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DISSERTATION ABSTRACT

Ryan C. Bleile

Doctor of Philosophy

College of Arts and Sciences

March 2021

Title: Enhancing Monte Carlo Particle Transport for Modern Many-Core
Architectures

Since near the very beginning of electronic computing, Monte Carlo particle

transport has been a fundamental approach for solving computational physics

problems. Due to the high computational demands and inherently parallel nature

of these applications, Monte Carlo transport applications are often performed in

the supercomputing environment. That said, supercomputers are changing, as

parallelism has dramatically increased with each supercomputer node, including

regular inclusion of many-core devices. Monte Carlo transport, like all applications

that run on supercomputers, will be forced to make significant changes to their

designs in order to utilize these new architectures effectively. This dissertation

presents solutions for central challenges that face Monte Carlo particle transport

in this changing environment, specifically in the areas of threading models, tracking

algorithms, tally data collection, and heterogenous load balancing. In addition, the

dissertation culminates with a study that combines all of the presented techniques

in a production application at scale on Lawrence Livermore National Laboratory’s

RZAnsel Supercomputer.

This dissertation includes previously published co-authored material.
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CHAPTER I

MOTIVATION

The Monte Carlo method is the name given to a class of numerical

algorithms that solve problems by using pseudo-random numbers to sample

probability distributions. These algorithms are frequently applied to a diverse

collection of problems. Monte Carlo transport is an application of the Monte Carlo

method used in conjunction with particle transport physics. In this setting, the

probability distributions describe the likelihood of different particle interactions and

collision reactions to occur. In order to achieve sufficient accuracy, this approach

requires tracking large numbers of particles, each of which moves through a

potentially large problem space. Frequently, the number of particles become so

large that high performance computing (HPC) platforms are needed to complete

calculations quickly enough.

Over the past decade, HPC environments have progressively moved towards

many-core computing architectures. The Top 500 List (2019) for supercomputers

is now dominated by large scale GPU or coprocessor based systems. As a result,

it is now essential that applications that wish to work in the supercomputing

environment also continue to adapt in order to take advantage of many-core

hardware architectures. The concerns for this topic include not only taking full

advantage of the compute resources, but also developing approaches that work

over diverse compute hardware, including different types of GPUs. Monte Carlo

transport applications are among the important applications that need to make

necessary transformations in order to adapt to the change in the computing

environment. However, the process to undergo this transformation is not clear.

Current Monte Carlo transport applications, while parallelizable, are not well suited

1



to accelerator architectures: they are memory latency bound and not compute

bound, they require large amounts of local memory per thread, and they have very

divergent behavior.

This dissertation responds to this changing and challenging landscape. Its

goal is to illuminate how to transform Monte Carlo transport algorithms to excel

on many-core architectures. The primary research question and its subquestions are

explained below in section 1.1 (Research Questions).

1.1 Research Questions

This dissertation answers the following primary question:

What changes to Monte Carlo particle transport algorithms

will enable effective utilization of many-core architectures?

Further, this question assumes that the changes will extend the state of the art,

but not remove any current capability. In particular, the changes should allow for

supporting traditional HPC architectures (i.e., the code base should work on both

many-core architectures and regular CPU platforms) and the resulting algorithms

should work effectively for a diverse set of “problems” (i.e. workloads corresponding

to different physics, geometries, and particle counts).

We approach this primary question via four subquestions, each of which

answers a part of the primary question.

1. What tracking algorithms are best suited for portable performance of Monte

Carlo transport on modern many-core systems?

2. What is the best way to manage data-races and the memory needs of many-

core platforms?

3. Is it worthwhile to fully utilize heterogenous node architectures?

2



4. How does many-core focused algorithm development impact performance

concerns as we scale up MPI resources?

The remainder of this section discusses further each of the research

subquestions.

What tracking algorithms are best suited for portable

performance of Monte Carlo transport on modern many-core systems?

This discussion is primarily focused on the open question of whether a

history- or event-based tracking algorithm is better for many-core architectures

and multi-core architectures. Traditionally, Monte Carlo transport algorithms

have followed a history-based tracking approach. In the history-based approach

a particle is assigned to a thread, which computes each event this particle will

undergo for its entire lifecycle, where an event is the result of a particle moving

until it must perform some interaction with the background material or mesh.

