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Abstract—Communication for omniscience (CO) refers to the
problem where the users in a finite set V observe a discrete
multiple random source and want to exchange data over broad-
cast channels to reach omniscience, the state where everyone
recovers the entire source. This paper studies how to improve the
computational complexity for the problem of minimizing the sum-
rate for attaining omniscience in V . While the existing algorithms
rely on the submodular function minimization (SFM) techniques
and complete in O(|V |2 · SFM(|V |) time, we prove the strict
strong map property of the nesting SFM problem. We propose
a parametric (PAR) algorithm that utilizes the parametric SFM
techniques and reduces the complexity to O(|V | · SFM(|V |).

We propose efficient solutions to the successive omniscience
(SO): attaining omniscience successively in user subsets. We first
focus on how to determine a complimentary subset X∗ ( V in
the existing two-stage SO such that if the local omniscience in
X∗ is reached first, the global omniscience whereafter can still
be attained with the minimum sum-rate. It is shown that such
a subset can be extracted at one of the iterations of the PAR
algorithm. We then propose a novel multi-stage SO strategy: a
nesting sequence of complimentary user subsets X(1)

∗ ( . . . (
X

(K)
∗ = V , the omniscience in which is attained progressively

by the monotonic rate vectors r
(1)
V ≤ . . . ≤ r

(K)
V . We propose

algorithms to obtain this K-stage SO from the returned results
by the PAR algorithm. The run time of these algorithms is the
same as the PAR algorithm.

Index Terms—communication for omniscience, Dilworth trun-
cation, submodularity.

I. INTRODUCTION

Communication for Omniscience (CO): Let there be a finite
number of users indexed by the set V . Each user observes a
distinct component of a discrete memoryless multiple random
source in private. The users are allowed to exchange their
observations over public noiseless broadcast channels so as
to attain omniscience, the state that each user reconstructs
all components in the multiple source. This process is called
CO [3], where the fundamental problem is how to attain
omniscience with the minimum sum of broadcast rates. While
the CO problem formulated in [3] considers the asymptotic
limits as the observation length goes to infinity, a non-
asymptotic model is studied in [4]–[6]. In this non-asymptotic
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model, the number of observations is assumed to be finite and
the communication rates are restricted to be integer-valued.
The CO problem has a wide range of important applications,
special cases, extensions, duals and interpretations.

The CO problem in the asymptotic model is dual with the
secret capacity [3], which is the maximum amount of secret
key that can be generated by the users in V and equals to the
amount of information in the entire source, H(V ), subtracted
by the minimum sum-rate in CO. The non-asymptotic model
is equivalent to the finite linear source model in some network
coding problems. For example, in the coded cooperative data
exchange (CCDE) [7]–[14], a group of users obtain parts of
a packet set, say, via base-to-peer (B2P) transmissions. By
broadcasting linear combinations of packets over peer-to-peer
(P2P) channels, the users help each other recover the entire
packet set based on a suitable network coding scheme, e.g., the
random linear network coding [10]. It is shown in [14]–[18]
that the solutions to the secret key agreement problem, CO and
CCDE rely on the submodular function minimization (SFM)
techniques in combinatorial optimization [19]. In a nutshell,
all solutions in [14]–[18] require O(|V |2) calls of solving the
SFM problem. Since the polynomial order of solving the SFM
is still high [19, Chapter VI]: ranging from |V |4 to |V |8,
it is important to study whether the order-wise complexity
|V |2 in the computational complexity can be further reduced.
This requires a deep understanding of the structure of the CO
problem and its optimal solution. It is known from previous
works [16], [18] that the first critical/turning point in the
principal sequence of partitions (PSP), a partition chain that is
induced by the segmented Dilworth truncation of the residual
entropy function, plays a central role in solving the CO
problem. This is essentially the first or coarsest partition in
the PSP that is strictly finer than the partition {V }.

Another important interpretation of CO is in the extension
of the Shannon’s mutual information to the multivariate case
and is called the multivariate mutual information I(V ) [16]:
I(V ) equals to the secret capacity. This measure was used
in [20] to interpret the PSP as a hierarchical clustering result:
the partitions in the PSP contain the largest user subsets X
with I(X) strictly greater than a given similarity threshold
and get coarser from bottom to top as this similarity threshold
decreases. This coincides with a more general combinatorial
clustering framework, the minimum average clustering (MAC)
in [21], where both the entropy and cut functions are viewed as
the inhomogeneity measure of a dataset. For the cut function,
the first critical value in the PSP identifies the network strength
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[21], [22] and the maximum number of edge-disjoint spanning
trees [23]. This, in return, well explains why the secret
agreement problem in the pairwise independent network (PIN)
source model, which has a graphical representation, can be
solved by the tree packing algorithms in [24]–[26]. Thus, it is
also worth studying how to improve the existing complexity
O(|V |2 · SFM(|V |)) for determining the whole PSP.

Successive Omniscience (SO): Instead of attaining the om-
niscience in a one-off manner, the idea of SO is proposed
in [6], [27], [28] revealing that the state of omniscience can
be reached in a two-stage manner: let a user subset X ( V
exchange the data first to attain omniscience and the rest of
the users overhear the communications; then solve the global
omniscience problem in V . By recursively applying the two-
stage SO approach, the omniscience in V can be attained in
a multi-stage manner. This idea has been applied to CCDE
in [29], where a multi-stage SO process is scheduled by a
sequence of user subsets that can transmit in order to attain
omniscience. The problem of determining a local omniscience
achievable rate vector for each stage was formulated and
solved as a constrained multi-objective optimization problem.

However, it is shown in [6], [27] that there is a particular
group of complimentary user subsets such that the local
omniscience can be attained in any of them first, while
the overall communication rates for the global omniscience
whereafter still remains minimized. This also means that, if
a non-complimentary subset reaches local omniscience first,
e.g., in the predetermined multi-stage SO strategy [29], the
users might need to transmit more than the minimum sum-
rate to attain the global omniscience eventually. Therefore, the
essential problem in SO is not to determine the transmission
rate for a specific user group, but how to choose a user subset
X∗ ( V that is complimentary in order to preserve the opti-
mality of the global omniscience. The necessary and sufficient
condition for X∗ ( V to be complimentary was derived in [6,
Theorems 4.2 and 5.2] for the asymptotic and non-asymptotic
models, respectively. But, they are based on the value of the
minimum sum-rate for the global omniscience.1

Meanwhile, the studies on the universal multi-party data
exchange problem in [30]–[32] suggest letting users adaptively
increase their transmission rates and running an ideal decoder
at the same time to keep searching for the user subset that
reaches the omniscience state. The recursive application of
this process in [31, Protocol 3] results in a multi-stage SO.
This method does not require the system information, e.g.,
the distribution of the source. However, it requires extra
scheduling overheads, e.g., ordering transmission turns based
on the amount of information (entropy) in individual users’
observations and repetitively checking a so-called constant
difference property to determine when a user should transmit.
In addition, the ideal decoder needs to be run online, which
also incurs communication overheads between users, e.g.,
sending ACK/NACK signals. Thus, the current literature is

1This means that we need to solve the CO problem first, say, by the PAR
algorithm in O(|V | · SFM(|V |)) time. This makes SO less attractive: since
|X∗| ≤ |V |, the local omniscience problem is less complex and therefore it is
preferred that the complimentary subset can be determined before the global
omniscience problem is solved.

missing an efficient overall scheduling of the multi-stage SO,
before the transmissions actually take place. More specifically,
this scheduling refers to the design of the K stages, for
each of which, a complimentary user subset X(k)

∗ that holds
the condition in [6, Theorems 4.2 and 5.2] is selected and
a rate vector r

(k)
V = (r

(k)
i : i ∈ V ) is determined with its

reduction/projection r
(k)

X
(k)
∗

on X(k)
∗ being an achievable local

omniscience vector. In addition, X(K)
∗ in the last stage must

equal V and r
X

(K)
∗

must be an optimal rate vector that attains
global omniscience with the minimum sum-rate.

A. Contributions
In this paper, we propose a parametric (PAR) algorithm

that reduces the complexity for solving the minimum sum-rate
problem in CO to O(|V | ·SFM(|V |)). We propose an efficient
algorithm for searching the complimentary user subset X∗ and
a local omniscience achievable rate vector for the two-stage
SO [6], [27], [28]. We propose a novel multi-stage SO strategy
{(X(k)

∗ , r
(k)
V ) : k ∈ {1, . . . ,K}} and propose algorithms to

obtain this K-stage SO from the returned results by the PAR
algorithm for both asymptotic and non-asymptotic models. The
results indicate that CO, two-stage SO and multi-stage SO can
all be solved in O(|V | · SFM(|V |)) time.

1) Strict strong map property and PAR algorithm: The
study starts with a review of the coordinate saturation capacity
(CoordSatCap) algorithm in [18, Algorithm 3], a nesting
algorithm in the modified decomposition algorithm (MDA)
algorithm [18, Algorithm 1]. The CoordSatCap algorithm
determines the Dilworth truncation, a partition Qα,V of V ,
for only one specific value of the minimum sum-rate estimate
α. We rewrite CoordSatCap as a function of α and prove that a
nesting SFM problem2 exhibits the strict strong map property
in α. We show the solution of this SFM is segmented in α and
prove that its critical/turning points can be searched by a finite
number of recursions. We use this proof to propose a StrMap
algorithm that reduces the original O(|V |) calls of the SFM
algorithm to O(1) calls by adopting the existing parametric
SFM (PSFM) techniques in [33]–[35].

We propose a PAR algorithm that iteratively calls the sub-
routine StrMap to update the segmented Dilworth truncation
Qα,V for all values of α. The critical points of α, as well as
the corresponding partitions, which characterize the segmented
Qα,V , converge to the PSP of V , where the first critical
value determines the minimum sum-rate of CO for both
asymptotic and non-asymptotic models. The PAR algorithm
also outputs a rate vector rα,V = (rα,i : i ∈ V ), which is
piecewise linear in α that determines an optimal rate vector
for both asymptotic and non-asymptotic source models. The
PAR algorithm invokes |V | calls of StrMap and therefore its
run time is O(|V | · SFM(|V |)). This indicates a complexity
reduction of factor |V | for not only solving the minimum sum-
rate problem, but also obtaining the network strength [22] and
MAC clustering result [21]. The PAR algorithm also allows
distributed computation, which only incurs the computation
complexity O(SFM(|V |)) at each user i ∈ V .

2The solution to CO essentially relies on solving this SFM algorithm. See
(6a).
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2) Two-stage SO: For SO, we first focus on the problem of
how to efficiently search a complimentary user subset X∗ (
V in the existing two-stage SO. We relax the necessary and
sufficient condition in [6, Theorems 4.2 and 5.2] to a sufficient
condition on α, a lower bound on the minimum sum-rate for
the global omniscience. This lower bound can be determined
in O(|V |) time. This sufficient condition is used to prove that,
at each iteration i of the PAR algorithm, any nonsingleton
user subset contained in the partition Qα,Vi is complimentary.
Here, Qα,V is the value of Qα,V at α = α. We propose an
algorithm to search for the complimentary subset X∗ ( V as
any nonsingleton subset in Qα,V and a corresponding local
omniscience achievable rate vector rX∗ . This algorithm either
solves the two-stage SO or, if there is no complimentary user
subset, determines the solution to the minimum sum-rate for
the global omniscience in O(|V | · SFM(|V |)) time.

3) Multi-stage SO: We denote the multi-stage SO by a
sequence of two-tuples {(X(k)

∗ , r
(k)
V ) : k ∈ {1, . . . ,K}} with

K ≤ |V | − 1: the local omniscience is attained progressively
in X

(k)
∗ by transmission rate r

(k)
V from k = 1 to K. We

propose two sufficient conditions ensuring the achievability
of this K-stage SO. One is the inclusion-wise expanding
subset sequence: ∅ ( X

(1)
∗ ( . . . ( X

(K)
∗ , where X

(k)
∗ is

complimentary for all k ∈ {1, . . . ,K − 1} and X
(K)
∗ = V

guarantees global omniscience is reached at the final stage;
the other condition is the rate vectors form a monotonic
sequence: r(1)

V ≤ . . . ≤ r
(k)
V , where each X(k)

∗ achieves local
omniscience in X

(k)
∗ . We use these sufficient conditions to

propose two algorithms to extract an achievable K-stage SO
from the critical points of Qα,V and rα,V returned by the PAR
algorithm for both asymptotic and non-asymptotic models.
The algorithm for the non-asymptotic model needs to run the
PAR algorithm twice to guarantee the monotonicity of the
rate vector. The complexity of the proposed two algorithms is
O(|V |·SFM(|V |)): if there exists a complimentary subset, they
return an achievable multi-stage SO strategy; otherwise, they
directly return the optimal solution for global omniscience.

B. Organization

The rest of paper is organized as follows. The system
model is described in Section II, where we introduce the
notation, review the existing results and derive the properties
of the CoordSatCap algorithm. In Section III, we prove the
strict strong map property and propose the PAR algorithm
and its subroutine StrMap algorithm, where we also show
the complexity reduction and distributed implementation of
the PAR algorithm. Section IV presents the solutions to SO:
Section IV-A proposes an algorithm for searching for the
complimentary subset in the two-stage SO; Section IV-B
proposes algorithms for determining an achievable multi-stage
SO for asymptotic and non-asymptotic models.

II. SYSTEM MODEL

Let V with |V | > 1 be a finite set that contains all users
in the system. We call V the ground set. Let ZV = (Zi : i ∈
V ) be a vector of discrete random variables indexed by V .
For each i ∈ V , user i privately observes an n-sequence Zni

of the random source Zi that is i.i.d. generated according to
the joint distribution PZV . We allow users to exchange their
observed data directly to recover the source sequence ZnV . The
state that each user obtains the total information in the entire
multiple source is called omniscience, and the process that
users communicate with each other to attain omniscience is
called communication for omniscience (CO) [3].

