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Summary
Brassica oleracea is an important agricultural species encompassing many vegetable crops

including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of

fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these

diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently

distributed across B. oleracea lines. The sequenced reference cultivar does not contain all

B. oleracea genes due to gene presence/absence variation between individuals, which makes it

necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a

comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the

presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and

presence/absence variation drive RGA diversity using separate mechanisms. We identified 59

RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these

findings have implications for crop breeding in B. oleracea, which may also be applicable in other

crops species.

Introduction

Brassica oleracea is a member of the large and agronomically

important Brassicaceae family, which consists of more than 372

genera and 4060 species (The Plant List, 2010). B. oleracea

species encompass many popular and nutritious vegetable crops

including cabbages, cauliflower, broccoli, brussels sprout, kohl-

rabi and kale. These species are susceptible to a range of diseases

including blackleg, clubroot, sclerotinia stem rot, downy mildew

and powdery mildew (Channon, 1981; Neik et al., 2017;

Punithalingham and Holliday, 1972; Voorrips, 1995).

Pathogens use a diverse array of strategies to enter, survive and

successfully infect their host. In response to this attack, plants use

a two-branched innate immune system (Jones and Dangl, 2006).

Molecules common to many classes of microbes, including non-

pathogens, called pathogen- or microbial-associated molecular

patterns (PAMPS or MAMPS) are recognized by the first branch of

the immune system, resulting in PAMP-triggered immunity (PTI),

and further colonization can be stopped (Jones and Dangl, 2006).

However, pathogens have evolved the capacity to deliver effector

molecules or virulence factors to suppress PTI, and such interfer-

ence can result in effector-triggered susceptibility (ETS) (Jones and

Dangl, 2006; Hammond-Kosack and Jones, 1996). Specific

recognition of effector molecules in planta is determined by

resistance gene (R-gene) products, and consequently a gene for

gene interaction ensues. When both the pathogens’ avirulence

(Avr) gene and the corresponding plant’s R-gene products are

present, disease resistance occurs (incompatible interaction). A

plant is susceptible if the corresponding R-gene is absent or

inactive (compatible interaction; Dangl & Jones, 2001).

There are several classes of R-genes. These classes are defined

by their structural motifs (Kruijt et al., 2005). The largest class of

proteins encoded by R-genes in plant genomes belongs to the

nucleotide-binding site and leucine-rich repeat (NBS-LRR) domain-

containing class of proteins (Baumgarten et al., 2003). NBS-LRR

proteins have a variable N-terminus, which commonly contains a

domain with similarity to the Drosophila Toll and mammalian

interleukin-1 receptor (TIR) or a coiled coil (CC) sequence. NBS-

LRR domains share a high degree of sequence identity and have a

number of conserved motifs, which can be used to identify NBS-

LRR genes (Meyers et al., 1999; Neik et al., 2017; Wan et al.,

2012).

R-genes are grouped into resistance gene analogs (RGAs) with

pattern-recognition receptors (PRRs; Sekhwal et al., 2015). PRRs

are classified into two groups: surface-localized receptor-like

protein kinases (RLKs; Walker, 1994) and membrane associated

receptor-like proteins (RLPs). RLKs and RLPs are a large group of

proteins that are necessary for regular plant development (Morris

and Walker, 2003) but are also necessary in plant disease

resistance (Kruijt et al., 2005). RLKs carry a cytoplasmic-kinase

domain while RLPs carry a short cytoplasmic tail. In tomato, it has

been shown that RLKs and RLPs interact: RLKs act as receptors

which mediate downstream signalling by way of binding RLPs

(Liebrand et al., 2013).

The increasing availability of plant genomes allows for the in

silico analysis of gene families, such as NBS-LRRs and PRRs.

Genome-wide analysis of NBS-LRRs has been performed in

numerous plant species (Ameline-Torregrosa et al., 2008; Gu

et al., 2015; Jupe et al., 2012; Kang et al., 2012; Lozano et al.,

2012, 2015; Meyers et al., 2003; Seo et al., 2016; Singh et al.,

2015; Wei et al., 2013; Zheng et al., 2016; Zhou et al., 2004).

Recently, there has been analysis of NBS-LRRs in several Brassica

species, including B. rapa, B. napus and B. oleracea (Alamery

et al., 2018; Chalhoub et al., 2014; Golicz et al., 2016; Lv et al.,
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2015; Mun et al., 2009; Sarris et al., 2016; Shao et al., 2016; Wu

et al., 2014; Yu et al., 2014; Zhang et al., 2016a,b). RLKs and

RLPs have been comprehensively mined in wild strawberry (Li

et al., 2017) and characterized in tomato (Kawchuk et al., 2001),

Arabidopsis thaliana (Wang et al., 2008), rice (Fritz-Laylin et al.,

2005) and poplar (Petre et al., 2014). This analysis has demon-

strated that different genomes contain different RGAs and that

there is a variation in RGA content between different lines.

