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Abstract Our goal was to apply a statistical approach to

allow the identification of atypical language patterns and to

differentiate patients with epilepsy from healthy subjects,

based on their cerebral activity, as assessed by functional

MRI (fMRI). Patients with focal epilepsy show reorgani-

zation or plasticity of brain networks involved in cognitive

functions, inducing ‘atypical’ (compared to ‘typical’ in

healthy people) brain profiles. Moreover, some of these

patients suffer from drug-resistant epilepsy, and they

undergo surgery to stop seizures. The neurosurgeon should

only remove the zone generating seizures and must pre-

serve cognitive functions to avoid deficits. To preserve

functions, one should know how they are represented in the

patient’s brain, which is in general different from that of

healthy subjects. For this purpose, in the pre-surgical stage,

robust and efficient methods are required to identify atyp-

ical from typical representations. Given the frequent loca-

tion of regions generating seizures in the vicinity of

language networks, one important function to be consid-

ered is language. The risk of language impairment after

surgery is determined pre-surgically by mapping language

networks. In clinical settings, cognitive mapping is classi-

cally performed with fMRI. The fMRI analyses allowing

the identification of atypical patterns of language networks

in patients are not sufficiently robust and require additional

statistic approaches. In this study, we report the use of a

statistical nonlinear machine learning classification, the

Extreme Gradient Boosting (XGBoost) algorithm, to

identify atypical patterns and classify 55 participants as

healthy subjects or patients with epilepsy. XGBoost anal-

yses were based on neurophysiological features in five

language regions (three frontal and two temporal) in both

hemispheres and activated with fMRI for a phonological

(PHONO) and a semantic (SEM) language task. These

features were combined into 135 cognitively plausible

subsets and further submitted to selection and binary

classification. Classification performance was scored with

the Area Under the receiver operating characteristic curve

(AUC). Our results showed that the subset SEM_LH

BA_47-21 (left fronto-temporal activation induced by the

SEM task) provided the best discrimination between the

two groups (AUC of 91 ± 5%). The results are discussed

in the framework of the current debates of language reor-

ganization in focal epilepsy.

Keywords Language � Epilepsy � Atypical � Machine

learning � ML � Extreme Gradient Boosting � XGBoost

1 Introduction

Focal epilepsy is characterized by symptoms induced by

lesion or dysfunction of a specific cerebral region, the

‘epileptic zone’ (EZ) [1]. Given the location of the EZ
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within or in the vicinity of language networks, patients are

more or less impaired for language abilities but they clearly

show reorganization of language networks based on func-

tional plasticity [2, 3]. Compared to typical left hemisphere

representation of language observed in the majority of

healthy subjects [4], patients with epilepsy show a higher

frequency of atypical language representation, with both

inter- and intra-hemispheric reorganization (see [3] for a

review). In addition, an important percentage of patients

with epilepsy become resistant to anti-epileptic medication

and surgery is undertaken to remove the EZ and stop sei-

zures [5, 6]. In the pre-surgical phase, language mapping is

required to identify language regions that must be pre-

served during surgery to avoid cognitive deficit. Mapping

provides information in terms of language specialization,

either at a hemispheric or at a regional level, as both levels

provide specific patterns of reorganization. The global

hemispheric specialization for language (and other cogni-

tive functions) is clinically assessed with the Wada test

[7, 8], while language networks are generally defined at an

inter- and intra-hemispheric level with noninvasive meth-

ods such as functional MRI. Functional MRI maps lan-

guage in patients with epilepsy by using a large variety of

tasks and protocols [9–17] even if there is no clear con-

sensus on the most appropriate task or panel of tasks to be

used. In clinical practice, phonological and lexico-semantic

tasks are generally used to maximize the amount of rele-

vant information for language network activity. The iden-

tification of language patterns, mostly atypical in patients,

requires precision (in terms of language tasks and analysis

of data) to correctly describe the reorganized networks and

to avoid deficits after surgery.

In terms of data analysis, we generally determine

(qualitatively/inspection or quantitatively/statistically) for

a given task and a given patient, the language network and

its functional hemispheric or regional lateralization [17].