Let rV = (ri : i ∈ V ) be a rate vector indexed by
V . We call rV an achievable rate vector if the omniscience
can be attained by letting users communicate at the rates
designated by rV . For the original CO problem formulated
in [3] considering the asymptotic limits as the block length
n goes to infinity, each dimension ri is the compression rate
denoting the expected code length at which user i encode their
observations. We also study a non-asymptotic model, where n
is assumed to be finite. The finite linear source model [5]
is one of the non-asymptotic models, in which the multiple
random source is represented by a vector that belongs to a
finite field and each ri denotes the integer number of linear
combinations of observations transmitted by user i. This finite
linear source model is of particular interest in that it models
the CCDE problem [7]–[9], where the users communicate
over P2P channels to help each other recover a packet set. In
this paper, for the omniscience problem in the non-asymptotic
model, we focus on the finite linear source model. Therefore,
we use the term non-asymptotic model, finite linear source
model and CCDE interchangeably. The main notation in this
paper is listed in Table I.

A. Minimum Sum-rate Problem

For a given rate vector rV , let r : 2V 7→ R+ be the sum-rate
function such that

r(X) =
∑
i∈X

ri, ∀X ⊆ V,

with the convention r(∅) = 0. The achievable rate region is
characterized in [3] by the set of multiterminal Slepian-Wolf
constraints [36], [37]:

RCO(V ) = {rV ∈ R|V | : r(X) ≥ H(X|V \X),∀X ( V },

where H(X) is the amount of randomness in ZX measured by
the Shannon entropy [38] and H(X|Y ) = H(X ∪Y )−H(Y )
is the conditional entropy of ZX given ZY . In a finite linear
source model, the entropy function H reduces to the rank of
a matrix that only takes integral values.

The fundamental problem in CO is to minimize the sum-rate
in the achievable rate region [3, Proposition 1]

RACO(V ) = min{r(V ) : rV ∈ RCO(V )}, (1a)

RNCO(V ) = min{r(V ) : rV ∈ RCO(V ) ∩ Z|V |}, (1b)

for the asymptotic and non-asymptotic models, respectively.
Denote by

R∗ACO(V ) = {rV ∈ R|V | : r(V ) = RACO(V )},
R∗NCO(V ) = {rV ∈ Z|V | : r(V ) = RNCO(V )}

the optimal rate vector set for the asymptotic and non-
asymptotic models, respectively. We say that the minimum
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TABLE I
MAIN NOTATION

Notation Description
V , X , Y a finite user set V and its subsets X,Y ⊆ V

P , X , Y
calligraphic notation denoting a set of disjoint sets,

e.g., a partition

P̃ , X̃ , Ỹ the fusion of a set of disjoint sets, e.g., X̃ = tC∈XC
Φ a linear ordering of all users i ∈ V
Vi the first i users in V

Π(V ) the set of all partitions of V

rX , r(·)
a rate vector rX = (ri : i ∈ X) and its sum-rate

function r(X) =
∑
i∈X ri

RCO(X)
the set of all omniscience achievable rate

vectors

R∗ACO(X),
RACO(X)

the optimal rate vector set for the asymptotic model,

containing omniscience achievable rate vectors

having minimum the sum-rate RACO(V )

R∗NCO(X),
RNCO(X)

the optimal rate vector set for the non-asymptotic

model, containing omniscience achievable rate vectors

having the minimum sum-rate RNCO(V )

α an estimation of the minimum sum-rate

rα,X , rα(·)
a rate vector rα,X = (rα,i : i ∈ X), where each rα,i
is a function of α. So is its sum-rate function

rα(X) =
∑
i∈X rα,i

fα(X) the set function f(X) = α−H(V ) +H(X)

P (fα) the polyhedron of the set function fα
B(fα) the base polyhedron of the set function fα
fα[P] the partition function fα[P] =

∑
C∈P fα(C)

f̂α, Qα,V

for a specific α, the Dilworth truncation of fα:

f̂α(V ) = minP∈Π(V ) fα[P] . The minimizer,

denoted by Qα,V , is a partition of V .

f
Vi
α the reduction of fα on Vi

〈X〉P
the decomposition of subset X by the partition P:

〈X〉P = {X ∩ C : C ∈ P}

sum-rate problem is solved if the value of the minimum sum-
rate in (1), as well as an optimal rate vector are determined.

To solve the minimum sum-rate problem without dealing
with the exponentially growing number of constraints in the
linear programming, (1a) and (1b) are respectively converted
to [3, Example 4] [39] [18, Corollary 6]

RACO(V ) = max
P∈Π(V ) : |P|>1

∑
C∈P

H(V )−H(C)

|P| − 1
, (2a)

RNCO(V ) =
⌈

max
P∈Π(V ) : |P|>1

∑
C∈P

H(V )−H(C)

|P| − 1

⌉
, (2b)

where Π(V ) denotes the set containing all partitions of V .
It is shown in [16]–[18] that the combinatorial optimization
problem in (2) can be solved based on the existing SFM
techniques in polynomial time.

B. Existing Results Parameterized by the Minimum Sum-rate
Estimate α

The efficiency for solving the minimum sum-rate problems
in (2) relies on the submodularity of the entropy function H
and the induced structure in the partition lattice. It is shown
in [18] that the validity of the algorithms proposed in [14,
Appendix F] and [15, Algorithm 3] for solving (2b) in CCDE
and [18, Algorithm 1] for solving both (2a) and (2b) can be
explained by the Dilworth truncation and the partition chain
it forms in the estimation of the minimum sum-rate, which is
called the principal sequence of partitions (PSP).

In this section, we introduce the notation and review the
Dilworth truncation, PSP and the coordinate-wise saturation
capacity (CoordSatCap) algorithm, an essential nesting algo-
rithm in [14, Appendix F], [15, Algorithm 3] and [18, Algo-
rithm 1]. We rewrite these results as variables or functions of
the minimum sum-rate estimate α. The purpose is to introduce
the notation and existing statements that will be used to present
and prove the strict strong map property in Section III.

1) Preliminaries: For X ⊆ V , let χX = (ei : i ∈ V ) be the
characteristic vector of the subset X such that ei = 1 if i ∈ X
and ei = 0 if i /∈ X . The notation χ{i} is simplified by χi.
Let t denote the disjoint union. For X that contains disjoint
subsets of V , we denote by X̃ = tC∈XC the fusion of X .
For example, for X = {{3, 4}, {2}, {8}}, X̃ = {2, 3, 4, 8}.

For partitions P,P ′ ∈ Π(V ), we denote by P � P ′ if P is
finer than P ′ and P ≺ P ′ if P is strictly finer than P ′.3 For any
X ⊆ V and P ∈ Π(V ), 〈X〉P = {X ∩ C : C ∈ P} denotes
the decomposition of X by P . For example, for X = {1, 2, 4}
and P = {{1, 2, 3}, {4}}, 〈X〉P = {{1, 2}, {4}}.

A function f : 2V 7→ R is submodular if f(X) + f(Y ) ≥
f(X ∩ Y ) + f(X ∪ Y ) for all X,Y ⊆ V . The problem
min{f(X) : X ⊆ V } is an SFM problem. It can be solved in
strongly polynomial time (see Appendix D) and the set of min-
imizers argmin{f(X) : X ⊆ V } form a set lattice such that
the smallest/minimal minimizer

⋂
argmin{f(X) : X ⊆ V }

and largest/maximal minimizer
⋃

argmin{f(X) : X ⊆ V }
uniquely exist and can be determined at the same time when
the SFM problem is solved [19, Chapter VI].

We call Φ = (φ1, . . . , φ|V |) a linear ordering/permutation
of the indices in V if φi ∈ V and φi 6= φi′ for all i, i′ ∈
{1, . . . , |V |} such that i 6= i′. For i ∈ V , let Vi = {φ1, . . . , φi}
be the set of the first i users in the linear ordering Φ. We call
fVi : 2Vi 7→ R the reduction of f on Vi such that fVi(X) =
f(X) for all X ⊆ Vi [19, Section 3.1(a)]. For example, for
Φ = (2, 3, 1, 4), V2 = {2, 3}, the reduction of f on V2 is
fV2(X) = f(X) for all X ⊆ {2, 3}.

2) Principal Sequence of Partitions (PSP): Let α ∈ R+

be an estimation of the minimum sum-rate and define a set
function fα : 2V 7→ R such that

fα(X) = α−H(V ) +H(X), ∀X ⊆ V,

except that f(∅) = 0. This function is the same as the residual
entropy function in [16] in that it offsets/subtracts the amount
of information in each nonempty subset X by H(V )−α. Let

3The partition P is finer than P ′, if each subset in P is contained in some
subset in P ′.
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fα[·] be a partition function such that fα[P] =
∑
C∈P fα(C)

for all P ∈ Π(V ), where fα(C) = α −H(V ) + H(C). The
Dilworth truncation of fα is [40]

f̂α(V ) = min
P∈Π(V )

fα[P]. (3)

For a given α, let Qα,V =
∧

argminP∈Π(V ) fα[P] be the
finest minimizer of (3). The Dilworth truncation (3) exhibits
a strong structure in α that is characterized by the PSP, which
provides the solution to the minimum sum-rate problem.

Lemma 1. The value of f̂α(V ) is piecewise linear and strictly
increasing in α. It is determined by p < |V | critical points

0 ≤ α(p) < . . . < α(1) < α(0) = H(V ) (4)

with the corresponding finest minimizer P(j) = Qα(j),V =∧
argminP∈Π(V ) fα(j) [P] for all j ∈ {0, . . . , p} forming a

partition chain

{{i} : i ∈ V } = P(p) ≺ . . . ≺ P(1) ≺ P(0) = {V } (5)

such that [21], [41]

Qα,V =


P(p) α ∈ [0, α(p)],

P(p−1) α ∈ (α(p), α(p−1)],
...

P(0) α ∈ (α(1), α(0)].

The partitions in (5), together with the corresponding critical
values α(j), is called the Principal Sequence of Partitions
(PSP) of the ground set V .

The first critical point of the PSP provides the solution to
the minimum sum-rate problem.

Lemma 2 ( [18, Corollary A.3]). RACO(V ) = α(1) and
RNCO(V ) = dα(1)e for the asymptotic and non-asymptotic
models, respectively.

3) CoordSatCap Algorithm: All of the existing algorithms
in [14], [15], [18] for solving the minimum sum-rate problem
in (2) run a subroutine that determines the minimum and/or
the finest minimizer of the Dilworth truncation (3) for a given
value of α. This subroutine is outlined by the CoordSatCap
algorithm in Algorithm 1.

The idea of CoordSatCap algorithm is to keep increasing
each dimension of a rate vector rα,V in the submodular
polyhedron of fα

P (fα) = {rα,V ∈ R|V | : rα(X) ≤ fα(X), X ⊆ V }

until it reaches the base polyhedron of the Dilworth truncation4

f̂α
B(f̂α) = {rα,V ∈ P (fα) : rα(V ) = f̂α(V )}.

Here, rα,V = (rα,i : i ∈ V ) is a |V |-dimensional rate vector
that is parameterized by the input minimum sum-rate estimate
α and rα(X) =

∑
i∈X rα,i,∀X ⊆ V is the sum-rate function

4The original purpose of the CoordSatCap algorithm is to determine the
value of f̂α(V ) by tightening the upper bound fα(X) in P (fα). See [18,
Appendix B]. Also note that, since f̂α(V ) ≤ fα(V ), B(f̂α) and B(fα) =
{rα,V ∈ P (fα) : rα(V ) = fα(V )} are not equivalent in general.

of this rate vector. The amount of the rate increment is
determined by [19, Section 2.3] [18, Lemmas 22 and 23]

min{fα(X̃ )− rα(X̃ ) : {i′} ∈ X ⊆ Qα,Vi} (6a)
= max{ξ : rα,V + ξχi′ ∈ P (fα)} (6b)

where (6a) is the minimization problem in step 5 of Al-
gorithm 1 and is a SFM problem [18, Section V-B]. The
maximum of (6b) is called the saturation capacity. At the
end of Algorithm 1, the partition Qα,V is updated to the
finest minimizer of minP∈Π(V ) fα[P] [18, Section V-B] so
that rα(V ) = f̂α(V ).

For solving the minimum sum-rate problem, [18, Algorithm
1] utilizes the outputs of the CoordSatCap algorithm and the
properties of the PSP in Lemma 17 in Appendix A to update
α until it reaches RACO(V ). Due to the equivalence

B(f̂α) = {rV ∈ RCO(V ) : rα(V ) = f̂α(V ) = α}

for all α ≥ RACO(V ) [18, Section III-B and Theorem 4], in
the final call of the CoordSatCap, an optimal rate vector

rRACO(V ),V ∈ B(f̂RACO(V )) = R∗ACO(V ),

rRNCO(V ),V ∈ B(f̂RNCO(V )) ∩ Z|V | = R∗NCO(V )

is also returned for asymptotic and non-asymptotic models,
respectively.

For the input α = RACO(V ), the CoordSatCap algorithm
also outputs the fundamental partition QRACO(V ),V = P(1).
This is the partition that corresponds to the first critical point
in (5) and equals the finest maximizer of (2a). This is an impor-
tant parameter in CCDE in that |P(1)|−1 is the least common
multiple (LCM) of rRACO(V ),V [18, Corollary 28]: By letting
each packet be broken into |P(1)| − 1 chunks, the optimal
rate vector rRACO(V ),V is implementable based on linear codes,
which saves the overall transmission rates by no more than 1
from the optimal rate vector rRNCO(V ),V ∈ R∗NCO(V ).

C. Current Complexity

The complexity of the CoordSatCap algorithm is O(|V | ·
SFM(|V |)). It is required to call the CoordSatCap algorithm
O(|V |) times to find α(1) and P(1) [18, Section V-D]. There-
fore, the current complexity for solving the minimum sum-rate
problem in CO is O(|V |2 · SFM(|V |)).