It has been shown in several plant species that groups of R-

genes and PRRs cluster closely together within the genome. For

example in B. napus several Leptosphaeria maculans-specific R-

genes cluster closely together (Delourme et al., 2004), as do

clubroot resistance genes in B. rapa (Kato et al., 2013). This close

linkage is important in generating novel resistance by recombi-

nation (Hulbert et al., 2001), where intragenic crossover events

lead to new motif combinations.

A second mechanism that introduces diversity is transposable

element (TE)-mediated rearrangement, diversification and dupli-

cation. A TE may also change gene expression by inserting itself

into genes or by recruiting repressive methylation and therefore

changing expression in nearby genes (Masson et al., 1987;

McClintock, 1956), and R-gene clusters have been shown to be

associated with TEs in rice (Song et al., 1997) and barley (Wei

et al., 2002).

Analysis of the B. oleracea pangenome has identified abundant

structural variation [presence absence variants (PAV) and copy

number variants (CNV)]. Golicz et al. (2016) showed that 18.7%

of the 61 380 B. oleracea genes in the pangenome were not

present in all lines. In addition, many of these dispensable genes

are related to agronomic and other important traits, including

disease resistance, suggesting that PAVs may be important for the

breeding of improved Brassica crops. The gene-for-gene interac-

tion in disease resistance drives a molecular arms race between

pathogen and host, and natural selection drives pathogens to

either dispense of or diversify its array of effectors, while host

plants are required to combat this through R-gene duplication

and diversification (Jones and Dangl, 2006; Dangl and Jones,

2001). In order to better understand this process, we have

identified candidate RGAs in the pangenome of B. oleracea. We

investigate which are core or dispensable and determine whether

those in clusters are more likely to be lost or conserved. We then

link the PAV status of RGAs with the presence or absence of TEs

showing that TEs are strongly associated with variability in RGAs.

Results and discussion

Genome-wide distribution of RGA candidates

A total of 1989 RGA candidates were identified in the B. oleracea

pangenome (Figure 1, Table S1). The largest class of resistance

gene candidates was RLKs (901), followed by NBS-LRR genes (556;

Table 1). TX (TIR domain with unknown domain) and TNLs (TIR

domain, NB-ARC domain and Leucine-rich-repeat domain) were

the largest subclass within the NBS-LRR genes (129 and 123). The

RGA candidate density per pseudomolecule was roughly similar to

all pseudomolecules (average: 3.7 RGA candidates per Mbp

ranging from 2.8 on pseudomolecule C5 to 4.3 on C9), though

the additional contigs which are not contained within the

reference assembly harboured more NBS-LRR and RLK than RLP

candidate genes (121, 79, and 54 respectively).

NBS-LRR genes have been previouslymined in B. oleraceawhere

239 NBS-LRR were identified (Yu et al., 2014), around half the

number identified in this study. We used a newer annotation and

assembly as it has been shown that older B. oleracea annotations

contain incomplete or misannotated R-genes (Lv et al., 2014).

Such analyses of R-gene identification can be influenced by the

quality of the genome assembly. Errors in the genome assembly or

gene prediction can lead to wrongly predicted numbers of R-

genes. Other methods exist to gain insight into the number of R-

genes which do not rely on reference genomes, such as ReNSeq for

NBS-LRR identification (Jupe et al., 2013). We also used an

improved RGA candidate prediction pipeline which compared

RGA candidates with a larger set of known R-genes, while the

previous study discarded R-gene candidates that did not align with

a B. oleracea specific NBS profile.

We found that the largest class of RGA candidates was RLKs,

which is consistent with observations in other plants such as wild

strawberry and cotton (Chen et al., 2015; Li et al., 2017). The

larger number of RLK than RLP and NBS-LRR genes could be due

to a greater diversity of roles of these genes. In the Brassicaceae,

RLK genes have been implicated in a variety of regular develop-

mental mechanisms such as self-incompatibility (Takayama and

Isogai, 2003) so they are not necessarily involved in resistance.

There is no such functional diversity in other RGA classes such as

NBS-LRR genes (McHale et al., 2006).

We found that resistance genes were unevenly distributed

along the pseudomolecules (Table 1) which fits prior observations

including in B. oleracea (Golicz et al., 2016), B. napus (Chalhoub

et al., 2014), and other plant species such as rice (Rice Chromo-

somes 11 and 12 Sequencing Consortia, 2005). This uneven

distribution is likely due to recent tandem gene amplifications and

segmental duplications (Rice Chromosomes 11 and 12 Sequenc-

ing Consortia, 2005).