This individual analysis has inherent limits linked to the

high intra- and inter-patient variability of activation, giving

rise to poor statistical power and subjective interpretation

[18, 19]. These limits are particularly important in the case

of patients who need surgery and show a high risk of

postsurgical sequels if the region responsible for seizures is

located in the vicinity of reorganized language networks,

which are not correctly identified before surgery. In sum,

there is a strong need to develop robust statistical and

objective approaches to identify language networks in

patients with epilepsy. Functional MRI is a very helpful

tool to highlight activated regions but the information on

this activation is not sufficient [20]. Specifically, this

activation needs to be further processed and included into

more robust statistical analyses, to obtain robust results

allowing for a clearer distinction between patients with

reorganized cognitive networks and healthy subjects with

typical representations of cognitive functions. Due to the

lack of statistical power when trying to validate differences

between single-patient fMRI measures and a group of

heathy subjects, robust statistical methods should be

involved.

The main objective of this study is to evaluate an

objective method to distinguish patients and healthy peo-

ple, based on language networks mapped with fMRI, and

by using a machine learning (ML) approach. Previous

results from a range of cognitive studies [21–24] showed

successful use of ML classification. In patients with epi-

lepsy, an ML approach based on a probabilistic regression

method was used on fMRI data to evaluate the hemispheric

specialization for language before surgery [18]. The

authors showed successful classification (96%) with dis-

sociation between typical (i.e., left hemisphere predomi-

nance) and atypical patterns of lateralization. Moreover,

patients with atypical patterns (i.e., right hemisphere

dominant or bilateral representation) were successfully

identified (82%). An important advantage of the ML

approach is that predetermined parameters (a priori

threshold value settings as classically used in fMRI anal-

ysis) are not necessary, removing the subjective dimension

of analyses and interpretations. Other authors have used

ML on data concerning the integrity of white matter fibers

to predict the surgical outcome in patients with epilepsy

[25]. This approach was able to distinguish patients with

epilepsy from normal controls with 80% accuracy, and

predict the surgical outcome for patients, with 70% accu-

racy. ML classification requires input features or dimen-

sions. In fMRI, these features are represented by the

amount of the blood oxygen level-dependent (BOLD)

signals in regions of interest or by lateralization indices, as

used by [18]. The latter are calculated with BOLD signal

values measured in homologues (right and left hemisphere)

regions of interest. fMRI activity and BOLD signals

strongly depend on psycholinguistic features such as lan-

guage operation (phonology and semantic) and tasks used

during fMRI assessment. Ideally, a fine-grained represen-

tation of language networks in patients implies the use of a

panel of language tasks. This is difficult to apply in clinical

practice due to practical reasons (short duration of the

fMRI protocol, tasks should be easy to perform by

patients). Consequently, a compromise has to be found

between the amount of information in terms of language

networks and pragmatic criteria inherent to work with

patients. In this framework, it is accepted that the essential

information concerning language networks in patients with

epilepsy is obtained by using a phonological and semantic

task (see, for instance, [3] and [15]).

In this current study, we applied a ML classifier, the

Extreme Gradient Boosting algorithm (XGBoost) [26] in

order to discriminate the fMRI from epileptic patients and
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healthy subjects. This particular method was chosen due to

its significant advantages: (a) dealing with missing values,

(b) requiring data scaling, (c) implying a computationally

efficient variant of gradient boosting algorithm [27],

(d) providing satisfactory results in ML competitions [28]

and was successfully used in other studies and domains

(see [29, 30]). Using XGBoost, we expected to identify

robust patterns of language representation which are able to

distinguish patients and healthy people. To our knowledge,

there are no studies using XGBoost to objectively classify

two populations based on their neurophysiological features.

Specifically, we examined 55 participants who underwent

fMRI and performed two language tasks—a semantic and

phonological one, which activate classical language

regions [15, 16, 31–33]. Based on the activation, we

defined 20 features, as follows: five fronto-temporal (FT)

regions (BA, Brodmann Area; BA21, BA 22, BA 44, BA

45 and BA 47), delineated in each (left, LH; right, RH) or

both (bilateral; LH-RH) hemispheres, and for each lan-

guage task (SEM, PHONO). We expect that differences

between healthy subjects and patients with epilepsy would

reveal atypical patterns of language representation in the

damaged brains of patients. The atypical patterns might

also reflect ‘sensitive-to-surgery’ regions that must be

preserved during surgery to avoid language deficits.

2 Material and methods

2.1 Participants

We examined 55 participants: 16 patients with focal epi-

lepsy and 39 healthy controls. Patients showed various

anatomical locations of the EZ, and as indicated in Table 1,

they were right- and left-handed. All were native French

speakers and had normal or corrected-to-normal vision.