III. STRICT STRONG MAP

While the CoordSatCap algorithm determines the Dilworth
truncation f̂α(V ) for only one value of α, we reveal the
structural properties of the SFM problem (6a) in α and propose
a parametric (PAR) algorithm that iteratively determines Qα,Vi
and rα,V for all values of the minimum sum-rate estimate α.
This PAR algorithm reduces the computational complexity for
solving the minimum sum-rate problem in both asymptotic
and non-asymptotic models and allows distributed computa-
tion. Note that, in this paper, when we say for all α, we
mean for all α ∈ [0, H(V )] since the minimum sum-rates
RACO(V ), RNCO(V ) ∈ [0, H(V )].
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Algorithm 1: CoordSatCap Algorithm [18, Algo-
rithm 3]

input : α, H , V and Φ
output: rα,V ∈ B(f̂α) and Qα,V =

∧
argminP∈Π(V ) fα[P]

1 Let rα,V := (α−H(V ))χV so that rα,V ∈ P (fα);
2 Initiate rα,φ1

:= fα({φ1}) and Qα,V1 := {{φ1}};
3 for i = 2 to |V | do
4 Qα,Vi := Qα,Vi−1 t {{φi}} ;
5 Uα,Vi :=

⋂
argmin{fα(X̃ )− rα(X̃ ) : {φi} ∈ X ⊆

Qα,Vi};
6 Update rα,V and Qα,Vi :

rα,V := rα,V +
(
fα(Ũα,Vi)− rα(Ũα,Vi)

)
χφi ;

Qα,Vi := (Qα,Vi \ Uα,Vi) t {Ũα,Vi};

7 endfor
8 return rα,V and Qα,V ;

A. Observations

For fViα , we have the base polyhedron

B(f̂Viα ) = {rα,Vi ∈ P (fViα ) : rα(Vi) = f̂Viα (Vi) = f̂α(Vi)}

where P (fViα ) = {rα,Vi ∈ Ri : rα(X) ≤ fViα (X) =
fα(X), X ⊆ Vi}. Considering the values of Qα,Vi and rα,Vi
in α in the CoordSatCap algorithm as the iteration index i
grows, we have the following result.

Proposition 3. After step 6 in each iteration i of Algorithm 1,
Qα,Vi =

∧
argminP∈Π(Vi) fα[P] and rα,Vi ∈ B(f̂Viα ) for all

α.

The proof is omitted since it is a direct result that Qα,Vi =∧
argminP∈Π(Vi) fα[P]. The fact that rα,Vi ∈ B(f̂Viα ) can be

seen in [18, Appendix B]. Proposition 3 suggests that we could
obtain rα,Vi and Qα,Vi for all values of α for each iteration
i until the final results for i = |V | constitute the complete
solution to the minimum sum-rate problem. We call it the
parametric method for that the results remain functions of α.
However, the question is whether this parametric approach is
efficient. It is clear that Qα,Vi for all α is again characterized
by the PSP of Vi,5 the determination of which completes in
O(|Vi|2 · SFM(|Vi|)) time. If using the existing methods [14,
Appendix F], [15, Algorithm 3] or [18, Algorithm 1],
the overall complexity of the parametric method is higher:
O(|V |3 · SFM(|V |)). Instead, we prove the strict strong map
property of the minimization problem (6a) in the CoordSatCap
algorithm and show that the parametric method is simpler than
the existing algorithms.

B. Strong Map Property

We first derive some properties of the CoordSatCap al-
gorithm below. The proof of Lemma 4 is in Appendix B.
The properties in Lemma 4 play important roles in the proof
of the strict strong map property and validity of the PAR
algorithm in this section. The monotonicity of the sum-rate

5This fact will be utilized in Section III-E to propose a distributed algorithm
for solving the CO problem and in Section IV for solving the SO problem.

in Lemma 4(c) also guarantees the feasibility of a multi-stage
SO in Section IV.

Lemma 4. At the end of each iteration i of Algorithm 1, the
rate vector rα,V ∈ P (fα), where P (fα) = P (f̂α), and the
following hold for all α:
(a) rα(Vi) = rα[Qα,Vi ] = fα[Qα,Vi ] = f̂α(Vi), where

rα[Qα,Vi ] =
∑
C∈Qα,Vi

rα(C);

(b) rα(X̃ ) = rα[X ] = fα[X ] = f̂α(X̃ ) for all X ⊆ Qα,Vi ;
(c) For all α < α′, Qα,Vi � Qα′,Vi and, for all X ⊆ Qα,Vi

and X ′ ⊆ Qα′,Vi such that X̃ = X̃ ′,

rα[X ] = f̂α(X̃ ) < f̂α′(X̃ ′) = rα′ [X ′].

Recall that Qα,Vi is determined by Uα,Vi in step 6 of
Algorithm 1. The complexity of the parametric algorithm
relies on the hardness of solving the minimization problem
(6a) for all α. While the existing algorithms only utilize the
submodularity of this problem for a specific value of α, we
reveal a strict strong map property below. Base on the objective
function in (6a), we define

gα(X̃ ) = fα(X̃ )− rα(X̃ ), ∀X ⊆ Qα,Vi . (7)

Definition 5 (strong map [42, Section 4.1]). For two dis-
tributive lattices L1,L2 ⊆ 2V ,6 and submodular functions
h1 : L1 7→ R and h2 : L2 7→ R, h1 and h2 form a strong
map, denoted by h1 → h2, if

h1(Y )− h1(X) ≥ h2(Y )− h2(X) (8)

for all X,Y ∈ L1 ∩ L2 such that X ⊆ Y . The strong map
is strict, denoted by h1 � h2, if h1(Y )− h1(X) > h2(Y )−
h2(X) for all X ( Y .

Theorem 6. In each iteration i of Algorithm 1, gα forms a
strict strong map in α:

gα � gα′ , ∀α, α′ : α < α′.

Proof: First, for all α, all subsets of Qα,V form a lattice.
For any X ⊆ Qα,Vi and Y ⊆ Qα′,Vi such that i ∈ X̃ ⊆ Ỹ and
gα and gα′ are both defined on X̃ and Ỹ , we have i /∈ Ỹ \ X̃ .
Also, there existM⊆ Qα,Vi and N ⊆ Qα′,Vi (withM� N )
such that M̃ = Ñ = Ỹ \ X̃ . According to Lemma 4(b) and
(c), rα(Ỹ \ X̃ ) = fα[M] = f̂α(Ỹ \ X̃ ) and rα′(Ỹ \ X̃ ) =
fα′ [N ] = f̂α′(Ỹ \ X̃ ). Then,

gα(Ỹ)− gα(X̃ )− gα′(Ỹ) + gα′(X̃ )

= rα′(Ỹ \ X̃ )− rα(Ỹ \ X̃ )

=

{
0 X̃ = Ỹ,
f̂α′(Ỹ \ X̃ )− f̂α(Ỹ \ X̃ ) X̃ ( Ỹ,

where f̂α′(Ỹ \ X̃ )− f̂α(Ỹ \ X̃ ) > 0 for all α and α′ such that
α < α′ based on Lemma 4(c). Referring to Definition 5, this
proves the theorem.

We have the minimizer Ũα,Vi also segmented in α based on
the results in [42].

6A group of sets L form a distributive lattice if, for all X,Y ∈ L, X∩Y ∈
L and X ∪ Y ∈ L [19, Section 3.2].
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Lemma 7. [42, Theorems 26 to 28] In each itera-
tion i of Algorithm 1, the minimal minimizer Uα,Vi of
min{gα(X̃ ) : {φi} ∈ X ⊆ Qα,Vi} satisfies Ũα,Vi ⊆ Ũα′,Vi for
all α < α′. In addition, Ũα,Vi for all α is fully characterized
by q < |Vi| − 1 critical points7

0 ≤ αq < . . . < α1 < α0 = H(V ) (9)

and the corresponding minimal minimizer S̃j = Ũαj ,Vi for all
j ∈ {0, . . . , q} forms a set chain

{φi} = S̃q ( . . . ( S̃1 ( S̃0 = Vi (10)

and Ũα,Vi = S̃q = {φi} for all α ∈ [0, αq] and Ũα,Vi = S̃j
for all α ∈ (αj+1, αj ] such that j ∈ {0, . . . , q − 1}.8

To completely solve the problem min{gα(X̃ ) : {φi} ∈ X ⊆
Qα,Vi} for all α, the remaining problem is how to determine
all αj’s and S̃j’s, which is neither specified in Lemma 7
nor solvable directly based on the existing parametric SFM
(PSFM) algorithms or other combinatorial optimization tech-
niques (see the explanation in Appendix D). For this purpose,
we derive Lemma 8 below. The proof is in Appendix C.

Lemma 8. For all αj’s and S̃j’s that characterize Ũα,Vi of
the minimal minimizer of min{gα(X̃ ) : {φi} ∈ X ⊆ Qα,Vi}
in Lemma 7, the following holds:

(a) gαj (S̃j−1) = gαj (S̃j), i.e., rαj (S̃j−1 \ S̃j) = H(S̃j−1)−
H(S̃j), for all j ∈ {1, . . . , q};

(b) for any j, j′ ∈ {0, . . . , q} such that j < j′, let

α = H(V )− H[〈S̃j \ S̃j′〉Pd ] +H(S̃j′)−H(S̃j)
|〈S̃j \ S̃j′〉Pd |

, (11)

where Pd � Qαj′ ,Vi .
(i) If Pd ≺ Qαj′ ,Vi , let P(l) in the PSP of Vi−1 such

that Pd = P(l) t {{φi}}. Then, the corresponding
critical value α(l) < αj′ and αj+1 ≥ α > α(l);

(ii) if Pd = Qαj′ ,Vi , then αj+1 ≥ α > αj′ for j+1 < j′

and α = αj+1 for j + 1 = j′.

Based on Lemma 8, we propose the StrMap algorithm
(Algorithm 2) that searches for αj’s and S̃j’s through a finite
number of recursions: the call StrMap(Vi, {φi}, {{m} : m ∈
Vi}) returns {S̃j : j ∈ {0, . . . , q}} in Lemma 7.9 Based on
Lemma 4(c), rα(S̃j−1\S̃j) is piecewise linear in α. So, accord-
ing to Lemma 8(a), the value of each αj can be determined by
solving the linear equation rα(S̃j−1\S̃j) = H(S̃j−1)−H(S̃j).
The SFM in step 4 in all recursions of the StrMap algorithm
can be solved efficiently by the PSFM algorithms in [33]–[35]
such that the overall complexity of StrMap is O(SFM(|V |)).

7The maximal critical point is H(V ) instead of H(Vi) because in the
function fα(X) = α−H(V )+H(X), the offset of the entropy is α−H(V ).
If we change the offset as fα(X) = α −H(Vi) + H(X), we should have
α0 = H(Vi). See Section III-E.

8It should be noted that the value of α(j)’s in the PSP and αj ’s in Lemma 7
do not necessarily coincide. The critical points αj ’s for min{gα(X̃ ) : {φi} ∈
X ⊆ Qα,Vi} for each iteration i also vary with the linear ordering Φ.

9In each recursion of StrMap, Pd � Qαj′ ,Vi always holds.

Algorithm 2: StrMap(S̃j , S̃j′ ,Pd)

input : S̃j , S̃j′ such that S̃j ⊇ S̃j′ and Pd such that
Pd � Qαj′ ,Vi .

output: {S̃j , S̃j+1, . . . , S̃j′}.
1 if S̃j = S̃j′ then return {S̃j};
2 else
3 α := H(V )− H[〈S̃j\S̃j′ 〉Pd ]+H(S̃j′ )−H(S̃j)

|〈S̃j\S̃j′ 〉Pd |
;

4 Uα,Vi :=
⋂

argmin{gα(X̃ ) : {φi} ∈ X ⊆ Qα,Vi} ;
5 if S̃j′ = Ũα,Vi and gα(S̃j) = gα(Ũα,Vi) then return

{S̃j , S̃j′};
6 else return

StrMap(S̃j , Ũα,Vi ,Qα,Vi) ∪ StrMap(Ũα,Vi , S̃j′ ,Pd);
7 endif

Algorithm 3: Parametric (PAR) Algorithm

input : f , V and Φ
output: segmented variables rα,V ∈ B(f̂α) and

Qα,V =
∧

argminP∈Π(V ) fα[P] for all α

1 rα,V := (α−H(V ))χV for all α;
2 rα,φ1

:= fα({φ1}) and Qα,V1 := {{φ1}} for all α;
3 for i = 2 to |V | do
4 Qα,Vi := Qα,Vi−1 t {{φi}} for all α ;
5 Call StrMap(Vi, {φi}, {{m} : m ∈ Vi}) to obtain the

critical points {αj : j ∈ {0, . . . , q}} and
{S̃j : j ∈ {0, . . . , q}} that determine the minimal
minimizer Ũα,Vi of min{gα(X̃ ) : {φi} ∈ X ⊆ Qα,Vi}
for all α;

6 Let Γj := (αj+1, αj ] for all j ∈ {0, . . . , q − 1} and
Γq := [0, αq]. For each j ∈ {0, . . . , q}, update rV and
Qα,Vi by

rα,V := rα,V + gα(S̃j)χφi ;
Qα,Vi := (Qα,Vi \ Sj) t {S̃j};

for all α ∈ Γj ;
7 endfor
8 return rV and Qα,V for all α;

C. Parametric Algorithm

We propose the PAR algorithm in Algorithm 3. We show
an example below of applying the PAR algorithm to an actual
CO problem and then discuss its complexity and distributed
implementation.

Example 9. Consider a 5-user system with

Z1 = (Wb,Wc,Wd,Wh,Wi),

Z2 = (We,Wf ,Wh,Wi),

Z3 = (Wb,Wc,We,Wj),

Z4 = (Wa,Wb,Wc,Wd,Wf ,Wg,Wi,Wj),

Z5 = (Wa,Wb,Wc,Wf ,Wi,Wj),

where each Wm is an independent uniformly distributed
random bit. Choose the linear ordering Φ = (4, 5, 2, 3, 1) and
apply the PAR algorithm.