We compared the counts of RGA candidates within the

different lines based on presence/absence results. The wild type

relative B. macrocarpa contains the highest number of RGA

candidates (1495), 45 more than the average total of the

domesticated B. oleracea lines and 93 more than the reference

cultivar TO1000 (Table 2). Six RGA candidates appear only in

TO1000 (two TX, two TN and two NL), no other RGA candidates

appear in only one line. TO1000 carried the lowest number of

RGA candidates in all categories except TN, TNL and TX. Of the

RGA candidate genes, 1231 were present in all lines (core) and

167 (12%) were variable (lost in at least one line). RLKs and CNLs

showed the lowest percentage of variable genes (4.5% and 8.5%

respectively), while NL and NBS showed the highest number of

variance (31.2% and 32.4%). The high percentage of variable

genes that are incomplete (NL, CN, TN) could mean that these are

pseudogenes that the genome can afford to lose without

consequences in the form of lost resistance.

Interestingly, there were more NBS-LRR than RLK and RLP

genes in the additional pangenome non-reference contigs,

indicating that NBS-LRR genes show a greater variability than

RLK and RLP genes. Based on PAV data, these RGA candidates are

differently distributed between the nine individuals on which the

pangenome was based. As expected, the wild relative B. macro-

carpa carried the greatest number of RGA candidates and these

may have been lost in domesticated lines during domestication.

B. macrocarpa shows partial leaf and moderate stem resistance

to Sclerotinia sclerotiorum infection (Taylor et al., 2018) to which

all Brassica plants are susceptible, and this may be linked with the

additional RGA candidates. The kale-like reference cultivar

TO1000 showed the lowest number of RGA candidates indicating

that in searching for RGAs it is best to not focus on the reference

genome alone.
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Physical cluster distribution

We allocated RGA candidates to physical RGA-gene-rich clusters

where R-genes are within 10 genes of each other, and found 744

out of 1729 (43%) of RGA candidates reside within physical

clusters. The percentage of physically clustered genes varied

between RGA classes. For NBS-LRR genes, 310 out of 453 (68%)

genes were located in physical clusters, while 339 out of 822

(41%) RLK genes and 53 out of 159 (33%) RLP were located in

physical clusters. In most plants it has been shown that RGA

candidates locate within RGA-gene-rich clusters. In Arabidopsis,

113 out of 159 (71%) NBS-LRR genes are located within RGA-

gene-rich clusters (Guo et al., 2011), and in rice, 76% of NBS-LRR

genes are located within RGA-gene-rich clusters (Zhou et al.,

2004). More recently, three Yr genes conferring resistance to

wheat yellow rust where found in wheat, all of which are located

within the same cluster (Marchal et al., 2018).

The RGA candidate density was compared with available PAV

data. There were more variable NBS-LRR genes within physical

clusters than outside of clusters (87, 18) and more core NBS-LRR

genes within physical clusters than outside of clusters (219, 111).

A chi-square test was used to test for independence of these two

classes and they were not equally distributed (v2 = 9.6, P < 0.05).

This indicates that the PAV status of NBS-LRR genes and the

physical cluster status is strongly linked, suggesting that the

presence of a gene within a cluster may protect it from being lost.

NBS-LRR genes are often located in physical clusters containing

many perfect copies (Michelmore and Meyers, 1998). However,

membership in such a cluster does not always protect from loss,

as deletions within R-gene clusters have been described in the

melon genome, where a 146 kb deletion was affecting a 23 R-

gene cluster with two more structural variants affecting R-genes

(Sanseverino et al., 2015).

Sequence-based clustering of RGA candidates

The RGA candidates were clustered based on the sequence

identity to find the number of allelic variants describing the true

extent of RGA diversity in the 10 lines. At a minimum identity of

Figure 1 Density of genes compared with the density of NBS, RLK, RLP as well as variable genes.
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70%, we found 280 clusters with 716 members in total, ranging

from 2 to 7 members. Of the clustered RGA candidate classes,

188 were RLKs, 133 were NBS-LRR, 26 were RLPs and 972 RGA

candidates remained as unclustered singletons. Most of the

largest clusters contained only RLKs as almost perfect copies from

different locations in the genome (cluster 0: 7 RLKs, cluster 1: 6

RLKs, cluster 2: 2 NBS, 2 TNLs, 1 NL, 1 TX, cluster 3: 1 NBS, 1 TNL,

1 CNL, 2 OTHER, 1 TX, cluster 4: 6 RLKs; Figure S1).

Most genes within clusters were present in all lines (563 core,

153 variable). The 10 largest clusters containing only RLKs

consisted of mostly core genes (median 100% core, average:

96% core). The clusters were classified based on whether they

contained only RLK, only RLP, only NBS-LRR genes, or a mixture of

these three. All the clusters contained on average and median

79% core genes, independent of type.