Healthy volunteers had no history of neurological or psy-

chiatric disorders. Participants gave informed written

consent, and the study was approved by the local ethics

committee (CPP no 09-CHUG-14, 04/06/2009).

2.2 Stimuli and tasks

The experimental protocol used during fMRI examination

is described in detail in [15]. Two language tasks were used

in two separate runs, a phonological (PHONO) and a

semantic (SEM) task, each one also including a control

visual condition (without language demands). Each task

comprised ‘language’ and ‘control’ conditions. The

PHONO language condition was performed with pseudo-

words. Participants were instructed to detect a target pho-

neme (phoneme detection task). The SEM language con-

dition of SEM run was performed using words with

participants being instructed to judge whether items des-

ignated living or non-living entities (categorization task).

The control condition was identical for the two runs and

was performed using unreadable words (font Karalyn

Patterson) with participants being instructed to judge the

height of characters (visual detection task). Stimuli gen-

erated by the E-Prime software (E-prime Psychology

Software Tools Inc., Pittsburgh, USA) were written in

white ‘Courier New’ font size 40, centered on the middle

of a black screen and lasted 2.5 s each.

2.3 Functional MRI paradigm

A pseudo-randomized event-related fMRI paradigm was

optimized [34] for 60 events, and 35 additional null events

were used for each run (PHONO and SEM runs). The null

events were added in order to provide an appropriate

baseline measure [1] and consisted of a white fixation

cross-displayed in the center of the black screen. The inter-

stimulus interval was 2.5 s. The run duration was 8 min

40 s.

2.4 MR acquisition

The experiment was performed in a whole-body 3T MR

scanner (Bruker MedSpec S300) with 40 mT/m gradient

strength at MR facility. For functional runs, the manufac-

turer-provided gradient-echo/T2*-weighted EPI method

was used. Thirty-nine adjacent axial slices parallel to the

bi-commissural plane were acquired in an interleaved

mode. Slice thickness was 3.5 mm. During each run, the

cerebral volume was measured 150 times. The in-plane

voxel size was 3 9 3 mm (216 9 216 mm field of view

acquired with a 72 9 72 pixel data matrix, reconstructed

with zero filling to 128 9 128 pixels). The main sequence

parameters were: TR = 2.5 s, TE = 40 ms, flip

angle = 77�. To correct images for geometric distortions

induced by local B0 inhomogeneity, a B0 field map was

obtained from two gradient-echo datasets acquired with a

standard 3D FLASH sequence (DTE = 9.1 ms). The field

map was used during data processing. A T1-weighted high-

Table 1 Demographic information of participants, patients (TLE,

patient with epilepsy with left temporal lobe epilepsy) and healthy

volunteers (controls)

N Age mean (SD) Gender Handedness

TLE 16 35.3 ± 11.1 9M–7F 1L–15R

Controls 39 26.5 ± 3.7 18M–21F 15L–24R

For each group, we mentioned the number of participants (N), the

mean age and standard deviation (SD), the gender (F, female; M,

male) and the handedness (right-handed, R; left-handed, L)
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resolution three-dimensional anatomical volume was also

acquired, by using a 3D-modified driven equilibrium

Fourier transform (MDEFT) sequence (field of view:

256 9 224 9 176 mm; resolution: 1.333 9 1.750 9

1.375 mm; acquisition matrix: 192 9 128 9 128 pixels;

reconstruction matrix: 256 9 128 9 128 pixels).

2.5 Spatial preprocessing of fMRI data

Data analysis was performed by using the general linear

model, GLM [35] for event-related designs with SPM12

(Wellcome Department of Imaging Neuroscience, London,

UK, www.fil.ion.ucl.ac.uk/spm) implemented in MATLAB

(MathWorks Inc., Natick, MA, USA). Images were spa-

tially preprocessed. First, the functional volumes were

time-corrected with the 19th slice as reference (the

acquired brain volume was composed of 39 slices) to

correct artifacts caused by the delay of time acquisition

between slices. Subsequently, all volumes were realigned

to correct for head motion, by using a rigid body trans-

formation. T1-weighted anatomical volume was co-regis-

tered to mean images created by the realignment procedure

and was normalized within the MNI space. Anatomical

normalization parameters were used for the normalization

of functional volumes. Each functional volume was

smoothed by a Gaussian kernel of 8 mm FWHM (Full

Width at Half Maximum). Finally, time series for each

voxel were high-pass filtered (1/128 Hz cutoff) to remove

low-frequency noise and signal drift.