This approach is easily parallelizable, as each particle is handled completely

independently of the others. While this approach maps well to traditional CPU

architectures, the divergence and high memory requirements make it less suited

to many-core architectures. Historically, there were efforts to study event-based

algorithms for the specialized vector machines of the 1990’s. These algorithms took

advantage of vector parallelism and the relatively high speed of memory movement

compared to compute. In these methods particles were pushed onto stacks based

on which event needed to be computed next. Once a stack was full or there were

no more particles to sort, a vectorized calculation was done over the subgroups of

particles. These methods vectorized instructions for parallelism and were relatively

efficient on early vector-platforms. This approach also introduces a significant

overhead related to sorting the particles after each event in order to maintain

3



vectorizable instructions. In the current era of computing, the cost of sorting is

significantly higher as the speed of memory compared to the speed of the compute

has changed significantly. This makes many of these algorithms less efficient than

previously measured. In all, between historical studies and recent works, which

method to use is still an open question.

What is the best way to manage data-races and the memory

needs of many-core platforms?

This question can be answered by looking at data management in two parts.

The first part is examining the underlying threading model that defines the way

that data is managed. The second part is understanding the performance and

memory tradeoffs for solutions to managing output tally memory.

The introduction of many-core architectures into the HPC landscape

has significantly modified the performance characteristics of a single thread of

execution. On traditional multi-core CPU architectures, individual threads have

access to a significant amount of the available memory and computing power. This

leads to optimizations that enable these threads to take on more work, utilize a

deep cache hierarchy, and avoid the need for inter-thread communications. Schemes

such as replicating data across threads are possible and provide decent performance

especially compared to relying on managing access to memory via atomics, or

locking mechanisms. On many-core architectures, individual threads have a lot

less memory and compute capability compared to their counter parts. It is the

large number of these threads that makes them powerful on the whole. In this case

schemes such as the data replication are often not feasible as there is simply not

enough memory to satisfy the request, nor enough compute power to effectively
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utilize all the memory being requested. Due to this change we need to consider a

new threading model which is designed to match these differences.

In Monte Carlo transport problems data is collected by all

processors/threads in the form of tallies. This tally data exists in multiple forms:

single value scalars, multi-value scalars over problem parameters such as materials

or energies groups, and multi value scalars over mesh elements often also including

dimensions over materials or energy groups per element. Collecting this data is

the goal of a simulation and therefore needs to be performant on all architectures.

There are two primary ways to deal with data management: atomic operations

or replication. Managing data through atomic operations enables a single copy

of memory at the expense of threads needing locked access to this memory.

Replications provide threads easy access to memory at the expense of duplicating

memory and necessitating reductions. To understand this space we need to

weigh the costs and benefits of each approach and consider alternatives to these

approaches.

Is it worthwhile to fully utilize heterogenous node

architectures?

The introduction of GPU based systems, with significantly more compute

capabilities on the GPUs than remains on the CPUs, has led many to consider

ignoring the CPU cores on a node for computations. For applications which

achieve significant performance from those available FLOPS, this is a valid path

to success. Monte Carlo transport algorithms, however, are not bound by FLOPS

for their performance, meaning that CPUs may be able to add performance beyond

a simple consideration of FLOPS ratios. Additionally, Monte Carlo problems

can often spend a lot of time on areas of the code that are not parallelizable by
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GPUs, meaning that more MPI ranks are needed to achieve better performance. If

applications want to consider using the CPUs and GPUs simultaneously, they must

contend with the issue of how to balance the work between two architectures with

different performance characteristics. Most load-balancing algorithms assume that

each unit of work will perform roughly the same as any other. Thus, if particles

are spread equally among all processing units the work will be roughly balanced.

This is no longer an acceptable assumption to make and could be detrimental to

getting performance. Understanding this question must then entail examining new

algorithms to load balance between CPUs and GPUs and the effect these have on

possible performance.

How does many-core focused algorithm development impact

performance concerns as we scale up MPI resources?

Monte Carlo transport applications are commonly run at large scale via

MPI parallelism. This process can lead to algorithms that appear to be optimized

at low numbers of ranks and yet exhibit unexpected behaviors that need to be

fixed in order to run at large scale. In all, because of the need to run Monte Carlo

transport codes efficiently at scale, new approaches must be evaluated at scale.

Only by showing the effectiveness of an approach at scale do we know for sure it is

a viable approach for others to use.

1.2 Dissertation Outline

This dissertation has the following organization:

– Chapter II Background and Related Work - We discuss the relevant history

and background for Monte Carlo transport followed by an in-depth survey

of the computer science focused research relating to Monte Carlo transport
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applications. This survey provides a baseline to understand the places where

information is lacking and how we can contribute to the space.

