
Calhoun: The NPS Institutional Archive
DSpace Repository

Theses and Dissertations 1. Thesis and Dissertation Collection, all items

2021-03

DESIGN AND IMPLEMENTATION OF A
DISTRIBUTED LEDGER TO SUPPORT DATA
SURVIVABILITY IN AN UNMANNED
MULTI-VEHICLE SYSTEM

Pommer, Peter J.
Monterey, CA; Naval Postgraduate School

http://hdl.handle.net/10945/67168

Copyright is reserved by the copyright owner.

Downloaded from NPS Archive: Calhoun

NAVAL
POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

THESIS

DESIGN AND IMPLEMENTATION OF A DISTRIBUTED
LEDGER TO SUPPORT DATA SURVIVABILITY
IN AN UNMANNED MULTI-VEHICLE SYSTEM

by

Peter J. Pommer

March 2021

Thesis Advisor: Cynthia E. Irvine
Co-Advisor: Duane T. Davis

Approved for public release. Distribution is unlimited.

THIS PAGE INTENTIONALLY LEFT BLANK

 REPORT DOCUMENTATION PAGE Form Approved OMB
No. 0704-0188

 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing
instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of
information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions
for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project
(0704-0188) Washington, DC 20503.
 1. AGENCY USE ONLY
(Leave blank) 2. REPORT DATE

 March 2021 3. REPORT TYPE AND DATES COVERED
 Master's thesis

 4. TITLE AND SUBTITLE
DESIGN AND IMPLEMENTATION OF A DISTRIBUTED LEDGER TO
SUPPORT DATA SURVIVABILITY IN AN UNMANNED MULTI-VEHICLE
SYSTEM

 5. FUNDING NUMBERS

 6. AUTHOR(S) Peter J. Pommer

 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

 8. PERFORMING
ORGANIZATION REPORT
NUMBER

 9. SPONSORING / MONITORING AGENCY NAME(S) AND
ADDRESS(ES)
N/A

 10. SPONSORING /
MONITORING AGENCY
REPORT NUMBER

 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.
 12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release. Distribution is unlimited. 12b. DISTRIBUTION CODE

 A
13. ABSTRACT (maximum 200 words)
 Autonomous vehicle systems, including multi-vehicle systems, are becoming increasingly relevant in
military operations. A problem emerges, however, when logging data within these systems. In particular,
loss of individual vehicles and inherently lossy and noisy communications environments can result in the
loss of important mission data. This thesis presents a novel distributed ledger protocol that can be used to
ensure that the data in such a system survives. To test the efficacy of the protocol, we implemented it as a
Robot Operating System (ROS) node on the Advanced Robotic Systems Engineering Laboratory (ARSENL)
aerial swarm system. Results are presented for implementation tests in the ARSENL software-in-the-loop
simulation environment and during live-flight field experiments conducted at Camp Roberts, CA.

 14. SUBJECT TERMS
distributed ledger, blockchain, unmanned aerial vehicle, UAV, unmanned vehicle system,
UVS, Advanced Robotic Systems Engineering Laboratory, ARSENL

 15. NUMBER OF
PAGES
 113
 16. PRICE CODE

 17. SECURITY
CLASSIFICATION OF
REPORT
Unclassified

 18. SECURITY
CLASSIFICATION OF THIS
PAGE
Unclassified

 19. SECURITY
CLASSIFICATION OF
ABSTRACT
Unclassified

 20. LIMITATION OF
ABSTRACT

 UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

i

THIS PAGE INTENTIONALLY LEFT BLANK

ii

Approved for public release. Distribution is unlimited.

DESIGN AND IMPLEMENTATION OF A DISTRIBUTED LEDGER
TO SUPPORT DATA SURVIVABILITY IN AN

UNMANNED MULTI-VEHICLE SYSTEM

Peter J. Pommer
Civilian, CyberCorps: Scholarship for Service

BS, California State University Monterey Bay, 2018

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 2021

Approved by: Cynthia E. Irvine
 Advisor

 Duane T. Davis
 Co-Advisor

 Gurminder Singh
 Chair, Department of Computer Science

iii

THIS PAGE INTENTIONALLY LEFT BLANK

iv

ABSTRACT

 Autonomous vehicle systems, including multi-vehicle systems, are becoming

increasingly relevant in military operations. A problem emerges, however, when logging

data within these systems. In particular, loss of individual vehicles and inherently lossy

and noisy communications environments can result in the loss of important mission data.

This thesis presents a novel distributed ledger protocol that can be used to ensure that the

data in such a system survives. To test the efficacy of the protocol, we implemented it as

a Robot Operating System (ROS) node on the Advanced Robotic Systems Engineering

Laboratory (ARSENL) aerial swarm system. Results are presented for implementation

tests in the ARSENL software-in-the-loop simulation environment and during live-flight

field experiments conducted at Camp Roberts, CA.

v

THIS PAGE INTENTIONALLY LEFT BLANK

vi

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement. 1
1.3 Scope . 2
1.4 Approach . 2
1.5 Organization . 3

2 Background 5
2.1 Distributed Multi-Vehicle Autonomous Systems 5
2.2 Consensus within Distributed Systems 7
2.3 Distributed Ledgers and Block Chains 9
2.4 Robot Operating System (ROS). 11
2.5 Advanced Robotic Systems Engineering Laboratory (ARSENL). 12
2.6 Chapter Summary . 17

3 Uniform Chain Protocol 19
3.1 Protocol Summary . 20
3.2 Definitions and Terminology . 20
3.3 Assumptions . 22
3.4 Block Chain Data Structure . 23
3.5 High-Level Overview . 25
3.6 Detailed Chain Protocol. 29
3.7 Chapter Summary . 66

4 Implementation and Results 67
4.1 Implementation Overview . 67
4.2 Development . 69
4.3 Experimental Results. 75

vii

4.4 Chapter Summary . 89

5 Conclusion 91
5.1 Future Work . 91

List of References 93

Initial Distribution List 97

viii

List of Figures

Figure 2.1 Simple block chain example . 10

Figure 2.2 ARSENL multi-vehicle system architecture 13

Figure 2.3 The ZephyrII unmanned aerial vehicle (UAV) 14

Figure 2.4 The Mosquito Hawk quadrotor UAV 14

Figure 2.5 ARSENL on-vehicle swarm architecture 16

Figure 3.1 The block chain data structure 24

Figure 3.2 An abstracted version of the Uniform Chain Protocol (UCP) . . . 26

Figure 3.3 Event handler diagram and symbol key 30

Figure 3.4 Build Data Block event handler 32

Figure 3.5 Process Next Deque Block event handler 34

Figure 3.6 Receive Request Add Block event handler 36

Figure 3.7 Receive Vote Add Block event handler 37

Figure 3.8 Vote Timer Expiration event handler 39

Figure 3.9 Receive Commit Block event handler 41

Figure 3.10 Reconcile Begin event handler 42

Figure 3.11 Reconcile Phase 1 event handler 44

Figure 3.12 Receive Request Chain Contain event handler 46

Figure 3.13 Receive Phase 1 Response event handler 47

Figure 3.14 Reconcile Phase 1 Timer Expiration event handler 49

Figure 3.15 Reconcile Phase 2 event handler 51

Figure 3.16 Receive Request Next in Sequence event handler 53

ix

Figure 3.17 Receive Response Next in Sequence event handler 54

Figure 3.18 Reconcile Phase 2 Timer Expiration event handler 56

Figure 3.19 Reconcile Phase 3 event handler 58

Figure 3.20 Receive Request Block for Hash event handler 60

Figure 3.21 Receive Response Block For Hash event handler 62

Figure 3.22 Reconcile Phase 3 Timer Expiration event handler 63

Figure 3.23 Reconcile Finalize event handler 65

Figure 4.1 No packet loss test results . 78

Figure 4.2 Commit loss test results . 80

Figure 4.3 15 percent loss test results . 82

Figure 4.4 30 percent loss test results . 83

Figure 4.5 50 percent loss test results . 85

Figure 4.6 100 percent loss test results . 86

Figure 4.7 Field test results . 87

x

List of Acronyms and Abbreviations

API application programming interface

ARSENL Advanced Robotic Systems Engineering Laboratory

DLP data ledger protocol

DOD Department of Defense

MP Monterey Phoenix

NPS Naval Postgraduate School

ROS Robot Operating System

SITL software-in-the-loop

UAV unmanned aerial vehicle

UCP Uniform Chain Protocol

UDP User Datagram Protocol

UV unmanned vehicle

UVS unmanned vehicle system

xi

THIS PAGE INTENTIONALLY LEFT BLANK

xii

Acknowledgments

This material is based upon activities supported by the National Science Foundation under
Agreement No 1565443. Any opinions, findings, and conclusions or recommendations
expressed are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation.

Thank you, Dr. Cynthia Irvine and Dr. Duane Davis, for being great thesis advisors and
always making yourselves available.

I want to offer a special thanks to Nickolas Carter for working with me on this project and
staying up late nights helping me write this thesis.

xiii

THIS PAGE INTENTIONALLY LEFT BLANK

xiv

CHAPTER 1:
Introduction

Distributed unmanned vehicle systems often work without a centralized authority that di-
rects all of the participants. This distribution provides for scalability and flexibility but
presents challenges with regard to event logging and mission analysis. These challenges can
be addressed through distributed ledgers that use block chains to store data. In a distributed
ledger, data is synchronized across multiple physical locations, and consensus processes are
used to ensure the consistent state of the ledger across the entire network [1]. We present a
novel protocol to create and maintain such a distributed ledger with improved data surviv-
ability in a multi-vehicle system that suffers participant attrition or lossy communications.

1.1 Motivation
This research is inspired by the 2018 National Defense Strategy (NDS) which promotes
investment in the cyberspace domain. This strategy states, “We will also invest in cyber
defense, resilience, and the continued integration of cyber capabilities into the full spectrum
of military operations” [2]. The protocol outlined in this thesis addresses the resilience of
data generated and recorded during missions of distributed, multi-vehicle, autonomous
systems.

1.2 Problem Statement
Data availability in an unmanned vehicle system (UVS) can be compromised or hindered
when an individual unmanned vehicle (UV) is lost or destroyed. When data generated by a
particular UV is stored on only that UV, the availability of that data is imperiled because
the UV must survive the mission and return to its base for the data to be retrieved. If the
UV is lost or destroyed during the mission, all of its data perishes with it. In addition,
vehicles may experience lossy and sometimes disconnected inter-vehicle communications
that further hinder mission data collection and maintenance. Thus, a robust, system-wide
method to record data generated by individual agents that is tolerant of vehicle attrition
and communication discontinuities is needed. This thesis presents a potential solution and

1

addresses the following questions:

1. Can a block-chain-based data ledger protocol (DLP) be used to distribute mission
data across the system so that individual vehicle losses do not hinder post-mission
data consolidation and analysis?

2. Can this DLP account for lossy and occasionally disconnected communications en-
vironments?

3. Can this DLP be implemented in a real-world system without impacting the system’s
functionality?

4. What can empirical analysis of real-world system results tell us about the DLP’s
performance?

1.3 Scope
This thesis presents a protocol that provides a solution to the problem of availability of
generated and recorded sensor data by using a block-chain-based protocol to propagate
data to all other UVs in the UVS. The protocol accounts for vehicle loss and accommo-
dates periods of temporary disconnection in inter-vehicle communications. In addition, this
thesis describes the implementation and testing of the protocol on the Advanced Robotic
Systems Engineering Laboratory (ARSENL) unmanned vehicle system (UVS) platform.
Experimental results are empirically analyzed to verify compliance with a set of required
characteristics; however, formal mathematical proof of correctness is left to future work.

1.4 Approach
Our approach for developing the protocol began with a study of existing distributed ledgers.
We also reviewed well known consensus algorithms, such as the Paxos family of protocols,
and researched background information on unmanned aerial vehicle (UAV) systems and
challenges associated with inter-vehicle communications. Based on the envisioned target
system environment, we then developed a set of required protocol properties. Following the
literature review and requirements development, Nickolas Carter, my classmate at Naval
Postgraduate School (NPS), and I jointly defined a protocol for use in a distributed, multi-
vehicle, autonomous system to improve availability of data in such a system. The protocol
was defined as a language-independent and system-independent set of event-handler func-

2

tions. The implementation was targeted for deployment on the ARSENL swarm system, so
I used the Robot Operating System (ROS) Python application programming interface (API)
to create new software components. We tested the implementation using a software-in-the-
loop (SITL) framework to run on-vehicle software in a realistic physically-based simulation
environment. Additionally, I analyzed log files to discover bugs and ensure the protocol
executed properly. Finally, we performed live-fly field tests at Camp Roberts, CA, that
demonstrated the correctness of the protocol running on ARSENL UAVs.

1.5 Organization
This work is organized into five chapters, the first of which is this introduction. Chapter 2
describes foundational constructs necessary for our protocol and includes discussions of
distributed multi-vehicle autonomous systems, consensus in distributed systems, distributed
ledgers and block chains, ROS, theARSENLUVS and on-aircraft architecture, and the SITL
simulation software.

Chapter 3, the central element of this work, formally defines the protocol. It begins with a
summary, definitions, assumptions and an explanation of how we use a block chain-based
approach to achieve our objectives. The chapter also provides a high level explanation of the
protocol before delving into a detailed explanation of each event handler. A pseudo-code
algorithm and a process flow diagram is provided for each event handler.

Chapter 4 covers the development process of the event handlers required to implement
the protocol on the ARSENL platforms. This chapter also describes the testing process, the
results of bench tests, and the results of live-fly field experiments. Chapter 5, the conclusion,
summarizes the contributions and implications of this research and provides suggestions
for future work.

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

CHAPTER 2:
Background

This chapter outlines the foundations for this thesis and covers concepts necessary for the
development of the protocol. These include distributed multi-vehicle autonomous systems,
consensus within a distributed system, distributed ledgers, and block chains. It also intro-
duces technologies used to implement the protocol including ROS, the publish-subscribe
mechanism, the ARSENL multi-UAV system, and the SITL simulator.

2.1 Distributed Multi-Vehicle Autonomous Systems
Distributed multi-vehicle autonomous systems, as the name suggests, are systems in which
multiple vehicles operate as a distributed system. Given appropriate communication and
coordination capabilities, a collection of autonomous vehicles can comprise what is com-
monly known as a UVS. These systems can incorporate land-, air-, water-, and space-based
vehicles. Furthermore, these systems can be homogeneous (i.e., comprised of a single type
of vehicle) or heterogeneous (i.e., comprised of dissimilar vehicles that may operate in
different domains).

2.1.1 Multi-Vehicle Systems Overview
Distributed multi-vehicle autonomous systems are decentralized by nature. Each vehicle
makes its own choices regarding the actions it takes, and there is no centralized control
platform piloting every vehicle. Each vehicle also maintains its own sensory data and
assessment of the situation. That is, each understands its environment to some degree based
on its own observations and information received from other vehicles. Vehicles may share
aspects of their awareness with other vehicles in the UVS as required to support collective
decision-making and coordination. This local awareness, however, solely informs each
vehicle’s decisions and actions.