First, initiate rα,i = α−H(V ) = α− 10 for all i ∈ V and
α. For i = 1, we get Ũα,V1

= {φ1} = {4}, Qα,V1
= {{4}}

and rα,4 = fα({4}) = α− 2 for all α.
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Fig. 1. The piecewise linear increasing Dilworth truncation f̂α(Vi) in α and the segmented partition Qα,Vi obtained at the end of each iteration i of the
PAR Algorithm when it is applied to the 5-user system in Example 9.

For i = 2, we have φ2 = 5 and V2 = {4, 5}. We first set
Qα,V2

= Qα,V1
t {{φ2}} = {{4}, {5}} for all α. By the call

StrMap({4, 5}, {5}, {{4}, {5}}), we get S̃1 = {5} and S̃0 =
{4, 5} with the critical points α1 = 4 and α0 = H(V ) = 10.
So the minimal minimizer Uα,V2

of min{gα(X̃ ) : {φ2} ∈ X ⊆
Qα,V2

}

Ũα,V2 =

{
{5} α ∈ [0, 4],

{4, 5} α ∈ (4, 10].
(12)

The updated rα,V2 and Qα,V2 after step 6 are

rα,4 = α− 2, ∀α ∈ [0, 10],

rα,5 =

{
α− 4 α ∈ [0, 4],

0 α ∈ (4, 10],

Qα,V2 =

{
{{4}, {5}} α ∈ [0, 4],

{{4, 5}} α ∈ (4, 10],

(13)

For i = 3, we get

Ũα,V3
=

{
{2} α ∈ [0, 8],

{2, 4, 5} α ∈ (8, 10]
(14)

and

rα,V =


(α− 10, α− 6, α− 10, α− 2, α− 4) α ∈ [0, 4],

(α− 10, α− 6, α− 10, α− 2, 0) α ∈ (4, 8],

(α− 10, 2, α− 10, α− 2, 0) α ∈ (8, 10],

Qα,V3 =


{{2}, {4}, {5}} α ∈ [0, 4],

{{4, 5}, {2}} α ∈ (4, 8],

{{2, 4, 5}} α ∈ (8, 10].
(15)

at the end of iteration.

Repeating the same procedure, we have the following re-

turned.10

rα,V =



(α− 5, α− 6, α− 6, α− 2, α− 4) α ∈ [0, 4],

(α− 5, α− 6, α− 6, α− 2, 0) α ∈ (4, 6],

(1, α− 6, α− 6, α− 2, 0) α ∈ (6, 6.5],

(14− 2α, α− 6, α− 6, α− 2, 0) α ∈ (6.5, 7],

(0, α− 6, 8− α, α− 2, 0) α ∈ (7, 8],

(0, 2, 0, α− 2, 0) α ∈ (8, 10],

Qα,V =


{{1}, . . . , {5}} α ∈ [0, 4],

{{4, 5}, {1}, {2}, {3}} α ∈ (4, 6],

{{1, 4, 5}, {2}, {3}} α ∈ (6, 6.5],

{{1, . . . , 5}} α ∈ (6.5, 10].
(16)

See Fig. 1 for the plot of f̂α(Vi) as a function of α at
the end of each iteration. For the final segmented partition
Qα,V in (16), the corresponding PSP has the critical points
α(3) = 4, α(2) = 6, α(1) = 6.5 and α(0) = H(V ) = 10
with P(3) = {{1}, . . . , {5}}, P(2) = {{4, 5}, {1}, {2}, {3}},
P(1) = {{1, 4, 5}, {2}, {3}} and P(0) = {{1, . . . , 5}} so that
we know RACO(V ) = α(1) = 6.5 is the minimum sum-rate
for the asymptotic model and P(1) = {{4, 5, 1}, {2}, {3}} is
fundamental partition. We also know an optimal achievable
rate vector r6.5,V = (1, 0.5, 0.5, 4.5, 0) ∈ R∗ACO(V ), which
has the LCM |P(1)|−1 = 2 so that it is implementable by net-
work coding schemes with 2-packet-splitting in CCDE. For the
non-asymptotic model, the minimum sum-rate is RNCO(V ) =
dRACO(V )e = 7 and r7,V = (0, 1, 1, 5, 0) ∈ R∗NCO(V ) is an
optimal achievable rate vector.

It should be noted that we automatically know Uα,Vi in
step 6 if Ũα,Vi is obtained in that Uα,Vi = {C ∈ Qα,Vi : C ⊆
Ũα,Vi} = 〈Ũα,Vi〉Qα,Vi .

11 For example, for Ũα,V2 in (12) and

10The rate vector rα,V may have critical points more than Qα,V . It means
that the rate update in step 6 needs to be done for more segments than q. But,
this will not increase the complexity of PAR because the number of critical
points of rα,V is upper bounded by 2|V | and so, as explained in Appendix D,
the update in step 6 is less complex than SFM algorithm.

11This means that Uα,Vi is the decomposition of Ũα,Vi by Qα,Vi .
Here, we should use the value of Qα,Vi in the minimization problem
min{gα(X̃ ) : {i} ∈ X ⊆ Qα,Vi} before the updates in step 6.
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Qα,V2
= {{4}, {5}} for all α,

Uα,V2
=

{
{{5}} α ∈ [0, 4],

{{4}, {5}} α ∈ (4, 10].
(17)

We show an example of how to apply the StrMap algorithm
in step 5. For i = 3, φ3 = 2 and V3 = {2, 4, 5}, consider
the problem min{gα(X̃ ) : {φ3} ∈ X ⊆ Qα,V3

}. We call
StrMap(V3, {φ3}, {{m} : m ∈ Vi}) and have

α = H(V )− H({2}) +H({4}) +H({5})−H({2, 4, 5})
2

= 6.

The minimal minimizer of min{g6(X̃ ) : {φ4} ∈ X ⊆ Q6,V3
}

is Ũ6,V3
= {2}. We have S̃j′ = Ũ6,V3

but g6({2, 4, 5}) 6=
g6({2}). So, we run StrMap({2, 4, 5}, {2},Q6,V3) and
StrMap({2}, {2}, {{2}, {4}, {5}}) where Q6,V3 =
{{2}, {4, 5}}. In the call StrMap({2, 4, 5}, {2},Q6,V2

),
we have

α = H(V )− (H({2}) +H({4, 5})−H({2, 4, 5})) = 8

and Ũ8,V3
= {2}. Since Ũ8,V3

= S̃j′ and g8({2, 4, 5}) =
g8({2}), the recursion returns {{2, 4, 5}, {2}}. The call
StrMap({2}, {2}, {{2}, {4}, {5}}) directly returns {{2}}. Fi-
nally, we have {{2}, {2, 4, 5}} returned indicating S̃1 = {2}
and S̃0 = {2, 4, 5} with the critical points α1 = 8 and
α0 = H(V ) = 10. They determine the minimal minimizer
Ũα,V3

in (14) for all α. Note that the SFM problems in all
recursions of the StrMap algorithm can be solved in O(1)
call of a PSFM algorithm. The resulting complexity is still
O(SFM(|V |)). See Appendix D for a brief on PSFM and
[43, Algorithm 7] showing how to run StrMap by the PSFM
algorithm in [33].

D. Complexity

The PAR algorithm invokes |V | calls of the StrMap al-
gorithm. As explained in Appendix D, the complexity of
the StrMap algorithm is O(SFM(|V |)). Therefore, the min-
imum sum-rate problem in (2) for both asymptotic and non-
asymptotic models can be solved by the PAR algorithm in
O(|V |·SFM(|V |)) time. The complexity is reduced by a factor
of |V | from the existing computation time O(|V |2 ·SFM(|V |))
by the MDA algorithm in [18] and the algorithms in [14], [15].

1) Related Problems: Due to the duality between CO and
multi-terminal secret capacity [3, Example 4] [39], the PAR al-
gorithm provides a tool for computing the secret capacity that
is more efficient than the existing method in [16]. Replacing
the entropy function H with the cut function, PAR determines
the PSP and the network strength of a graph [22]. This is
because the maximum number of edge-disjoint spanning trees
is the largest integer that is no greater than the network
strength according to [23, Section 5.1] [44], [45]. This is the
reason why the secret key sharing problem in the PIN model
in [24]–[26] can be solved efficiently by the tree packing
algorithms. In fact, [24]–[26] utilize the parametric max-flow
algorithm in [46] (see Appendix D), while we prove in this
paper that the PSFM techniques reduce the complexity in
obtaining the secret capacity in any multiple random source
ZV .

The PAR algorithm also efficiently solves the information-
theoretic clustering problem in [20]: the returned Qα,V is a
hierarchical clustering dendrogram.12 By setting α = H(V ),
the inequalities in the polyhedron P (fα) are the Slepian-Wolf
constraints [36] for lossless data compression. In this case,
the fundamental partition P(1) decomposes users in V into
mutually independent groups. This idea was utilized in [47] to
reduce the complexity of computing a fair rate vector for the
multi-terminal lossless data compression problem. Similarly,
the results derived in the next section for SO can be applied
to compute the incremental secret capacity in [48] and derive
a staged data forwarding and sharing procedure in multi-
terminal source coding and CCDE, respectively.

E. Distributed Computation

In iteration i of the PAR algorithm, the updates of the parti-
tion Qα,Vi and rate vector rα,Vi for the subsystem Vi are based
on Qα,Vi−1

and rα,Vi−1
obtained from the previous iteration

and the information only in Vi. This suggests a distributed
implementation. Remove steps 1 and 2 and let the first user
φ1 initiate rα,φ1

= α − H({φ1}) and Qα,V1
= {{φ1}} and

pass them to user φ2. For i ∈ {2, . . . , |V |}, user φi replaces α
in rα,Vi−1

andQα,Vi−1
by α := α−H(Vi−1)+H(Vi) and initi-

ates rα,φi = α−H(Vi). Defining fα(X) = α−H(Vi)+H(X)
such that gα(X̃ ) = fα(X̃ )− rα(X̃ ) = α−H(Vi) +H(X̃ )−
rα(X̃ ),∀X ⊆ Qα,Vi , user φi implements steps 4 to 6 of
the PAR algorithm.13 This method distributes the computation
load of the PAR algorithm to the users. The run time at each
user is O(SFM(|V |)).14

IV. SUCCESSIVE OMNISCIENCE

The concept of SO is proposed in [6], [28]: instead of the
one-off approach, the communications between the users in V
can be organized in a way such that global omniscience in V
can be attained in a two-stage manner. First, let the users in
a subset X broadcast to attain the local omniscience and the
remaining users i ∈ V \X overhear these transmissions; then,
solve the global omniscience problem in V . There is a par-
ticular type of nonsingleton subsets X∗, called complimentary
subset, such that if X = X∗, the final sum-rate for attaining
the global omniscience in V at the second stage remains
minimized [6]. But, the fact is that not all nontrivial subsets of
V are complimentary. For example, for the non-complimentary
user subset {2, 4} in Example 9, RNCO({2, 4}) = 8, which is
already greater than the minimum sum-rate for attaining the
global omniscience RNCO({1, . . . , 5}) = 7. This means that, if
the local omniscience is first attained in a non-complimentary
subset, the overall transmission cost may increase. Therefore,

12The cluster tree coincides with the multi-stage SO returned by Algo-
rithm 5 in Section IV-B. In Fig. 3, the multi-stage SO for the asymptotic model
is the dendrogram solution of the information-theoretic clustering problem in
[20] for the 5-user system in Example 9.

13In this case, we will get the same set chain (10) as in the PAR algorithm
for each i, but the critical points in (9) are bounded by H(Vi), i.e., 0 ≤
αq < . . . < α1 < α0 = H(Vi). Here, the function definition fα(X) =
α−H(Vi)+H(X) is in fact for the purpose of attaining the local omniscience
in Vi.

14See [43] for a detailed distributed PAR algorithm.
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for the two-stage SO, we need to study how to efficiently
search a complimentary subset X∗ and determine the lo-
cal omniscience achievable rate vectors rX∗ ∈ RCO(X∗)
and rX∗ ∈ RCO(X∗) ∩ Z|X∗| for the asymptotic and non-
asymptotic models, respectively.

A. Two-stage Successive Omniscience

The following theorem states that the existence of the
complimentary subset and at least one such subset can be
determined by applying the lower bound α on the minimum
sum-rate for the global omniscience to the PAR algorithm.
A local omniscience achievable rate vector can be searched
at the same time. Theorem 10 is proved in Appendix E by
relaxing the necessary and sufficient condition for X∗ to be
complementary in [6, Theorems 4.2 and 5.2] to a sufficient
condition on α. This lower bound α in Theorem 10 is deter-
mined through (2) by the singleton partition {{i} : i ∈ V }.

Theorem 10. Let Qα,Vi and rα,Vi be the segmented partition
and rate vector, respectively, obtained at the end of any
iteration i ∈ {2, . . . , |V |} of the PAR algorithm.

(a) For the asymptotic model, let α =
∑
i∈V

H(V )−H({i})
|V |−1 .

Any nonsingleton C ∈ Qα,Vi is a complimentary subset
and rα̂,C for α̂ = min{α ∈ R : fα(C) = f̂α(C)} is an
optimal rate vector that attains local omniscience in C
with the minimum sum-rate RACO(C).

(b) For the non-asymptotic model, let α =⌈∑
i∈V

H(V )−H({i})
|V |−1

⌉
. Any nonsingleton C ∈ Qα,Vi

is a complimentary subset and rα̂,C for
α̂ = min{α ∈ Z : fα(C) = f̂α(C)} is an optimal
rate vector that attains local omniscience in C with the
minimum sum-rate RNCO(C).

For both asymptotic and non-asymptotic models, if all subsets
in Qα,Vi remain singleton Qα,Vi = {{m} : m ∈ Vi} until the
|V |-th iteration, there does not exist a complimentary subset.

