tain application if two events overlap in space and time they will be considered as a single

event. We test CPDBEE on balanced and imbalanced datasets with rare classes.

4.3 Algorithm complexity of CPDBEE

For an input data matrix Xn×m, CPDBEE involves the following four main steps:

1. PCA involves Oðminðm3; n3ÞÞ operations [44].

2. PELT has a linear computational cost, i.e. OðnÞ þOðmÞ for finding changepoints of z1 and

z2 in Algorithm 2.

3. Computing the α-percentile. Using quicksort yields an average performance of OðnmÞ as

there are nm entries in X.

4. DBSCAN clustering has Oðð1 � aÞnm logðð1 � aÞnmÞÞ performance.

This yields an overall complexity of Oðmaxðminðm3; n3Þ; ð1 � aÞnm logðð1 � aÞnmÞÞÞ for

2D datasets.

For a 3D dataset Xn×m×l, CPDBEE includes the following steps:

1. Computing averaged matrices ~Xn�m and ~Xm�l. This involves OðnmlÞ simple operations.

2. Computing PCA on both ~Xn�m and ~Xm�l involves Oðmaxðminðm3; n3Þ; minðm3; l3ÞÞÞ
operations.

3. Computing the α-percentile involves OðnmlÞ as there are nml entries in X.

4. DBSCAN clustering involves Oðð1 � aÞnml logðð1 � aÞnmlÞÞ.
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This gives an overall complexity of Oðmaxðminðm3; n3Þ; minðm3; l3Þ; ð1 � aÞnml logðð1 �
aÞnmlÞÞÞ for 3D datasets.

In order to detect and extract partial events, we have implemented CPDBEE in a framework

incorporating a moving window. This is analogous to loading data chunks into memory

instead of the entire dataset. For large datasets the valuesm and n can be used to define the

window size instead of the entire dataset.

4.3.1 The parameters of CPDBEE. The algorithm CPDBEE has three parameters α, � and

minPts with the following defaults:

a ¼ 0:95; � ¼ 5; and minPts ¼ 10: ð3Þ

The parameter α depends on the application. It can be roughly described as the proportion of

data contributing to events. In our fibre optic example, events are rare and correspond to high

signal values in the data matrix. As such we set α to a high percentile.

The parameters � andminPts are DBSCAN parameters. The parameter � describes the

size of the �-neighbourhood andminPts denotes the the minimum number of points in the

�-neighbourhood that are needed to make a cluster. DBSCAN has a default value of 5 for

minPts, which we have increased to 10 as we are not interested in very small events. The value

of � is set to 5 because we would like to consider two high signal valued pixels that are 5 pixels

apart as belonging to the same event.

To aid with parameter selection we provide tuning functionality to CPDBEE.

4.3.2 The parameter selection for CPDBEE. As events are application specific, one set of

parameters does not suit all applications. As such, using a small amount of labeled data we find

the set of parameters that produce the best event detection outcome by computing the Jaccard

Index [45] for a range of parameter values. The Jaccard index can be used to compare the simi-

larity between two events and is defined as

JðA;BÞ ¼
jA \ Bj
jA [ Bj

¼
TP

TPþ FNþ FP
; ð4Þ

where A and B denote the actual and the detected events and TP, FN and FP denote the num-

ber of true positives, false negatives and false positives. We illustrate this using a toy example

in Fig 11. In this example we see that the number of true positives, false negatives and false pos-

itives are 3, 1 and 1 respectively, giving a Jaccard index of 0.6.

Fig 11. A toy example depicting an actual and detected event. The actual and detected event pixels are labeled as 1

with the intersection or true positives marked with a blue outline. The false positive and false negative pixels are

marked with a red square and circle respectively. The Jaccard index for the detected event is 0.6.

https://doi.org/10.1371/journal.pone.0236331.g011
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Using labeled data we compute the Jaccard index for a range of α, � and minPts values and

choose the combination of parameters that maximize the Jaccard index.

5 Event extraction results

5.1 Analysis of event extraction using synthetic data

In this Section we use synthetic data to analyse the event extraction algorithm. The reason for

using synthetic data is because we know the true event locations. For fibre-optic and NO2 data,

we have rough approximations of event locations, but not the exact locations.

5.1.1 The effect of parameters on extracted events. Using synthetic data, we explore the

effect of parameters α, � and MinPts on extracted events. We generate synthetic data shown in

Fig 12 and extract events for a range of parameter values with α 2 {0.90, 0.91, 0.92, 0.93, 0.94,

0.95, 0.96}, � 2 {4, 5, 6, 7, 8, 9} and minPts 2 {4, 6, 8, 10, 12}. For each combination of α, � and

minPts we extract events from the dataset. As this is synthetic data we know the true event

locations. Using this information we compute the Jaccard index for each set of extracted events

with different parameters.

Fig 12a shows the raw data with events in light coloured parts. Fig 12b and 12c shows the

actual events and the extracted events for α = 0.95, � = 5 and minPts = 10.

Fig 13 shows the comparison of Jaccard index for different values of α, � and minPts. We

see that the overall spread of the curves in terms of Jaccard index decrease as α increases. For

fixed values of α and � the Jaccard index increases with increasing minPts. In addition, for

fixed α smaller � gives better performances than bigger � within the tested range. For the above

analysis, Jaccard index reaches a maximum for α = 0.92, � = 4 and minPts = 12.