2.6 Statistical analyses of fMRI data

Statistical analyses were subsequently performed on the

preprocessed data. For each participant, each task (PHONO

and SEM) was declared as a specific fMRI run. Thus, for

each run PHONO or SEM, we included two regressors,

PHONO (task) and Control-PHONO, and SEM (task) and

Control-SEM, respectively. Each of them was convolved

with a canonical hemodynamic response function (HRF).

Movement parameters derived from the realignment cor-

rections (three translations and three rotations) were

included into the design matrix as additional factors of no

interest. The GLM was then used to generate the parameter

estimates of activity for each voxel, each condition and

each participant. Statistical parametric maps were gener-

ated from the linear contrasts between the HRF parameter

estimates for the four experimental conditions (i.e., task

and control for each run). The spatial resolution of statis-

tical parametric maps was the same as the spatial resolution

of functional MR images (3 9 3 9 3.5 mm). The statisti-

cal analysis was performed at a first level (Individual level)

by calculating the main contrasts that were PHONO (task)

versus Control-PHONO and SEM (task) versus Control-

SEM. These contrasts allowed us to identify language

networks for phonology and semantic processes.

2.7 ROI construction and extraction of the % MR

signal (BOLD)

In accordance with our previously reported results from

group analyses and based on previous literature on PHONO

and SEM processing [2–4], we determined ten symmetrical

frontal and temporal regions of interest (ROI), five in the

left (LH) and five in the right hemisphere (RH). ROIs were

defined based on the WFU PickAtlas toolbox (https://www.

nitrc.org/projects/wfu_pickatlas/) from the Brodmann Area

(BA) labeling. ROIs taken into account were, bilaterally,

the inferior frontal gyrus pars opercularis, BA 44, pars

triangularis, BA 45 and pars orbitalis, BA 47; middle

temporal, BA 21 and superior temporal BA 22 gyri. For

each ROI, each participant and each task (PHONO and

SEM), the % of MR signal intensity variation (average of

all voxels within a specific ROI) was measured. We defined

20 features for use in the ML classification approach (cf.

2.8)—the % of BOLD variation within the considered

ROIs for PHONO (five ROI in the LH and five ROI in the

RH) and for SEM (five ROI in the LH and five ROI in the

RH).

2.8 Machine learning

The ML approach aims to find a relationship between an

input X = {x1, x2, …, xN} and an output Y . In our case, we

inferred the relationship between the fMRI BOLD signal

values and the participant condition (healthy; patient with

epilepsy). In other words, we determined whether a par-

ticipant is a patient with epilepsy or a healthy subject based

on fMRI activation. More precisely, we aimed at deter-

mining the best combination(s) of features (according to

region, hemisphere and task) showing the most predictive

power in this binary classification. We used the XGBoost

algorithm, an implementation of the gradient-boosted

decision trees (GBDT) for this purpose. Assembly algo-

rithms create and combine a high number of individually

weak but complementary classifiers, to produce a robust

estimator. This combination could be made in two ways:

bagging (random forests) and boosting. The gradient

boosting is built sequentially. Indeed, a new weak learner is

constructed to be maximally correlated with the negative

gradient of the loss function associated with the whole

assembly for each iteration [36]. XGBoost belongs to the

group of widely used tree learning algorithms [37]. A

decision tree allows making prediction on an output vari-

able based on a series of rules arranged in a tree-like

structure. They consist of a series of split points, the nodes,
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in terms of the value of an input feature. The last node is a

leaf and gives us the specific value of the output variable.

Tree learning algorithms do not require linear features or

linear interactions between features. They are significantly

better classifiers than other algorithms (see [38]). More-

over, XGBoost, a type of gradient boosting, has two major

improvements: (a) speeding up the tree construction and

(b) proposing a new distributed algorithm for tree search-

ing. All participants (samples) were described by the set of

20 features mentioned above. We combined these features

into specific cognitively plausible subsets in order to

reduce the number of combinations in the feature selection

step (cf. 2.8.1). The entire procedure used in this study is

presented in detail in Supplementary Material. We had

eight missing among 1100 values (0.7%) from eight heal-

thy participants for two features, BA 44 RH_SEM and the

BA 44 RH_PHONO. We did not perform imputation or

scaling on the data.

2.8.1 Feature selection method

The goal of feature selection was to choose a subset XS of

X that can predict Y with the best performance at minimal

computational cost. Another objective was to gain insight

into the underlying processes which generated the data.