Theorem 10 is implemented by Algorithm 4. For a system
having at least one complimentary subset, we can find such
subset X∗ and the local omniscience achievable rate vector
rX∗ for the two-stage SO in the first |V | − 1 iterations of
the PAR algorithm. In this case, the run time is (|V | − 1) ·
SFM(|V | − 1); when there does not exist a complimentary
subset, we need to wait until all |V | iterations of the PAR
algorithm finish and Algorithm 4 outputs the results Qα,V
and rα,V denoting the minimum sum-rate and an optimal rate
vector for the global omniscience problem in V . In this case,
the run time is |V | · SFM(|V |). Therefore, the worst case
complexity of Algorithm 4 is O(|V | · SFM(|V |)).15

Remark 11 (Determining α̂). In Theorem 10, to obtain the
value of α̂, we just need to consider the range [0, α] because
α̂ ≤ α in both asymptotic and non-asymptotic models. For the
asymptotic model, α̂ = min{α ∈ R : fα(C) = f̂α(C}) is the
smallest value of α such that C appears as an intact subset

15Algorithm 4 terminates as soon as a complimentary set X∗ is determined.
Since |X∗| < |V |, the actual complexity of Algorithm 4 is usually much less
than O(|V | · SFM(|V |)).

Algorithm 4: Two-stage Successive Omniscience (SO)
by PAR Algorithm

input : H , V and (an arbitrarily chosen linear ordering) Φ.
output: a complimentary subset C and an optimal rate

vector rα̂,C for attaining local omniscience in C; if
C = ∅, there is no complimentary subset and the
returned Qα,V and rα,V constitute the optimal
solution to the global omniscience.

1 Obtain αACO ←
∑
i∈V

H(V )−H({i})
|V |−1

for the asymptotic

model or αNCO ←
⌈∑

i∈V
H(V )−H({i})
|V |−1

⌉
for the

non-asymptotic model;
2 Call PAR(H,V,Φ) and do the following at the end of

iterations from 2 to |V |;
3 for i = 2 to |V | do
4 if ∃C ∈ Qα,Vi : |C| > 1 at some iteration i of PAR then

break and return C and rα̂,C after the update in
step 6 of the PAR algorithm, where

α̂ = min{α ∈ R : fα(C) = f̂α(C)},

α̂ = min{α ∈ Z : fα(C) = f̂α(C)},

for the asymptotic and non-asymptotic models,
respectively (see Remark 11 for how to obtain α̂) ;

5 endfor
6 return C = ∅ and Qα,V and rα,V returned at the end of the

PAR algorithm;

0 1 2 3 4 5 6 7 8 9 10

−5

0

5

10

Qα,V2 = {{4, 5}}
Qα,V2 = {{4}, {5}}

αα̂

α

f̂ α
(V

2
)

Fig. 2. For the 5-user system in Example 9, consider Qα,V2 obtained at
the end of the second iteration of the PAR algorithm, we have the lower
bound on the minimum sum-rate in Theorem 10 being α = 5.75, by which
{4, 5} ∈ Q5.75,V2 is a complimentary subset for the SO in the asymptotic
model. The minimum α such that users 4 and 5 appear as an intact subset in
Qα,V2

is α̂ = 4. For rα,V2
in (13), r4,V2

= r4,{4,5} = (2, 0) is an optimal
rate vector for attaining the local omniscience in {4, 5} with the minimum
sum-rate RACO({4, 5}) = 2.

in Qα,Vi . The reason is that: (i) for all α < α̂, fα(C) <
f̂α(C) and therefore C /∈

∧
argminP∈Π(Vi) fα[P] = Qα,Vi ;

(ii) for all α ≥ α̂, fα(C) = f̂α(C) so that C ⊆ C ′ for some
C ′ ∈ Qα,Vi . That is, α̂ must coincide with one of the critical
values α(j)’s that segment Qα,Vi and can be searched over the
regions (α(j), α(j−1)] such that α(j) < α. See Fig. 2. Taking
the least integer value that is no less than this critical value,
we obtain α̂ for the non-asymptotic model.

B. Multi-stage Successive Omniscience

The two-stage SO can be recursively implemented. After the
local omniscience in the complimentary subset X∗ is attained,
the users in i ∈ X∗ can be treated as a super-user X̃∗ that
observes the source ZX̃∗ = ZX∗ . For all i ∈ V \ X∗, we
need to update Zi ← (Zi,Γ) with Γ being the broadcast
transmissions overheard by user i when the users in X∗
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are communicating to attain the local omniscience. The new
system V ′ = {X̃∗}t{i : i ∈ V \X∗} poses a new omniscience
problem, which can again be solved successively. An example
of this recursive two-stage SO can be found in [1]. This
method, however, requires a decoding function running at the
same time to reconstruct the ZX∗ for each user in X∗ in each
recursion. The full multi-stage SO strategy is not known until
the communications actually happen.

In this section, we show that a multi-stage SO can be
searched without any transmission or encoding-decoding pro-
cess. We first state the achievability of multi-stage SO and
then present how to extract solutions from the PAR algorithm
for asymptotic and non-asymptotic models, respectively.

Proposition 12. In the asymptotic model, a K-stage SO
{(X(k)

∗ , r
(k)
V ) : k ∈ {1, . . . ,K}} is achievable if X(k)

∗ for
all k ∈ {1, . . . ,K} is complimentary and forms a set se-
quence/chain

∅ ( X
(1)
∗ ( X

(2)
∗ ( . . . ( X

(K)
∗ = V, (18)

and the rate vector r
(k)
V satisfies the following conditions for

all k ∈ {1, . . . ,K − 1}:
(a) X(k)

∗ attains local omniscience in X
(k)
∗ : r

(k)

X
(k)
∗

∈

RCO(X
(k)
∗ ) and r

(K)
V ∈ R∗ACO(V ) for the asymptotic

model and r
X

(k)
∗
∈ RCO(X

(k)
∗ ) ∩ Z|V | and r

(K)
V ∈

R∗NCO(V ) for the non-asymptotic model;
(b) all other users are on standby: r(k)

i = 0 for all i ∈ V \
X

(k)
∗ ;

(c) the sum-rate in X
(k)
∗ is nondecreasing: r(k+1)(X

(k)
∗ ) ≥

r(k)(X
(k)
∗ ).16

Proof: The nesting subset chain (18) and monotonicity of
r(k)(X

(k)
∗ ) in k in (c) are the necessary conditions for local

omniscience in X
(k)
∗ , and the global omniscience in the last

stage K, to be implemented subsequently. Conditions (a) and
(b) ensure the local omniscience in X(k)

∗ is attained by r
X

(k)
∗

while the rest of users are overhearing.
The multi-stage SO in Proposition 12 should be imple-

mented in the increasing order of k = 1, 2, . . . ,K, where
the local omniscience in X

(k−1)
∗ is attained before X

(k)
∗ . It

should be noted that a multi-stage SO strategy that satisfies
the achievability in Proposition 12 cannot be found by Algo-
rithm 4, because there is no guarantee that X(k−1)

∗ ( X
(k)
∗

and r
(k−1)
V ≤ r

(k)
V for each k.

1) Asymptotic Model: We propose Algorithm 5 that uses
P(j)’s in the PSP and the corresponding rate vectors rα(j),V ’s
to build a p-stage SO that iteratively attains the local om-
niscience in all nonsingleton subsets in each partition P(j).
The achievability of this p-stage SO is stated in the corollary
below. It is proved in Appendix F, essentially by showing the
monotonic sum-rate in Lemma 4(c) for all X ∈ P(j).

16The users in X(k)
∗ reach omniscience and can be treated as one dimension

at stage k+1. Therefore, Proposition 12(c) is in fact a relaxed condition of the
dimension-wise monotonicity r

(k+1)
V ≥ r

(k)
V for all k ∈ 1, . . . ,K − 1. We

say rV ≥ r′V if ri ≥ r′i for all i ∈ V with at least one of these inequalities
holding strictly. See also Remark 14(a).

Algorithm 5: Multi-stage Successive Omniscience
(SO) by the PAR Algorithm for the Asymptotic Model

input : H , V and Φ.
output: an achievable p-stage SO

{(X (k)
∗ , r

(k)
V ) : k ∈ {1, . . . , p}}.

1 Call PAR(H,V,Φ) to obtain the segmented Qα,V and rα,V
for all α, where Qα,V is segmented by p critical points
α(1), . . . , α(p) and α(0) = H(V ) (see Lemma 1);

2 Initiate r
(0)
V ← (0, . . . , 0);

3 for k = 1 to p do
4 r

(k)
V ← r

(k−1)
V ;

5 X (k)
∗ ← {C ∈ P(p−k) : |C| > 1};

6 foreach C ∈ X (k)
∗ do

7 if C 6= 〈C〉P(p−k+1) then for each
C′ ∈ 〈C〉P(p−k+1) randomly select user i ∈ C′
and let ∆r ← rα(p−k+1)(C′)− r(k)(C′) and
r

(k)
i ← r

(k)
i + ∆r ;

8 end
9 endfor

10 return X (k)
∗ and r

(k)
V for all k ∈ {1, . . . , p} ;

Corollary 13. For the asymptotic model, all X (k)
∗ and r

(k)
V at

the end of Algorithm 5 constitute an achievable p-stage SO
{(X (k)

∗ , r
(k)
V ) : k ∈ {1, . . . , p}}, where r

(p)
V ∈ RACO(V ),

∅ ( X̃ (1)
∗ ( . . . ( X̃ (p)

∗ = V,

and, for all k ∈ {1, . . . , p}, all C ∈ X (k)
∗ are complimentary.

For each C ∈ X (k)
∗ , the local omniscience in each C is

attained by an optimal rate vector r
(k)
C ∈ RACO(C).

Remark 14. We remark the following about Algorithm 5.

(a) The output r(k)
V is nondecreasing in k, i.e., r(k)

V ≥ r
(k−1)
V

for all k ∈ {2, . . . , p}.Therefore, r(k)
V is not necessarily

the same as rα(p−k+1),V in that rα,V returned by the PAR
algorithm is not monotonic in general, e.g., rα,3 in (16)
is not nondecreasing in α.

(b) Algorithm 5 allows more than one complimentary sub-
set to attain local omniscience at each stage. Since all
C ∈ X (k)

∗ are disjoint, the local omniscience in step 7
can be attained simultaneously if the broadcast transmis-
sions between subsets do not cause interference, e.g., via
orthogonal wireless channels in CCDE.17

(c) The interpretation of ∆r in step 7 of the algorithm is: in
addition to the rates for attaining the local omniscience in
C ′, how many transmissions is required from the super-
user C ′ for attaining the local omniscience in C. Since
all users in C ′ have recovered ZC′ in previous stages,
∆r can be assigned to any one of them. Apart from the
random selection in step 7, we can moderate ∆r to the
users i with the lowest r(k)

i to improve the fairness. See
Example 16.

17For example, if P(p−1) = {{1, 2}, {3}, {4, 5}} at the 1st stage of
SO, the users 1, 2, 4 and 5 can transmit at the same time to attain the
local omniscience in {1, 2} and {4, 5}, respectively. The purpose of the
decomposition 〈C〉P(p−k+1) in step 7 is to search all users/super-users that
are supposed to take part in the local omniscience in C.
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This p-stage SO {(X (k)
∗ , r

(k)
V ) : k ∈ {1, . . . , p}} results in

an agglomerative SO tree that converges to the global omni-
science. This bottom-up approach can also be considered as
an opposite process of the divide-and-conquer (DC) algorithm
in [49], where the ground set V is recursively split into
subsets until the optimal rates rRACO(V ),i are determined for
all users i ∈ V . The complexity of this DC algorithm is
O(|V |3 ·SFM(|V |)). See [18, Appendix E] for the explanation
of the DC algorithm and its complexity. Algorithm 5 completes
in O(|V | · SFM(|V |)) time,18 a reduction by a factor of |V |2
compared with the DC algorithm. This reduction could be
significant in large systems.

2) Non-asymptotic Model: Although all nonsingleton C ∈
Qα,V for each integer-valued α ∈ {0, . . . , RNCO(V )} are
complimentary based on Lemma 19, the rate vector rα,V is not
necessarily nondecreasing in integer-valued α.19 This means
that Algorithm 5 cannot be applied to the non-asymptotic
model by simply running each stage k of Algorithm 5 at
the integer-valued critical points dα(p−k+1)e. In this section,
we show that, an achievable K-stage SO {(X(k)

∗ , r
(k)
V ) : k ∈

{1, . . . ,K}} with the integer-valued r
(k)
V attaining local om-

niscience in each complimentary subset X(k)
∗ can be searched

by no more than two calls of the PAR algorithm.20

That is, the complexity of solving the multi-stage SO
problem in a non-asymptotic model is essentially O(|V | ·
SFM(|V |)).

Corollary 15. In the non-asymptotic model, for any nonsin-
gleton subset sequence X

(1)
∗ ( . . . ( X

(K)
∗ = V and the

integer-valued sequence ᾱ(1) < . . . < ᾱ(K) = RNCO(V )
such that ᾱ(k) ∈ [α(j), α(j−1)) for some j ∈ {1, . . . , p} and
X

(k)
∗ ∈ P(j−1), let Φ̄ = (φ̄1, . . . , φ̄|V |) be a linear ordering

such that21

φ̄i < φ̄i′ , ∀φ̄i ∈ X(k)
∗ , φ̄i′ ∈ X(k′)

∗ \X(k)
∗ : k < k′. (19)

and r̄α,V be the rate vector returned by the call PAR(V,H, Φ̄).
For all k ∈ {1, . . . ,K}, the integer-valued r̄

ᾱ(k),X
(k)
∗

attains

local omniscience in X
(k)
∗ ; for all k ∈ {1, . . . ,K − 1},

r̄ᾱ(k+1)(X
(k)
∗ ) ≥ r̄ᾱ(k)(X

(k)
∗ ).

The proof is in Appendix G. Corollary 15 states that if the
complimentary subset sequence X(1)

∗ , . . . , X
(K)
∗ is known, we

can obtain the linear ordering Φ̄ and the monotonic rate vectors
r

(1)
V , . . . , r

(K)
V ensuring the achievability in Proposition 12(c)

of the K-stage SO. This suggests a two-step method for
solving the multi-stage SO problem in the non-asymptotic

18We neglect the computations after step 2 of Algorithm 5 because they
are much less complex than the SFM algorithm. See Appendix D for the
explanation. Therefore, the complexity of Algorithm 5 is the same as the
PAR algorithm.