What is commonly referred to as “swarming” is multi-UVS behavior that occurs when
relatively simple UVs operate collectively without relying on any form of centralized control
or an external infrastructure [3]. One characteristic that differentiates swarms from other

5

multi-unmanned vehicle systems (UVSs) is that a UV’s behavior results from interactions
with its local environment and other UVs in the system [4]. That is, swarm participants
typically self-organize in a reactive manner using local sensing and local communications.
Swarms, therefore, are a subset of distributed multi-vehicle autonomous systems where
simple UVs are able to achieve complicated behavior through local interactions.

This research specifically focuses on aerial UVSs in general and swarming systems in
particular, but the concepts developed in this work can be applied to any vehicle type.

Distributed multi-vehicle autonomous systems encounter distinct challenges in the course
of their operations. These include close range maneuverability ensuring that participating
vehicles do not collide with each other [5]; cooperation and task assignment among par-
ticipants to enable mission planning and mission execution [6]; computational complexity,
which is concerned with time and space requirements of the algorithms a vehicle exe-
cutes [7]; communication implementations that ensure the inter-vehicle network can handle
the expected network load [7]; and communication robustness, which is concerned with how
much degradation of the communication network is tolerated before vehicle’s algorithms
fail [8].

2.1.2 Communications within Multi-Vehicle Systems
Communications within multi-vehicle systems is among the most important issues associ-
ated with the development and employment of these systems. Limited bandwidth, system
dynamicity, and inherently noisy communications channels can impact both the latency and
reliability of inter-vehicle communications [9]. These challenges are particularly germane
to this research.

It is assumed that system UAVs will not always be within communication range of each
other. The swarm might temporarily split into smaller subswarms that diverge to different
locations only to subsequently recombine. Alternatively, individual UAVs might detach
from the rest of the UAV swarm. These situations result in a temporarily disjoint network
where not all UAVs are able to communicate with some subset of, or the entire, UVS.
In addition, communications within a large multi-UVS is inherently unreliable, so even
messages transmitted within a connected swarm may not be received by all participants [5].
The UAVs with which this research is concerned perform military missions, thus the loss

6

or destruction of individual UVs can also be expected. Because of this, our protocol must
be robust in the face of a disjoint or unreliable network. Further, the protocol must be able
to recover and merge disparate mission logs when multiple swarms that have collected
different data merge.

2.2 Consensus within Distributed Systems
In the distributed system all participants are expected to maintain consistent information.
That is, the system as a whole must achieve some level of agreement, or consensus across the
distributed system [10]. As a formal notion, consensus is a process exhibiting the following
properties by which distributed nodes reach agreement: [11]

1. All correct agents decide some value.
2. If all agents propose a value, {, then all correct agents will decide {.
3. If an agent decides {, then some agent must have proposed {.
4. All correct agents agree on the same value. (We relax this to “must decide on consistent

values” in this thesis.)

The goal of consensus, then, is to bring a system’s distributed agents into agreement
regarding the system’s stored data [12] in support of reliable decision making or record
keeping. Consensus in a distributed system can be difficult to achieve, because multiple
participants may propose values concurrently, messages may be lost between participants,
and some agents may be unavailable to participate in the consensus process.

This thesis set out to develop a protocol which brings a distributedmulti-vehicle autonomous
system into agreement regarding a series of asynchronously generated events. One consensus
algorithm that is closely aligned with the nature of this particular problem is Paxos. Paxos
is of interest because it deals with a transactional notion of consensus [10], [13]. That is,
Paxos is designed to allow the distributed system to agree on a series of transactions or
events proposed by individual agents rather than on a single value to which each agent
contributes. The algorithm developed over the course of this research builds on Paxos’s
notion of transactional consensus.

Paxos was developed to work in an environment with unreliable communications [10], a
feature particularly relevant to our work. Participants in Paxos assume some or all of three

7

roles: [13]

• Proposers who propose values to be added;
• Acceptors who accept or ignore proposed values; and
• Learners who learn of the accepted values.

Paxos uses these three roles to create consensus through the following steps: [13]

1. A proposer sends a ?A4?0A4 request with a proposal number = to all acceptors.
2. Acceptors respond to a ?A4?0A4 request if the proposal number = is greater than any

previously accepted request and promises to not accept a smaller = should it receive
one in the future, otherwise the acceptors ignore the request.

3. The proposer sends an 0224?C request if it received responses from the majority of
acceptors, otherwise the proposer starts over with a higher proposal number =.

4. An acceptor will adopt an 0224?C request if it has not already agreed to a ?A4?0A4
request with a larger =. When an acceptor adopts an 0224?C request it also informs
the learners of the accepted values.

A number of modifications to the basic Paxos algorithm have been devised over the years
to improve efficiency and realize optimizations [13].

For the purpose of the protocol described in this thesis, all participants in a UVS take on all
three Paxos roles.

Paxos relies on recognizing a 51 percent majority of acceptors to accept a proposal, meaning
that the number of participating agents must be known [10]. Unfortunately, UVSs of the sort
with which this research deals do not typically foster universal awareness of the number of
agents in the system. Because of this, the proposed protocol diverges from Paxos in that it
relies on a plurality or local majority of participants’ votes to make decisions rather than on
a global majority. This difference potentially results in different values being agreed to by
disjoint components of the system, a situation for which Paxos also does not account. Our
protocol addresses this by allowing for the deconstruction of the record and reordering of
previously accepted values.

Due to these differences the proposed protocol must be considered Paxos-like, as consen-
sus can only be obtained in local communications range. System-wide consensus is only

8

guaranteed in a fully-connected system. Values agreed to by disjoint or partially connected
subcomponents are, however, consistent according to formal rules laid out in Chapter 3.

2.3 Distributed Ledgers and Block Chains
A distributed ledger is a formally organized compilation of information that is shared,
replicated, and spread among multiple locations [14]. A distributed ledger is typically
stored and maintained using a decentralized, peer-to-peer framework wherein all nodes
participate equally in the creation and storage of the entire ledger [15].

Distributed ledgers are commonly used to maintain discrete record information, such as
financial records [15]. Most documented distributed ledger (and block chain) examples are
related to cryptocurrencies and their transaction data [15], but there is nothing preventing
the storage of general purpose data.

A distributed ledger is exactly what this thesis aims to design and implement. In particular,
the proposed protocol creates a distributed ledger system that achieves local consensus
of stored operational event data. One commonly utilized method of accomplishing this is
through the generation of a cryptographically linked chain of entries that are duplicated on
multiple nodes [15]. This sort of data structure is referred to as a block chain [16].

The key technology behind block chains are cryptographic hash functions. A cryptographic
hash function is a non-reversible mathematical function that takes an arbitrarily sized block
of data as input and produce fixed length output [17]. The output of a hash function concisely
represents the input data. The output is referred to as a hash digest and can be thought of as
a “fingerprint” of the input data [18].

A cryptographic hash function,H , has the following formal properties: [19]

• Preimage resistance: it is computationally infeasible to determine the input of a hash
function from its output (i.e., given some ~ where ~ = H(G) it is difficult to derive
input G from output ~).

• Second preimage resistance: with some first input G it is computationally infeasible
to find a partner input G′ such that the hash of the two inputs are the same (i.e., given
some first input G it is difficult to find a partner input G′ whereH(G) = H(G′)).

9

• Collision resistance: it is computationally infeasible to find two unique inputs which
hash to the same output (i.e., it is difficult to find two distinct inputs, G and G′, where
H(G) = H(G′).

A block chain is a data structure comprised of a series of connected data blocks. Each block
stores its own data, and blocks are chained together using cryptographic hash digests [16].
Each block is associated with the previous block by inclusion of the previous block’s hash
digest in its own hash digest computation [20]. Because modification of a block’s data
would change not only its own hash digest, but that of all successor blocks, modification or
corruption of data in any block in the chain is easily detected and isolated. This allows a
block chain to provide some notion of integrity of the data stored in the blocks. A simple
block chain is depicted in Figure 2.1.

More importantly for our thesis, if the hashes of the top blocks of two or more block chains
are equal, then the likelihood that they contain different data is vanishingly small. This
observation arises directly from second preimage resistance: if the hashes of two blocks are
the same, then the input to the hash function (i.e., all preceding blocks) must be the same
for both blocks. This, and how we use the block chain, is discussed in depth in Section 3.4.

Figure 2.1. A simple block chain example in which blocks store data and
a hash digest. Blocks are cryptographically chained together because the
previous block’s hash digest is concatenated with the current block’s data
to generate the block hash.

10

2.4 Robot Operating System (ROS)
This section covers the Robot Operating System (ROS) and its publisher-subscriber inter-
process communications model.

2.4.1 ROS Overview
ROS is a middleware system for robotic systems that runs on Linux or Unix. ROS provides
a framework and API that allow programmers to write independent plugin-like modules
known as ROS nodes [21]. This gives programmers the ability to develop self-contained
modules that easily can be integrated into the system, enabled, and disabled. ROS has a
large active open source community that has provided a robust set of packages that allows
programmers to easily create and run prototypes with minimal boilerplate code [22].

ROS includes formal bindings for the Python and C++ programming languages. The Python
binding, referred to as rospy, was used in this research. It provides an API for use in
developing Python nodes to interact with the rest of the ROS runtime environment [23].

2.4.2 The ROS Inter-Process Communications Model
ROS relies on a publisher-subscriber model for inter-process communication. A publisher-
subscriber model is a many-to-many messaging pattern where processes (i.e., ROS nodes)
communicate by “publishing” messages to topics to which other processes “subscribe” [24].
A ROS master process globally manages the publisher-subscriber capability through the
local network transport layer functionality [24]. The publisher-subscriber model simplifies
inter-process communications by isolating processes from one another. A publisher, for
instance, is not concernedwithwhat processes are subscribing or how the published datawill
be used. Similarly, a subscriber is not concerned with the source of the information or how
it was generated. The relevant components of the ROS publisher-subscriber implementation
are described in more detail in the following sections.

Message Topics
ROS messages are published to named topics. A topic is a string of text similar to a channel
or named bus [24], [25]. A topic supports delivery of the singlemessage type that is specified
when the topic is created. Only the nodes that register to a topic with the ROSmaster process

11

receive the messages published to that topic [24]. Topics can be organized into complex
subgroups using namespaces to facilitate organization according to functionality or nodes.

Topic Subscriptions
A node subscribes to a topic to receive messages published to that topic by notifying the
ROS master process [26]. Once the subscription is established, all messages published to
the topic will be forwarded to the registering node. Multiple nodes can subscribe to the same
topic, in which case messages will be forwarded to all subscribers. Nodes can also subscribe
to multiple topics. Message processing within a node is handled by a ROSmessage handling
thread that invokes a callback function.Anode specifies the event-handling callback function
when it subscribes to the topic [27].

Publishing to a Topic
A node declares its intent to publish to a topic by notifying the ROSmaster of the topic name
and the type of message that will be published [26]. If the topic has not yet been established,
it will be created by the ROS master process. If the topic already exists, the registering node
will be added to the list of nodes publishing to the topic (an error is generated if the message
type does not match what has already been established). Once registered, a node publishes
messages to a topic at will, for forwarding to all subscribed nodes.

2.5 Advanced Robotic Systems Engineering Laboratory
(ARSENL)

The implementation described in this thesis was developed using the ARSENL UVS hard-
ware and software package.

Formed at the Naval Postgraduate School (NPS), the Advanced Robotic Systems Engineer-
ing Laboratory (ARSENL) has provided contributions in the research, development, and
implementation ofmulti-UVSs [8], [28].ARSENLoperates a fleet ofUAVs that incorporates
fixed-wing and quadrotor UAVs and recently developed ground vehicles (ground vehicles
were not included in this research). In prior research, ARSENL has developed unique so-
lutions in the realm of software, networking, and human-swarm interaction [8], [28], [29].

12

Furthermore, ARSENL has demonstrated the logistical infrastructure and technical acumen
necessary to conduct field tests with heterogeneous swarms of up to 50 vehicles [8].

The ARSENL Multi-Vehicle System Architecture
TheARSENL system (architecturally depicted in Figure 2.2) includes bothUVs and ground-
stations. Ground stations are used for human-swarm interactions and provide operators the
ability to control the swarm and monitor its performance during experiments. Air-to-air and
air-to-ground communications rely on an 802.11n ad hoc network, and emergency override
control is available using a standard RC radio [8].

Figure 2.2. The ARSENL UVS architecture provides functionality for moni-
toring and control of large UV swarms. Source: [29].

Operators utilize ARSENL-developed applications running on Linux workstations to in-
teract with the swarm. Operational interaction with the swarm, once airborne, is separated
into two functions: aircraft monitoring and swarm control. Aircraft monitoring is accom-
plished through the Health Monitor application that provides an interface for monitoring
and controlling individual UVs [8]. The Health Monitor is a byproduct of the experimental

13

nature of ARSENL’s research system and is required to meet safety of flight requirements.
Swarm control is the task of managing the swarm as a whole and is accomplished through
the Swarm Commander application. This application allows the operator to assign UV to
swarms and subswarms, to parameterize and initiate swarm behaviors, and to monitor the
performance of the swarm as it executes behaviors [8].

The ZephyrII UAV, pictured in Figure 2.3, is ARSENL’s primary fixed-wing UAV. The
ZephyrII is based on an off the shelf airframe and incorporates commercially available
components from the RC hobby community and ARSENL-designed circuitry and 3D-
printed parts [8]. ARSENL also employs the Mosquito Hawk quadrotor UAV, pictured
in Figure 2.4, for heterogeneous swarms. The Mosquito Hawk was entirely designed and
fabricated by ARSENL. Both platforms utilize a PixHawk-family autopilot and an ODroid
payload computer on which swarming functionality is implemented.

Figure 2.3. The ARSENL ZephyrII fixed-wing UAV. Source: [8].

Figure 2.4. The ARSENL Mosquito hawk quadrotor UAV. Source: [29].

14

UAVs communicate with each other and ground stations via User Datagram Protocol (UDP)
broadcast messages transmitted over an 802.11n ad hoc network. Messaging is implemented
with anARSENL-specific application layer protocol. EachUAV transmits state updates (e.g.,
GPS location, and barometric altitude) at 10 hertz and status updates (e.g., health checks) at
two hertz [8]. Ground stations transmit a heartbeat message at one hertz to ensure continuous
communications.Asynchronousmessages associatedwith specific swarmbehaviors or other
functionality can be transmitted by UAVs or ground stations as required.

ARSENL operational experiments consist of multiple stages: pre-flight, ingress, swarm
ready, egress, landing, and on-deck [8]. UAVs are first launched and transit through a series
of waypoints to a staging location. Upon arrival at the staging waypoint, they transition from
the ingress state to a swarm ready state indicating that they are ready for swarm behavior
initiation. Once all UAVs reach the swarm ready state, the swarm operator issues com-
mands using the Swarm Commander application to assign UAVs to subswarms and directs
subswarms to execute experimental behaviors [8]. Upon completion of the experiment, the
swarm operator can direct the entire swarm to land as a group, or the health monitor can
take control of and land UAVs individually.

On-Aircraft Architecture
ARSENL’s autonomous swarm functionality is implemented as a set of ROS nodes run-
ning on each UAV’s payload computer. The autonomy package provides commands to the
PixHawk autopilot via a serial link. The core of ARSENL’s autonomy package as depicted
in Figure 2.5 includes the following ROS nodes [8]:

• The autopilot node is responsible for communicating with the Pixhawk autopilot,
which runs customized ArduPilot software [30], using MAVLink messages [31].
Other ROS nodes access autopilot functionality through message topics published or
subscribed to by this node.