There are three main categories of feature selection

algorithms: filter, wrapper and embedded. In the present

study, we have focused on the filter and wrapper methods.

Filter methods are computed fast and provide a feature

ranking in order to remove irrelevant features. Although

some of them are multivariate, such as correlation-based

feature selection (CFS), they do not involve a learning

algorithm and can miss useful features. Wrapper approaches

use a given classification algorithm for the evaluation of a

specific subset of features by training and testing it with

cross-validation. The space of all feature subsets is generated

by the strategy defined above. An exhaustive search with

these features involves around one million combinations

220ð Þ. After evaluation, some filter methods (low variance,

Fisher score, CFS, Laplacian score, spectral score) and the

forward (SFS) and backward selection (SBS) wrapper

methods were considered unsuccessful (i.e., with no feature

subset stability and with no significance of the performance

metrics). Filter methods were tested with scikit-feature

Python libraries implementation [39]. SFS and SBSwrapper

methodswere performedwithMlxtend Python libraries [40].

Thus, we decided to perform another wrapper method, a

reduced exhaustive search among a selection of 135 feature

subsets. We did not perform an exhaustive search with the

220 combinations of features, which would have been too

long to compute and would have been prone to overfitting.

These 135 different combinations of features were chosen

and grouped in nine ‘thematic sets’ (see Table 2) based on

ROI, hemisphere, and task. They are specified as follows:

(a) three for SEM including a left hemisphere thematic set

(with 15 subsets), a right hemisphere thematic set (in-

cluding 15 subsets) and a bilateral thematic set (including

15 subsets); (b) three for PHONO including a left hemi-

sphere thematic set (with 15 subsets), a right hemisphere

thematic set (including 15 subsets) and a bilateral thematic

set (including 15 subsets), and (c) three for SEM ? -

PHONO including a left hemisphere thematic set (with 15

subsets), a right hemisphere thematic set (including 15

subsets) and a bilateral thematic set (including 15 subsets).

These 135 feature subsets were combinations of the ROIs

reflecting plausible patterns of language organization and

reorganization based on literature results [3, 41, 42]. They

varied according to ROIs (only frontal, only temporal or

both), hemisphere (only left, only right or both hemi-

spheres) and task (PHONO only, SEM only or

PHONO ? SEM).

2.8.2 Classification method

The Extreme Gradient Boosting (XGBoost) algorithm [43]

was used for classification. It was implemented using the

scikit-learn [40] Python libraries for all ML processes.

Parameters for the algorithm were fixed (cf. Table 3) and

not optimized by a grid search for the whole ML process

(see [44]). Four parameters out of fifteen were set to par-

ticular values. The learning rate was typically set to 0.01

(default 0.3) as small values lead to much better general-

ization [45]. The number of boosted trees usually between

some hundreds and thousands was set to 1200 (estimators).

To prevent overfitting, the subsample was set to 0.7 (de-

fault 1). This added randomness and made the training

robust to noise. The maximum depth of a tree was set to 3

(default 6) to reduce the model complexity.

2.8.3 Validation strategy

The validation strategy is commonly used to prevent

overfitting and to have a good assessment of model validity

[44]. As illustrated in Fig. 1, we have used a nested cross-

validation scheme with an outer Monte Carlo cross-vali-

dation (MCCV) (see [46, 47]), also called random sub-

sampling, repeated twelve times in order to reduce variance

and an inner k-fold cross-validation (k-fold CV) for feature

selection with k = 5 (see [44, 45]). Feature selection must

be done inside each training set of the outer cross-valida-

tion that estimates the performance of the model fitting

approach [48]. First, we randomly select, without

replacement, 80% of our data to form the training set. The

remaining 20% was the validation set including a balanced

number of epileptic and healthy subjects. Each participant
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appears in either the learning set or test set. Then fivefold

cross-validation (CV) [49] was used only on the training

set. It was split into five data blocks, four used for an inner

training and the remaining one for the inner test. This was

repeated five times by permuting the data blocks. The

feature selection was done in this inner CV. Finally, the

model was fitted on the training set with the feature subset

that had the best performance and the prediction evaluated

Table 2 A total of 135 subsets were evaluated

Task Subset Fronto-

temporal

regions

(FT)