The average sequence identity of all clusters was 80.4%

indicating relatively high divergence between R-gene paralogs.

In Arabidopsis, there are very few R-gene paralogs which show

high sequence identity, which we also observe, with the

majority of R-genes showing no perfect identity (Bergelson

et al., 2001). This is likely due to the positive selection acting on

these R-genes.

RGA candidates and transposable elements

We tested the hypothesis whether resistance genes and variable

genes overlap more often than expected when compared with all

other genes. To this end, we tested for physical overlap and

physical distance-based association between resistance gene

classes and variable genes. NBS-LRR genes showed the greatest

variability of all classes of RGAs based on the strongest,

statistically significant overlap association with a Z-score of 11

(P < 0.005; Figure 2, Table S2). RLK genes, on the other hand,

showed significantly less variability than expected (P < 0.05,

Table S2, Figure S2).

We searched for RGA candidates which are lost or retained in

pairs, as a proxy for selection pressure. R-gene pairs that are lost

together but are in close proximity may have been lost due to

chance, while R-gene pairs that are distant from each other but

have been lost together may hint at a selection pressure

impacting gene conservation, as has been observed with

Table 1 Count of resistance gene classes in the Brassica oleracea pangenome

Class C1 C2 C3 C4 C5 C6 C7 C8 C9

Unplaced

scaffolds

Total in

reference

genome

Additional

contigs in

pangenome Total

CN 2 2 0 1 1 2 3 3 0 2 16 11 27

CNL 5 3 6 6 3 5 4 6 5 4 47 9 56

NBS 2 5 4 2 2 5 3 4 5 8 40 25 65

NL 7 7 8 2 3 5 7 10 24 4 77 42 119

TN 1 5 2 2 1 12 2 3 4 1 33 4 37

TNL 8 25 18 6 4 7 15 9 24 5 121 8 129

TX 9 8 13 6 3 7 15 5 21 18 105 18 123

Total NBS-LRR 34 55 51 25 17 43 49 40 83 42 439 117 556

RLK LRR 32 31 65 27 32 32 41 17 32 12 321 13 334

RLK Other 51 44 74 65 38 43 57 42 68 19 501 66 567

Total RLK 83 75 139 92 70 75 98 59 100 31 822 79 901

RLP LRR 12 16 22 23 12 22 7 20 12 10 156 54 210

RLP Other 0 1 0 0 1 0 0 1 0 0 3 0 3

Total RLP 12 17 22 23 13 22 7 21 12 10 159 54 213

Other 1 2 1 1 1 2 4 2 0 0 14 4 18

Total 152 179 268 177 129 165 189 146 235 89 1729 260 1989

Total per Mbp 3.47 3.38 4.12 3.29 2.75 4.14 3.91 3.50 4.30 2.13 3.87 2.64 3.65

Table 2 Count of RGA candidates per line and RGA class

Name Line CN CNL NBS NL RLK RLP TN TNL TX Total

Early Big Broccoli 19 48 46 90 834 169 31 108 105 1450

AC498 (Gower DH line) Brussels Sprouts 17 53 43 86 850 181 30 115 96 1471

Badger Inbred 16 Cabbage1 15 52 40 85 844 173 30 117 97 1453

HRIGRU009617 DH3 Cabbage2 20 50 39 90 846 174 29 113 100 1461

BOL909 Cauliflower1 19 48 37 88 841 171 30 117 97 1448

CA25 (Nedcha DH line) Cauliflower2 18 52 41 84 847 172 30 110 93 1447

ARS_18 (Arsis DH) Kale 18 53 38 86 846 178 29 115 99 1462

HRIGRU011183 DH1 Kohlrabi 17 51 39 87 842 174 28 113 99 1450

B. macrocarpa B. macrocarpa 21 52 41 97 862 186 30 110 96 1495

TO1000 DH3 TO1000 14 47 34 79 821 157 32 119 99 1402
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homeologous gene pairs where copies subfunctionalize (Adams

et al., 2003).

Of the 168 variable RGA candidates, 59 pairs [118 (70%) RGA

candidates] were present or absent in the same individuals. Of

these, 35 RGA candidates were located on the same pseudo-

molecule, and a further 11 pairs were located within 10 Kbp of

each other. These 11 pairs may have been lost due to chance

alone. Another 24 pairs were located on different pseudo-

molecules. These pairs were mostly evenly distributed along the

pseudomolecules with a maximum of three pairs between RGA

candidates on C8 and C9. In B. oleracea, specific R-genes were

previously associated with hybrid lethality (HL; Xiao et al., 2017),

where two interacting loci cause hybrid failure, eventually leading

to speciation (Orr, 1996). While none of the RGA candidates lost

in tandem were linked to HL before in B. oleracea (Xiao et al.,

2017), it may explain some of the genes lost in tandem here.