5.1.2 Early detection. In this Section we investigate how quickly an event can be detected

using synthetic data. We use the synthetic data shown in Fig 14 and use a moving window

model. As the first event starts at t = 19, we start with a window of width 15, i.e. t 2 [1, 15] and

increase the width by 1 until we reach a width of 50 i.e. t 2 [1, 50]. Then we move the window

by a single step in time, so that the next window contains t 2 [2, 51]. We start with a window

width of 15 so that we can check if we detect the event at t = 19 as soon as it develops. We

detect and extract events in each window and compare the first time each event is detected

with the actual time it starts. Fig 14a shows the actual time each event starts in red dotted lines

and the time it is detected in black dashed lines. We repeat this process for window widths 75

and 100 and the results are illustrated in Fig 14b and 14c.

Table 2 shows the actual event start time and the first detected time for different events and

window width values. In particular, we see that event 3, which occurs at t = 210 gets detected

quite late as the window size increases. This is because a bigger window includes the previous

event, which is comparatively large and noisy, resulting in detecting event 3 later than other

Fig 12. The synthetic data with buried events in Fig 12a. The true events in Fig 12b and extracted events for α = 0.95, � = 5 and minPts = 10 in Fig 12c.

https://doi.org/10.1371/journal.pone.0236331.g012
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events (Fig 15). Indeed, a bigger window width can result in events getting detected later, com-

pared to a smaller window width. However, a smaller window width can result in more false

positives as well. As we tackle event classification separately, we do not concern ourselves

about the false positives at this stage.

Fig 13. Comparison of CPDBEE parameters on synthetic data. The Jaccard index for different values of α, �, and

MinPts are plotted. Each pane has constant α ranging from 0.90 to 0.96. Each plotted curve has a fixed � value. The x axis

denotes MinPts and the y axis the Jaccard Index. A higher Jaccard index denotes better event output.

https://doi.org/10.1371/journal.pone.0236331.g013

Fig 14. Events are extracted from synthetic data using a moving window model of width 50, 75 and 100 in Fig 14a, 14b and 14c respectively. The first

time each event is detected is marked using a black dashed line. The actual start time of each event is marked using a red dotted line. For some events

the time of detection and the actual start time is very close to each other, making it difficult to distinguish the dashed line and the dotted line.

https://doi.org/10.1371/journal.pone.0236331.g014

Table 2. Event start time and first detected time for different window sizes.

Event Id Actual Start Time First Detection Time for w = 50 First Detection Time for w = 75 First Detection Time for w = 100

1 19 20 20 20

2 31 34 34 34

3 210 217 225 229

4 280 282 288 291

https://doi.org/10.1371/journal.pone.0236331.t002

PLOS ONE Early event classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0236331 August 5, 2020 16 / 39

https://doi.org/10.1371/journal.pone.0236331.g013
https://doi.org/10.1371/journal.pone.0236331.g014
https://doi.org/10.1371/journal.pone.0236331.t002
https://doi.org/10.1371/journal.pone.0236331


Therefore, we see that in addition to CPDBEE parameters α, � and minPts the width of the

window and in particular the noisiness and the intensity of data in the window affects early

detection of events.

To see how the event detection algorithm performs on fast-evolving events we generate a

longer synthetic data stream shown in Fig 16, which includes 16 events. We detect events

using a moving window of width 50 and mark the actual start of the events with red dotted

lines and detected start of the events with black dashed lines. Fig 17 shows the actual and

detected event start times with the line Actual = Detected. From Figs 16 and 17 we see that

events are detected with a small time lag.

5.2 Sensitivity of CPDBEE

As illustrated in Fig 6, the synthetic data has different probability distributions for background,

class A and B events. Class A event pixels have a starting distribution of N ð4; 2Þ while class B

pixels start at N ð3; 3Þ. The background pixels are distributed as N ð0; 1Þ.

Fig 15. A window of width 100 including event 3 partially. This window includes the previous event which is large

and more noisy compared to event 3.

https://doi.org/10.1371/journal.pone.0236331.g015

Fig 16. A longer synthetic data stream with 16 events. The actual start time of events is shown in red doted lines and the detected start time of events

is shown in black dashed lines.

https://doi.org/10.1371/journal.pone.0236331.g016
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To test the sensitivity of the event detection algorithm we change the starting distribution

of events A and B to be N ðm; sÞ with μ 2 {3, 2, 1} and σ 2 {3, 2, 1}. The event pixel distribution

N ð3; 3Þ and N ð1; 1Þ along with the background pixel distribution is shown in Fig 18. For

each combination of μ and σ we generate a data stream similar to that in Fig 16 and record the

detected start time using CPDBEE. Fig 19 shows the detected start times and actual start times

for the weakest events when μ = σ = 1. The contrast between the events and the background is

lower in Fig 19 compared to Fig 16 as the starting event distribution for both class A and B

events is N ð1; 1Þ. The actual start times are denoted by red dotted lines while the detected

start times are denoted by black dashed lines. By close inspection we see that Fig 16 has shorter

gaps between the actual and detected compared to Fig 19.

To see the effect of μ and σ on detection time, we define the delay as the time difference

between the detected start time and the actual start time. Fig 20 shows the delays of the

16 events for each combination of μ and σ. We see that the starting event distribution of

N ð1; 1Þ has longer delays, which is evidenced by the higher median and range compared to

Fig 17. The actual and detected start time of events in Fig 16 with the line Actual = Detected.

https://doi.org/10.1371/journal.pone.0236331.g017

Fig 18. The probability distributions of the background and event pixels at start for two combinations of μ and σ. Fig 18a shows the starting

distribution of event pixels distributed as N ð3; 3Þ in blue. Fig 6b shows another starting distribution of event pixels, N ð1; 1Þ in blue. In both

figures the background pixel distribution, N ð0; 1Þ is shown in red.

https://doi.org/10.1371/journal.pone.0236331.g018
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N ð3; 3Þ. We also see that the delays increase when μ and σ decrease, i.e. when the events get

more feeble.