Left hemisphere Right hemisphere Bilateral

SEM only

or PHONO only

or

SEM ? PHONO

1 PARTIAL F BA 47LH BA 47RH BA 47LH BA 47RH

2 PARTIAL F BA 44LH, BA 45LH, BA 44RH, BA 45RH, BA 44LH, BA 45LH, BA 44RH, BA 45RH,

3 TOTAL F BA 44LH, BA 45LH,

BA 47LH

BA 44RH, BA 45RH,

BA 47RH

BA 44LH, BA 45LH,

BA 47LH

BA 44RH, BA 45RH,

BA 47RH

4 PARTIAL T BA 21LH BA 21RH BA 21LH BA 21RH

5 PARTIAL T BA 22LH BA 22RH BA 22LH BA 22RH

6 TOTAL T BA 21LH, BA 22LH BA 21RH, BA 22RH BA 21LH, BA 22LH BA 21RH, BA 22RH

7 PARTIAL FT BA 21LH, BA 47LH BA 21RH, BA 47RH BA 21LH. BA 47LH BA 21RH. BA 47RH

8 PARTIAL FT BA 22LH, BA 47LH BA 22RH, BA 47RH BA 22LH, BA 47LH BA 22RH, BA 47RH

9 PARTIAL FT BA 21LH, BA 22LH,

BA 47LH

BA 21RH, BA 22RH,

BA 47RH

BA 21LH, BA 22LH,

BA 47LH

BA 21RH, BA 22RH,

BA 47RH

10 PARTIAL FT BA 21LH, BA 44LH,

BA 45LH

BA 21RH, BA 44RH,

BA 45RH

BA 21LH, BA 44LH,

BA 45LH

BA 21RH, BA 44RH,

BA 45RH

11 PARTIAL FT BA 22LH, BA 44LH,

BA 45LH

BA 22RH, BA 44RH,

BA 45RH

BA 22LH, BA 44LH,

BA 45LH

BA 22RH, BA 44RH,

BA 45RH

12 PARTIAL FT BA 21LH, BA 22LH,

BA 44LH, BA

45LH

BA 21RH, BA 22RH,

BA 44RH, BA

45RH

BA 21LH, BA 22LH,

BA 44LH, BA

45LH

BA 21RH, BA 22RH,

BA 44RH, BA

45RH

13 PARTIAL FT BA 21LH, BA 44LH,

BA 45LH, BA

47LH

BA 21RH, BA 44RH,

BA 45RH, BA

47RH

BA 21LH, BA 44LH,

BA 45LH, BA

47LH

BA 21RH, BA 44RH,

BA 45RH, BA

47RH

14 PARTIAL FT BA 22LH, BA 44LH,

BA 45LH, BA

47LH

BA 22RH, BA 44RH,

BA 45RH, BA

47RH

BA 22LH, BA 44LH,

BA 45LH, BA

47LH

BA 22RH, BA 44RH,

BA 45RH, BA

47RH

15 TOTAL FT BA 21LH, BA 22LH,

BA 44LH, BA

45LH, BA 47LH

BA 21RH, BA 22RH,

BA 44RH, BA

45RH, BA 47RH

BA 21LH, BA 22LH,

BA 44LH, BA

45LH, BA 47LH

BA 21RH, BA 22RH,

BA 44RH, BA

45RH, BA 47RH

Fifteen subsets were based on combinations of fronto-temporal (FT) regions according to hemisphere and task and defined as follows: (a) only

frontal regions (partial subsets 1–2 and total subset 3); (b) only temporal regions (partial subsets 4–5 and total subset 6), and (c) combination of

frontal and temporal regions (partial subsets 7–14 and total subset 15). These subsets were evaluated for three thematic sets according to task

(semantic only, SEM only; phonological only, PHONO only; semantic and phonological combined, SEM ? PHONO) and hemisphere (left

hemisphere, right hemisphere and bilateral—both hemispheres)

Table 3 Results obtained for the selected subset SEM (semantic) LH

(left hemisphere) BA 21 and BA47 in terms of AUC as the

performance metric for each iteration of the outer MCCV, using the

XGBoost algorithm (n_estimators = 1200, learning rate = 0.01,

subsample = 0.7, max_depth = 3)

Iteration

number

1 2 3 4 5 6 7 8 9 10 11 12

Subset

selected

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

SEM

L21

L47

AUC (%) 93.75 87.50 87.50 93.75 93.75 93.75 100 83.33 83.33 93.75 87.50 100
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on the validation set that was held out from the feature

selection step. All splits were performed in a stratified way

to get the same ratio of patients with epilepsy. In order to

assure stability of feature selection and get correct gener-

alization of the classification performance, we repeated this

process twelve times by randomly shuffling the dataset

before splitting into training and validation sets. We finally

obtained twelve performance metrics (cf. Table 3) for

twelve feature subsets, based on a distribution of samples.