We investigated whether the RGA candidate and PAV associ-

ation is dependent on the position in the genome, or whether the

association is class-dependent alone. The association between

NBS-LRR candidate genes and PAV, and the association between

TEs and PAV genes are highly context and position dependent

since the association measured by the Z-score falls after shifting

positions for more than 3 Kbp (Figure S3).

We searched for elements, such as TEs and simple repeats, in

surrounding regions and checked for the distance association

between PAVs and TEs. In our data, there was no association

between PAVs and simple repeats; however, the average distance

between TEs and PAVgenes is lower than expected (P < 0.05,

Figures S4 and S5). This association also holds up for the mean

distance between TE and NBS-LRR genes, but not for RLK genes,

which fits with the previous observation that NBS-LRR genes are

the most variable class of all the RGAs. TE activity has previously

been linked with R-genes (Hulbert et al., 2001). In rice, it has

been shown that an inactive rice blast resistance gene has

undergone refunctionalization due to the recruitment of a

retrotransposon (Hayashi and Yoshida, 2009). In A. thaliana, a

complex regulatory system involving TEs has been described,

where a transposon insertion in an intron of RPP7 (resistance to

downy mildew) controlled by EDM2 results in two different RPP7

isoforms which are both important in the plant’s pathogen

resistance (Tsuchiya and Eulgem, 2013). Therefore, TEs seem to

have an important role in generating novel disease resistance in

plants. TEs also play a role in presence/absence variation (PAV).

During TE transposition in maize, unrelated genes located nearby

can be captured and relocated (Lai et al., 2005) causing PAV.

SNP analysis

To examine the association between SNPs and RGAs, we

compared the 4 815 081 SNPs called by (Golicz et al., 2016)

with our RGA candidates. Predicted functional changes were

analysed within the RGA candidates. Of the SNPs positioned

within RGA candidate coding sequences, 434 were predicted to

be high impact, 17 109 moderate impact and 16 515 low

impact. Of the high impact SNPs, 267 introduced premature stop

codons, 33 led to the loss of stop codons, 23 lead to lost start

codons, and finally 53 splice acceptor variants and 58 splice donor

variants were introduced. There were more high impact SNPs in

RGA candidate genes than in non-RGA candidate genes, with

434 high impact SNPs for 1729 RGA candidate genes (ratio:

0.26), and only 9860 high impact SNPs for 59 651 non-RGA

Figure 2 Expected (Evperm) and observed (Evobs)

overlaps between NBS genes and PAV genes

showing that the number of overlaps is higher

than expected.
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genes (ratio: 0.16). In Arabidopsis, R-genes are known to amass

unusually large numbers of non-synonymous SNPs, producing

new allelic variants of R-genes (Bakker et al., 2006) which

corresponds with our observations.

Resistance genes analogs located on the extra pangenome

contigs contained fewer SNPs than RGAs located on pseudo-

molecules. Out of 1729 RGAs on pseudomolecules, 23 contained

no SNPs (1%), while out of 261 RGAs on the extra pangenome

contigs, 97 contained no SNPs (37%). RLK genes in particular

showed more low impact variants than the other RGA classes

(Figure 3), with similar patterns in upstream and downstream

variants (Figure S6).

We expect to see a lower SNP density in the non-reference

contigs since these contigs exist in only a few individuals. On

average, core genes had more low and moderate impact SNPs

than variable genes (average: 12 in core, four in variable genes).

Core genes and variable genes had almost identical numbers of

high impact SNPs (average 0.25 in both cases). This comparison is

confounded by the lower SNP density in variable genes (35 187

SNPs in core, 3665 in variable genes). In Arabidopsis populations,

the nucleotide diversity in R-genes showing presence/absence

variation is much lower than in core R-genes (Shen et al., 2006),

indicating two different mechanisms of selection. This may be the

case in B. oleracea as well.

Linking SNPs and PAV

The interplay between variation generated by SNPs and variation

generated by PAVs was assessed. In 303 RGA candidates, of

which 132 were NBS-LRRs, 131 were RLKs, and 40 RLPs, likely

loss of function causing SNPs were identified. Interestingly, even

though there were more RLKs found in the pangenome, the

percentage of NBS-LRR genes with loss of function SNPs was

higher than in RLKs, again indicating that NBS-LRRs mutate faster

as observed with higher PAV in NBS-LRRs (Figure S6). This

discrepancy could also be due to different roles in RLKs past

disease resistance.