5.3 Comparison of event extraction results

We extract events using CPDBEE and compare with events extracted using Kulldorff’s Scan

Statistic. We use the R implementation by Kim and Wakefield [46] to extract events using the

Scan Statistic. The scan statistic was originally computed using population counts and the

number of patient visits of each geo-spatial region. For our data we analogize the signal value

in each cell to the number of patient visits in an epidemiology context. In addition, the formu-

lation needs the population of each cell to compute significant clusters. As we do not have

an underlying population for the fibre optic cable, each cell is equally likely to belong to a

Fig 19. A longer synthetic data stream with 16 events with lower contrast between the events and the background. The actual start time of events is

shown in red doted lines and the detected start time of events is shown in black dashed lines.

https://doi.org/10.1371/journal.pone.0236331.g019

Fig 20. The delay defined as the time difference between the detected start time and actual start time of events for

different values of μ and σ of event starting distribution. The events similar to Fig 19 are generated with different

values of μ and σ and the delay plotted for each combination. We see the median delay increasing with decreasing μ
and σ.

https://doi.org/10.1371/journal.pone.0236331.g020
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significant cluster. Therefore we assign the same population value to all cells in our data. We

take the maximum signal value of the window multiplied by 20 as the population value of

every cell. Thus each cell has a maximum of 5% of population “sick” at a given time. We use a

significance level of 5% in our experiments.

Figs 37, 38, 39 and 40 in S1 Appendix contains the complete comparison results for fibre

optic, synthetic and NO2 data. This section contains only two figures for each dataset due to

space constraints.

5.3.1 Events extracted from fibre optic data. Fig 21 shows the fibre optic data and the

extracted events using CPDBEE and Kulldorff’s Scan Statistic.

We used a window model and chose a window size of 40 as the Scan Statistic implementa-

tion could not handle a larger window size. Even with a window size of 40, Scan Statistic com-

putation took much longer than CPDBEE.

The first tile of each graph shows a simplified version of the original data, i.e. pixels having

signal values greater than 40, 000 are depicted in black while other pixels are depicted in grey.

Even though the cut-off value of 40, 000 is completely arbitrary, it is purely used for visualisa-

tion purposes and is not an input parameter for the event extraction algorithms. The second

tile shows the events extracted using CPDBEE and the third tile shows the events extracted

using the Scan Statistic algorithm. Pixels belonging to extracted events are depicted in black,

while other pixels are depicted in grey.

Class A events are present in the original data in Fig 21b and Figs 37b, 37d, 38c and 38e in

S1 Appendix. As discussed previously we do not want to miss Class A events for this particular

application. We see that CPDBEE extracts all four class A events, while the Scan Statistic algo-

rithm only extracts the class A event in Fig 37d in S1 Appendix. Furthermore, CPDBEE

extracts events in their original shape, while the Scan Statistic algorithm extracts events more

Fig 21. Event extraction comparison for fibre optic data.

https://doi.org/10.1371/journal.pone.0236331.g021
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in the shape of an ellipse in these examples. As such, CPDBEE is more efficient and effective

that the Scan Statistic for this application.

5.3.2 Events extracted from synthetic data. Using the R package eventstream, we gener-

ate a 350 × 250 matrix of synthetic data, where 350 denotes the time units and 250 denotes

location units. Fig 22 shows two 50 × 250 windows of synthetic data and the events extracted

using CPDBEE and Scan Statistic algorithms. The full comparison is illustrated in Fig 39 in S1

Appendix. The choice of the window size is because the Scan Statistic algorithm could not

work with bigger window sizes.

The first tile of each graph shows a simplified version of the original window, with pixel val-

ues greater than 10 coloured in black and the rest in grey. The second and the third tiles show

the events extracted using CPDBEE and Scan Statistic algorithms. Again we see that the events

extracted by CPDBEE are more accurate than those extracted using the Scan Statistic algo-

rithm. In addition, the Scan Statistic algorithm misses events in Fig 22a and 22b, Fig 39b, 39c

and 39c in S1 Appendix which is detrimental to certain applications.

5.3.3 Events extracted from NO2 data. We chose NO2 data for March 2018 to evaluate

the event extraction algorithms CPDBEE an Scan Statistic. Fig 23 shows the original data and

the events extracted by each algorithm for two spatial windows. The first panel shows a simpli-

fied version of the original data with NO2 values greater than 100 depicted in black and the

Fig 22. Event extraction comparison for synthetic data.

https://doi.org/10.1371/journal.pone.0236331.g022

Fig 23. Event extraction comparison for NO2 data.

https://doi.org/10.1371/journal.pone.0236331.g023
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rest in grey. The second and the third panels show the events extracted using CPDBEE and the

Scan Statistic algorithm.

Fig 24 shows the time taken by CPDBEE and the Scan Statistic algorithm for these three

applications using an Intel1Core™i7-6700, 3.4 GHz processor with 16 GB RAM. We see that

CPDBEE extracts events much faster than the Scan Statistic algorithm for all three applica-

tions. The Monte Carlo simulations, which is an integral part of the Scan Statistic algorithm

contributes to its time intensiveness. Furthermore, CPDBEE does not miss any important

events and extracts better shaped events compared to the Scan Statistic algorithm.

6 Early event classification framework

6.1 Event features

As we work with a data stream, we use a moving window model in our experiments. We

extract events from data in the current window and compute features for these events. The fea-

ture set comprises some basic features such as length and width of each event, and some other

features that compute the intensity of each event relative to the background. The “relative to

the background” features are equivalent to a family of signal to noise ratio (SNR) features and

are motivated from the fibre optic application (see Fig 4a).