– Chapter III Tracking Algorithms - We present our early foundational work

in the discussion of event- versus history-based algorithms for Monte Carlo

transport applications on GPU platforms. This work addresses the similarities

and differences between GPUs and older vector architectures while also

showing a new data parallel primitive method for implementing an event-

based tracking algorithm.

– Chapter IV Data Race Management: Threading Models - We evaluate the

concept of managing data race conditions through different threading models.

In this work we present new definitions for how memory plays a role in the

threading model and show results for the new concept on GPUs. Additionally,

we compare the new and old threading models to ensure that the new design

does not degrade performance on existing CPU platforms.

– Chapter V Data Race Management: Output Tally Data - We evaluate the

impact of atomic operations on the performance of GPU kernels. In this

work we present a new concept, variable replication, in which we mitigate

the performance concerns of atomics with memory constraints in a GPU

environment.

– Chapter VI Heterogeneous Architecture Utilization - We present a new

algorithm for dynamic replication of domain decomposed problems on

heterogeneous architecture. This work introduces the concept that the CPU

and GPU can both provide performance and a load balancing solution to

ensure that the possibility of performance is attainable.
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– Chapter VII Performance at Scale - We take the best approaches from

our previous results and evaluate them in a production application and at

larger scale. In this section we show performance results for our production

applications as it stands at the time of this writing to summarize the

impact that these research elements have played in the overall success of the

production application.

– Chapter VIII Conclusions and Future Work - We conclude by summarizing

our contributions and their overall impact on both our application and the

Monte Carlo community as a whole. In addition, we present a discussion of

future work which could extend the works presented in this dissertation.

Co-Authored Material

Much of the work in this dissertation is from previously published and

unpublished co-authored material. Below is a listing connecting the chapters with

the publications and authors that contributed. For each of these publications, I

was not only the first-author of the paper, but also the primary contributor for

implementing software, conducting studies, and writing manuscripts.

– Chapter I: This chapter is composed of portions of my dissertation proposal,

which was unpublished. Dr. Hank Childs participated in discussing the

material and editing.

– Chapter II: This chapter is composed of portions of my Ph.D. Area Exam,

which was unpublished. Dr. Hank Childs participated in discussing the

material and editing.

– Chapter III: This chapter is a combination of two ANS short papers,

Bleile, Brantley, Dawson, O’Brien, and Childs (2016) and Bleile, Brantley,
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O’Brien, and Childs (2016). I was the primary contributor to this work in

developing the algorithm, writing the new code, and writing the paper. Dr.

Patrick Brantley initially identified the need for this work and provided the

application that this work was performed in. Dr. Patrick Brantley, Dr. Shawn

Dawson, and Dr. Matthew O’Brien provided ideas and feedback throughout

the development process and assisted in editing the paper. Dr. Hank Childs

assisted in editing the paper.

– Chapter IV: This chapter is primarily from work published at HPCS, Bleile

et al. (2019). I was the primary contributor to this work in developing the

algorithm, writing the new code, and writing the paper. Dr. Hank Childs,

Dr. Patrick Brantley and Dr. Matthew O’Brien provided ideas and feedback

throughout the development process and assisted in editing the paper.

– Chapter V: This chapter is from a study done for a paper that never was

published. I was the only contributing author on this effort. Dr. David

Richards provided insight and discussion during development.

– Chapter VI: This chapter is from a work which is in submission to ICCS,

Bleile, Brantley, O’Brien, and Childs ((in-submission) 2021). I was the

primary contributor to this work in developing the algorithm, writing the new

code, and writing the paper. Dr. Hank Childs, Dr. Patrick Brantley and Dr.

Matthew O’Brien provided ideas and feedback throughout the development

process and assisted in editing the paper.

– Chapter VII: This chapter is from a work which is in progress to be

submitted, Bleile, Brantley, O’Brien, and Childs (2021). I was the primary

contributor to this work in designing and running the tests as well as writing
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the content of this chapter. Dr. Hank Childs, Dr. Patrick Brantley and Dr.

Matthew O’Brien provided ideas and feedback throughout the development

process and assisted in editing the written content.
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CHAPTER II

BACKGROUND AND RELATED WORK

2.1 Introduction

This chapter considers Monte Carlo particle transport with respect to

modern supercomputers. While Monte Carlo particle transport is well understood,

today’s supercomputer landscape is in flux. Supercomputer architectures are

undergoing more extreme changes now than at any point in the past twenty years.