Of the RGA candidates carrying at least one loss of function

SNP, 66 genes were variable and 237 were present in all lines,

which fits with the previous observation that variation generated

by SNPs is mostly distinct from variation generated by PAV.

Resistance genes-analog class and PAV was linked significantly

with the number of moderate and low impact SNPs (Chi-squared

test, P < 0.05). High impact SNPs were only statistically signifi-

cantly linked with RGA class and not with PAV status. This

indicates that PAV and SNP based variability act separately from

each other in B. oleracea RGA candidates, as has been observed

in Arabidopsis (Tan et al., 2012). There seem to be two different

paths to increase RGA gene diversity, which seem to work mostly

exclusive from each other—either a gene collects a loss of

function mutation, or it is lost entirely. Why these two mecha-

nisms do not significantly overlap remains to be determined.

Linking known QTL and R-genes

The RGA candidate positions were compared with known

quantitative trait loci (QTL) for Sclerotinia, clubroot and Fusarium

wilt resistance to assess possible biological functions. Pseudo-

molecule positions were predicted for 32 out of 49 QTL markers,

leading to 12 out of 18 reported QTL with positions in the v2.1

assembly. These QTL covered between 0.2 and 34.6 Mbp

(average: 9.8 Mbp) on five pseudomolecules with a total of

Figure 3 High impact, moderate impact and low impact SNPs per base pair compared with RGA class and presence/absence status.
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10 863 genes, out of which 297 genes (2.7%) were RGA

candidates (Table 3). Ignoring the four QTL larger than 10 Mbp

resulted in 2528 genes underlying the QTL, out of which 59

(2.3%) were RGA candidates.

The majority of the 59 RGA candidates in smaller QTL linked

with Sclerotinia, black rot, and clubroot are present in all lines

(43 core, 16 variable) indicating that these resistances show

stable inheritance, which make them valuable targets for plant

breeders. The RGA classes showed different levels of variability

—27 of the 28 RLKs were core with only one RLK being

variable, while 10 TNLs were variable with nine TNLs being

present in all lines, indicating that RLKs are more stable than

TNLs. A waterfall plot of the Sclerotinia resistance-linked QTL

qLR10-3 (SWUC177 - BoGMS1032) was produced to show the

mutational load of RGA candidates located within the QTL

candidate region in all 10 individuals (Figure 4). As expected,

B. macrocarpa showed the highest mutational load. Two genes

(Bo7g107710 and Bo7g073830) showed mis-sense variants in

almost all individuals. Very few low impact variants such as

synonymous variants were observed in this QTL with the

majority of variants being mis-sense. Variants resulting in lost

stop codons were always shared in at least two individuals

indicating that this mutation is not random. The large number

of mis-sense variants indicates that this QTL region is under

positive selection pressure.

We have shown that there is a large amount of SNP and PAV

variability within this QTL region, with some genes being

completely lost in a few individuals. Pinpointing the actual cause

of resistance will require looking at all aspects of variability in this

region in several diverse individuals.

Linking known R-genes

Lv et al. (2014) reported the TNL Fusarium wilt resistance gene

FOC1 to be Bol037156 on pseudomolecule C7 (38.8 Mbp) in

B. oleracea in the firstB. oleracea annotation (Liu et al., 2014). The

short LRR-domain carrying Bol037156 was re-annotated into a

longer version named ‘re-Bol037156’ carrying TIR-NBS-LRR

domains, which segregated as expected in a resistant and

susceptible population. We used blastp to search for Bol037156

in the current v2.1 B. oleracea assembly and found the best hit in

Bo7g104800 on pseudomolecule C7 (score: 325, e-value 1e�102).

In the new v2.1 results, this gene is amuch longer TNL (2646 amino

acids comparedwith the original 203 amino acids) indicating that in

the Liu et al. (2014) assembly this gene annotated incorrectly. This

Table 3 Reported QTL for Sclerotinia and black rot resistance, their position in the Brassica oleracea v2.1 assembly and RGA candidates contained

therein

QTL name Resistance Publication Pseudomolecule

Start

(Mbp)

End

(Mbp)

Length

(Mbp) RGA candidate classes

Core genes

percentage

BRQTL-C1_2

(BoRSdcaps1-13 -

BoEdcaps4)

Black rot Lee et al. (2015) C1 18.2 37.1 18.9 CN 2, CNL 6, NL 6,

TNL 2, TX 4, RLK 30,

RLP 4

54 core

(100% core)

BRQTL-C1_2

(BoRSdcaps1-14 -

BoEdcaps4)

Black rot Lee et al. (2015) C1 19.6 37.1 17.5 CN 1, CNL 3, NL 3,

TNL 1, TX 2, RLK 15,

RLP 2

27 core

(100% core)

BRQTL-C1_2

(BoESSR089 -

BoEdcaps4)