• The network node is responsible for broadcasting messages to and receiving messages
from other UAVs and ground stations over the 802.11n network. Other ROS nodes
access the network through message topics published or subscribed to by this node.

• The swarm_tracker node is responsible for aggregation and synchronization of po-
sition updates received from other system UAVs. Aggregated states are then used
during swarm behaviors as required.

15

• The swarm_controller node is responsible for an individual UAV participation in the
swarm. Swarm state, swarm behavior activation and deactivation, and vehicle control
during behavior execution are all managed by this node. Individual swarm behaviors
are incorporated into this node as plugins.

• The safety node is responsible for ensuring safety of flight (e.g., preventing inconsis-
tent states, managing failsafe initiation)

• The collision avoid node implements deliberative and reactive mechanisms to ensure
safe separation between UAVs during the execution of swarm behaviors.

Figure 2.5. The ARSENL on-UAV functionality is implemented as ROS nodes
(blue) that utilize the ROS publisher-subscriber mechanism (pink) for inter-
node communication. Source: [29].

The protocol implementation documented in this thesis was incorporated into the on-vehicle
autonomy architecture. Functionality of the network node was modified by the addition of
block chain message topics and network messages that allowed nodes associated with the
protocol to interact with the larger system.

16

Software-in-the-Loop (SITL) Simulation
The open-sourceArduPilot software and firmware includes a SITL simulation capability that
was leveraged during this research. The SITL simulation environment provides a realistic
environment that uses a realistic physically-based vehicle simulation to provide sensor inputs
to the autopilot software [30]. This is an important capability that enables thorough testing of
the on-vehicle architecture without the overhead of live experimentation. ARSENL-specific
improvements to the basic SITL functionality allow testing of all on-board UAV software
during multi-vehicle scenarios [28]. In addition, the ARSENL’s SITL implementation
supports mixed experiments including both live and simulated vehicles.

SITL simulation allows testing of the entire implementation of a UV software package,
including interactions between the autopilot and the simulation environment and interactions
between vehicles. This testing capability allows developers to test implementations of UV
behaviors in a realistic software environment. In particular, this capability enabled the
full implementation of the proposed Uniform Chain Protocol (UCP) prior to the first field
experiment.

2.6 Chapter Summary
This chapter introduced key concepts and technologies that were used to develop and
implement the UCP. Key concepts introduced were distributed multi-vehicle autonomous
systems, consensus within a distributed system, and distributed ledgers and block chains.
Technologies introduced were ROS and the ARSENLmulti-UVS. In Chapter 3, we describe
the UCP at both a high level and in detail. The detailed description was directly implemented
in the ARSENL on-vehicle architecture.

17

THIS PAGE INTENTIONALLY LEFT BLANK

18

CHAPTER 3:
Uniform Chain Protocol

Nickolas Carter and Peter Pommer, both master’s students in the Computer Science program
at NPS, co-authored this chapter for their respective theses. This chapter presents an inter-
mediate representation of their jointly developed protocol for a distributed, multi-vehicle
UVSs. They have examined the same problem from two different levels of abstraction: Nick
in a highly abstract model and Peter in a detailed implementation. [32]

This chapter provides an in-depth description of the Uniform Chain Protocol (UCP). The
protocol is designed to ensure the post-mission reliability of UV data from a multi-vehicle
UVS that is subject to communications discontinuity and vehicle losses. When properly
implemented, the protocol exhibits the following characteristics:

• The protocol is distributed, event driven, and asynchronous. Each event handler is
implemented independently on every vehicle, and event handlers can be triggered
locally or in response to inter-vehicle messages.

• If a UV’s protocol event handlers are in an idle state, then all of its completed blocks
must be committed to its local block chain.

• No more than one copy of a particular blockwill be maintained on a UV at any time.
A block can exist within the locally-maintained block chain, within a “waiting to
be committed” data structure, or within a data structure associated with the reconcile
process.

• No block will exist within the block chain or any intermediate data structure that
was not generated by a participating UV. This characteristic is partially assured by
the UVS’s underlying cryptographic system, for now.

• In a fully connected system, all blocks will eventually be committed to all locally
maintained block chains (i.e., blockchains maintained by each UV).

• In a fully connected system where all agents have had the chance to reconcile block
chains with each other, one uniform block chain will emerge.

19

3.1 Protocol Summary
The UCP is designed as a set of event handlers, which are executed on each UV in a given
UVS. When an event is generated, the UV upon which the event occurred will execute the
respective handler for that event. The objective of the UCP is to reliably distribute locally
generated information across the UVS to ensure its availability in the event of individual UV
losses. Shared data is stored in the form of blocks that are committed to block chains
maintained on each vehicle. Blocks are committed to the local block chains according
to an approval process. Following initiation of the proposal process, associated events will
be triggered according to the UCP until all locally maintained blocks have been committed
to the block chain, at which point the system will return to an idle state.

Over the course of a mission, one or more UVs may become disconnected from the UVS. If
they reconnect at a later time with UVs having block chains that differ, a reconciliation
process will eventually be initiated to unify the chains. The reconcile process may occur
numerous times throughout a mission. Once a mission is complete, the blocks contained in
the locally maintained block chains can be analyzed in support of mission analysis and
reconstruction. The main objective of UCP is to provide the UVS operators access to data
that was generated during a mission even if some data-generating UVs do not survive.

3.2 Definitions and Terminology
Throughout this chapter, a number of words and phrases are highlighted with a teletype
font and are written in camel case in the algorithms. These words and phrases have specific
meaning in the context of the UCP and are defined as follows:

Agent - This is an individual vehicle in a UVS. For the duration of the chapter, this
term is synonymous with the acronym UV.
Agent ID - This is a unique identifier for each agent in the UVS.
Block - This is a data structure that stores data generated by an agent’s logging
system. It contains the following components:

– Block data
– Block hash
– Chain hash

Block chain - This is a locally maintained cryptographic chain that links each

20

block in the system. A more detailed definition is provided in Section 3.4.
Block data - This term represents the generated data stored in a block. It contains
the following components:

– Agent ID of the agent that created the block.
– Event data
– Timestamp at the time the block was created.

Block Hash - This is the hash digest of block data, calculated as

��= = H(��=) (3.1)

where ��= is the block hash of block =, ��= is the block data contained in
block = andH is a cryptographic hash function.
Blocks to be committed deque - This is a double-ended queue data structure
that stores completed blocks that have not yet been committed to the block chain.
Blocks to be committed deque rlock - This is a re-entrant lock that facilitates
safe read and write operations on the blocks to be committed deque.
Chain Hash - This hash digest is stored in a block to cryptographically link it to the
previous block. The chain hash is calculated as

��= = H(��=−1 ‖ ��=) (3.2)

where H is a cryptographic hash function, ��= is the chain hash of the block
chain that includes block =, ��= is the block hash of block =, and ��=−1 is the
chain hash of the block immediately preceding block = in the block chain.
Chain rlock - This is a re-entrant lock that facilitates safe read and write operations
on the local chain.
Current block - This term references the block that is currently being examined
or manipulated within an event handler.
Current block being built - This is a data structure that stores locally generated
event data that has not yet been incorporated into a block. This data structure is
maintained until a “full” block can be generated for addition to the blocks to be
committed deque.
Event data - This term refers to loggable data generated by an agent for future
storage in the block chain.

21

Inception block - This is the first block in the block chain. All agents in the
UVS share the same inception block.
Local chain - This term is used to reference an agent’s locally maintained block
chain within an event handler.
Local UVS - This term references the group of agents that are within communica-
tions range of the agent when a particular event handler is executed.
Mutual block - This refers to the top block in a mutual chain. The mutual
block’s chain hash provides verification that all blocks between this block and
the inception block are the same.
Mutual chain - This refers to a block chain segment from the inception block
to a mutual block that is identical for two or more agents.
Reconcile in progress - This is a Boolean that facilitates atomic operation of
the reconcile process (Section 3.5.3). This Boolean stops the agent from responding
to external requests.
Reconcile stack - This is a stack data structure that is used to temporarily store
blocks removed from the local chain during the reconcile process. These blocks
are recommitted to the local chain upon the completion of the reconcile process
by the Reconcile Finalize event handler.
Re-entrant lock, or rlock - This type of lock can be obtained multiple times by
a single thread. It must be released the same number of times that it was obtained
before another thread can obtain the lock.
Timer - A timer is a computational timing instrument with the following properties:

– The timer counts down from an arbitrary number to zero at a fixed rate.
– The timer can be paused and un-paused.
– The timer generates an event when its count reaches zero.

Top block hash - This is the block hash of the top block on the local chain
Top chain hash - This is the chain hash of the top block on the local chain

3.3 Assumptions
To appropriately scope this research project we made assumptions prior to the design of the
UCP:

• The target environment is a distributed system that contains multiple autonomous

22

vehicles.
• The vehicles operate in a disjoint environment where agents frequently experience
network disconnection.

• The systemmay experience agent casualties. If a casualty occurs, we assume that the
casualty will result in the loss of all locally maintained data on that particular agent.

• We have access to a cryptographically secure hash algorithm, which means that we
will never encounter a hash collision.

• The platform that the UCP runs on will provide encryption and digital signature
services for all network communications and all generated event data. In particular,
we assume for now that the underlying cryptographic implementation ensures the
authenticity and confidentiality of all data with which the protocol works.

• Byzantine failures are not possible, and all messages are generated and sent in good
faith.

3.4 Block Chain Data Structure
In UCP, a block chain data structure is used to ensure that event data is stored in a
consistent manner across the UVS. In this section, we describe how this structure is imple-
mented in a way that helps the system reach consensus. By linking data using cryptographic
hashes, a block chain can guarantee that if two UVs share the same chain hash in a
block, then they share a mutual chain from that block down to the inception block.

In this section, we examine the block chain structure and identify the characteristics that
help the UVS attain consensus. The block chain structure is shown in Figure 3.1.

3.4.1 Inception Block
In the UCP, we define inception as the “beginning of the chain.” The block chain
contains one inception block, which must be the first block in the block chain.
The inception block is depicted in Figure 3.1. It possesses the following properties:

• It is loaded onto each agent in the UVS prior to the commencement of operations.
• Each vehicle in the UVS has the exact same inception block.
• It is the only block in the block chain that is created before any event data is
generated.

23

Figure 3.1. This figure is an illustration of the block chain data structure.

The inception block has the following components:

1. Block data - ��0 - The data contained in this block is predefined. The UVS
administrator determines the data in ��0. This data is represented with �� (initial
data) in Figure 3.1.

2. Block hash - ��0 - The block hash of the inception block is a hash of ��0.
It is computed by the following equation:

��0 = H(��0) (3.3)

3. Chain hash - ��0 - The block hash is utilized to create the chain hash. For the
inception block, and only the inception block, ��0 is hashed to create ��0

24

according to the following equation:

��0 = H(��0) (3.4)

3.4.2 Subsequent Blocks
Each subsequent block in the UCP block chain has the same components which differ
slightly from the corresponding components of the inception block. Depicted as block
1, block =, and block = + 1 in Figure 3.1, these blocks include the following information:

1. Block data - ��= - This component is a concatenation of the block’s three data
fields:
(a) Agent ID - ���= - of the UV that generated the data.
(b) A timestamp of when the block was completed.
(c) Event data - ��= - in the block.

To ensure that no two blocks have the same block data, the Agent ID of the
agent that generated each block and the time at which it was generated are included
in the block data. The timestamp component is also used as a tiebreaker in the
Reconcile (Section 3.5.3) process. The block data is computed as follows:

��= = (���= ‖)(= ‖ ��=) (3.5)

2. Block hash - ��= - This is the hash of the block data of block = (��=) as
calculated by Equation 3.1

3. Chain hash -��= - This is the hash of the chain hash of the preceding block con-
catenatedwith the block hash of the current block as calculated by Equation 3.2.
The collision resistance property of the cryptographic hash function ensures that if
two chain hashesmatch for a block = in two or more distinct local chains, then
a mutual chain exists from the inception block to block =.

3.5 High-Level Overview
To present UCP,we start with an abstract overview of the events and sequences that construct
the protocol. In Section 3.6, we provide an in-depth description of the event handlers that
formUCP. The abstracted components of UCPwill be referenced in italics for the remainder

25

of this chapter. These components are:Generate a Block, Commit a Block, Reconcile Phase
1, Reconcile Phase 2, Reconcile Phase 3, and Reconcile Finalize. Each of these components
provides functionality that integrates to form the UCP. This high level overview is depicted
in Figure 3.2.

Figure 3.2. An abstracted version of UCP.

26

3.5.1 Generate a Block
A requirement for this protocol is that it must provide a mechanism for adding data to the
system. In this component of the algorithm, data is received from an agent’s internal
system. The data is added to the current block being built. Once added the algo-
rithm determines whether or not the current block being built contains enough data
to commit to the rest of the UVS. The amount of data required to commit a block is
implementation specific. If the current block being built contains enough data, the
algorithm attempts to commit it by invoking the Commit Block component of the protocol.
Otherwise, the algorithmmaintains the current block being built in its updated form
and waits for more data to be generated.

3.5.2 Commit Block
Once a full block has been generated and submitted for commit, it must be distributed
among agents in the system. To do this, this the Commit Block component initiates a
vote whereby the committing agent requests permission to commit a block to the local
UVS by broadcasting the block hash and its current top chain hash. The agents in the
local UVS individually respond with either an approval or disapproval vote. If the received
top chain hashmatches the receiving agent’s top chain hash, then the vote shall be
for approval. Otherwise, the vote shall be for disapproval. If the majority of the votes are
for approval, then the block is broadcast to the UVS for commitment to each agent’s
respective block chain. If the majority of votes are not for approval, then the Reconcile
component is called.

3.5.3 Reconcile
The Reconcile process is initiated to bring an agent’s block chain back into agreement
with the local UVS. The process is split into four distinct phases. The first phase finds a
mutual chain with the local UVS. In the second and third phase, the protocol builds
upon the mutual chain that was established in phase one. In the final phase everything
left in the reconcile stack (i.e., all blocks that are not included in the extended mutual
chain) is committed to the block chain and broadcast to the local UVS for committing
to each agents block chains.

27

Reconcile Phase 1
In Reconcile Phase 1 the agent removes blocks from its block chain until a mutual
chain is found. Reconcile Phase 1 takes the following steps:

1. Broadcast a request for votes. These votes are used to determine if the broadcasting
agent’s top chain hash is contained in the block chain of the agents that
received the request. After the vote has been conducted, move to step 2.

2. Tally the votes. If the majority of responses indicate that the top chain hash is
not included anywhere in their block chains, move to step 3. If the majority of
responses indicate that their block chains include that top chain hash, then the
mutual chain upon which to build has been identified, and the agent can move on
to Reconcile Phase 2. If no votes were received, move on to Reconcile Finalize.

3. Remove the top block from the block chain, push it onto the reconcile stack,
and repeat step one.

Reconcile Phase 2
In the second and third phases, the protocol builds upon the mutual chain that was
established in Reconcile Phase 1. In Reconcile Phase 2, the agent performs the following
steps:

1. Broadcast a vote request to the local UVS for the block on top of the mutual
block. Receiving agents will respond with the block hash of the block that is on
top of the mutual block in their local block chains. When the vote is complete,
move to step 2.