An important driving factor for this change is the concern regarding power usage

while scaling to larger and larger machines. Modern machines are pushing up

against a hard power limit, meaning that in order to increase performance they

must become more power efficient. As a result, architectures are transitioning from

fast and complex multi-core CPUs to the more energy efficient design of larger

numbers of slower and simpler processors. Relative to one decade ago, the amount

of parallelism available on any given node in a supercomputer is growing by factors

of hundreds or thousands because of this change. This transition to many-core

computing brings new and interesting challenges

This chapter is organized into four parts: the first part provides a

background in Monte Carlo particle transport, the second part continues with a

discussion of the current state of the art research for Monte Carlo particle transport

calculations, the third part focuses exclusively on Monte Carlo on GPUs, and the

fourth part considers portable performance across many architectures.

2.2 What is Monte Carlo Particle Transport?

Eckhardt (1987) provides the unpublished conversation Stan Ulam and John

von Neumann had discussing a game of solitaire which became the foundation for

starting Monte Carlo transport methods.
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“The first thoughts and attempts I made to practice [the Monte Carlo

method] were suggested by a question which occurred to me in 1946 as

I was convalescing from an illness and playing solitaire. The question

was what are the chances that a Canfield solitaire laid out with 52

cards will come out successfully? After spending a lot of time trying to

estimate them by pure combinatorial calculations, I wondered whether a

more practical method than “abstract thinking” might not be to lay it

out say one hundred times and simply observe and count the number

of successful plays. This was already possible to envisage with the

beginning of the new era of fast computers, and I immediately thought

of problems of neutron diffusion and other questions of mathematical

physics, and more generally how to change processes described by

certain differential equations into an equivalent form interpretable as

a succession of random operations. Later... [in 1946, I ] described the

idea to John von Neumann and we began to plan actual calculations.”

- Stan Ulam 1983

John von Neumann became interested in Stan Ulam’s idea and outlined how

to solve the neutron diffusion and multiplication problems in fission devices. Since

this time, Eckhardt (1987) tells us that Monte Carlo methods have continued to be

a primary way for solving many questions in neutron transport.

2.2.1 Definition. In Computational Methods of Neutron Transport,

Lewis and Miller (1993) describe Monte Carlo transport as a simulation of some

number of particle histories by using a random number generator. For each particle

history that is calculated, random numbers are generated and used to sample

probability distributions describing the different physical events a particle can
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undergo, such as scattering angles or the length between collisions. Lux and

Koblinger (1991) further expand the previous definition in their book Monte Carlo

Particle Transport Methods: Neutron and Photon Calculations:

“In all applications of the Monte Carlo method a stochastic model is

constructed in which the expected value of a certain random variable

(or of a combination of several variables) is equivalent to the value of

a physical quantity to be determined. This expectation value is then

estimated by the averaging of several independent samples representing

the random variable introduced above. For the construction of the series

of independent samples, random numbers following the distributions of

the variable to be estimated are used.” (p. 5)

Lewis and Miller (1993) explain that estimating a quantity takes on the

following mathematical form:

x̂ =
1

N

N∑
n=1

xn,

where xn represents the contribution of the nth history for that quantity. For

the Monte Carlo method, we tally the xn from each particle history in order to

compute the expected value x̂.

One very important question is how the estimated value x̂ compares to

the true value x̄. It turns out that the uncertainty in x̂ decreases with increasing

numbers of particle histories, and generally falls off asymptotically proportionate to

N−1/2, where N is the number of particles.

2.2.2 The Equation. Monte Carlo neutron transport solves the

equation known as the Linearized Boltzmann transport equation. Large numbers

of particles are used to create accurate estimations for each of the quantities that
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make up this equation. Since the Boltzmann equation can be written down in

different ways we focus on the variation described by Lewis and Miller (1993). The

equation and components descriptions are:

[
1

ν

∂

∂t
+ Ω̂ · ~∇+ Σt(~r, E)

]
Ψ(~r, Ω̂, E, t) =

Sext(~r, Ω̂, E, t) +

∫
E′

∫
Ω′

Σs(~r, E
′ → E, Ω̂′ · Ω̂)Ψ(~r, Ω̂′, E ′, t)dΩ′dE ′ +

χ(E)

∫
E′
ν(E ′)Σf (~r, E ′)

∫
Ω′

Ψ(~r, Ω̂′, E ′, t)dΩ′dE ′

where Ψ(~r, Ω̂, E, t) is the angular flux, Σt(~r, E) is the macroscopic total cross

section for all particle reactions, Σs(~r, E
′ → E, Ω̂′ · Ω̂) is the macroscopic cross

section for particle scattering, Σf (~r, E) is the macroscopic cross section for particle

production from a fission reaction, χ(E) is a secondary particle spectrum from

the fission process, ν(E) is the average number of particles emitted per fission,

Sext(~r, Ω̂, E, t) represents an external source, ~r is the spatial coordinates, E is the

energy, Ω̂ is angular direction, and t is time.