Black rot Lee et al. (2015) C1 32.1 37.1 5 RLK 3 3 core

(100% core)

QTL-1

(BoCL3135s -

BoCL5545s)

Black rot Kifuji et al. (2013) C2 1.9 6.3 4.4 CNL 1, NL 1, TNL 13,

RLK 9, RLP 2

7 variable,

19 core (73% core)

qLR10-3

(SWUC177 -

BoGMS1032)

Sclerotinia

sclerotiorum

Mei et al. (2013) C7 12.1 46.7 34.6 CN 3, CNL 4, NBS 3, NL 7,

OTHER 4, TN 2, TNL 13,

TX 14, RLK 85, RLP 3

16 variable,

122 core (88.5% core)

qLR10-6 (Ol10D08 -

SWUC731)

Sclerotinia

sclerotiorum

Mei et al. (2013) C9 3.8 4.2 0.5 RLK 1, RLP 2 2 variable,

1 core (33% core)

qLR09-6 (SWUC731 -

SWUC700)

Sclerotinia

sclerotiorum

Mei et al. (2013) C9 3.8 4.4 0.7 RLK 3, RLP 2 2 variable,

3 core (60% core)

qSR10-4 (SWUC711 -

SWUC700)

Sclerotinia

sclerotiorum

Mei et al. (2013) C9 4.2 4.4 0.2 RLK 2 2 core (100% core)

qLR09-5 (SWUC658 -

SWUC635)

Sclerotinia

sclerotiorum

Mei et al. (2013) C9 6.3 7.3 1 CNL 1, NL 1, RLP 1 3 core (100% core)

qLR10-5 (SWUC679 -

SWUC635)

Sclerotinia

sclerotiorum

Mei et al. (2013) C9 6.8 7.3 0.5 N/A N/A

CRQTL-GN_1

(comp7993 -

BoRSdcaps2-10)

Clubroot Lee et al. (2016) C2 13.5 43.5 30 CN 2, NBS 3, NL 2, OTHER

1, TN 5, TNL 10, TX 7,

RLK 37, RLP 9

7 variable,

69 core (91% core)

CRQTL-GN_2

(BoRSdcaps3-2 -

BoRSdcaps3-4)

Clubroot Lee et al. (2016) C3 0.8 5.5 4.7 TN 1, TNL 6, TX 2,

RLK 10, RLP 3

7 variable,

15 core (68% core)
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fitswith the longer, but possibly still too short 1.3 kaa reassembly of

re- Bol037156 presented in (Lv et al., 2014) and indicates that the

gene was assembled correctly in v2.1.

Of the 17 FOC1 linked markers, 13 map to C7 from 40.0 to

42.9 Mbp, which supports the notion of Bo7g104800 being

FOC1, since Bo7g104800 is located at 40.3 Mbp on C7.

Bo7g104800 is present in all 10 lines, however SNPs introduced

premature stop codons in ARS_18 (Kale) and Badger Inbred 16

(Cabbage1) which suggests loss of function and subsequent

Fusarium wilt susceptibility.

The 34.6 Mbp QTL qLR10-3 for Sclerotinia resistance also

contains Bo7g104800. In the light of no published literature linking

Sclerotinia resistance and Fusarium wilt resistance it is more likely

that this overlap is accidental due to the large QTL region.

Conclusions

Here we have described different modes of selection in RGA

candidates in B. oleracea. We showed different selection pres-

sures acting on SNPs and PAV for different RGA classes in

B. oleracea, especially for RLKs and TNs. We have also observed

that genes within physical clusters are more likely to be variable,

and that similar copies of the same RGAs are retained with a rate

of around 80%. We show that there are two mechanisms

operating separately from each other in B. oleracea that generate

diversity in RGAs—one via SNPs and one via PAVs. We have

identified 37 RGA candidates within QTL regions associated with

Sclerotinia and black rot resistance, and these candidates may

inform future breeding efforts in B. oleracea. We have identified

Figure 4 Waterfall plot of the Sclerotinia resistance-linked QTL qLR10-3 (SWUC177 - BoGMS1032). Gene order is determined by position in the reference

assembly.
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RGA candidates in the pangenome which are not present in the

single reference assembly, showing that a pangenome is required

to describe the full extent of genes present in the species, as well

as necessary for candidate gene identification for breeding of

improved cultivars.

Experimental procedures

The RGAugury pipeline (version 2017-10-21; Li et al., 2016) was

used to predict NBS, RLK, and RLP candidate genes in the

B. oleracea TO1000 v2.1 annotation downloaded from Ensembl

Genomes Release 37 (Kersey et al., 2017; Parkin et al., 2014) as

well as in the B. oleracea pangenome downloaded from (http://

brassicagenome.net) (Golicz et al., 2016). PAV, TE and SNP data

for the B. oleracea genome and pangenome extra contigs were

downloaded from http://brassicagenome.net.