2. Tally the votes. If no responses are received, proceed to Reconcile Finalize. If at least
one response is received, the block with the most votes is selected to be added to the
mutual chain. Proceed to Reconcile Phase 3 to acquire this block. If the majority
response is that the top chain hash is the mutual block, proceed to Reconcile
Finalize.

Reconcile Phase 3
By the time Reconcile Phase 3 starts, the system has identified a block to add to the
mutual chain by its block hash, but may need to acquire the actual block. This process

28

is conducted through the following steps:

1. Check the reconcile stack to see if the block to be added is present. Proceed to
step 2 if the block is present or step 3 if it is not.

2. Remove the block from the reconcile stack and go to step 4.
3. Broadcast a request for the selected block to the local UVS and wait for a response

carrying the requested block. If no response is received, proceed to Reconcile Final-
ize. If a response is received, go to step 4.

4. Commit the block to the block chain. The newly committed block is now con-
sidered the mutual block and the updated block chain is now considered the
mutual chain. Proceed to Reconcile Phase 2 to continue the building process.

Reconcile Finalize
In Reconcile Finalize, all of the blocks that were added to the reconcile stack are
committed to the block chain. The process for this component is as follows:

1. If the reconcile stack is empty, then theReconcile Finalize component terminates.
Otherwise, proceed to step 2.

2. Pop a block off of the reconcile stack and proceed to step 3.
3. Commit the block to the local block chain and broadcast a message to the local
UVS to commit the block. Repeat step 1.

3.6 Detailed Chain Protocol
Figure 3.3 shows the key for symbols used in subsequent diagrams referenced throughout
this section. Each event handler is represented using a separate figure. Figures consists of a
box with a dotted arrow to signify the entry point of the function. The box consists of the
function name, how the function was triggered, a short description of the event, and a list
of input data as arguments to that function. There are also network messages broadcast to
the local UVS which are represented by a cloud. Locks, which are locked and unlocked
to facilitate safe concurrency, are represented by a lock image. Blue parallelograms with
yellow arrows represent triggering of a local event in an agent. Ellipses represent execution
of atomic steps. Finally, diamonds represent conditional evaluations (i.e., true or false) with
event handling diverging to different branches based on the results.

29

Each event handler is represented using a separate figure. In the figures, we identify how
the event is triggered, provide a short description of the event handler, list what data the
handler receives as input, and describe the operations performed within the handler.

While examining the protocol, keep in mind that these event handlers are running on each
agent in the system. Handlers are triggered by locally generated events, and in response to
received network messages as indicated.

Figure 3.3. Event handler diagram and symbol key for use throughout this
section.

Network Messages
Throughout this chapter, there are types of networkmessages identified in the event handlers.
These messages are broadcast to the local UVS and handled according to their message
type. Likewise, the type of the message determines which event handler parses the message
and performs action based on the contents of the message. The message types are defined
in the algorithm code and diagrams.

3.6.1 Incorporation of Event Data into Blocks

Build Data Block Event
The Build Data Block event handler is triggered internally when a vehicle’s logging system
generates event data to be incorporated into the block chain. The purpose of this
event handler is to collect and store event data in the current block being built

30

until enough event data has been generated for the current block being built to
be considered “full”. Once full it is added to the to the blocks to be committed deque
and aProcess Next DequeBlock event is triggered. The processing of this event is described
by Algorithm 1 and depicted graphically in Figure 3.4.

Algorithm 1 Build Data Block Event Handler
2DAA4=C�;>2:.30C0 ← 2DAA4=C�;>2:.30C0 + 4{4=C
if (8I42DAA4=C�;>2: + (8I4<0G�{4=C ≥ (8I4<0G�;>2: then

Obtain blocksToBeCommittedDequeRLock
2DAA4=C�;>2:.1;>2:�0Bℎ←H(2DAA4=C�;>2:.30C0)
Push 2DAA4=C�;>2: onto bottom of blocksToBeCommittedDeque
Trigger Process Next Deque Block event
Release blocksToBeCommittedDequeRLock

end if

31

Figure 3.4. The Build Data Block event handler is invoked when the
system generates loggable data for incorporation into the block chain.

3.6.2 The Commit Process

Process Next Deque Block Event
The Process Next Deque Block event is triggered internally by multiple event handlers:
Build Data Block, Vote Timer Expiration, and Reconcile Finalize. The purpose of this
event handler is to initiate the voting process among the local UVS to add the first block
from the blocks to be committed deque to the block chain. The processing of this
event is described by Algorithm 2 and depicted graphically in Figure 3.5.

32

Algorithm 2 Process Next Deque Block Event Handler
if reconcileLock is unlocked and votingTimer is not active then

Obtain the blocksToBeCommittedDequeRLock
if blocksToBeCommittedDeque is not empty then

Clear voteCount
{>C4�>D=C [“~4B”] ← 1
Obtain the chainRLock
C>?�ℎ08=�0Bℎ�C�=8C80C8>=← C>?�ℎ08=ℎ0Bℎ

20=3830C4�;>2: ← 1;>2:B)>�4�><<8CC43�4@D4. 5 A>=C

1;>2:�33'4@D4BC.1;>2:�0Bℎ← 20=3830C4�;>2:.1;>2:�0Bℎ

1;>2:�33'4@D4BC.2ℎ08=�0Bℎ← C>?�ℎ08=�0Bℎ

Start the votingTimer
Network send Block Add Request
Release the chainRLock

end if
Release the blocksToBeCommittedDequeRLock

end if

33

Figure 3.5. The Process Next Deque Block event handler is initiated
internally by multiple event handlers to initiate the process by which a new
block is proposed for addition to the block chain.

34

Receive Request Add Block Event
The Receive Request Add Block event is triggered externally by receipt of a message indi-
cating that another agent is requesting to add a block to the block chain. The triggering
message includes the block hash of the block that is being proposed and the requesting
agent’s top chain hash. If the local top chain hash matches the requesting agent’s
top chain hash, the event handler will generate and transmit an “approve” response
for the proposed block hash. Otherwise, it will generate and transmit a “disapprove” re-
sponse. The processing of this event is described by Algorithm 3 and is depicted graphically
in Figure 3.6.

Algorithm 3 Receive Request Add Block Event Handler
if not reconcileInProgress then

Obtain the chainRLock
1;>2:�33'4B?>=B4.1;>2:�0Bℎ← <4BB0�4.1;>2:�0Bℎ

if C>?�ℎ08=�0Bℎ == <4BB0�4.2ℎ08=�0Bℎ then
1;>2:�33'4B?>=B4.{>C4 ← “0??A>{4”

else
1;>2:�33'4B?>=B4.{>C4 ← “38B0??A>{4”

end if
Network send Block Add Response
Release the chainRLock

end if

35

Figure 3.6. The Receive Request Add Block event handler is invoked
upon receipt of a proposal from another agent to add a block to the
block chain.

Receive Vote Add Block Event
The Receive Vote Add Block event is triggered externally when a response to a block add
request message is received from another agent. The purpose of this handler is to parse and
tally votes for a previously proposed addition. Because communication is broadcast to every
agent and because each agent executes the handler for every event, the agent receiving
the response must determine if the response was for it. If so, the agent will increment
internal vote tally counters; otherwise it will ignore the response. The processing of this
event is described by Algorithm 4 and is depicted graphically in Figure 3.7.

36

Algorithm 4 Receive Vote Add Block Event Handler
if {>C8=�)8<4A is active and

<4BB0�4.1;>2:�0Bℎ == 20=3830C4�;>2:.1;>2:�0Bℎ then
if <4BB0�4.{>C4 == “0??A>{4” then

{>C4�>D=C [“~4B”] += 1
else

{>C4�>D=C [“=>”] += 1
end if

end if

Figure 3.7. The Receive Vote Add Block event handler is triggered upon
receipt of a vote for a previously proposed block addition and tallies “approve”
and “disapprove” votes for later use.

Vote Timer Expiration Event
The Vote Timer Expiration event is triggered internally when the vote timer expires.
(Recall that the vote timer was started by the Process Next Deque Block event handler.)

37

The purpose of this event handler is to determine if the request to add a block was
“approved” or “disapproved” by a majority of the responding agents. Depending on the
voting results the agent will do one of three things:

1. Trigger a Reconcile Begin event if the majority of the votes were “disapprove”.
2. Commit the block to the local block chain, broadcast the block for other agents

to commit to their block chains, and trigger a Process Next Deque Block event if
a majority of the votes were “approve”.

3. Trigger a Process next Deque Block without committing the proposed block if the
block chain changed while the vote tally process was running.

The processing of this event is described by Algorithm 5 and is depicted graphically in
Figure 3.8.

Algorithm 5 Vote Timer Expiration Event Handler
if not reconcileInProgress then

if {>C4�>D=C [“~4B”] > {>C4�>D=C [“=>”] then
Obtain the blocksToBeCommittedDequeRLock
Obtain the chainRLock
if topChainHash == topChainHashAtInitiation then

0??A>{43�;>2: ← 1;>2:B)>�4�><<8CC43. 5 A>=C

ℎ0Bℎ�0C0 ← (C>?�ℎ08=�0Bℎ + 0??A>{43�;>2:.1;>2:�0Bℎ)
0??A>{43�;>2:.2ℎ08=�0Bℎ←H(ℎ0Bℎ�0C0)
2><<8C�;>2:.1;>2: ← 0??A>{43�;>2:

Commit 0??A>{43�;>2: to the 1;>2:�ℎ08=
Network send Commit Block
Remove 1;>2:B)>�4�><<8CC43. 5 A>=C
Trigger Process Next Deque Block event

end if
Release the chainRlock
Release the blocksToBeCommittedDequeRLock

else
Trigger Reconcile Begin event

end if
end if

38

Figure 3.8. The Vote Timer Expiration event handler uses the results of
the block add vote to determine whether to commit the proposed block to
the block chain or trigger a Reconcile Begin event.

39

Receive Commit Block Event
The Receive Commit Block event is triggered externally by receipt of a block add message
from another agent. The purpose of this event handler is to commit the received block to
the local block chain. The processing of this event is described by Algorithm 6 and is
depicted graphically in Figure 3.9.

Algorithm 6 Receive Commit Block Event Handler
if not reconcileInProgress then

Obtain the chainRLock
if <4BB0�4.1;>2: succeeds C>?�ℎ08=�0Bℎ then

Commit <4BB0�4.1;>2: to the 1;>2:�ℎ08=
end if
Release the chainRLock

end if

40

Figure 3.9. The Receive Commit Block event handler can be triggered
by receipt of a block add message from another agent or locally by the
Vote Timer Expiration or Reconcile Finalize event handlers. This event
handler formally commits a block to the local block chain if appropriate.

3.6.3 Reconcile Process
The reconcile process is utilized to create consensus to ensure a mutual chain among the
local UVS as blocks are added. This also ensures that progress is made toward dispersing
event data to each agent in the system.

Reconcile Begin Event
The Reconcile Begin event is triggered internally by two event handlers: Vote Timer
Expiration and Receive Request Next in Sequence. This is the event handler that is
referenced when reconcile is triggered in the diagrams. The purpose of this event handler

41

is to initiate the reconcile process. It also sets an internal Boolean variable, reconcile in
progress, that will inhibit the agent’s participation in other agents’ commit and reconcile
processes while the local block chain is in the process of being altered. The processing
of this event is described by Algorithm 7 and is depicted graphically in Figure 3.10.

Algorithm 7 Reconcile Begin Event Handler
if not reconcileInProgress then

A42>=28;4�=%A>�A4BB←)AD4

Trigger Reconcile Phase 1 event
end if

Figure 3.10. The Reconcile Begin event handler is triggered by the Vote
Timer Expiration and Receive Request Next in Sequence events and
initiates the reconcile process.

Reconcile Phase 1 Event
Per the high-level overview, the purpose of phase 1 is to remove blocks from the local
block chain and store them in the reconcile stack until a mutual chain is found

42

with a majority of the local UVS.

TheReconcile Phase 1 event is triggered internally by two event handlers:Reconcile Begin
and Reconcile Phase 1 Timer Expiration. It issues a request to the local UVS asking if
their block chains contain this agent’s top chain hash. The processing of this event
is described by Algorithm 8 and is depicted graphically in Figure 3.11.

Algorithm 8 Reconcile Phase 1 Event Handler
Clear reconcileVoteCount
2ℎ08=�>=C08=&D4A~.2ℎ08=�0Bℎ← C>?�ℎ08=�0Bℎ

Network send Chain Contain Query
Start phaseOneTimer

43

Figure 3.11. The Reconcile Phase 1 event handler is triggered by the
Reconcile Begin and Reconcile Phase 1 Timer Expiration event han-
dlers and initiates the process of identifying a mutual chain upon which
to build.

Receive Request Chain Contain Event
The Receive Request Chain Contain event is triggered externally by receipt of a chain
contain query message from another agent asking whether or not the local block chain
contains a particular chain hash. This event handler will respond the to the request with

44

a “yes” if the local block chain contains the queried chain hash and “no” otherwise.
The processing of this event is described by Algorithm 10 and is depicted graphically in
Figure 3.13.

Algorithm 9 Receive Request Chain Contain Event Handler
if not reconcileInProgress then

2ℎ08=�>=C08='4B?>=B4.2ℎ08=�0Bℎ← <4BB0�4.2ℎ08=�0Bℎ

Obtain the chainRLock
if localChain contains message.chainHash then

2ℎ08=�>=C08='4B?>=B4.{>C4 ← “~4B”
else

2ℎ08=�>=C08='4B?>=B4.{>C4 ← “=>”
end if
Network send Chain Contain Response
Release the chainRLock

end if

45

Figure 3.12. The Receive Request Chain Contain event handler is trig-
gered by receipt of a message from another agent asking whether or not a
particular chain hash is contained in the local block chain.

Receive Phase 1 Response Event
The Receive Phase 1 Response event is triggered externally by receipt of a message
responding to a chain contain query message. The purpose of this event handler is to collect
responses for use in determining whether or not the current block chain can be used
as a mutual chain upon which to build. The processing of this event is described by
Algorithm 10 and is depicted graphically in Figure 3.13.

46

Algorithm 10 Receive Phase 1 Response Event Handler
if ?ℎ0B4$=4)8<4A is active and <4BB0�4.2ℎ08=�0Bℎ == C>?�ℎ08=�0Bℎ then

if <4BB0�4.{>C4 == “~4B” then
A42>=28;4+>C4�>D=C [“~4B”] += 1

else
A42>=28;4+>C4�>D=C [“=>”] += 1

end if
end if

Figure 3.13. The Receive Phase 1 Response event handler is triggered by the
receipt of a response to a Chain Contain Query message.

Reconcile Phase 1 Timer Expiration Event
The Reconcile Phase 1 Timer Expiration event is triggered internally upon expiration
of the phase one timer that was started by the Reconcile Phase 1 event handler. The
purpose of this event handler is to tally the chain contain response results. One of the
following courses of action will be initiated based on the results:

47

1. If no responses were received, then the agent is not in communication with any other
agent and a Reconcile Finalize event is triggered.