To compute the SNR family of features we use smoothing splines and thus they are only

computed for two-dimensional data streams due to ease of computation. Using a small portion

from the beginning of each window, which correspond to the recent past, we compute the

mean, median, interquartile range (IQR) and standard deviation for each location. Using these

values at each location, we compute four smoothing splines. The objective is to have the back-

ground mean, median, IQR and standard deviation pixel value for each location. The median

and IQR splines from a small window in Fig 25a are shown in Fig 25b and 25c.

For two-dimensional events we compute the following features:

1. Number of cells/pixels in event

2. Length of event

3. Width of event

4. Length to width ratio of event

Fig 24. Time comparison of CPDBEE with Scan Statistic for fibre optic data, synthetic data and NO2 data.

https://doi.org/10.1371/journal.pone.0236331.g024
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5. Centroid

The centroid is used to compute other features which are relative to the event. It is not used

in event classification.

6. Sum of signal-values of cells in event

7. Mean signal-value of event

8. Standard deviation of signal-values of event

9. Slope of the fitted line z

The average signal value at each time of the event is computed and a line z is fitted to the

average values. The slope of the fitted line z is a feature of interest.

10. Linear and quadratic coefficients of a fitted parabola p
The average signal value at each time of the event is computed and a parabola p is fitted to

the average values. The linear and quadratic coefficients of the fitted parabola p are fea-

tures of interest.

11. n standard deviations from the mean

The proportion of event cells/pixels that has signal-values greater than n global standard

deviations from the global mean for n 2 {2, 3, 4}.

12. n local IQR from local median

The value of the median smoothing spline at each event centroid is used as the local

median for that event. Similarly, the value of the IQR smoothing spline at each event

centroid is used as the local IQR for that event. This feature gives the proportion of event

pixels/cells that has signal-values greater than n local IQRs from the local median for

n 2 {5, . . ., 8}

13. Local IQRs from local median

Let us denote the 75th percentile of the event signal value by x. This feature gives the num-

ber of local IQRs for which x is greater than the local median. Both local IQR and local

median are computed using splines described above.

14. Local standard deviation from local mean

Similar to the previous feature, our x is the 80th percentile of the event signal value. Here

we compute the number of local standard deviations for which x is greater than the local

mean.

For three-dimensional data streams we compute a subset of the above features. In particu-

lar, we compute features 1–10 from the above list and an equivalent of feature 14 using the

global standard deviation and the global mean. In addition, we use the squared value of these

Fig 25. The initial portion of a window and the resulting median and IQR splines.

https://doi.org/10.1371/journal.pone.0236331.g025

PLOS ONE Early event classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0236331 August 5, 2020 23 / 39

https://doi.org/10.1371/journal.pone.0236331.g025
https://doi.org/10.1371/journal.pone.0236331


features in applications with enough data, i.e. the synthetic and NO2 datasets. These features

now provide a compact way to represent a data stream and the embedded events, summarising

salient properties of the time window in terms of event signal strength and shape. This sum-

mary becomes input to a classifier to identify types of events.

6.2 Partial/incomplete observations

In the classical setting, a classification problem comprises observations (xi, yi) for i 2 1, . . ., N
where xi 2 R

b
is the attribute vector of the ith observation and yi is its class label. The task of

the classifier is to learn the class boundary by using the given set of observations. Then for any

new observation xj, the classifier can predict its class label using the learned class boundaries.

Let us call this a standard classifier.

Standard classifiers have been widely popular in diverse fields of study and practice. How-

ever, they are not without limitations. One of the limitations is that once a classifier is trained,

it has fixed class boundaries. If the new data is different from the data learned by the classifier,

the output of the classifier is of little use. This is particularly the case in data-streaming scenar-

ios, where data distributions are non-stationary (sometimes also referred to as concept drift).

It is necessary for a classifier to re-adjust its class boundaries when faced with non-stationarity.

The literature on adapting or evolving classifiers is significant [47]. Let us call these classifiers

evolving classifiers.

Now, consider the case when a new observation is not made available at once but gradually,

where we get partial information about the new observation and the amount of partial infor-

mation increases with time. This is the case for events described in Section 1.1. Let xj be a new

observation which becomes available partially via the following finite sequence of partial obser-

vations fpjt1 ; p
j
t2 ; p

j
t3 ; . . . ; pjtng. Here the partial observation of xj at age tk is denoted by pjtk and

pjtn ¼ xj with t1 < t2 < � � �< tn. We differentiate between the time and the age of a partial

observation. A partial observation that begins at time t = t1 has age 0 at time t1, and at time

t = t2 it has age t2 − t1.

We consider the question “how can we classify partial observations?” If one trains a single

standard classifier on all partial observations, it may be optimal for a certain set of partial

observations ptk at a given age tk, but not all partial observations, because partial observations

change with time. If one waits until the partial observation has formed into a full observation

xj, then a standard classifier can be used. However, for some applications such as intrusion

detection it might be too late to wait until the full observation has formed. One option is to

have a series of standard classifiers fCtig
n
i¼1

each trained on partial observations pti . When

a new observation gradually arrives in the form of a sequence of partial observations

fpkt1 ; p
k
t2
; pkt3 ; . . . ; pktng, the classifier Cti can be used on pkti . Thus, as the partial observation

grows, we have a growing prediction fyt1 ; yt2 ; . . . ; ytng of the class label. More importantly, we

do not need to wait until the partial observation matures to a full observation before making a

prediction.