NBS-LRR were classified based on presence or absence of

specific domains: Proteins carrying only an NB-ARC domain were

classified as NBS, proteins carrying TIR, NB-ARC, and Leucine-

Rich-Repeat domains were classified as TNLs, or TN if the Leucine-

Rich-Repeat domain was missing. Proteins carrying Coils,

NB-ARC, and Leucine-Rich-Repeat domains were classified as

CNLs, or CN if the Leucine-Rich-Repeat domain was missing, or

NL if the Coils domain was missing. Proteins carrying a TIR domain

with additionally unknown domains were classified as TX, while

proteins carrying TIR and Coils but not NB-ARC domains were

classified as OTHER.

Resistance genes-analog candidates were clustered into

sequence-based clusters using CD-HIT v4.6.8-2017-1208 (mini-

mum identity c: 0.7; Li and Godzik, 2006). Multiple sequence

alignments of each cluster were drawn using MUSCLE v3.8.1551

(Edgar, 2004) and BOXSHADE v3.21 (https://embnet.vital-it.ch/

software/BOX_form.html).

The R-package regioneR v1.8 (Gel et al., 2016; R Core Team,

2016) was used to test resistance genes and genes exhibiting

PAV and transposable elements for association using 500

permutations. For PAV association, the evaluation function

numOverlaps was used to check whether the number of gene

overlaps is higher than expected. For TE association, the

evaluation function meanDistance was used since we do not

expect TEs to overlap with RGA candidates due to repeats

having been masked during the annotation process. The R-

package karyotypeR v1.2.2 (Gel and Serra, 2017) was used to

plot gene densities.

Resistance genes-analog-gene-rich-physical clusters were

mined from the genome by comparing all resistance gene

candidates located on pseudomolecules. Resistance gene candi-

dates were merged into RGA-gene-rich clusters if there was at

least one other resistance gene within 10 upstream or 10

downstream genes using a Python 3 script (makeRGeneClus-

terAnalysis.py). Physical clusters and presence/absence status

was compared using Pearson’s Chi-squared test with Yates’

continuity correction as implemented in R v3.4.2 (R Core Team,

2016).

The SNPs called by (Golicz et al., 2016; available at http://bra

ssicagenome.net/databases.php) were compared with the RGAs

using SnpEff v4.3T (Cingolani et al., 2012). Since there were

more core than variable genes and since core genes were longer

than variable genes (Golicz et al., 2016) the counts of low,

moderate, and high impact SNPs were normalised by dividing by

the total length of all exons per gene in order to account for very

long and very short genes. Two-way ANOVA as implemented in R

v3.4.2 (R Core Team, 2016) was used to check whether the

variation in low, moderate, high, and upstream and downstream

variants could be explained by the presence/absence status or by

the RGA class.

Known Sclerotinia, clubroot and black rot resistance-linked

QTLs were collected from (Kifuji et al., 2013; Lee et al., 2015,

2016; Mei et al., 2013) and 49 marker sequences were collected

from (Iniguez-Luy et al., 2009; Izzah et al., 2014; Lee et al.,

2015; Li et al., 2015; Lowe et al., 2002, 2004; Mei et al., 2013;

Piquemal et al., 2005; Qu et al., 2012; Sampath et al., 2013,

2014). BLAST blastn (Camacho et al., 2009; task: blastn-short, e-

value: 0.05) was used to assign positions for the forward and

reverse primer sequences in the v2.1 B. oleracea assembly.

Forward and reverse pairs not mapping on the same pseudo-

molecule or mapping at more than 20 positions were removed.

Gene and QTL region overlap was determined using bedtools

v2.27.1 intersect (Quinlan and Hall, 2010). Markers linked with

FOC1 were collected from (Lv et al., 2014). All marker sequences

are available in Table S3. Waterfall plots were drawn using

Variant Effect Predictor v88.13 (McLaren et al., 2016), GenVisR

v1.11.3 (Skidmore et al., 2016), vcftools v0.1.15 (Danecek et al.,

2011) and R 3.4.4 (R Core Team, 2016).

Alternative transcripts of Bo7g104800/FOC1 were produced by

subsetting VCF files using bcftools v1.7 view (Li, 2011), creating

alternative references using GATK 3.8-1-0 FastaAlternateRefer-

enceMaker (McKenna et al., 2010), by predicting the amino acid

sequences using genometools v1.5.9 (Gremme et al., 2013), and

then manually removing sequence after the premature stop

codon. The domains of the alternative transcripts were predicted

using Interproscan v5.29-68 (Jones et al., 2014) using Pfam 31.0

and COILS.
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