2.8.4 Metrics

The predictive power of a classifier was scored by the area

under the receiver operating characteristic curve (AUC) as

recommended by Provost [50–52]. The AUC can be

interpreted as the probability that a classifier ranks a ran-

domly chosen positive instance higher than a randomly

chosen negative one (assuming ‘positive’ ranks higher than

‘negative’). The receiver operating curve (ROC) was the

true positive rate plotted as a function of the false positive

rate where the positive condition was to be a patient with

epilepsy. It represents the performance of the model on a

two-dimensional curve. The AUC value then reduces it to a

number. A perfect model would score an AUC of 100%

while a random classification would score 50%.

3 Results

As illustrated in Table 3 and Fig. 2, the feature subset

Semantic left hemisphere BA21_BA47 was selected each

time among 135 candidates, with an AUC mean of

91 ± 5% on the validation set. The ML process showed a

Fig. 1 Illustration of the

validation schema, using outer

Monte Carlo cross-validation

(MCCV)

Fig. 2 Distribution of the 12 AUC scores measured on the outer

validation set of the Monte Carlo cross-validation (MCCV) around

the mean score of 91%
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strong stability in feature selection and a very good level of

classification performance.

4 Discussion

This is a proof of concept study illustrating the ability of a

specific ML approach, the XGBoost algorithm, to classify

subjects in two distinct classes or categories, healthy/typical

versus patients with epilepsy/atypical, according to their

language representation, as determined with fMRI. This

statistical method does not require manipulation of data and

uses neurophysiological features reflecting the amount of

activated language regions, for two main processes:

semantic and phonological. Our results showed that a

specific subset best distinguished the two categories of par-

ticipants, namely the subset SEM_LH BA_47-21, showing

that the left fronto-temporal activation induced by the SEM

taskwas themost relevant to classify patients. This result can

be discussed in the framework of current debates on language

representation and reorganization in focal epilepsy [3]. Our

result reflects reorganization of language networks in the

predominant left hemisphere for language [4], and this can be

considered as a specific ‘atypical’ profile of language rep-

resentation. Indeed, the majority of individuals, mainly

healthy, show ‘typical’ language representation with the left

hemisphere predominant for language [4]. The majority of

patients with focal epilepsy show higher variability of lan-

guage representation within and between hemispheres,

known as ‘atypical’ profiles, induced by the chronic devel-

opment of the epileptic activity. Although many atypical

profiles were described [42], three of them are more fre-

quently observed (see [3]): (a) atypical inter-hemispheric

representation with complete displacement of language

areas from the left to the right regions [14, 53, 54];

(b) atypical inter-hemispheric representation with only par-

tial displacement of language regions to the right hemisphere

[17, 55]; and (c) atypical intra-hemispheric reorganization of

language networks within the predominant, left hemisphere

for language. This latter profile of reorganization fits well

with our result, indicating that the best distinction between

patients and healthy is based on changes occurring in the

predominant left hemisphere for language. Indeed, an intra-

hemispheric reorganization of language networks with sup-

plementary or additional recruitment of fronto (BA47)—

temporal (BA21) regions might occur in patients to maintain

a correct level of language performance. The neurophysio-

logical biomarker that seems to distinguish patients from

healthy individuals at an intra-hemispheric level, is the

activation of two crucial integrative regions—one frontal,

the BA 47 and the other temporal, the BA 21—both

responsible for semantic processing [56]. Their effect was

located in the same left hemisphere, hence providing an

intra-hemispheric biomarker of the distinction patients ver-

sus controls. Importantly, these regions should be considered

in interaction rather than separately, given that they belong to

neurocognitive models of language mainly for semantic

processing, involved in retrieval, access, selection, online

maintenance and activation of lexico-semantic representa-

tions [57]. Specifically, the BA 47 in the left inferior frontal

gyrus is related to retrieval and selection of semantic features

and supports controlled access to stored semantic represen-

tations [58]. The posterior middle temporal gyrus, BA 21, is

generally implicated in the representation of verbal semantic

information [59]. These two regions are anatomically and

functionally connected. A reciprocal modulatory effect from

the left inferior frontal gyrus (BA 47) to the left posterior

middle temporal gyrus (BA21)was shown by using dynamic

causal modeling (DCM), suggesting top-down influences of

the frontal cortex on the retrieval of semantic representa-

tions. In the opposite direction, the effective connectivity

analyses also showedmodulatory effects from the left BA 21

to the left BA 47, suggesting that posterior temporal regions

provide relevant associations in verbal semantic memory to

IFG for the purpose of retrieval [60]. In terms of anatomical

connectivity, these regions are connected by white matter

fibers such as the left inferior fronto-occipital fasciculus, left

anterior thalamic radiation and left uncinate, and considered

as the anatomical skeleton of the semantic network [61].