2. If the majority of the responses are “no” then the top block in the agent’s local
block chain block chain is removed and added to the to reconcile stack,
and a Reconcile Phase 1 event is triggered.

3. If the majority of the responses are “yes” then the mutual chain has been found
and a Reconcile Phase 2 event is triggered.

The processing of this event is described by Algorithm 11 and is depicted graphically in
Figure 3.14.

Algorithm 11 Reconcile Phase 1 Timer Expiration Event Handler
if A42>=28;4+>C4�>D=C [“~4B”] + A42>=28;4+>C4�>D=C [“=>”] == 0 then

Trigger Reconcile Finalize event
else if A42>=28;4+>C4�>D=C [“~4B”] < A42>=28;4+>C4�>D=C [“=>”] then

C4<? ← ;>20;�ℎ08=.?>?()
A42>=28;4(C02:.?DBℎ(C4<?)
Trigger Reconcile Phase 1 event

else
Trigger Reconcile Phase 2 event

end if

48

Figure 3.14. Upon expiration of the Reconcile Phase 1 Timer, responses
are tallied to determine whether or not a mutual chain has been identified.

Reconcile Phase 2 Event
The Reconcile Phase 2 event is triggered by the Reconcile Phase 1 Timer Expiration
event handler when a mutual chain has been identified. Recall from Section 3.5.3 that
phase 2 is where the agent builds upon the mutual chain to align its local chain with
that of the local UVS. In phase 2, agents within the local UVS provide the reconciling
agent with blocks from their block chains to establish consensus.

The event handlers associated with phase 2 rely on a dictionary or map data structure
associating a counter and time stamp with each candidate block hash rather than a simple
“yes”/“no” counter. This data structure facilitates determination of the correct block to add

49

to the block chain given multiple options and allows for the use of the time stamp as a
tiebreaker (i.e., the block with the oldest time stamp is chosen).

This event handler is triggered internally after the agent has found a mutual chain with
the majority of the local UVS The purpose of this event handler is to send the phase 2
request to the local UVS and clear counters for the expected responses. The broadcast
request asks each agent in the local UVS to reply with the block hash of its block
that succeeds the requesting agent’s top chain hash. The processing of this event is
described by Algorithm 12 and is depicted graphically in Figure 3.15.

Algorithm 12 Reconcile Phase 2 Event Handler
A42>=28;4&D4BC8>='4B?>=B4�>D=C ← 0
Clear A42>=28;4'4B?>=B4�;>2:�82C8>=0A~
2ℎ08=�0Bℎ(D224BB>A&D4AA~.2ℎ08=�0Bℎ← C>?�ℎ08=�0Bℎ

Start ?ℎ0B4)|>)8<4A
Network send Chain Hash Successor Query

50

Figure 3.15. The Reconcile Phase 2 event handler is initiated by the
Reconcile Phase 1 Timer Expiration event handler to initiate the process
of adding blocks to the mutual chain.

Receive Request Next in Sequence Event
The Receive Request Next in Sequence event is triggered externally by receipt of a chain
Hash successor query message by which another agent is requesting the block hash of
the block immediately succeeding the requesting agent’s local top chain hash. The

51

purpose of this event handler is to search the local block chain for the requested chain
hash and to respond accordingly based on whether or not it is found.

This event handler has the additional task of initiating the Reconcile Begin process if the
requested chain hashwas not found in the block chain. If this happens then it indicates
that this agent’s local block chain has diverged from the majority mutual chain and
needs to be reconciled.

The processing of this event is described by Algorithm 13 and is depicted graphically in
Figure 3.16.

Algorithm 13 Receive Request Next in Sequence Event Handler
if not A42>=28;4�=%A>�A4BB then

Obtain the 2ℎ08='!>2:
if 1;>2:�ℎ08= contains <4BB0�4.2ℎ08=�0Bℎ then

=4GC�=(4@D4=24'4B?>=B4.2ℎ08=�0Bℎ← <4BB0�4.2ℎ08=�0Bℎ

if <4BB0�4.2ℎ08=�0Bℎ == C>?�ℎ08=�0Bℎ then
=4GC�=(4@D4=24'4B?>=B4.1;>2: ← “Is Top Of Chain”
=4GC�=(4@D4=24'4B?>=B4.C8<4BC0<? ← 1;>2:�ℎ08=.C>?.C8<4BC0<?

else
=4GC�;>2: ← 1;>2:�ℎ08=.�4C#4GC (<4BB0�4.2ℎ08=�0Bℎ)
=4GC�=(4@D4=24'4B?>=B4.1;>2:�0Bℎ← =4GC�;>2:.1;>2:�0Bℎ

=4GC�=(4@D4=24'4B?>=B4.C8<4BC0<? ← =4GC�;>2:.C8<4BC0<?

end if
Network send Next in Sequence Response

else
Trigger Reconcile Begin event

end if
Release the 2ℎ08='!>2:

end if

52

Figure 3.16. The Receive Request Next in Sequence event handler is
triggered by receipt of a chain hash successor query from another agent.
It responds to the query accordingly and initiates a local reconcile process
as required.

Receive Response Next in Sequence Event Handler
The Receive Response Next in Sequence event is triggered externally by receipt of a
message responding to a previously transmitted chain hash successor query. It maintains
the vote counter and dictionary objects as responses are received so that the correct block
can be selected for addition to the mutual chain. The processing of this event is described
by Algorithm 14 and is depicted graphically in Figure 3.17.

53

Algorithm 14 Receive Response Next in Sequence Event Handler
if ?ℎ0B4)|>)8<4A is active and <4BB0�4.2ℎ08=�0Bℎ == C>?�ℎ08=�0Bℎ then

if <4BB0�4.1;>2:�0Bℎ not in A42>=28;4'4B?>=B4�82C8>=0A~ then
2>D=C4A'42>A3 ← A42>=28;4'4B?>=B4�82C8>=0A~[<4BB0�4.1;>2:�0Bℎ]
2>D=C4A'42>A3.2>D=C ← 1
2>D=C4A'42>A3.C8<4BC0<? ← <4BB0�4.C8<4BC0<?

else
A42>=28;4'4B?>=B4�82C8>=0A~[<4BB0�4.1;>2:�0Bℎ] .2>D=C += 1

end if
A42>=28;4'4B?>=B4�>D=C ←)AD4

end if

Figure 3.17. The Receive Response Next in Sequence event handler
is triggered by receipt of a message responding to a previously transmit-
ted chain hash successor query and maintains counters facilitating correct
extension mutual chain.

Reconcile Phase 2 Timer Expiration Event
The Reconcile Phase 2 Timer Expiration event is triggered upon expiration of the phase
2 timer that was started by the Reconcile Phase 2 event handler. Upon being triggered,

54

this event handler chooses the majority response from the dictionary. In the case of a tie, the
response with the oldest time stamp is chosen. If no responses were received or the majority
response was the special “Is Top of Chain” indicator, then the majority mutual chain has
been completed and a Reconcile Finalize event is triggered. Otherwise, a Reconcile Phase
3 event is triggered to acquire a copy of the block associated with the majority response.
The processing of this event is described by Algorithm 15 and is depicted graphically in
Figure 3.18.

Algorithm 15 Reconcile Phase 2 Timer Expiration Event Handler
if A42>=28;4'4B?>=B4�>D=C == �0;B4 then

Trigger Reconcile Finalize event
else

if <0 9>A8C~'4B?>=B4 from A42>=28;4'4B?>=B4�82C8>=0A~ is a tie then
<0 9>A8C~'4B?>=B4 ← 1;>2:�0Bℎ with oldest C8<4BC0<?

else
<0 9>A8C~'4B?>=B4 ← majorityResponse blockHash

end if
if <0 9>A8C~'4B?>=B4 == “Is Top of Chain” then

Trigger Reconcile Finalize event
else

<0 9>A8C~'4B?>=B4�;>2:�0Bℎ← <0 9>A8C~'4B?>=B4

Trigger Reconcile Phase 3 event
end if

end if

55

Figure 3.18. The Reconcile Phase 2 Timer Expiration event is triggered
upon expiration of the phase 2 timer. It determines the block hash as-
sociated with the local majority mutual chain.

Reconcile Phase 3 Event
The Reconcile Phase 3 event is triggered internally by the Reconcile Phase 2 Timer
Expiration event handler once it has identified the block hash of the next block to be
added to the block chain. Recall that the point of phase 3 is to obtain the actual block
associated with the majority block hash. The event handler first searches for the block
hash in the reconcile stack (where it may be located if was previously committed
to the block chain but was removed earlier in the reconcile process). If the block is

56

available locally, it is removed from the reconcile stack and committed to the block
chain. If not, a request for the block is broadcast to the local UVS and the phase 3
timer is started. The processing of this event is described by Algorithm 16 and is depicted
graphically in Figure 3.19.

Algorithm 16 Reconcile Phase 3 Event Handler
if <0 9>A8C~'4B?>=B4�;>2:�0Bℎ is in the A42>=28;4(C02: then

1;>2: ← A42>=28;4(C02:.A4<>{4(<0 9>A8C~'4B?>=B4�;>2:�0Bℎ)
Obtain the 2ℎ08='!>2:
ℎ0Bℎ�0C0 ← (C>?�ℎ08=�0Bℎ + 1;>2:.1;>2:�0Bℎ)
1;>2:.2ℎ08=�0Bℎ←H(ℎ0Bℎ�0C0)
Commit 1;>2: to the 1;>2:�ℎ08=
Release the 2ℎ08='!>2:

else
A4@D4BC�>A�;>2:.1;>2:�0Bℎ← <0 9>A8C~'4B?>=B4�;>2:�0Bℎ

Start A42>=28;4%ℎ0B4)ℎA44)8<4A
Network send Request for Block

end if

57

Figure 3.19. The Reconcile Phase 3 event is triggered internally by the
Reconcile Phase 2 Timer Expiration event handler and is responsible for
initiating request for the block associated with the majority block hash.

58

Receive Request Block for Hash Event
The Receive Request Block for Hash event is triggered externally when a request is
received from another agent for the block associated with a particular block hash. The
purpose of this event handler is to search the local block chain for the requested block
and to send it to the requesting agent if it is found. The processing of this event is described
by Algorithm 17 and is depicted graphically in Figure 3.20.

Algorithm 17 Receive Request Block for Hash Event Handler
if not A42>=28;4�=%A>�A4BB then

Obtain the 2ℎ08='!>2:
if <4BB0�4.1;>2:�0Bℎ in 1;>2:�ℎ08= then

1;>2: ← 1;>2:�ℎ08=.2>?~(<4BB0�4.1;>2:�0Bℎ)
Network Send Block Response

end if
Release the 2ℎ08='!>2:

end if

59

Figure 3.20. The Receive Request Block for Hash event handler is trig-
gered by an external request for a block associated with a particular block
hash. The agent sends block to the requesting agent if it is present in
the local block chain.

Receive Response Block for Hash Event
The Receive Response Block for Hash event is triggered externally when a response to
a block is received in response for a previously broadcast request for block is received.
The purpose of this event handler is two-fold. First, it must determine whether or not the
received block was in response to a request made by this agent, and if so, commit it to
the block chain. Second, it manages the phase 3 timer by pausing and restarting it
or terminating it. The processing of this event is described by Algorithm 18 and depicted
graphically in Figure 3.21.

60

Algorithm 18 Receive Response Block for Hash Event
if ?ℎ0B4)ℎA44)8<4A is active then

Pause ?ℎ0B4)ℎA44)8<4A
if <4BB0�4.1;>2:.1;>2:�0Bℎ == <0 9>A8C~'4B?>=B4�;>2:�0Bℎ then

Stop ?ℎ0B4)ℎA44)8<4A
Obtain the 2ℎ08='!>2:
ℎ0Bℎ�0C0 ← (C>?�ℎ08=�0Bℎ + <4BB0�4.1;>2:.1;>2:�0Bℎ)
<4BB0�4.1;>2:.2ℎ08=�0Bℎ←H(ℎ0Bℎ�0C0)
Commit <4BB0�4.1;>2: to the 1;>2:�ℎ08=
Release the 2ℎ08='!>2:
<0 9>A8C~'4B?>=B4�;>2:�0Bℎ← #D;;

Trigger Reconcile Phase 2 event
else

Resume ?ℎ0B4)ℎA44)8<4A
end if

end if

61

Figure 3.21. The Receive Response Block for Hash event handler is
triggered by receipt of a response to a previously transmitted request for
block. If the contained block is the one that was requested, it is added to
the local block chain.

Reconcile Phase 3 Timer Expiration Event
The Reconcile Phase 3 Timer Expiration event is triggered upon expiration of the phase
3 timer that was started by the Reconcile Phase 3 event handler. If a valid response is
received, the phase 3 timer is terminated by theReceive Response Block forHash event
handler, so the phase 3 timer will only expire if no valid responses were received. This
event handler, therefore, simply concludes the reconcile process by triggering a Reconcile
Finalize event. The processing of this event is described by Algorithm 19 and is depicted

62

graphically in Figure 3.22.

Algorithm 19 Reconcile Phase 3 Timer Expiration Event Handler
<0 9>A8C~'4B?>=B4�;>2:�0Bℎ← #D;;

Trigger Reconcile Finalize event

Figure 3.22. The Reconcile Phase 3 Timer Expiration event handler is
only triggered when no valid responses are received to a request for block
message. When this occurs, Reconcile Phase 3 is terminated by triggering
a Reconcile Finalize event.

Reconcile Finalize Event
The Reconcile Finalize event is triggered internally by the Reconcile Phase 1 Timer
Expiration event handler, the Reconcile Phase 2 Timer Expiration event handler, or the
Reconcile Phase 3 Timer Expiration event handler. Its purpose is to recommit blocks

63

remaining in the reconcile stack after completion of the reconcile process back to the
local block chain. In addition to recommitting them to the local block chain, the event
handler broadcasts them to the local UVS for other agents so that they can be added to
their respective block chains. Once the reconcile stack has been cleared, the event
handler unsets the reconcile in progress flag and triggers a Process Next Deque
Block so that any blocks that have been generated during the reconcile process can be dealt
with. The processing of this event is described by Algorithm 20 and depicted graphically in
Figure 3.23.

Algorithm 20 Reconcile Finalize Event Handler
Obtain the 2ℎ08='!>2:
while A42>=28;4(C02: not empty do

2><<8C�;>2: ← A42>=28;4(C02:.?>?()
ℎ0Bℎ�0C0 ← (C>?�ℎ08=�0Bℎ + 2><<8C�;>2:.1;>2:�0Bℎ)
2><<8C�;>2:.2ℎ08=�0Bℎ←H(ℎ0Bℎ�0C0)
Commit 2><<8C�;>2: to ;>20;�ℎ08=
Network Send Commit Block

end while
Release the 2ℎ08='!>2:
A42>=28;4�=%A>�A4BB← �0;B4

Trigger Process Next Deque Block event

64

Figure 3.23. The Reconcile Finalize event handler can triggered by any of
the reconcile phase timer expiration events or when the maximum local
UVS mutual chain has been generated to recommit blocks remaining in
the reconcile stack to the blockchain.