19An example is the rate rα,3 in (16), where r7,3 = 1 but r9,3 = 0 so
that the monotonicity in Proposition 12(b) does not hold.

20The K-stage SO for both asymptotic and non-asymptotic models is
extracted from the p segments of Qα,V : [α(j), α(j−1)), ∀j ∈ {1, . . . , p}.
While K = p for the asymptotic model, K ≤ p for the non-asymptotic
model, because there could be no integer in segment [α(j), α(j−1)) if
α(j−1) − α(j) ≤ 1.

21The linear ordering Φ̄ satisfying (19) ensures V
|X(k)
∗ |

= X
(k)
∗ for all

k ∈ {1, . . . ,K}.

model: run the PAR algorithm with an arbitrary linear ordering
Φ to obtain all X(k)

∗ ’s; construct the linear ordering Φ̄ from
X

(k)
∗ ’s and rerun the PAR algorithm with Φ̄ to get all r(k)

V ’s.
This method is implemented in Algorithm 6. The first for-

loop is to extract X(k)
∗ ’s and ᾱ(k)’s from the returned results

of the first run of the PAR algorithm in step 1. Here, ᾱ(k) can
be any integer in the region [α(j), α(j−1)). We chose ᾱ(k) =
min{α : α ∈ [α(j), α(j−1)) ∩ Z}. The purpose is to ensure
ᾱ(K) = min{α : α ∈ [α(1), α(0)) ∩ Z} = RNCO(V ) at the last
iteration. At the end of the first for-loop, we get X(k)

∗ ’s that
form a nesting sequence X(1)

∗ ( . . . ( X
(K)
∗ = V and a linear

ordering Φ̄ that satisfies (19). The second for-loop determines
the rate vector r(k)

V for each k based on the returned results of
the second run of the PAR algorithm in step 11. The method
is to allocate rates ∆r to any user in X

(k−1)
∗ . As explained

in Remark 14(c), ∆r denotes the rate at which the users in
X

(k−1)
∗ should transmit to attain the omniscience in X(k)

∗ . For
the rest of the users in X(k)

∗ \X(k−1)
∗ that have not transmitted

in the previous stages, we directly assign rates r̄ᾱ(k),i.
The linear ordering Φ̄ = (φ̄1, . . . , φ̄|V |) satisfying (19)

can be constructed by assigning each X
(k)
∗ the first |X(k)

∗ |
elements φ̄1, . . . , φ̄|X(k)

∗ |
. This can be done by letting

{φ̄1, . . . , φ̄|X(1)
∗ |
} = X

(1)
∗ and {φ̄|X(k)

∗ |+1
, . . . , φ̄|X(k+1)

∗ |} =

X
(k+1)
∗ \ X(k)

∗ for all k ∈ {1, . . . ,K − 1}. For example, if
X

(1)
∗ = {3, 4} and X

(2)
∗ = {1, . . . , 4}, then we could have

Φ̄ being (3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2) or (4, 3, 2, 1), since
all of them satisfy V2 = X

(1)
∗ = {3, 4} and V4 = X

(2)
∗ =

{1, . . . , 4}.

Example 16. We apply Algorithm 5 to the 5-user system in
Example 9. The call PAR(H,V, (4, 5, 2, 3, 1)) returns rα,V and
Qα,V in (16). Let r(0)

V = (0, . . . , 0).
For k = 1, first assign r

(1)
V = (0, . . . , 0). We get X (1)

∗ =
{C ∈ P(2) : |C| > 1} = {{4, 5}} such that 〈{4, 5}〉P(3) =
{{4}, {5}} 6= {4, 5}. This means local omniscience has not
been attained in {4, 5} before. We then assign rates in step 7
as r(1)

4 = rα(3),4 = 2 and r
(1)
5 = rα(3),5 = 0 so that r(1)

V =
(0, 0, 0, 2, 0).

For k = 2, assign r
(2)
V = r

(1)
V = (0, 0, 0, 2, 0) and

get X (2)
∗ = {C ∈ P(1) : |C| > 1} = {{1, 4, 5}}, where

〈{1, 4, 5}〉P(2) = {{1}, {4, 5}} 6= {1, 4, 5}. Note that, in
this case, we can merge C ′ = {4, 5} as a super-user
because users 4 and 5 reconstruct Z4,5 in the first stage.
By doing so, the dimension of the system is reduced to 4,
which contains individual users in {1, 2, 3} and a super-user
formed by users 4 and 5. Since rα(2)({4, 5}) = 4 so that
∆r = rα(2)({4, 5})−r(2)({4, 5}) = 2. This means in addition
to r

(1)
V = (0, 0, 0, 2, 0) that attains the local omniscience

in {4, 5}, users 4 and 5 need to transmit 2 more times for
attaining the local omniscience in {1, 4, 5}. In this case, we
choose user 4 to transmit ∆r so that r(2)

4 = 2 + 2 = 4; for
C ′ = {1} being singleton, we haven’t assigned any rates to
user 1 before and therefore r

(2)
1 = rα(2),1 = 1. So, r

(2)
V is

updated to (1, 0, 0, 4, 0). See Fig. 3.
Repeating the same procedure, we have r

(3)
V =

(1, 0.5, 0.5, 4.5, 0) ∈ R∗ACO(V ) at the end of iteration k = 3.
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Algorithm 6: Multi-stage Successive Omniscience
(SO) by the PAR Algorithm for the Non-Asymptotic
Model

input : H , V and Φ.
output: an achievable K-stage SO

{(X(k)
∗ , r

(k)
V ) : k ∈ {1, . . . ,K}} in the

non-asymptotic model.

1 Arbitrarily choose a linear ordering Φ and call
PAR(H,V,Φ) to obtain the segmented Qα,V and rα,V for
all α, where Qα,V is segmented by p critical points
α(1), . . . , α(p) and α(0) = H(V ) (see Lemma 1);

2 k ← 1 and X(0)
∗ ← ∅;

3 for j decreasing from p to 1 do
4 if [α(j), α(j−1)) ∩ Z 6= ∅ then
5 ᾱ(k) ← min{α : α ∈ [α(j), α(j−1)) ∩ Z};
6 X

(k)
∗ ← C, where C ∈ P(j−1) such that
X

(k−1)
∗ ( C;

7 k ← k + 1;
8 (φ̄|X(k−1)

∗ |+1
, . . . , φ̄|X(k)

∗ |
)← X

(k)
∗ \X(k−1)

∗ ;
9 endif

10 endfor
11 (Qα,V , r̄α,V )← PAR(H,V, Φ̄);
12 Initiate r

(0)
V ← (0, . . . , 0);

13 for k = 1 to K do
14 r

(k)
V ← r

(k−1)
V ;

15 Randomly select user i ∈ X(k−1)
∗ and let

∆r ← r̄ᾱ(k)(X
(k−1)
∗ )− r(k)(X

(k−1)
∗ ) and

r
(k)
i ← r

(k)
i + ∆r;

16 foreach i ∈ X(k)
∗ \X(k−1)

∗ do let user i transmit at rate
r̄ᾱ(k),i: r

(k)
i ← r̄ᾱ(k),i;

17 endfor
18 return X (k)

∗ and r
(k)
V for all k ∈ {1, . . . ,K};

Finally, we have a 3-stage SO {(X (k)
∗ , r

(k)
V ) : k ∈ {1, . . . , 3}}.

Since all users in C ′ have recovered ZC′ in previous
stages, ∆r can be assigned to any one of them. We show
a fairer allocation of ∆r as follows. If we assign ∆r =
rα(2)({4, 5}) − r(2)({4, 5}) = 2 to user 5 in stage k = 2
and ∆r = rα(1)({1, 4, 5}) − r(3)({1, 4, 5}) = 0.5 to user
1 in stage k = 3, we have a fairer rate vector sequence
r

(1)
V = (0, 0, 0, 2, 0), r

(2)
V = (1, 0, 0, 2, 2) and r

(3)
V =

(1.5, 0.5, 0.5, 2, 2) ∈ R∗ACO(V ). In general, this approach
does not necessarily result in the fairest optimal rate vector
R∗ACO(V ) at the end of final stage k = p.22

We then apply Algorithm 6 for the non-asymptotic model.
For three critical points α(3) = 4, α(2) = 6 and α(1) = 6.5,
consider three regions [4, 6), [6, 6.5) and [6.5, 10). We extract
three integers ᾱ(1) = 4, ᾱ(2) = 6 and ᾱ(3) = 7 = RNCO(V )

corresponding to complimentary subsets X
(1)
∗ = {4, 5},

X
(2)
∗ = {1, 4, 5} and X

(3)
∗ = {1, . . . , 5} = V , respectively

and the linear ordering Φ̄ = (4, 5, 1, 2, 3) at step 10. We run

22It is because in the first stage k = 1, the rate vector r
(1)
C is already an

extreme point or vertex in R∗ACO(C) for all C ∈ X (1)
∗ [18, Theorem 27].

Thus, Remark 14(c) only attains some level of fairness in the optimal rate
vector set R∗ACO(V ). Independent from this successive approach, there are
several algorithms proposed in [50] for searching the fairest optimal rate vector
for both asymptotic and non-asymptotic models.

α = 0

P(3)

user 4 user 5 user 1 user 2 user 3

α(3) = 4
stage k = 1
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r
(
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=
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=
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Fig. 3. The 3-stage agglomerative SO tree outlined in Example 16 by applying
Algorithm 5 to the 5-user system for the asymptotic model in Example 9.
Here, the users/super-users at each stage k correspond to a P(j) in the PSP
of V , which characterizes the segmented partition Qα,V . The rates r(k)

i are
determined by the segmented rate vector rα,V in (16). The 3-stage SO for
the non-asymptotic model determined in Example 16 by Algorithm 6 is also
shown, which only differs from the one for the asymptotic model at the last
stage k = 3, where the super-user 145 and users 2 and 3 merges at α = 7
instead of α = 6.5.

the PAR algorithm again with Φ̄ and get a new rate vector

r̄α,V =



(α− 5, α− 6, α− 6, α− 2, α− 4) α ∈ [0, 4],

(α− 5, α− 6, α− 6, α− 2, 0) α ∈ (4, 6],

(α− 5, α− 6, α− 6, α− 2, 0) α ∈ (6, 6.5],

(1, α− 6, 7− α, α− 2, 0) α ∈ (6.5, 7],

(1, 1, 0, α− 2, 0) α ∈ (7, 10].

where r̄α({4, 5}) < r̄α({1, 4, 5}) < r̄α({1, . . . , 5}) based on
Lemma 4(c). The rate allocation procedure in step 12 to 18 is
similar to Algorithm 5. We choose a fair method to allocate
∆r and get r

(1)
V = (0, 0, 0, 2, 0), r

(2)
V = (1, 0, 0, 2, 2) and

r
(3)
V = (2, 1, 0, 2, 2) ∈ R∗NCO(V ). There is an example in [1]

showing how to implement a multi-stage SO in CCDE using
random linear network coding [51].

According to Theorem 10 and Algorithm 4, if there does
not exist a complimentary subset X∗ ( V , Algorithms 5 and
6 output a 1-stage SO containing the solution to the global
omniscience problem: X(1)

∗ = V and an optimal rate vector
r

(1)
V ∈ RACO(V ) and r

(1)
V ∈ RNCO(V ) for the asymptotic and

non-asymptotic models, respectively.

V. CONCLUSION

This paper proposed a PAR algorithm that reduces the
complexity of solving the minimum sum-rate problem in CO
by a factor of |V |. We observed the structural properties
of the existing CoordSatCap algorithm that determines the
Dilworth truncation f̂α(V ) for a minimum sum-rate estimate
α and proved that the objective function in a nesting SFM
problem exhibits the strict strong map property in α. We
proposed a StrMap algorithm that searches the minimizer for
all α by O(1) calls of the PSFM algorithm that completes



14 IEEE TRANSACTIONS

in O(SFM(|V |)) time. Based on this fact, we proposed a
PAR algorithm that solves the minimum sum-rate problem
in O(|V | · SFM(|V |)) time. We showed a distributed im-
plementation of PAR, which incurs computation complexity
O(SFM(|V |)) at each user.

We also utilized the PAR algorithm to efficiently solve
the SO problem. For the two-stage SO, we showed that by
applying a lower bound α on the minimum sum-rate to the
results at the end of each iteration of the PAR algorithm,
a complimentary subset and a local omniscience achievable
rate vector can be found. For the multi-stage SO, we propose
sufficient conditions for a K-stage SO to be achievable. We
used these conditions to propose algorithms for searching for
an achievable multi-stage SO strategy for asymptotic and non-
asymptotic models. It shows that both two-stage and multi-
stage SO can be solved in O(|V | · SFM(|V |)) time.

In addition to the brief discussion on the related problems
in Section III-D, it is worth studying how the PAR algorithm
contributes to the recent developments in secret key agreement
problem in [52], [53] and the agglomerative approach for the
information-theoretic clustering problem in [54]. It is also of
interest to see how the results on the non-asymptotic model
derived in this paper can be applied to a practical CCDE
system. While these results can be directly implemented by
the random linear network coding [51] where the coefficient
is chosen from a sufficiently large Galois field (See examples
in [1]), it is worth understanding how to determine the content
in each transmission for other network coding schemes.

APPENDIX A
PROPERTIES OF PSP IN α AND THE DECOMPOSITION

ALGORITHM

For f being a submodular function, e.g., the entropy func-
tion H or the cut κ function. The solution to the mini-
mization minP∈Π(V ) fα[P], where fα[P] =

∑
C∈P fα(C), is

segmented in α by critical points α(j) and the partitions P(j)

for all j ∈ {0, . . . , p} as described in Section II-B2. The α(j)’s
and P(j) satisfy the following lemma.

Lemma 17 ( [21, Sections 2.2 and 3] [41, Definition 3.8]).
For any two P(j) and P(j′) such that j < j′ (or P(j′) ≺ P(j)),
let

α = f(V )− f [P(j′)]− f [P(j)]

|P(j′)| − |P(j)|
.