However, having a series of classifiers independent of each other is sub-optimal because

each classifier is only trained on a portion of the data, i.e. it is trained on individual snapshots

of events at different ages. By linking event snapshots of different event-ages in an appropriate

way, better predictions can be achieved.

In addition, event extraction algorithms may miss events of interest when the events are

very young. As such there may be more events extracted at age t2 compared to age t1. Similarly,

all events may not continue until age tn. Consequently there may be more events at age tn−1

compared to tn. For example consider 20 events which are extracted at ages {t1, t2, t3, t4, t5}
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such that only 5 are extracted at age t1, 15 at t2, 20 at t3, 15 at t4 and 5 at t5. In such a scenario, if

we have a set of 5 independent classifiers fCt1 ;Ct2 ;Ct3 ;Ct4 ;Ct5g, Ct1 and Ct5 have only a quarter

of the observations for training. In contrast, a classifier that links all partial event observations

has access to a bigger pool of training data.

Furthermore, classifying young events is generally harder than classifying matured events

because often there is no clear separability of classes when events are young. If we continue

with the previous example, obtaining the correct class boundary at t1 is harder than at t2, mak-

ing it difficult for Ct1 to independently ascertain the class boundary. However, a linked classi-

fier which sees all partial event observations can come up with a realistic class boundary for

age t1 because it sees the partial observations at ages t2, t3 and t4, which helps it to form the

class boundary at t1. Thus, we expect linking partial event observations at different ages to aid

early classification.

The Connected Classifier CC described in the next section links partial event observations

of all ages to give a growing prediction.

6.3 CC: Connected classifier

Let the standard classifier minimize the loss function given byL , i.e.

arg min
b

1

N

XN

i¼1

L ðxi; yi; bÞ;

where β = (β0, β1, . . ., βl) and (xi, yi) are observations for i 2 {1, . . ., N}. Now consider a set of

independent classifiers fCtjg
n

j¼1
each trained and tested on partial observations of age tj as

denoted in Fig 26.

Each Ctj minimizes the loss function

1

N

XN

i¼1

L ðpitj ; yi;
~b jÞ;

with ~b j ¼ ð
~b j0;

~b j1;
~b j2; . . . ; ~b jlÞ

T
. If we stack ~b j in rows we get a resulting matrix ~b such that

~b ¼ f~b jkg ¼ ½
~b1;

~b2; . . . ; ~bn�
T
:

The matrix ~b can also be obtained by minimizing the loss function

1

nN

Xn

j¼1

XN

i¼1

L ðpitj ; yi;
~bÞ; ð5Þ

Fig 26. n independent classifiers.

https://doi.org/10.1371/journal.pone.0236331.g026
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as fpitjg
N

i¼1
for a fixed age tj only affects ~b j. Therefore the matrix ~b can be computed row by row

by minimizing
PN

i¼1
L ðpitj ; yi;

~b jÞ for each j. Thus, we can write

arg min ~b
Xn

j¼1

XN

i¼1

L ðpitj ; yi;
~bÞ ¼

"

arg min
~b1

XN

i¼1

L ðpit1 ; yi;
~b1Þ; . . . ; arg min

~bn

XN

i¼1

L ðpitn ; yi;
~bnÞ

#T

:ð6Þ

Thus, n independent classifiers fCtjg
n

j¼1
minimize the loss function given in Eq (5).

Having n independent classifiers fCtjg
n

j¼1
is sub-optimal because the partial observations at

ages tj are not independent from those aged tj−1 and tj+1. Thus the classifier Ctj can benefit

from the knowledge of Ctjþ1
and vice-versa. Furthermore, the partial observations of an event

change little from tj to tj+1. Taking these into account, we modify the original loss function

given in Eq (5) by including an L2 penalty term as follows:

φð~b; lÞ ¼
1

nN

Xn

j¼1

XN

i¼1

L ðpitj ; yi;
~bÞ þ l

Xn� 1

j¼1

k~b jþ1 �
~b jk

2
ð7Þ

for some λ> 0, where k�k denotes the L2 norm. The constant λ is a parameter that can be spec-

ified. Recall that ~b j ¼ ð
~b j0;

~b j1;
~b j2; . . . ; ~b jlÞ relates to partial observations fpitjg

N

i¼1
for a fixed tj,

i.e. ~b j0 is the coefficient of the intercept at age tj and ~b j1 is the coefficient of the first covariate at

age tj. Thus the penalty term

k~b jþ1 �
~b jk

2
¼
Xl

k¼0

ð~b jþ1;k �
~b j;kÞ

2
;

and each term ð~b jþ1;k �
~b j;kÞ

2
takes coefficients for the kth covariate at ages tj and tj+1 and

penalizes the difference, enforcing a certain smoothness in event-age. The connected classifier

CC minimizes this loss function. As a result of the L2 penalty term, the individual classifiers

are connected to form a single classifier. Thus CC finds ~b� such that,

~b� ¼ arg min
~b

1

nN

XN

i¼1

Xn

j¼1

L ðpitj ; yi;
~bÞ þ l

Xn� 1

j¼1

k~b jþ1 �
~b jk

2

 !