65

3.7 Chapter Summary
In this chapter, we presented the novel Uniform Chain Protocol (UCP). We started the
chapter by presenting a brief summary of the protocol in Section 3.1. Next, we introduced
and defined the terminology that we used in the context of the UCP. After defining the
terminology, we asserted all of the assumptions that we made in designing the UCP. Next,
we described the block chain data structure that we implemented in theUCP and provided
a high-level overview of the UCP. Finally, we described the 20 events that comprise the
UCP and provided detailed the event-handling algorithms for each.

In Chapter 4 of the Pommer thesis, an exemplar implementation of the UCP on the ARSENL
multi-UAV system is described. In Chapter 4 of the Carter thesis, the UCP is examined for
correctness utilizing the Monterey Phoenix (MP) behavior modeling tool.

66

CHAPTER 4:
Implementation and Results

This chapter covers the implementation and testing of the UCP, as described in Chapter 3.
Following a brief overview of the implementation, a discussion of the development process,
implementation-specific details, developmental SITL testing, field testing, and issues that
surfaced during testing are provided. The chapter concludes with a discussion of results
obtained during experiments with the fully-implemented protocol.

4.1 Implementation Overview
This section introduces the target system and components of the UCP implementation,
including the Python classes involved and details about the events generated.

The exemplar UCP was implemented within the ARSENL on-vehicle system described in
Section 2.5. As described in the Chapter 2, the onboard system runs on an ODroid payload
computer running a version of Ubuntu Linux. The ODroid is a single-board computer
powered by an Advanced RISC Machine processor. The ARSENL system, and thus the
exemplar UCP implementation, is also compatible with the SITL simulation environment
described in Section 2.5.

The UCP implementation was developed to run as a ROS node and is written in Python2.
Four Python classes were developed to support all UCP functionality. A PauseableTimer
class executes a function upon expiration and has the ability to be started, paused, resumed,
and canceled. Block and BlockChain classes are used to encode individual data blocks
and the block chain itself, respectively. Finally, a BlockchainBridge class provides all
UCP functionality and serves as a bridge between the block chain implementation and the
ARSENL ROS nodes.

UCP event handlers are implemented as methods of the BlockchainBridge class. Ex-
ternally triggered event handlers are implemented as callbacks for ROS message topics to
which the node subscribes. Internally triggered event handlers, such as those associated
with transitions to the next phase in the reconcile process, are also invoked using callbacks

67

for ROS message topics to which the node both publishes and subscribes. Timer expiration
event handlers are invoked by the ‘timer_finished’ method of the PauseableTimer.

Event handlers that transmit messages over the network do so by publishing to a ROS topic
to which the network node subscribes. The network node then generates and transmits the
ARSENL message. The network node also receives UCP messages from the network and
publishes ROS messages to the appropriate topics for event handler processing.

In addition, each network message includes the UAV’s agent ID (i.e., the 08A2A0 5 C_83 of
the sendingUAV). The purpose of the agent ID is to allow detection of duplicatemessages.
Consider for example, if two UAVs were executing phase 2 of the reconcile process1 and
they both requested information for the same hash, they should both receive the exact same
responses. If there was no way to ignore responses that have already been received, each
of the UAVs might double count the responses. This would not be an issue if the network
conditions and timing of the two UAVs requests were identical, as their final result would
still be the correct just doubled; however, we cannot depend on this, so some answers would
be counted twice, while others would be counted once. The duplicate responses could skew
the results toward an incorrect answer.

Loggable events to be added to the block chain are generated by a separate ROS node
that publishes event data to a message topic to trigger the Build Data Block event handler.
These events are randomly generated approximately every 30 seconds. The event generation
algorithm is described by Algorithm 21.

Algorithm 21 Generation of Loggable Events
"��#_) �"�_�),#_�+�#)(← 30.0
while AD==8=� do

if A0=3><_14C|44=(0, 1) <= 1/"��#_) �"�_�),#_�+�#)(then
�4=4A0C4_4{4=C ()

end if
end while

A loggable event consists of three components: a timestamp indicating when the event was
generated; an event ID, and event data. Because the actual event data has no impact on the

1Phases and their relationships to the UCP reconcile process are discussed in detail in Section 4.2.

68

UCP, event IDs and data are randomly generated for the exemplar implementation. Event
IDs are random integers between 1 and 254, and event data consists of a random sequence
of 32, 64, 128, or 256 bytes.

An individual block is comprised of the following: a timestamp, an agent ID indicating
the agent that generated the block, a series of logged events, a chain hash, and a block
hash. A block is configured to store no more than 1024 bytes of data. This maximum
block size was chosen to allow encoding of a block in a single UDP packet. This limit
was incorporated to decrease the risk of receiving incomplete blocks.

4.2 Development
Code development was conducted in two stages. The first stage focused on the event handlers
associated with generating and committing blocks (Sections 3.6.1 and 3.6.2). The event
handlers associated with the reconcile process (Section 3.6.3) were implemented in the
second stage.

Testing was conducted in three stages. The first stage assumed lossless (i.e., no packet loss)
network connectivity. These tests eliminated the requirement for reconciliation and allowed
testing of the commit block process in isolation. The second stage used the same lossless
network, but probabilistically ignored commit messages in the Receive Commit Block
event handler. These tests forced divergences among the local block chains in order to
trigger the reconcile process. The final stage of testing was with lossy-communications
where every packet had a probabilistic chance of being ignored. These tests were used
to verify the robustness of the entire UCP in a realistic communications environment. It
should be noted that these tests did not deterministically test protocol performance in all
reconciliation scenarios, but the MP testing documented in [32] provides broader protocol
verification.

Aside from theBuildDataBlock,ReceiveCommitBlock,ReconcileBegin, andReconcile
Finalize events, each set of the event handlers follow a “send request, receive request and
send response, receive response, timer expires” pattern. Event handlers for this sequential
pattern are highly interdependent, which directly impacted the development process. For
example, the reliance of one event handler on output from another made development of

69

the receive response event handler before the send response event handler infeasible.

Voting Processes and Timers
Voting is utilized by both the event generation and commit process event handlers and
reconcile process event handlers. Voting itself relies on timers that trigger vote tallying and
response events upon expiration. The voting process aligns with the “send request, receive
request and send response, receive response, timer expires” pattern. The event handler
performing the send request is also responsible for starting a timer that controls how long
the UAV will wait for responses from the local UVS. While the timer is active, UAVs
within the local UVS perform the receive request and send response steps. The UAV that
initiated the request will receive responses until the timer expires at which point the results
are tallied and acted on.

The amount of time these timers should wait before expiring is somewhat arbitrary. Satis-
factory algorithm performance, however, is reliant on choosing a “good” time. If a time is
too short, a timer might expire before all responses are received. On the other hand, using a
time that is too long results in wasted time during which the protocol waits unnecessarily.
The exemplar implementation discussed here used a wait time of 10 seconds for the commit
request timer and a wait time of 5 seconds for each reconcile phase timer were chosen. These
values proved long enough to facilitate debugging and understanding the UVS performance
in real-time without being so long as to bog down performance.

Commit Block Process Implementation
The commit block process begins with the receipt of a generated event that results in the
generation of a new block as is described in Section 3.6.2. The block’s timestamp, which is
equal to that of the most recent event in the block, is the only addition to the implementation
beyond what is described in Chapter 3. This timestamp is used in Reconcile Phase 3 as a
tie breaker.

Because the commit block process (i.e., the Process Next Deque Block, Receive Request
Add Block, Receive Vote Add Block, and Vote Timer Expiration events) aligns with the
“send request, receive request and send response, receive response, timer expires” pattern,
the sequence was implemented as a unit. Then the Receive Commit Block event handler

70

was implemented, as it relied on the entire previous sequence to be triggered.

Debugging of the commit sequence was difficult since all these events are interdependent
and interact via the ROS publisher-subscriber framework. This made isolating the functions
to perform test-driven development or unit-tests impossible. Rather, full implementation of
the commit process was required before significant testing could be conducted. Once all of
the event handlers were in place, it was possible to simulate multiple-UAVs in the SITL
environment and debug the entire series of event handlers at once.

The next debugging difficulty was interpreting what was occurring on each UAV. Because
of the parallel nature of the protocol and threading within the ROS infrastructure, it was
not feasible to use a Python debugger to step through the code as it executed. Therefore,
debugging was conducted by analyzing detailed messages saved to log files. These messages
included when events were triggered, which event-handler branches were taken, and what
values were generated or received. These log files were meticulously inspected by hand to
discern what occurred during a test and to identify the states that caused the code to execute
as it did. The tedious nature of this debugging precluded simulating more than four UAVs
at a time, as manually following the log trace of more drones, even for a 10 minute run, was
incredibly cumbersome.

To test the commit process implementation, the SITL environment was set up to provide
perfect network communications (i.e., communication with no network traffic loss). Given
perfect communications, there should be no missed commit requests, and all agents should
be able to complete all commits. Thus, we expected to see one system-wide common chain
in which all blocks were committed to all local block chains in the order in which they
were generated. That is, in fact, what we observed after completing the debugging process
for this development stage.

Reconcile Process Implementation
The reconcile process as described in Section 3.6.3 consists of Reconcile Begin, the three
phases of reconcile, andReconcile Finalize events. TheReconcile Begin event is triggered
when an agent determines that its local block chain has diverged from that of the local
UVS. This event handler is largely required for “housekeeping” purposes and is responsible
for setting the reconcileInProgress Boolean to true prior to initiating the rest of the

71

reconcile process. To ensure a race condition does not occur while checking and setting
this variable, a general purpose lock was used. Functionally, the lock is used as an atomic
Boolean to enforce mutual exclusion of read (i.e., test the lock) and write (i.e., set the lock)
operations. Development of the three reconcile phases was similar to development of the
commit process as each phase follows the “send request, receive request and send response,
receive response, timer expires” pattern.

Reconcile phase 1 includes the Reconcile Phase 1, Receive Request Chain Contain,
Receive Phase 1 Response, and Reconcile Phase 1 Timer Expiration events. These event
handlers were implemented as a unit as each event handler is dependent on the previous
handler in the sequence. Similarly, reconcile phase 2 includes the Reconcile Phase 2,
Receive Request Next in Sequence, Receive Response Next in Sequence, and Reconcile
Phase 2 Timer Expiration events and was implemented as a unit. Finally, reconcile phase
3, which consists of the Reconcile Phase 3, Receive Request Block for Hash, Receive
Response Block for Hash, and Reconcile Phase 3 Timer Expiration events was also
implemented as a unit.

The reconcile process concludes with theReconcile Finalize event that is triggered once the
longest possible mutual chain is constructed, or no responses are received for a request.
This event handler is responsible for committing any blocks remaining in the reconcile
stack to the block chain before setting the reconcileInProgress Boolean to false.
This process includes broadcasting each block to thelocal UVS so that it can be committed
to their local block chains as well. A pause that is not depicted in the Chapter 3 event
handler description was incorporated to provide UAVs time to receive, parse, and commit
blocks as they are received.

To trigger the reconcile process for SITL testing, the Receive Commit Block event handler
was temporarily modified to probabilistically ignore received commit messages. This forced
divergence among theUAVs’block chains.Aside from ignoring thesemessages, the SITL
environment was configured to provide perfect network communications. As a result, no
messages associated with the reconcile process itself were dropped.

As expected, during experiments we observed that some commit block messages were
ignored, and the reconcile process commenced once an agent discovered the resulting
divergence (i.e., during a subsequent commit process). Furthermore, the reconciling agent

72

continued through the process as anticipated, and the local block chainwas in agreement
with that of the local UVS after the Reconcile Finalize event handler concluded.

It should be noted that this testing phase did not fully vet the reconcile process. In particular,
forced divergences were detected after a single block was missed, and the perfect commu-
nications allowed the discrepancy to be quickly rectified. This testing phase did, however,
verify that the reconciliation process was correctly implemented in general.

The biggest challenge associated with debugging the reconcile process was that it was not
possible to deterministically execute certain code paths. For example, in the SITL simulation
environment it was impossible to force a tie in the Reconcile Phase 2 voting process. The
inability to induce large block chain divergences also made it impossible to perform
in-depth testing.

Testing with Lossy-Communications
With a complete implementation of the UCP, testing in a lossy-communications envi-
ronment (i.e., there is network traffic loss) was next. The ARSENL codebase provides a
lossy-communication branch intended specifically for simulating dropped network packets
in the SITL environment. When executing from this branch, arbitrary network messages are
probabilistically ignored rather than being forwarded to the autonomy package. Testing in
SITL with this branch provided the opportunity to not only test the robustness of the pro-
tocol, but also to execute code paths that were not executed under perfect communications
conditions.

This phase of testing was performed with varying probabilities of packet loss: 0.00, 0.10,
0.15, 0.25, 0.30, 0.50, 0.75, and 1.00 probability of loss. Of course, loss probabilities of 0.00
and 1.00 equate to perfect and completely disconnected network environments respectively.
To maintain consistency, each experiment ran for 20 minutes and included five simulated
UAVs (these values were chosen to facilitate manual analysis of the results). After 20
minutes, event generation was stopped and the UAVs were allowed to finish completing any
commit and reconcile processes. Once the system entered an idle state, the simulation was
stopped, and the generated logs and block chains were stored for analysis.

The majority of implementation bugs found during this testing phase were syntax errors

73

(e.g., misspelled variables and method calls). Such errors do not emerge until the runtime
system attempts to read or call the non-existent identifier and generates an exception. One
logical error that was identified resulted from incorrect implementation of a reconcile
process event handler in which a message was published to the incorrect ROS topic and the
wrong event was triggered as a result.

Due to the probabilistic nature of this round of tests, bugs frequently required many test
runs to manifest. Similarly, bug fixes could not be verified until the scenario that presented
the bug in the first place was duplicated. Moreover, since probabilistic tests cannot assure
the execution of all code paths, the existence of additional bugs or protocol shortcomings
cannot be ruled out. In addition, this phase of testing did not simulate the formation of
disjoint networks forming and their subsequent merging (the ARSENL system does not
currently provide for this scenario).

Live-Flight Field Testing
Following SITL testing, the UCP was tested during live flight field experiments conducted
at Camp Roberts, CA in November 2020. Two tests were conducted with ARSENL ZephyrII
fixed-wing and Mosquito Hawk quadrotor aircraft. In each test the protocol was allowed
to run for approximately 30 minutes while the swarm executed various behaviors. Unlike
SITL testing with lossy-communications, the field tests did not simultaneously terminate
event generation for the entire swarm. Rather, each UAV stopped generating local events
upon landing, so events were being generated within the system until the last plane was on
deck. Thus, although all UAVs remained powered for some time after landing, completion
of all reconcile processes was not verified before they were shut down. Also, due to the lim-
ited airspace available and the safety-of-flight requirement for continuous communication
between ground stations and each UAV, it was not possible to force disjoint communica-
tion networks. At the conclusion of the tests, all block chains and generated logs were
downloaded for analysis.

During these experiments, we noted that block chains were successfully saved correctly.
However, after analyzing the generated log files, a number of implementation mistakes were
discovered:

1. A file path error was identified that resulted in premature termination of the commit

74

process. This bug was corrected prior to the second experiment.
2. A syntax error arose when themajority response for reconcile phase 2was adjudicated

in cases where the vote was tied.
3. A logic error in the implementation of the PauseableTimer was found in which the

expiration callback function was being invoked incorrectly.
4. A logical error in the Receive Response Block for Hash event handler resulted in a

failure to recalculate the chain hash.