The following statements hold.

(a) If j + 1 = j′, α = α(j′);
(b) if j + 1 < j′, α(j′) < α ≤ α(j).

Based on Lemma 17, the call DA({{i} : i ∈ V }, {V }) of the
decomposition algorithm (DA) in Algorithm 7 returns all parti-
tions in {P(j) : j ∈ {0, . . . , p}} of the PSP. The corresponding
critical points α(j) can be determined by Lemma 17(a). The
MDA algorithm in [18, Algorithm 1] is a revised version of
the DA algorithm for the purpose of determining only the first
partition P(1), which determines the solution to the minimum
sum-rate problem in CO. Lemma 17 also ensures the validity
of StrMap algorithm in Algorithm 2.

Algorithm 7: Decomposition Algorithm (DA) [21,
Algorithm SPLIT] [41, Algorithm II]

input : P(j),P(j′) in the PSP of V such that P(j′) ≺ P(j).
output: {P(j),P(j+1), . . . ,P(j′)}.

1 α := H(V )− f [P(j′)]−f [P(j)]

|P(j′)|−|P(j)|
;

2 (rα,V ,Qα,V ) := CoordSatCap(α, f, V,Φ) where Φ is an
arbitrarily chosen linear ordering of V ;

3 if Qα,V = P(j′) then return {P(j),P(j′)};
4 else return DA(P(j),Qα,V ) ∪ DA(Qα,V ,P(j′));

APPENDIX B
PROOF OF LEMMA 4

The fact that rα,V ∈ P (fα) holds throughout Algorithm 1
is shown in [21, Section 4.2] [18, Lemma 19] and the equality
of two polyhedra P (fα) = P (f̂α) is proved in [19, Theorem
25]. (a) is the result in [21, Theorem 8 and Lemma 9].

We prove (b) and (c) as follows. All C ∈ Qα,Vi are tight
sets [21, Section 4.2], i.e., rα(C) = fα(C),∀C ∈ Qα,Vi . In
addition, for each C ∈ Qα,Vi , rα(C) = fα(C) ≤ f̂α(C)
since rα,V ∈ P (fα) = P (f̂α). But, f̂α(C) ≤ fα(C),
too, based on the definition of Dilworth truncation (3). So,
rα(C) = fα(C) = f̂α(C) for all C ∈ Qα,Vi and therefore
rα(X̃ ) = rα[X ] = fα[X ] = f̂α[X ] for all X ⊆ Qα,Vi . We
also have X =

∧
argminP∈Π(X̃ ) fα[P],∀X ⊆ Qα,Vi because,

otherwise, either Qα,Vi /∈ argminP∈Π(Vi) fα[P] or Qα,Vi is
not the finest minimizer. Therefore, (b) holds. (c) also holds
because of the properties of the PSP in Section II-B2.

APPENDIX C
PROOF OF LEMMA 8

Lemma 8(a) is a result in [42, Theorem 31] of the strict
strong map: for Sj =

⋂
argmin{gαj (X̃ ) : {φi} ∈ X ⊆

Qαj ,Vi−1
t {{φi}}} and Sj−1 =

⋃
argmin{gαj (X̃ ) : {φi} ∈

X ⊆ Qαj ,Vi−1
t {{φi}}} for all j ∈ {1, . . . , q}. Here,

gαj (S̃j−1) = gαj (S̃j) is equivalent to rαj (S̃j−1 \ S̃j) =

H(S̃j−1)−H(S̃j). This proves (a).
For j < j′, convert (11) to H(S̃j) − H(S̃j′) = fα[〈S̃j \

S̃j′〉Pd ]. Since

H(S̃j)−H(S̃j′) =

j′∑
m=j+1

(
H(S̃m−1)−H(S̃m)

)
=

j′∑
m=j+1

rαm(S̃m−1 \ S̃m),

we have fα[〈S̃j \ S̃j′〉Pd ] =
∑j′

m=j+1 rαm(S̃m−1 \ S̃m). We
prove (b) by contradiction as follows.

For the case Pd ≺ Qαj′ ,Vi , let P(l) be one of the parti-
tions in the PSP of Vi−1, the segmented Qα,Vi−1 , such that
P(l) t {{φi}} = Pd, then we must have α(l) < αj′ based on
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Lemma 1. Assume that α > αj+1. Based on Lemma 4(c), we
have

j′∑
m=j+1

rαm(S̃m−1 \ S̃m) = fα[〈S̃j \ S̃j′〉Pd ] >

fαj+1
[〈S̃j \ S̃j′〉Pd ] ≥

j′∑
m=j+1

fαm [〈S̃m−1 \ S̃m〉Pd ]

contradicting rα,V ∈ P (fα),∀α in Lemma 4. Assume that
α ≤ α(l). Based on Lemma 4(b) and (c) and the Dilworth
truncation (3), we have

j′∑
m=j+1

rαm(S̃m−1 \ S̃m) = fα[〈S̃j \ S̃j′〉Pd ] ≤

fα(l) [〈S̃j \ S̃j′〉Pd ] = f̂α(l)(S̃j \ S̃j′) < f̂αj′ (S̃j \ S̃j′) ≤
j′∑

m=j+1

f̂αj′ (S̃m−1 \ S̃m) ≤
j′∑

m=j+1

f̂αm(S̃m−1 \ S̃m)

contradicting rα(X̃ ) = f̂α(X̃ ) for all X ⊆ Qα,Vi and α in
Lemma 4(b). So, we must have αj+1 ≥ α > α(l), i.e., (b)-(i)
holds.

For Pd = Qαj′ ,Vi , consider the case when j + 1 < j′.

Assume that α > αj+1. We have
∑j′

m=j+1 rαm(S̃m−1 \
S̃m) = fα[〈S̃j \ S̃j′〉Pα

j′
] > fαj+1

[〈S̃j \ S̃j′〉Pα
j′

] ≥∑j′

m=j+1 fαm [〈S̃m−1 \ S̃m〉Pα
j′

] contradicting rα,V ∈
P (fα),∀α in Lemma 4. Assume that α ≤ αj′ . We have∑j′

m=j+1 rαm(S̃m−1 \ S̃m) = fα[〈S̃j \ S̃j′〉Pα
j′

] ≤ fαj′ [〈S̃j \
S̃j′〉Pα

j′
] = f̂αj′ (S̃j \ S̃j′) ≤

∑j′

m=j+1 f̂αj′ (S̃m−1 \ S̃m) <∑j′

m=j+1 f̂αm(S̃m−1 \ S̃m) contradicting rα(X̃ ) = f̂α(X̃ ) for
all X ⊆ Qα,V and α in Lemma 4(b). Therefore, we must have
αj+1 ≥ α > αj′ .

Consider the case when j + 1 = j′. Assume that α > αj′ .
Then, we have rαj′ (S̃j\S̃j′) = fα[〈S̃j\S̃j′〉Pα

j′
] > fαj′ [〈S̃j\

S̃j′〉Pα
j′

] contradicting rαj′ ,V ∈ P (fαj′ ) in Lemma 4. As-

sume α < αj′ . We have rαj′ (S̃j \ S̃j′) = fα[〈S̃j \ S̃j′〉Pα
j′

] <

fαj′ [〈S̃j \ S̃j′〉Pαj′ ] = f̂αj′ (S̃j \ S̃j′) contradicting rαj′ (X̃ ) =

f̂αj′ (X̃ ),∀X ⊆ Pαj′ in Lemma 4(b). Therefore, we must have
α = αj′ . This proves (b)-(ii).

APPENDIX D
SFM AND PSFM

For submodular set function f : 2V 7→ R, min{f(X) : X ⊆
V } is a submodular function minimization (SFM) problem.
There exist various polynomial-time algorithms for solving
this SFM problem [19]. We denote the complexity of solving
this problem by O(SFM(|V |)), which is polynomial in |V |.
Let δ be the upper bound on the complexity of evaluating the
value of f(X) for X ⊆ V . The complexity O(SFM(|V |)) of
the SFM algorithms in [55]–[58] is in the order of |V |5 to |V |8,
e.g., the SFM algorithms in [58] and [59] have the complexity

O(|V |8 · δ) and O(|V |5 · δ+ |V |6), respectively. See the sum-
mary of these SFM algorithms in Appendix D of the arXiv ver-
sion of [18]. The most recent SFM algorithm is the Fujishige-
Wolfe algorithm proposed in [60] based on the minimum-
norm point method in [61], which is implemented in the SFM
toolbox [62]. The complexity of the Fujishige-Wolfe algorithm
is proved in [63, Theorem 1] to be O((|V |3δ + |V |4)M2),
where M = maxi∈V {|f({i})|, |f(V )− f(V \ {i})|}.23

In the computation complexity of all algorithms proposed
in this paper, we neglect the computations other than the
call of the SFM algorithm, e.g., the union, summation and
subtraction operations in Algorithm 6, because they are much
less complex than the SFM algorithm. For example, the
value α̂ in Remark 11 can be searched over no more than i
regions: [α(p), α(p−1)], (α(p−1), α(p−2)], ..., (α(1), α(0)], where
p ≤ |Vi| = i. The run time is O(i), where i ≤ |V |. This
operation does not depend on δ and therefore is much simpler
than the SFM algorithm. In CO and SO, δ depends on the run
time of evaluating the entropy function H(X). For example, in
CCDE, δ refers to the complexity of the matrix rank function,
which is polynomial in |V |, e.g., O(|V |2.38) [64].

The authors in [46] studied a specific type of SFM for
the graph model, the push-relabel max-flow/Min-cut algorithm
in [65]. It was shown that if the capacities of edges from
the source node and to the sink node are monotonically
changing in a real-valued parameter α, the max-flows/min-
cuts for each α can be determined in order. The max-flow
algorithm in [65] was then extended to a parameterized max-
flow algorithm, which solves a finite sequence of min-cut
problems parameterized by α at the same asymptotic time as
the push-relabel MaxFlow algorithm.24

The same technique was further applied to extend the SFM
algorithms to the PSFM algorithms in [33]–[35] that can solve
a sequence of SFM problems having the strong map property
in α. However, all these algorithms require a finite number of
monotonic values of α, e.g., the critical values α0, . . . , αq in
Lemma 7, as input. Since we do not know the critical values
αj’s in advance, these PSFM algorithms cannot be directly
applied to solve the problem min{gα(X̃ ) : {i} ∈ X ⊆ Qα,Vi}
in the PAR algorithm. This is the reason why we derive
Lemma 8 and propose the StrMap algorithm (Algorithm 2).
The StrMap algorithm invokes at most 2q recursions to search
for all αj’s and S̃j’s that determine the minimum and the
minimizer of min{gα(X̃ ) : {i} ∈ X ⊆ Qα,Vi} for all α.
The StrMap algorithm can be implemented by the PSFM
algorithms in [33]–[35]. See the Slicing algorithm in [33,
Section 4.2], where it is shown that the StrMap algorithm
completes at the same time as the PSFM algorithms and
therefore its complexity is O(SFM(|V |)). There is an example
in [43, Algorithm 7] showing how to run StrMap by a
parametric version of Schrijvers SFM algorithm in [58]. The
idea is the same as [33, Section 4.2]: running the push-relabel
SFM [33, Section 4.2] in descending α and the reverse-push-

23For the CO problem, M ≤ H(V ).
24Here, ‘asymptotic’ refers to the asymptotic limits of the complexity

notation O(·): for the actual running time a(|V |), the asymptotic complexity
is O(b(|V |)) if lim|V |→∞

a(|V |)
b(|V |) = c for some constant c.
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relabel SFM of [33, Section 4.2] in ascending α. They incur
the same label and push operations (in terms of asymptotic
complexity) as the SFM algorithm [33].

For determining the PSP of a graph, Kolmogorov proposed
an algorithm [66, Fig. 3] with the parametric MaxFlow [46]
being the subroutine, the contribution of which is similar
to the PAR algorithm: it reduces the previous complexity
O(|V |2 ·MaxFlow(|V |)) for determining the network strength
and the maximum number of edge-disjoint spanning trees [22],
[23] to O(|V | ·MaxFlow(|V |)). Here, MaxFlow(|V |) denotes
the complexity of determining the max-flow in a |V |-vertex
graph. The method in [66, Fig. 3] is to keep updating the
rate vector rα,V at the end of each iteration to maintain each
dimension rα,i monotonically increasing in α. We show in
[43, Theorem E.1] that the purpose of this rate update is
in fact to preserve a non-strict strong map property of the
corresponding SFM such that the minimizer forms a ‘nesting’
set sequence in α as stated in [66, Lemmas 4 and 5]. However,
this method cannot be applied to the CO and SO problem.
In [43, Theorem E.1], we follow the rate adaptation method
in [66, Fig. 3] and the non-strict strong map to derive the
properties of the critical points (a result similar to Lemma 8).
It is shown that a small positive ε needs to be applied to check
if there is exists any critical point in the region (αj′ , αj ]. This
means that if this ε is not set to be small enough, we might
not be able to find all critical points. See the explanation in
[43, Appendix E].

APPENDIX E
PROOF OF THEOREM 10

We start with the necessary and sufficient condition for a
user subset to be complimentary in [6], [27]. We rewrite this
condition in terms of the Dilworth truncation f̂α below and
relax it to a sufficient condition that only requires a lower
bound on the minimum sum-rate RACO(V ) or RNCO(V ). Since
V is always a complimentary subset, we restrict our attention
to proper subsets of V .

Corollary 18. A user subset X∗ ( V such that |X∗| > 1 is
complimentary if and only if fRACO(V )(X∗) = f̂RACO(V )(X∗)

for the asymptotic model and fRNCO(V )(X∗) = f̂RNCO(V )(X∗)
for the non-asymptotic model.

Proof: Consider the asymptotic model first. Based on
[6, Theorem 4.2], RACO(X∗) ≤ RACO(V ) − H(V ) +
H(X∗) = fRACO(V )(X∗) is the necessary and sufficient
condition for X∗ to be complimentary. We also have
RACO(X∗) ≥

∑
C∈P

H(X∗)−H(C)
|P|−1 ,∀P ∈ Π(X∗) : |P| > 1.