: ð8Þ

When λ = 0, CC is equivalent to n independent classifiers as the cost function is reduced to

that of Eq (5). When λ!1 the coefficients ~b jþ1 !
~b j to minimize the cost function. We

recall that ~b j is the vector of coefficients of Ctj . This gives rise to the same classifier for all event

ages. Thus, CC is a connected classifier that is in between a single classifier and n independent

classifiers. The parameter λ controls how close or far away CC is from n independent classifiers

or a single classifier. Values of λ close to zero makes the connected classifier closer to n inde-

pendent classifiers. Large values of λ makes CC closer to a single classifier, with little difference

in the weights ~b j for different j. A schematic diagram of CC is shown in Fig 27. We can think

of λ as controlling the strength of the connections between classifiers Ctj and Ctjþ1
. Large values

of λ results in stronger connections between Ctj and Ctjþ1
making them more alike. Small values

of λ makes weaker connections between Ctj and Ctjþ1
giving them more freedom to choose

their own weights. No single value of λ is suitable for all problems. The optimal value of λ
depends on how fast the partial observations pitj change with age tj. Thus, it depends on the
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ages tj. If the gap between the ages tj, and tj+1 is small then Ctj is more likely to be similar to

Ctjþ1
. This can be achieved by a larger λ. If the gap between successive ages is bigger, then Ctj

may be quite different from Ctjþ1
, which can be achieved by a smaller λ.

As any loss functionL can be used in Eq (8), CC is a general formulation. Our implemen-

tation of CC in eventstream [14] uses logistic regression as the base classifier and the associated

loss function. However, CC can be implemented with black other loss functions such as those

employed in decision trees, neural nets, or SVMs. The connected classifier can be thought of

as a blue print or framework for classifying developing events while they are still premature,

without locking in a base classifier.

For logistic regression [48] the loss functionL is given by

L ðpitj ; yi;
~bÞ ¼ � yið½1 ðpitjÞ

T
�~b jÞ þ logð1þ expf½1 ðpitjÞ

T
�~b jgÞ: ð9Þ

Here the vector ½1 ðpitjÞ
T
� denotes the concatenation of the vector pitj with the constant 1 to

account for the intercept.

We use gradient based optimization procedures to minimize the loss function in Eq (7). As

such, the training complexity of the logistic connected classifier depends on the following: 1.

the number of features or attributes l, 2. the number of distinct ages, i.e. for ti with i 2 {1, . . ., n}

we have n ages, 3. the number of training observations N and 4. the number of iterations or

epochs e in the optimization process. Therefore, the training complexity of the logistic con-

nected classifier is Oððl þ 1ÞnNeÞ. Here we have (l + 1) to account for the intercept. Once the

connected classifier is trained the testing complexity of pitj for a fixed i and j is simply Oðl þ 1Þ

as it is a multiplication of the weights.

6.4 An example

In this section we explore the effect of the parameter λ on the cost function φð~b; lÞ of Eq (7).

We consider the synthetic data shown in Fig 28 and extract events using a moving window

model with a window size 200 and step size 8.

Using a test set we compute the cost function for different values of λ ranging from 1 to 40.

We record the cost due to the n independent classifiers and the penalty term separately as fol-

lows:

C1 ¼
1

nN

XN

i¼1

Xn

j¼1

L ðpitj ; yi;
~bÞ ; C2 ¼ l

Xn� 1

j¼1

k~b jþ1 �
~b jk

2
:

Fig 27. A connected classifier.

https://doi.org/10.1371/journal.pone.0236331.g027
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Fig 29 shows the costs C1, C2 and the total cost for this exercise. The cost C2 is quite low

compared to C1 for this example. We see that the total cost has a negative trend initially, i.e. it

decreases with increasing λ. Even though C2 is much smaller compared to C1, having the pen-

alty term gives rise to better ~b that reduces the total cost. A test or validation set needs to be

considered in choosing λ to avoid over-fitting.

6.5 Comparison with unlinked classifiers

We refer to CC with logistic regression as CC-Log in the following sections and compare its

performance with two configurations of logistic regression classifiers. The first configuration

comprises a single classifier, which is trained on all partial observations and their ages ðti; ptiÞ

Fig 29. The costs C1, C2 and the total cost with λ varying from 1 to 40.

https://doi.org/10.1371/journal.pone.0236331.g029

Fig 28. A synthetic data stream with 12 events.

https://doi.org/10.1371/journal.pone.0236331.g028

PLOS ONE Early event classification

PLOS ONE | https://doi.org/10.1371/journal.pone.0236331 August 5, 2020 28 / 39

https://doi.org/10.1371/journal.pone.0236331.g029
https://doi.org/10.1371/journal.pone.0236331.g028
https://doi.org/10.1371/journal.pone.0236331


as shown in Fig 30. We refer to this configuration as 1-Log in the following sections. The sec-

ond configuration comprises n independent classifiers as shown in Fig 26. We refer to this

configuration of n independent classifiers as n-Log. The n-Log classifier comprises of fCtjg
n

j¼1
,

where each Ctj is trained on partial observations of age tj, i.e. fpitjg
N

i¼1
.

Fig 30. A single classifier.

https://doi.org/10.1371/journal.pone.0236331.g030
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The difference between 1-Log and n-Log is the number of independent classifiers. The only

difference between n-Log and CC-Log is the connections between the independent classifiers,

brought about by the L2 penalty term
Pn� 1

j¼1
k~b jþ1 �

~b jk
2
. We compare CC-Log with 1-Log and

n-Log because we want to understand whether linking independent classifiers benefits early

classification.

7 Event classification results

We explore three groups of datasets in this Section: synthetic, fibre optic and NO2 data. For

each application, we use CC-Log, 1-Log and n-Log to classify events extracted by CPDBEE

algorithm. For all three applications we use λ = 0.05 for consistency. The R code applicable to

this section is available in the S1 File. The data is either included in the R package eventstream
or can be generated using its functionality.