All of these errors were associated with the implementation and not with the UCP itself.
Following the field testing, all errors were corrected, and, following their implementation,
a final round of experiments was conducted in the SITL environment. The results are
documented in Section 4.3.

4.3 Experimental Results
To verify that the final version of our implementation behaves correctly and to provide
empirical evidence of the protocol’s correctness, we conductedmultiple experiments in both
the SITL environment and the field. As a reminder, the following protocol requirements
were laid out in Chapter 3:

1. The protocol is distributed, event driven, and asynchronous. Each event handler is
implemented independently on every vehicle, and event handlers can be triggered
locally or in response to inter-vehicle messages.

2. If a UV’s protocol event handlers are in an idle state, then all of its completed blocks
must be committed to its local block chain.

3. No more than one copy of a particular blockwill be maintained on a UV at any time.
A block can exist within the locally-maintained block chain, within a “waiting to
be committed” data structure, or within a data structure associated with the reconcile
process.

4. No block will exist within the block chain or any intermediate data structure that
was not generated by a participating UV. This characteristic is partially assured by
the UVS’s underlying cryptographic system, for now.

5. In a fully connected system, all blocks will eventually be committed to all locally
maintained block chains (i.e., blockchains maintained by each UV).

75

6. In a fully connected system where all agents have had the chance to reconcile block
chains with each other, one uniform block chain will emerge.

Of these characteristics, 1 and 4 are trivially demonstrated by the protocol description itself.
That is, the implementation is evidently distributed, event driven, and asynchronous; and
blocks only enter the system through execution of the Build Data Block event handler
(as described, the protocol relies on the underlying cryptographic implementation to assure
the validity of the events to be logged). Characteristics 2, 3, 5, and 6 were confirmed
by examination of the local block chains after completion of each experiment’s final
reconcile process.

To verify characteristic 2, local logs and block chains were analyzed to ensure that all
committed blocks, whether locally generated or received from another agent, were present
in the block chain. To verify characteristic 3, block chains were analyzed to ensure
that only one copy of a block was present, and logs were analyzed to ensure that the
blocks to be committed deque and reconcile stack data structures were empty.
Characteristics 5 and 6 were verified during the SITL testing with no packet loss. In these
tests, we observed that a single mutual chain emerged.

The remainder of this section discusses the results from each set of tests. As discussed in
Section 4.2, each test was conducted with five UAVs and was allowed to run for 20 minutes
before block generation was terminated. All UAV were then allowed to settle into an idle
state (i. e., all commit and reconcile processes were allowed to complete). Logs and block
chains were preserved following each experiment for analysis purposes.

Figures are provided to depict typical block chains that resulted from each group of
tests. Block chains are depicted using tree representations of the system-wide results
where branches indicate divergences among the local block chains. The diagrams should
be read from bottom to top. The bottom box, labeled “inception block”, represents the
inception block as described in Section 3.4.1. Each subsequent box represents a generated
block. Each box is labeled with two numbers separated by a period. The first number is the
agent ID of the generating UAV, and the second is the ordinal number of the block for
that agent. Boxes are also colored coded according to the agent ID. Cryptographic links
between blocks are represented by connecting arrows. Finally, the dotted lines and ovals at
the tree leaf nodes indicate the agent IDs of the UAVs on which that block chain was

76

observed. In some examples long, branchless block chain segments are abbreviated with
ellipses to save space.

Perfect Communications Testing
The UCP implementation was first simulated with the probability of packet loss set to zero.
As discussed in Section 4.2, perfect communications testing demonstrated that the commit
block process was correctly implemented. As expected, a single block chain emerged.
Log analysis indicated that none of the UAVs entered the reconcile process during this test,
which was as expected. Since commits were universally received without fail, the results
from subsequent block commit voting processes were always adjudicated as “approved.”
In cases where the local chain was altered while voting was in progress (i.e., a block
was added), the voting process was restarted, as intended, until the block was successfully
committed. A graph of the final block chain from this test is shown in Figure 4.1.

None of characteristics 2, 3, 5, and 6was violated in these tests. Satisfaction of characteristics
2 and 3 was verified by noting that the blocks to be committed deque and reconcile
stack data structures were empty, and that no block was in the block chain more than
once. More importantly, characteristics 5 and 6 were only demonstrable in these tests, as
they were the only tests with a fully connected communications system. Satisfaction of
characteristic 6 was verified by the agreement of all local block chains (i.e., a single
system-wide mutual chain). That the mutual chain included exactly one copy of every
block generated over the course of the experiment provided verification that characteristic
5 was satisfied as well.

77

Figure 4.1. Typical final block chain from the no-packet-loss tests in which
a single chain emerged.

Missed Commit Testing
Reconcile process functionality was first tested by probabilistically ignoring commit mes-
sages to induce divergences among the local block chains. As expected, during these tests

78

a single block chain emerged and the UAVs correctly completed the reconcile process.
The reconcile process successfully brought the local UVS block chains into agreement
with one small exception. In the example depicted in Figure 4.2, multiple successful recon-
ciliations were conducted by system agents. At the conclusion of the experiment, however,
agent 2 missed the commit for block “4.11”, agent 4’s final commit (the commit voting
process was already in progress when event generation was terminated). Since no more
blocks were generated, agent 2 settled into an idle state with its local block chain
differing from the rest of the local UVS.

Characteristics 2 and 3 were not violated in these tests. The satisfaction of both was verified
by confirmation that the blocks to be committed deque and reconcile stack data
structures were empty and that no block was present in any local block chainmore than
once. Every block that was generated over the course of the experiment was determined
to be present in at least one local block chain. Although characteristics 5 and 6 were
not applicable because communications were not fully connected, a system-wide mutual
chain did emerge with the exception of block 4.11. The lack of a full mutual chain
does not violate any of the protocol’s required characteristics and would be easily rectified
were agent 2 to initiate a reconcile process.

79

Figure 4.2. The final block chain from a random commit packet loss test
in which a single chain emerged.

80

Lossy Communications Testing
Multiple tests were performed with the final UCP implementation in the SITL environment
to simulate various levels of packet loss. This section discusses results of those tests to
include identification of probabilities that demarcated noticeable changes in the resulting
block chains. These tests were intended to test the robustness of the UCP implementation
in lossy-communications environments.

One of the main objectives of these tests was to observe the implementation’s compliance
with characteristics 2 and 3. That neither was violated in any of the lossy-communications
tests was verified by two observations. First, the blocks to be committed deque and
reconcile stack data structures were empty, and, second, no block was present in any
local block chain more than once. In addition, it was noted that every block that was
generated over the course of each experiment was present in at least one local block chain.

Strictly speaking, characteristics 5 and 6 were not relevant in these tests, because the UVS
communications system was not fully connected. It is worth noting, however, that in tests
with a probability of loss of 0.15, a uniform block chain did emerge. This was in contrast
to tests with larger probabilities of loss, where a uniform block chain did not emerge.

All tests at and below 0.15 probability of packet loss settled into an idle state similar to the
missed commit test; except for a few differences among the final blocks, a uniform block
chain emerged across the UVS. For the 0.15 tests. In the example depicted in Figure 4.3,
agent 1’s local block chain diverged due to timing. Agent 1was close to the end of phase
2 of the reconcile process; however, before its phase 2 timer expired, agent 5 broadcast
a block for commit. Even though agent 1 received the commit message, the fact that its
commit process was still in progress prevented it from performing the new commit. Agent
1 never initiated another reconcile process, and was therefore never able to add block 5.7
to its block chain.

Increasing the probability of packet loss caused the mutual chain between all of the UAVs
to shrink. In addition, the divergence of the block chains was magnified as the difference
between the mutual chain and the individual UAV’s block chains grew. This seemed
to manifest because, given the increasing probabilities of packet loss, it was much more
difficult for a UAV to align its local block chain with the rest of the UVS when its chain
grew in length beyond the mutual chain.

81

Figure 4.3. The final block chain from a typical 15 percent packet loss
test in which a single block chain emerged.

This divergence became noticeable around 0.30 probability of packet loss and became more
accentuated as the probability of packet loss increased. A graph of a typical final block
chain from these tests is shown in Figure 4.4.

Interestingly, Figure 4.4 shows additional expected UCP behavior that was not observed in
lower-loss-rate tests: the existence of mutual chains among subsets of the UVS beyond
the system-wide mutual chain, and blocks being shared beyond the system-wide mutual
chain. Both of these characteristics are byproducts of the reconcile process’ reliance on a

82

Figure 4.4. The final block chain from a 30 percent packet loss test in
which multiple chains emerged.

83

local, rather than a system-wide, majority. Both are intentional and demonstrate the ability
of the protocol to propagate reliable information across the system in lossy-communications
systems in which full consensus cannot be achieved.

Figure 4.4 providesmultiple examples of the existence of mutual chains among individual
UAVs beyond the system-wide mutual chain. agent 3 has no mutual chain beyond
block 4.2 (the system-wide mutual chain); however, agents 1, 2, 4, and 5 share a mutual
chain through block 1.7, agents 1 and 4 share a mutual chain through block 4.4, and
agents 2 and 5 share a mutual chain through block 3.6.

Figure 4.4 also presents multiple examples of the presence of shared blocks beyond the end
of UAV pairs’ mutual chain. Blocks 3.5 and 3.6 occur in the block chains of both
agent 3 and agent 5 beyond their mutual chain. These blocks were passed from agent
3 to agent 2, and eventually from agent 2 to agent 5. Agent 3 did not reconcile directly
with agent 5, but agent 3’s blocks were indirectly propagated when agent 2 reconciled
with agent 3 and later with agent 5. This also occurred when blocks 4.4 and 4.5 were
shared between agents 4 and 5 and were subsequently propagated from agent 5 to agent
2.

Once the probability of packet loss reached around 0.50, it became difficult for any mutual
chain to form. At this level of loss, thrashing was observed because agents received
“disapprove” votes for practically every proposal. Early in the simulation a few blocks are
propagated to other UAVs, but once the divergence was significant, it became impossible
to perform the entire reconcile process. Typical results associated with this phenomenon
are shown in Figure 4.5. The block chains, however, did not violate any protocol re-
quirements, and characteristics 5 and 6 imply that a system-wide mutual chain would be
obtained through the reconcile process if perfect communications were established.

When the probability of packet loss reaches 1.00 the system can be thought of as fully
disconnected. No reconciliation processes are initiated because each agent receives only
its own “approve” response to each commit request. Each local block chain, therefore,
contains only the locally generated blocks as shown in Figure 4.6 where the mutual chain
includes only the inception block.

84

Figure 4.5. The final block chain from a 50 percent packet loss test in
which multiple chains emerged.

Field Test Results
As discussed in Section 4.2, two UCP implementation field tests were conducted in Novem-
ber 2020. In the field tests the agent’s ID equated to the individual aircraft’s tail number
and does not relate to the number of vehicles flown in the experiment. IDs greater than 100
are IDs for Mosquito Hawk quadrotors, and lower IDs are for ZephyrII fixed wing vehicles.
During the first experiment, block chains were not saved because an implementation
error caused event handler execution to end prematurely. This meant that the UAVs were

85

Figure 4.6. The final block chain from a 100 percent packet loss test in
which each drone committed only the locally generated blocks.

not executing the UCP as designed, so the logs were largely irrelevant. The implementation
error was corrected prior to the second field test.

Other implementation errors described in Section 4.2 manifested in the second experiment
as discussed below, and since the UAVs were shut down before verifying that all vote
and reconcile processes had concluded, it was understood that some commit and reconcile
processes may have been terminated prematurely. Despite these difficulties, block chains
and logs from the second field test allowed for analysis. The discussion that follows is
associated with results from this experiment. The block chains obtained following this
experiment are depicted in Figure 4.7.

86

Figure 4.7. The final block chain from the second field test.

87

The most important result of this test was the successful demonstration of a UCP implemen-
tation in a live-fly environment. Satisfaction of UCP characteristics 2 and 3 were verified
by noting that no block was present in any local block chain more than once and that
the blocks to be committed deques and reconcile stacks were empty. In addi-
tion, log analysis indicated that all blocks that were generated by any UAV were present
in at least one block chain except as affected by the bugs described below. There was
no expectation that characteristics 5 or 6 would be verified, because the communications
during the live-fly event were assumed to be imperfect.

Agents 10 and 28 did not encounter any errors during the experiment. These two agents
exhibited correct UCP behavior for the entire mission.

During the experiment, other agents encountered the following errors: a syntax error when
choosing the reconcile phase 2 majority response, and a logical error in the PauseableTimer.

Agent 32 and 122 exhibited a syntax error when choosing the majority response during
reconcile phase 2. The error was traced to the Reconcile Phase 2 Timer Expiration
event handler and occurred when the vote resulted in a tie. The event handler raised an
exception at this point, and the reconcile process never completed. This resulted in the
reconcileInProgress Boolean remaining true indefinitely and prevented the UAVs from
participating in any further UCP activities, to include committing locally-generated blocks
to their own block chains. Note in the figure that the block chains from these two
agents are truncated significantly.

Agents 118 and 120 exhibited the PauseableTimer logic error early in their execution,
this caused the agents to terminate reconcile phase 3 prematurely. This did not cause a
violation of any required UCP characteristics, but it did lead to the mutual chain not
being extended as much as it could have been. This error did not cause the agents to enter
an unrecoverable state, and they were able to continue participating in UCP activities. As a
result, their block chains align with those of agents 10 and 29 through block 10.8.

The final logical error, that the Receive Response Block for Hash event handler did not
recalculate the chain hash, was found while analyzing the cause of the previous errors.
This error did not manifest during our tests. However, this error would lead to unpredictable
results during the commit process, as the chain hash is used to validate the addition of

88

blocks to the block chain.

Except for the implementation errors described above, the block chain and UCP imple-
mentation appeared to work correctly.

4.4 Chapter Summary
This chapter covered the UCP development process, and tests and experiments conducted
with the implementation. Analysis was performed to identify and correct implementation
bugs and to ensure the desired UCP characteristics were satisfied. UCP development in-
cluded implementation of all event handlers associated with the voting, commit block, and
reconcile processes described in Chapter 3. Experiments conducted in both the SITL sim-
ulation environment and in live field experiments were described, and the analysis of the
results was discussed. Implementation bugs were identified and corrected at various stages
of the development and experimentation process. Importantly, no flaws in the overall design
of the UCP were identified, and the final implementation appears to perform as desired. The
next chapter summarizes our research and discusses possible future work.

89

THIS PAGE INTENTIONALLY LEFT BLANK

90

CHAPTER 5:
Conclusion

This thesis described development and implementation of the Uniform Chain Protocol
(UCP), a protocol supporting data availability in a multi-vehicle, distributed, autonomous
system. The UCP uses a block chain to provide for integrity and availability of a distributed
database and employs a reconcile process to ensure the consistency of the data structure
among the system’s UVs. Distribution of the data across the UVS supports the survivability
of data in scenarios where the UV that generated the data is lost or destroyed. Blockchain
features are used to achieve consensus among the local UVS agents and to ensure database
consistency in lossy communications environments. The UCP was implemented in Python
as a ROS node for use on the ARSENL multi-UAVs system. Testing was performed with
bench simulations using the SITL testing framework and in live-fly field tests at Camp
Roberts in southern Monterey County, CA. These tests demonstrated the functionality and
usability of the UCP.