Overall, all these functional and anatomical data suggest that

left fronto-temporal regions revealed by activation of BA 47

and BA 21, both part of the semantic network, are reorga-

nized in patients with epilepsy compared to healthy subjects.

Given that the majority of these patients show dysfunctions

of temporal regions, this could explain why the semantic

system is particularly sensitive, disrupted and reorganized in

patients with epilepsy. An important contribution to this

reorganization is added by the interaction between semantic

language and memory processes, given that a part of the

anatomical subjacent regions are common to both language

and memory. This also explains why these two cognitive

functions are increasingly examined together rather than

separately [62]. These observations are reflected and con-

firmed by the neuropsychological testing, showing that these

patients frequently have semantic (both language and

memory) deficits. In conclusion, this biomarker of intra-

hemispheric reorganization of fronto-temporal semantic

networks revealed by the XGBoost algorithm for distin-

guishing patients from controls is in agreement with our

knowledge on semantic processing. This result is in agree-

ment with data from patients with epilepsy. It holds for the

results obtained from invasive electrical stimulation [63] or

noninvasive fMRI mapping [15, 64]. Specifically, patients

with epilepsy show modification of language networks and

they demonstrate a higher recruitment of the left hemispheric

areas (inside and/or outside the ‘eloquent networks’) to

166 L. Torlay et al.

123



ensure efficient language processing [64]. Nevertheless,

compared to more visible inter-hemispheric profiles, the

intra-hemispheric reorganization of language activity is

more difficult to observe with classical fMRI statistical

analyses. Mbwana et al. [64] suggested, for instance, that

fMRI comparisons between patients and healthy subjects are

constrained by a priori assumptions and reliance on prese-

lection of cerebral regions and that the incidence of intra-

hemisphere reorganization may be underestimated or

masked. Based on these assumptions, we suggest that the

ML–XGBoost algorithm could be a useful tool to detect the

intra-hemispheric atypical reorganization patterns, more

difficult to assess in patients, but having a major role in the

neuroplasticity of language in patients with epilepsy. In

terms of suitable tasks to map language networks, our results

show that compared to phonological task, the semantic task

is more reliable for classifying patients, even if both tasks

activate fronto-temporal regions. The advantage of using a

semantic task is that this task induces a more spread-out

activation within frontal and temporal language networks.

This assumption is in agreement with the findings by

Billingsley et al. [9], showing that language reorganization in

patients is mainly revealed by a semantic task, whereas a

phonological task results in more specific prefrontal activa-

tion. Indeed the predictive capacity of postsurgical language

outcome depends significantly on the regional location of

brain activity. Moreover, a specific question raised by many

investigations on language representation and lateralization

is whether it is necessary to map the entire language system

including frontal and temporal regions for this answer or

whether only a partialmapping of frontal or temporal regions

is sufficient to reveal the predominant hemisphere for lan-

guage. Our winning subset SEM_LH BA_47-21 suggests

that the robust classification of patients requires information

on a larger fronto-temporal network which is efficiently

revealed by a SEM task. In terms of clinical impact, we claim

that the differential intra-hemispheric reorganization as

reflected by SEM_LH BA_47-21 could suggest that left

fronto-temporal regions are ‘sensitive-to-surgery’ and

should be spared during surgery to avoid postsurgical lan-

guage deficits. Methodologically, we claim that the

XGBoost algorithm used in this study is able to compare

cognitively plausible patterns (feature subsets) and highlight

the best one, and able to separate categories of participants.

5 Conclusions

The ML–XGBoost is a powerful statistical method of

classification which detects nonlinear patterns in datasets

with missing values. It shows significant potential for

classifying patients with epilepsy based on the cerebral

region, hemisphere and processing of their language

representation. One subset, or a specific combination of

features, the SEM_LH BA_47-21, was the most powerful,

for identifying patients. The importance of this particular

subset is plausible given the cognitive and clinical obser-

vations made with these patients.
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