7.1 Synthetic data

We generate a data stream of dimension 3500 × 250, of which 80% (2800 × 250) is used for

training and the remaining 20% for testing. We use a moving window of dimension 200 × 250

which moves by a step of 8 × 250. For each window we extract events using CPDBEE algo-

rithm as shown in Fig 31. As class A events can have a maximum age of 30, we use 4 event ages

for the classification tasks at t = 8, 16, 24 and 32 time units, i.e. event features are calculated at

these ages. For synthetic data classification, we do not use features which were motivated from

the fibre optic example, i.e. we do not use features 11 and 12 from the list in Section 6.1, for

computational efficiency. Furthermore, the centroid is not used in any classification task.

To obtain unbiased estimates, we repeat this experiment 5 times using different seeds for

data generation. We measure the classification accuracy, which is defined as 1− misclassifica-

tion error. Table 3 gives the mean and standard deviation of test set classification accuracy for

Fig 31. Two windows of data and extracted events.

https://doi.org/10.1371/journal.pone.0236331.g031

Table 3. Mean and standard deviation of classification accuracy over 5 repetitions.

Accuracy Measure Classifier Accuracy Standard deviation

t1 t2 t3 t4 t1 t2 t3 t4
Classification Accuracy CC-Log 0.79 0.88 0.91 0.91 0.13 0.11 0.10 0.08

1-Log 0.71 0.85 0.88 0.87 0.20 0.13 0.13 0.11

n-Log 0.76 0.84 0.89 0.51 0.12 0.11 0.07 0.28

https://doi.org/10.1371/journal.pone.0236331.t003
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the 3 classifiers, which shows that CC-Log surpasses 1-Log and n-Log classifiers. Also we see

that all 3 classifiers improve their average accuracy levels with the age of the events with the

exception of n-Log at t4.

7.1.1 Significance results. To determine if there is a significant difference between the

three classifiers, we conduct a Friedman test on classification accuracy results. The Friedman

test on classification accuracy results gave a p-value of 0.0156, showing that the classifiers are

different at 5% level of significance. To ascertain which methods perform better we conduct a

Nemenyi test on classification accuracy results.

Fig 32 shows the resulting Nemenyi plot of ranks with a 90% level of confidence. Lower

rank values indicate better performing methods. Blue coloured boxes indicate methods which

do not differ significantly from each other. From Fig 32 we see that CC-Log is best suited for

this data followed by 1-Log and n-Log, with no significant difference between the two latter

methods.

7.2 Fibre optic cable data results

The fibre optic dataset is a 379 × 587 matrix as shown in Fig 7. We use a moving window

model with a window size 40 × 587 and a step size 10 × 587 to extract events and compute fea-

tures. For each window we extract events using CPDBEE and use CC-Log, 1-Log and n-Log to

classify them. We use event ages t = 10, 20, 30 and 40, because the maximum event-age is 40

time units.

As the fibre optic dataset has 4 class A events, we use 4-fold cross validation. The events

extracted from the data stream is divided into four folds with each fold containing one class A

event resembling Fig 33.

This modified form of cross validation is commonly used for time dependent observations

[49] as in a streaming data scenario. The classifiers CC-Log, 1-Log and n-Log are trained on

events comprising of 3 training folds, and tested on the remaining fold.

As this dataset has a smaller number of class A events compared to class B events, we report

additional accuracy measures that are designed for imbalanced datasets. We compute the posi-

tive predictive value (PPV) and the negative predictive value (NPV) and area under the

Fig 32. Nemenyi plot for synthetic data using classification accuracy results.

https://doi.org/10.1371/journal.pone.0236331.g032
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receiver operator characteristic curve (AUC). We give the definitions of these metrics below:

Positive predictive value ðPPVÞ ¼
Number of true positives

Number of predicted positives
;

Negative predictive value ðNPVÞ ¼
Number of true negatives

Number of predicted negatives
:

The number of predicted positives in PPV is the sum of true positives and false positives, and

the number of predicted negatives in NPV is the sum of true negatives and the false negatives.

Considering PPV and NPV together gives a two-sided accuracy measure. For example, a

classifier that predicts all observations as negative except for one correct positive observation

achieves a PPV of 100% but a small NPV. The combination of PPV and NPV gives the overall

accuracy of the model.

In contrast, AUC is a single measure that captures the effectiveness of a classifier. The

receiver operator characteristic (ROC) curve is a plot of the true positive rate against the false

positive rate for different classification thresholds. The area under the curve (AUC) provides a

measure of discrimination between positive and negative classes. The AUC does not depend

on the classification threshold as it is an aggregate measure. An AUC closer to 1 is reflective

of a good model, while a random predictor will give an AUC closer to 0.5. The AUC can be

interpreted as the probability that a positive observation is ranked higher than a negative

observation.

Table 4 gives the average PPV, NPV and AUC values with their standard deviations over

the 4-folds for the fibre-optic data stream. For PPV and NPV, we use a probability threshold of

0.5; i.e. if the output probability is greater than 0.5, it is deemed class A, and class B otherwise.

7.2.1 Significance results. Friedman tests on AUC, PPV and NPV results gave p-values of

0.0048, 0.0045 and 0.7583 respectively. This shows that while AUC and PPV results differ sig-

nificantly across classifiers, NPV results are similar. As such, we conduct Nemenyi tests on

Fig 33. Data chunks for 4-fold cross validation.

https://doi.org/10.1371/journal.pone.0236331.g033
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AUC and PPV values. Fig 34 shows Nemenyi test ranks for PPV and AUC, with lower ranks

denoting better performance.

From Fig 34a we see that for PPV CC-Log outperforms n-Log and n-Log outperforms

1-Log with a 95% level of confidence. For AUC results, both CC-Log and n-Log significantly

outperform 1-Log. Even though CC-Log outperforms n-Log, the two classifiers are not signifi-

cantly different from each other as depicted by the blue squares in Fig 34b.