So,
∑
C∈P

H(X∗)−H(C)
|P|−1 ≤ RACO(V )−H(V )+H(X∗),∀P ∈

Π(X∗) : |P| > 1, which is equivalent to fRACO(V )(X∗) ≤∑
C∈P fRACO(V )(C),∀P ∈ Π(X∗), i.e., fRACO(V )(X∗) =

f̂RACO(V )(X∗). In the same way, one can prove that the nec-
essary and sufficient condition for a subset X∗ to be compli-
mentary in [6, Theorem 5.2], H(V )−H(X∗) +RNCO(X∗) ≤
RNCO(V ), is equivalent to fRNCO(V )(X∗) = f̂RNCO(V )(X∗).

In [6, Theorems 4.2 and 5.2], the necessary and sufficient
condition in Corollary 18 is written as I(X∗) ≥ I(V ) and
bI(X∗)c ≥ bI(V )c for the asymptotic and non-asymptotic

models, respectively, via the dual relationships: RACO(V ) =
H(V ) − I(V ) and RNCO(V ) = H(V ) − bI(V )c [13], [16].
Here, I(V ) is the amount of information shared by users
in V [43, Section IV]. The interpretation of the necessary
and sufficient condition in Corollary 18 is: the sources in a
complimentary subset X∗ are more correlated to each other
than with the remaining sources in V \X∗. This is a common
situation in real world applications. For example, the sensors
that are geographically close to each other usually record data
that are statistically similar.

Lemma 19 (sufficient condition). A user subset X∗ ( V such
that |X∗| > 1 is complimentary if fα(X∗) = f̂α(X∗) for
α ≤ RACO(V ) for the asymptotic model and an integer-valued
α ≤ RNCO(V ) for the non-asymptotic model.

Proof: For any α, α′ ≤ RACO(V ) such that α < α′, if
fα(X∗) = f̂α(X∗), then

fα′ [P]− fα′(X∗)

= H[P]−H(X∗)− (|P| − 1)
(
H(V )− α′

)
> H[P]−H(X∗)− (|P| − 1)

(
H(V )− α

)
= fα[P]− fα(X∗) ≥ 0

(20)

for all P ∈ Π(X∗) such that |P| > 1, where H[P] =∑
C∈P H(C). So, fRACO(V )[P] − fRACO(V )(X∗) ≥ fα[P] −

fα(X∗) ≥ 0,∀P ∈ Π(X∗) : |P| > 1. The condition
fRACO(V )(X∗) = f̂RACO(V )(X∗) in Corollary 18 holds. There-
fore, X∗ is complimentary in the asymptotic model. In the
same way, one can prove the sufficient condition fα(X∗) =

f̂α(X∗) for the non-asymptotic model.
We derive a lower bound α that tells the existence of a

complimentary subset as follows.

Corollary 20. For any two lower bounds α and α′ on the
minimum sum-rate RACO(V ) for the asymptotic model, or on
RNCO(V ) for the non-asymptotic model, such that α < α′,

{X∗ ( V : |X∗| > 1, fα(X∗) = f̂α(X∗)}
⊆ {X∗ ( V : |X∗| > 1, fα′(X∗) = f̂α′(X∗)}.

Proof: As shown in the proof of Lemma 19, for any X∗ (
V such that |X∗| > 1, if fα(X∗) = f̂α(X∗), then fα[P] −
fα(X∗) ≥ 0,∀P ∈ Π(X∗) : |P| > 1 and inequality (20) holds.
We necessarily have fα′(X∗) = f̂α′(X∗) so that X∗ ∈ {X∗ (
V : |X∗| > 1, fα′(X∗) = f̂α′(X∗)}. Corollary holds.

Lemma 19 does not tell the non-existence of a com-
plimentary subset. Corollary 20 states that the number of
complimentary subsets searched by Lemma 19 shrinks to zero
when the value of lower bound α decreases. Therefore, we
need to choose a α large enough to capture at least one of the
complimentary subsets (if there exists one).

Lemma 21. There does not exist any complimentary subset
in the asymptotic model if no X∗ ( V such that |X∗| > 1

satisfies fα(X∗) = f̂α(X∗) for α =
∑
i∈V

H(V )−H({i})
|V |−1 for

the asymptotic model and αNCO = d
∑
i∈V

H(V )−H({i})
|V |−1 e for

the non-asymptotic model.
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Proof: The proof is based on Lemma 17. The method is
to show that if no X∗ holds fα(X∗) = f̂α(X∗), there is only
singleton partition and ground set partition in the PSP, which
indicates the omniscience can only be attainted in a one-off
manner. If @X∗ ( V : |X∗| > 1, fα(X∗) = f̂α(X∗), we must
have fα(X∗) > fα[P] for some P ∈ Π(X∗) : |P| > 1 for
all X∗ ( V such that |X∗| > 1. This necessarily means that
Qα,V =

∧
argminP∈Π(V ) fα[P] = {{i} : i ∈ V }. In the case

when α =
∑
i∈V

H(V )−H({i})
|V |−1 , Lemma 17(a) holds. That is,

the PSP of V only contains one critical point α(1) = α with
the partition chain {{i} : i ∈ V } = P(1) ≺ P(0) = {V }.
In this case, the value of α in the lemma is in fact the
minimum sum-rate for the asymptotic model, i.e., α(1) =
RACO(V ) = α, where the necessary and sufficient condition
in Corollary 18 does not hold, i.e., @X∗ ( V : |X∗| >
1, fRACO(V )(X∗) = f̂RACO(V )(X∗). Therefore, there is no com-
plimentary subset for SO in the asymptotic model. Similarly,
for α′ =

⌈∑
i∈V

H(V )−H({i})
|V |−1

⌉
for the non-asymptotic model,

we have Qα′,V = {{i} : i ∈ V } = Qα,V due to the property
of the PSP Qα,V � Qα′,V for α ≤ α′. This necessarily
means α′ = RNCO(V ). Corollary 18 holds and there is no
complimentary subset in the non-asymptotic model.

The lower bounds α can be determined by O(|V |) calls of
the entropy function. An example to demonstrate Lemma 21
for the asymptotic model is the independent source model with
the terminals Zi being independent of each other, where we
have only two trivial partitions P(1) = {{i} : i ∈ V } and
P(0) = {V } in the PSP and α(1) = RACO(V ) = H(V ). The
lower bound in Lemma 21 is α =

∑
i∈V

H(V )−H({i})
|V |−1 = α(1)

and the partition P(1) = {{i} : i ∈ V } indicates that no X∗ (
V such that |X∗| > 1 satisfies fα(X∗) = f̂α(X∗). In this
case, there does not exist any complimentary subset for the
asymptotic model in the independent source. Lemmas 21 and
19 prove Theorem 10.

APPENDIX F
PROOF OF COROLLARY 13

We prove this corollary by showing that {(X̃ (k)
∗ , r

(k)
V ) : k ∈

{1, . . . , p}} returned by Algorithm 5 satisfies the achievability
of the multi-stage SO in Proposition 12. Based on Theorem 10,
X (k)
∗ obtained in step 5 contains all nonsingleton subsets of
P(p−k) that are complimentary. For all k ∈ {1, . . . , p} and
each C ∈ X (k)

∗ , α̂ = min{α ∈ R : fα(C) = f̂α(C)} =
α(p−k+1) so that rα(p−k+1),C ∈ R∗ACO(C) with sum-rate
rα(p−k+1)(C) = RACO(C) according to Theorem 10 and Re-
mark 11. Here, we only know the sum-rate rα(p−k+1)(C) is op-
timal for each k, but are unclear how to allocate it to individual
users that achieves the local omniscience in Proposition 12(a)
and the monotonicity of the rates in Proposition 12(c). Below,
we prove by recursion that the rate allocation procedure in
Algorithm 5 satisfies Proposition 12(a) and (c).

For k = 1, since P(p) = {{i} : i ∈ V }, we have
〈C〉P(p) contains only singletons for all C ∈ X (1)

∗ = {C ∈
P(p−1) : |C| > 1}. In this case, rα(p),V ∈ R∗ACO(C) with
the dimensions rα(p),i ≥ 0 for all i ∈ C [19, Lemma 3.23]
[18, Theorem 9], i.e., the monotonicity in Proposition 12(b)
holds. After step 7, the local omniscience is attained in each

C ∈ X (1)
∗ with r(1)

i = rα(p),i for all i ∈ C, i.e., the sum-rate
r(1)(C) = rα(p)(C) is assigned to the users in C.

By recursion, before step 7 of Algorithm 5 in iteration
k, we have all nonsingletons C ′ ∈ 〈C〉P(p−k+1) attain local
omniscience by an optimal rate vector r(k′)

C′ = rα(p−k′+1),C′ ∈
R∗ACO(C ′) with sum-rate r(k′)(C ′) = rα(p−k′+1)(C ′) at some
previous stage k′ < k. So, all C ′ can be treated as super-
users with the index C̃ ′ and, for the problem of attain-
ing the local omniscience in C, it suffices to consider the
super-user system C̃ = {C̃ ′ : C ′ ∈ 〈C〉P(p−k+1)}. For
rα(p−k+1),C̃′ = rα(p−k+1)(C ′) =

∑
i∈C′ rα(p−k+1),i, we have

rα(p−k+1),C ∈ R∗ACO(C) reduce to rα(p−k+1),C̃ ∈ R∗ACO(C̃)

with rα(p−k+1)(C) = RACO(C) = RACO(C̃) = rα(p−k+1)(C̃).
Therefore, we just need to assign the rates rα(p−k+1)(C ′) to
the users in C ′, where the monotonicity in Proposition 12(b)
also holds for all C ′, based on Lemma 4(c):

∆r = rα(p−k+1)(C ′)− r(k′)(C ′)

= rα(p−k+1)(C ′)− rα(p−k′+1)(C ′) > 0
(21)

since α(p−k+1) > α(p−k′+1) and C ′ ∈ P(p−k+1) so that
〈C ′〉P(p−k′+1) ⊆ P(p−k′+1) for all k′ < k; for all single-
ton C ′ ∈ 〈C〉P(p−k+1) , we have r(k−1)(C ′) = 0 so that
∆r = rα(p−k+1)(C ′)− r(k−1)(C ′) ≥ 0 [19, Lemma 3.23] [18,
Theorem 9], i.e., Proposition 12(c) holds. Note, the above rate
updates only need to be considered for all C ∈ X (k)

∗ such
that C 6= 〈C〉P(p−k+1) . This is because, if C = 〈C〉P(p−k+1) ,
the local omniscience in C has already been attained in the
previous stages.

We then prove the global omniscience is attained in
the final recursion. At the end of the last stage k = p,
rα(p−k+1),C ∈ R∗ACO(C) ensures r

(p)
V ∈ RACO(V ) since,

in X (p)
∗ = {C ∈ P(0) : |C| > 1} = {V }, C = V is

the only nonsingleton subset and rα(1),V ∈ R∗ACO(V ). Also,
because P(p−k+1) ≺ P(p−k), we have X̃ (k−1)

∗ ( X̃ (k)
∗ for all

k ∈ {2, . . . , p}. It is clear that r(k)
i = 0 for all i ∈ V \X(k)

∗
in each k ∈ {1, . . . , p}, which satisfies Proposition 12(b).
Therefore, {(X̃ (k)

∗ , r
(k)
V ) : k ∈ {1, . . . , p}} is achievable.

APPENDIX G
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It is clear that all X(k)
∗ ’s are complimentary according to

Lemma 19 and form the chain X
(1)
∗ ( . . . ( X

(K)
∗ = V .

Then, to prove the achievability of the returned K-stage SO,
we just need to prove the monotonicity of the rate vector in
Proposition 12(c), because (b) holds by the assignment r(k)

i =

0 for all i ∈ V \X(k)
∗ at each stage k (as in the second for-loop

in Algorithm 6).
Consider the rate vector r̄α,V returned by the call

PAR(H,V, Φ̄). Since gα(Ũα,Vi) taking integer values for the
integer-valued entropy function H and α in the non-asymptotic
model, we have r̄α,V ∈ Z|V | for all integer-valued α,
i.e., r̄ᾱ(k),V ∈ Z|V | for all k. If ᾱ(k) = α(j), we have
shown in the proof of Corollary 13 that r̄

ᾱ(k),X
(k)
∗

is an

optimal rate vector that attains local omniscience in X
(k)
∗

with the minimum sum-rate RNCO(X
(k)
∗ ) = RACO(X

(k)
∗ );
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when ᾱ(k) ∈ (α(j), α(j−1)) ∩ Z, while Theorem 10(b) states
that r̄

ᾱ(k),X
(k)
∗
∈ R∗NCO(X

(k)
∗ ) if ᾱ(k) = min{α : α ∈

[α(j), α(j−1)) ∩ Z}, it can be proven in the same way that
r̄
ᾱ(k),X

(k)
∗
∈ RCO(X

(k)
∗ ) ∩ Z|X(k)

∗ | for any α ∈ [α(j), α(j−1)),
i.e., r̄

ᾱ(k),X
(k)
∗

is achievable, but may not be optimal. Thus,

r̄
ᾱ(k),X

(k)
∗

attains the local omniscience in X(k)
∗ .

For the linear ordering Φ̄ satisfying (19), we have V|X(k)
∗ |

=

X
(k)
∗ for all k ∈ {1, . . . ,K}. Based on Lemma 4(a), the call

PAR(V,H, Φ̄) outputs a rate vector r̄α,V such that r̄α(X
(k)
∗ ) =

r̄α
(
V|X(k)

∗ |

)
= f̂α(V|X(k)

∗ |
) = f̂α(X

(k)
∗ ) for all α. Then,

according to Lemma 4(c), for all k ∈ {1, . . . ,K − 1}, since
ᾱ(k) < ᾱ(k+1), r̄ᾱ(k+1)(X

(k)
∗ )− r̄ᾱ(k)(X

(k)
∗ ) > 0. This proves

Proposition 12(c).
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