Although the UCP was implemented on a UAV system, it is not specifically limited to
this type of system. The UCP is suitable for deployment on any UVS that has inter-UV
network communication. The UCP was designed for UVSs expected to experience lossy
and disjoint network communications and vehicle loss. The Department of Defense (DOD)
operates many such systems where communications are limited and the risk of UV loss is
assumed [33] [34] [35] [36] [37]. With the addition of the UCP to such a UVS, generated
or recorded data can be available for post-mission analysis without requiring the survival
of every originating UV. The code developed for this thesis is archived on NPS’s GitLab
website in the ARSENL swarm-autonomy repository.

5.1 Future Work
This thesis covered creation and prototype implementation of the UCP, yet there are many
areas for follow-up work. These include:

Additional Testing - The testing performed in this thesis was not comprehensive.
Testswere performedwith a small set ofUVs to allowmanual analysis of the generated

91

log files. While we hypothesize that the UCP will perform satisfactorily with larger
UVSs, this has not been demonstrated or formally proven. Additional testing with
more vehicles could demonstrate and characterize the protocol’s scalability. This
work would include the development of tools to augment manual analysis.
Testing Framework Improvements - Testing performed in this thesis did not simu-
late disjoint networks (i.e., conditions under which subsets of the UVS separate and
recombine). Performing such tests would demonstrate a key aspect of UCP’s recon-
ciliation process: the generation of a system-wide mutual chain by deconstructing and
rebuilding competing subsystem mutual chains.
Encryption and Authentication - Currently the UCP relies on the underlying system
to ensure the data recorded in a block is encrypted and signed. Adding encryption and
signing keys to the UCP would enable the protocol to function on systems that do not
satisfy that assumption, allowing it to run on a wider variety of systems to possibly
include UVSs run by coalition forces.
Support Tools - The work documented in this thesis did not attempt to address
implementation details of the protocol’s use with real-world systems. Among other
systems and software engineering topics, future work should include the development
of tools to consolidate and visualize stored data for post mission analysis, to create
and deploy mission-specific configurations (e.g., the inception block) to swarm par-
ticipants, to download and perform a final reconcile process to combine all of the
block chains when UVs return to the depot, and to provision keys when encryption
and authentication are incorporated to the UCP.
Identification of Complexity Characteristics - Space and time complexity were
not taken into account when developing the implementation. Formal characterization
of the protocol’s complexity characteristics could identify bottlenecks and lead to
significant improvements.

92

List of References

[1] M. Hancock and E. Vaizey, Distributed Ledger Technology: Beyond Block Chain.
The National Archives, London, 2016. Available: https://assets.publishing.service.
gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-
distributed-ledger-technology.pdf

[2] J. Mattis. (2018). Summary of the 2018 National Defense Strategy. Department of
Defense. [Online]. Available: https://dod.defense.gov/Portals/1/Documents/pubs/
2018-National-Defense-Strategy-Summary.pdf. Accessed Dec. 2020.

[3] M. Hati, “Swarm robotics: A technological advancement for human-swarm interac-
tion in recent era from swarm-intelligence concept,” 2016.

[4] G. Francesca and M. Birattari, “Automatic design of robot swarms: Achievements
and challenges,” Frontiers in Robotics and AI, vol. 3, 2016.

[5] S. B. Heppe, “Problem of UAV communications,” in Handbook of Unmanned Aerial
Vehicles, K. P. Valavanis and G. J. Vachtsevanos, Eds. Dordrecht: Springer Nether-
lands, 2015, pp. 715–748. Available: https://doi.org/10.1007/978-90-481-9707-1_30

[6] S. S. Ponda, L. B. Johnson, A. Geramifard, and J. P. How, “Cooperative mission
planning for multi-UAV teams,” in Handbook of Unmanned Aerial Vehicles, K. P.
Valavanis and G. J. Vachtsevanos, Eds. Dordrecht: Springer Netherlands, 2015, pp.
1447–1490. Available: https://doi.org/10.1007/978-90-481-9707-1_16

[7] Z. Lau, Dylan, “Investigation of coordination algorithms for swarm robotics con-
ducting area search,” M.S. thesis, Naval Postgraduate School, 2015. Available:
https://calhoun.nps.edu/handle/10945/47293

[8] T. H. Chung, M. R. Clement, M. A. Day, K. D. Jones, D. Davis, and M. Jones,
“Live-fly, large-scale field experimentation for large numbers of fixed-wing UAVs,”
in Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA), A. Okamura, Ed. Stockholm, Sweden: IEEE, 2016, pp. 1255–1262.

[9] J. Elston, M. Stachura, C. Dixon, B. Argrow, and E. W. Frew, “Layered approach
to networked command and control of complex UAS,” in Handbook of Unmanned
Aerial Vehicles, K. P. Valavanis and G. J. Vachtsevanos, Eds. Dordrecht: Springer
Netherlands, 2015, pp. 781–811. Available: https://doi.org/10.1007/978-90-481-
9707-1_33

[10] W. Zhao, Building Dependable Distributed Systems, 1st ed. (Performability Engi-
neering Series.). Somerset: Wiley, 2014.

93

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/492972/gs-16-1-distributed-ledger-technology.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://dod.defense.gov/Portals/1/Documents/pubs/2018-National-Defense-Strategy-Summary.pdf
https://doi.org/10.1007/978-90-481-9707-1_30
https://doi.org/10.1007/978-90-481-9707-1_16
https://calhoun.nps.edu/handle/10945/47293
https://doi.org/10.1007/978-90-481-9707-1_33
https://doi.org/10.1007/978-90-481-9707-1_33

[11] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed for
distributed consensus,” J. ACM, vol. 34, no. 1, p. 77–97, Jan. 1987. Available: https:
//doi.org/10.1145/7531.7533

[12] E. Semsar-Kazerooni and K. Khorasani, Team Cooperation in a Network of Multi-
Vehicle Unmanned Systems: Synthesis of Consensus Algorithms, 1st ed. New York,
NY: Springer-Verlag, 2013.

[13] L. Lamport et al., “Paxos made simple,” ACM Sigact News, vol. 32, no. 4, pp. 18–25,
2001.

[14] Industrial Internet Consortium. (2020). Distributed Ledgers in IIoT. [Online]. Avail-
able: https://www.iiconsortium.org/pdf/Distributed_Ledgers_in_IIoT_White_Paper_
2020-07-22.pdf. Accessed Dec. 2020.

[15] S. Kadam, “Review of distributed ledgers: The technological advances behind
cryptocurrency,” in International Conference Advances in Computer Technology
and Management (ICACTM), March 2018. Available: https://www.researchgate.
net/publication/323628539_Review_of_Distributed_Ledgers_The_technological_
Advances_behind_cryptocurrency

[16] NARA Blockchain White Paper. (2019, Feb.). National Archives and Records Ad-
ministration. [Online]. Available: https://www.archives.gov/files/records-mgmt/
policy/nara-blockchain-whitepaper.pdf. Accessed Dec. 2020.

[17] J. E. Silva, “An overview of cryptographic hash functions and their uses,” GIAC,
vol. 6, Jan 2003. Available: https://www.sans.org/reading-room/whitepapers/vpns/
overview-cryptographic-hash-functions-879

[18] RSA Laboratories. What is a hash function? [Online]. Available: https://web.archive.
org/web/20051230111857/http://www.rsasecurity.com/rsalabs/node.asp?id=2176.
Accessed Dec. 2020.

[19] P. Rogaway and T. Shrimpton, “Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resis-
tance, and collision resistance,” in International Workshop on Fast Software En-
cryption. Springer, 2004, pp. 371–388. Available: https://web.archive.org/web/
20081230145507/http://www.inf.unisi.ch/faculty/shrimpton/relates-full.pdf

[20] S. Nakamoto, “A peer-to-peer electronic cash system,” Bitcoin, vol. 4, 2008. Avail-
able: https://bitcoin.org/bitcoin.pdf

[21] ROS Developers. (n.d.). ROS Documentation: Introduction. [Online]. Available:
http://wiki.ros.org/ROS/Introduction. Accessed Dec. 2020.

94

https://doi.org/10.1145/7531.7533
https://doi.org/10.1145/7531.7533
https://www.iiconsortium.org/pdf/Distributed_Ledgers_in_IIoT_White_Paper_2020-07-22.pdf
https://www.iiconsortium.org/pdf/Distributed_Ledgers_in_IIoT_White_Paper_2020-07-22.pdf
https://www.researchgate.net/publication/323628539_Review_of_Distributed_Ledgers_The_technological_Advances_behind_cryptocurrency
https://www.researchgate.net/publication/323628539_Review_of_Distributed_Ledgers_The_technological_Advances_behind_cryptocurrency
https://www.researchgate.net/publication/323628539_Review_of_Distributed_Ledgers_The_technological_Advances_behind_cryptocurrency
https://www.archives.gov/files/records-mgmt/policy/nara-blockchain-whitepaper.pdf
https://www.archives.gov/files/records-mgmt/policy/nara-blockchain-whitepaper.pdf
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
https://www.sans.org/reading-room/whitepapers/vpns/overview-cryptographic-hash-functions-879
https://web.archive.org/web/20051230111857/http://www.rsasecurity.com/rsalabs/node.asp?id=2176
https://web.archive.org/web/20051230111857/http://www.rsasecurity.com/rsalabs/node.asp?id=2176
https://web.archive.org/web/20081230145507/http://www.inf.unisi.ch/faculty/shrimpton/relates-full.pdf
https://web.archive.org/web/20081230145507/http://www.inf.unisi.ch/faculty/shrimpton/relates-full.pdf
https://bitcoin.org/bitcoin.pdf
http://wiki.ros.org/ROS/Introduction

[22] ROS Developers. (n.d.). Why ROS? [Online]. Available: https://www.ros.org/is-ros-
for-me/. Accessed Dec. 2020.

[23] ROS Developers. (n.d.). ROS Documentation. [Online]. Available: http://wiki.ros.
org/rospy. Accessed Dec. 2020.

[24] S. Tarkoma, Publish/Subscribe Systems: Design and Principles (Wiley series on
communications networking & distributed systems). London: John Wiley & Sons,
2012.

[25] ROS Developers. (n.d.). ROS Documentation: Topics. [Online]. Available: http://
wiki.ros.org/Topics. Accessed Dec. 2020.

[26] C. Chen, Y. Tock, and S. Girdzĳauskas, “BeaConvey: Co-design of overlay and rout-
ing for topic-based publish/subscribe on small-world networks,” in Proceedings
of the 12th ACM International Conference on distributed and event-based systems
(DEBS ’18). ACM, 2018, pp. 64–75.

[27] ROS Developers. (n.d.). ROS Documentation: Publishers and Subscribers. [Online].
Available: http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers.
Accessed Dec. 2020.

[28] M. A. Day, M. R. Clement, J. D. Russo, D. Davis, and T. H. Chung, “Multi-UAV
software systems and simulation architecture,” in 2015 International Conference on
Unmanned Aerial Systems. Denver, CO: IEEE, 2015, pp. 426–435.

[29] D. Davis, K. Jones, M. Jones, and K. Giles, “Advanced swarm UAV capabilities
through collaborative field experimentation,” Naval Postgraduate School, Monterey,
CA, Tech. Rep., Apr 2018.

[30] ArduPilot Documentation. (n.d.). ArduPilot Dev Team. [Online]. Available: https:
//ardupilot.org/ardupilot/index.html. Accessed Dec. 2020.

[31] MAVLink Developer Guide. (n.d.). Dronecode Project. [Online]. Available: https:
//mavlink.io/en/index.html. Accessed Dec. 2020.

[32] L. Carter, Nickolas, “Design and informal verification of a distributed ledger proto-
col for distributed autonomous systems using Monterey Phoenix,” M.S. thesis, Naval
Postgraduate School, 2020.

[33] A. Jarocki, “US Navy funds underwater drone swarms,” Defense News, 2020.
Available: https://www.defensenews.com/unmanned/2018/06/26/us-navy-funds-
underwater-drone-swarms/

95

https://www.ros.org/is-ros-for-me/
https://www.ros.org/is-ros-for-me/
http://wiki.ros.org/rospy
http://wiki.ros.org/rospy
http://wiki.ros.org/Topics
http://wiki.ros.org/Topics
http://wiki.ros.org/rospy/Overview/Publishers%20and%20Subscribers
https://ardupilot.org/ardupilot/index.html
https://ardupilot.org/ardupilot/index.html
https://mavlink.io/en/index.html
https://mavlink.io/en/index.html
https://www.defensenews.com/unmanned/2018/06/26/us-navy-funds-underwater-drone-swarms/
https://www.defensenews.com/unmanned/2018/06/26/us-navy-funds-underwater-drone-swarms/

[34] T. Chung. (2020). OFFensive Swarm-Enabled Tactics (OFFSET). DARPA. [On-
line]. Available: https://www.darpa.mil/program/offensive-swarm-enabled-tactics.
Accessed Dec. 2020.

[35] J. Keller, “The US Navy could soon operate drone swarms—underwater,” The Na-
tional Interest, 2020. Available: https://nationalinterest.org/blog/reboot/us-navy-
could-soon-operate-drone-swarms\T1\textemdashunderwater-165308

[36] D. Lafontaine. (2020). Army Looks to Enhance Mission Command with Robotic
Swarms. US Army. [Online]. Available: https://www.army.mil/article/226268/army_
looks_to_enhance_mission_command_with_robotic_swarms. Accessed Dec. 2020.

[37] E. Bone and C. Bolkcom, Unmanned Aerial Vehicles: Background and Issues for
Congress. Congressional Research Service, 2003. Available: https://apps.dtic.mil/sti/
pdfs/ADA467807.pdf

96

https://www.darpa.mil/program/offensive-swarm-enabled-tactics
https://nationalinterest.org/blog/reboot/us-navy-could-soon-operate-drone-swarms\T1\textemdash underwater-165308
https://nationalinterest.org/blog/reboot/us-navy-could-soon-operate-drone-swarms\T1\textemdash underwater-165308
https://www.army.mil/article/226268/army_looks_to_enhance_mission_command_with_robotic_swarms
https://www.army.mil/article/226268/army_looks_to_enhance_mission_command_with_robotic_swarms
https://apps.dtic.mil/sti/pdfs/ADA467807.pdf
https://apps.dtic.mil/sti/pdfs/ADA467807.pdf

Initial Distribution List

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

97

	21Mar_Pommer_Peter_First8
	21Mar_Pommer_Peter
	Introduction
	Motivation
	Problem Statement
	Scope
	Approach
	Organization

	Background
	Distributed Multi-Vehicle Autonomous Systems
	Consensus within Distributed Systems
	Distributed Ledgers and Block Chains
	Robot Operating System (ROS)
	Advanced Robotic Systems Engineering Laboratory (ARSENL)
	Chapter Summary

	Uniform Chain Protocol
	Protocol Summary
	Definitions and Terminology
	Assumptions
	Block Chain Data Structure
	High-Level Overview
	Detailed Chain Protocol
	Chapter Summary

	Implementation and Results
	Implementation Overview
	Development
	Experimental Results
	Chapter Summary

	Conclusion
	Future Work

	List of References
	Initial Distribution List