As NPV results across the classifiers are not significantly different, we turn our attention

to PPV and AUC results in Table 4. We see that CC-Log performs better at earlier event ages

compared to n-Log. Noting that the only difference between n-Log and CC-Log is the connec-

tions between the independent classifiers, this demonstrates the importance of the connections

for early event classification. That is, the knowledge of “older” events aids classification of

“younger” events.

7.3 Nitrogen dioxide monitoring

We consider monthly NO2 data from March to June for a 10 year period from 2010 to 2019.

These are three dimensional datasets with two spatial and one time dimension. First we extract

events using CPDBEE for each year separately. Then we perform 10-fold cross validation by

Table 4. Mean and standard deviation of PPV, NPV and AUC (%) over 4 folds.

Accuracy Measure Classifier Mean Standard deviation

t1 t2 t3 t4 t1 t2 t3 t4
PPV CC-Log 1.00 1.00 1.00 0.95 0.0 0.0 0.00 0.1

1-Log 0.81 0.73 0.73 0.73 0.21 0.32 0.32 0.32

n-Log 0.90 1.00 0.93 1.00 0.20 0.0 0.12 0.0

NPV CC-Log 0.92 0.94 0.95 0.95 0.03 0.03 0.03 0.03

1-Log 0.95 0.96 0.95 0.93 0.01 0.02 0.05 0.06

n-Log 0.97 0.92 0.96 0.96 0.02 0.03 0.02 0.03

AUC CC-Log 0.96 0.97 0.97 0.95 0.01 0.01 0.01 0.06

1-Log 0.88 0.84 0.84 0.83 0.09 0.15 0.15 0.13

n-Log 0.93 0.96 0.94 0.98 0.09 0.01 0.05 0.01

https://doi.org/10.1371/journal.pone.0236331.t004

Fig 34. Nemenyi plots for fibre optic cable data using PPV and AUC results.

https://doi.org/10.1371/journal.pone.0236331.g034
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training CC-Log, 1-Log and n-Log classifiers on event data of 9 years and testing it on the

remaining year’s data.

The extracted events are three dimensional clusters of high NO2 levels spanning space and

time. Events are extracted from a data stream of 4 × 180 × 360 array, where each 180 × 360

matrix corresponds to the NO2 levels of a given month. We use CPDBEE parameters α = 0.97,

� = 2 and minPts = 20. Fig 35 shows two dimensional cross sections of the three dimensional

NO2 clusters in March and June 2018.

For each 3-dimensional event we compute features 1–10 and 14 from the list of features in

Section 6.1. These features are chosen for ease of computation. NO2 clusters which have grown

in average intensity during this time period are assigned the class label 1 and others 0. As some

NO2 clusters only start in April we designate the value in April as the starting value for class

label computation. Thus, the task is to detect if NO2 clusters grow in intensity as soon as

possible.

Table 5 gives the 10-fold cross validation test results on NO2 clusters. We see that CC-Log

achieves better accuracy results compared to n-Log and 1-Log, with the only exception that

1-Log achieves slightly better results at t4.

7.3.1 Significance results. Similar to the previous applications, we perform a Friedman

test on the classification accuracy results. The Friedman test gave a p-value of 0.01752, showing

that there is a significant difference between the classifiers.

Fig 36 shows the resulting Nemenyi plot, which shows that CC-Log outperforms 1-Log and

n-Log with a 5% level of significance. The success of CC-Log demonstrates the benefit of linking

classifiers that are trained on similar but slightly different data, on early event classification.

Fig 35. Events extracted from NO2 data from March to June 2018. Fig 35a and 35b show two dimensional cross sections of the three dimensional

NO2 clusters in March and June 2018. Colours do not reflect NO2 levels. Each event is depicted by a single colour.

https://doi.org/10.1371/journal.pone.0236331.g035

Table 5. 10-Fold cross validation accuracy comparison on NO2 clusters.

Accuracy Measure Classifier Mean Standard deviation

t1 t2 t3 t4 t1 t2 t3 t4
Classification Accuracy CC-Log 0.84 0.81 0.90 0.88 0.08 0.12 0.07 0.07

1-Log 0.80 0.80 0.88 0.89 0.09 0.11 0.07 0.07

n-Log 0.80 0.80 0.87 0.83 0.09 0.12 0.06 0.11

https://doi.org/10.1371/journal.pone.0236331.t005
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8 Conclusions

This paper has proposed a framework for event extraction and early event classification in con-

tiguous spatio-temporal data streams. We proposed an event detection and extraction algo-

rithm as well as an early event classification algorithm. We tested our event detection and

classification framework using 3 applications, one synthetic and two real.

The event extraction algorithm CPDBEE uses change point detection and clustering tech-

niques to detect and extract events. We compared CPDBEE with Kuldorff’s Scan Statistic and

achieved better results for all three applications in a much shorter time period.

The early event classification algorithm comprises of a set of base classifiers connected

using an L2 penalty term, inducing a certain level of smoothness in event age. We compared

the connected classifier CC-Log, with two configurations of unlinked classifiers 1-Log and n-

Log and achieved better results for all three applications. Furthermore, for all three applica-

tions CC-Log achieved better results for early event ages. As the only difference between n-Log

and CC-Log was the connections between the base classifiers, this reveals that classification of

early events benefits from knowledge of more mature events.

Future directions for this research include extending CPDBEE for non-contiguous spatio-

temporal data as well as extending CC to use other base classifiers such as decision trees. Fur-

thermore, currently CC is a single class classifier. In addition, CC does not have the functional-

ity for selecting the best set of features. Extending CC to handle multi-classes and adding

feature selection functionality are also plans for the future.
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