2.2.3 Algorithmic Approach. There are many ways to solve this

problem. The most common method is to track individual particle histories until

a predetermined amount of particles have been simulated. This method is known

as the history-based approach. In order to simulate a particle, the distance the

particle must travel before it has any interactions must be computed and compared

with all possible interactions. The interaction with the shortest distance is chosen,

followed by updating the particle and tallies based on the distance traveled and

interaction occurring. Algorithm 1 shows the history-based approach for a simple

research code as defined by Bleile, Brantley, Dawson, et al. (2016). Algorithm 2

shows the outer most scope of a Monte Carlo problem, both for providing context
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on Algorithm 1’s placement and for emphasizing where different optimizations can

occur. In particular, Algorithm 1 takes place inside the Cycle loop of Algorithm 2

and shows only the steps for Cycle: Tracking.

Algorithm 1: History-based Monte Carlo tracking algorithm

1 foreach particle history do
2 while particle not escaped or absorbed do
3 sample distance to collision in material
4 sample distance to material interface
5 compute distance to cell boundary
6 select minimum distance, move particle, and perform event
7 if particle escaped spatial domain then
8 update leakage tally
9 end particle history

10 if particle absorbed then
11 update absorption tally
12 end particle history

Algorithm 2: Monte Carlo method

1 parse inputs
2 foreach Cycle do
3 initialize
4 tracking (Algorithm 1)
5 finalize

6 gather tallies

While the history-based algorithm is the most common approach, it is not

the only possible approach to tracking particles. Event-based variations to this

algorithm exist and are an open point of research, both from the 1980’s and 1990’s

and again in the context of modern GPU machines. In an event-based approach

particles are grouped together and each operations is applied to all or a subset of

them at once. Some variations of this algorithm are discussed in subsection 2.4.4

(Event-Based Techniques) and then again in Chapter III (Tracking Algorithms).
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2.3 State of the Art: Monte Carlo Research

There is a long history of research and improvements for Monte Carlo

transport problems. Further, understanding this path, and the machines that

the approaches were designed for, helps to guide analysis of more recent efforts.

Most recent research efforts for Monte Carlo transport have been related to one of

these three topics: (1) GPGPU computing, (2) parallel algorithm improvements

(not concerning GPGPUs), or (3) physics improvements. A review of the GPGPU

related research is presented in section 2.4 (State of the Art: GPU Research). This

section focuses on the non-GPU Monte Carlo transport research, namely parallel

performance on CPU architectures, parallel load balancing, optimizations in nuclear

data look-ups, and variance reduction techniques.

2.3.1 Parallel Performance. Since the inception of Monte Carlo

particle transport over sixty years ago, there has been tremendous growth as Monte

Carlo applications have adapted to maximize performance on each new generation

of architectures. The first models developed in 1947 would take five hours to

compute 100 collisions, a task that today can be done in milliseconds. In the 1940’s

and 1950’s, Monte Carlo codes were written in very low level languages on the

earliest computers. The 1960’s to 1980’s saw a great increase in the capabilities of

the Monte Carlo codes as computing power increased and codes become more fully

featured. In the 1980’s Monte Carlo codes adopted parallel/vector machines. In the

1990’s Monte Carlo codes become more commonplace and parallelism increased to

100s or 1000s or processors through message passing with PVM Parallel Virtual

Machines (2011) or the Message Passing Interface (Clarke, Glendinning, and

Hempel (1994)). In the 2000’s, Brown (2011) explains that multicore processors
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meant threading became more commonplace, mixing local and global forms of

parallelism reaching tens of thousands of processors.

This growth in computer processing can also be categorized in terms of the

styles of memory accesses. Early systems were shared-memory environments almost

exclusively. Then distributed-memory systems became popular. Finally, hybrid

parallel systems, meaning systems that use both distributed- and shared-memory

parallelism, became popular. The following discussion is organized around these

three types of parallelism.

Shared-Memory Performance. Shared-memory systems refer to

machines or models where all processors can access the same memory space.

Taking this a step further, in the unified memory architecture (UMA), El-Rewini

and Abd-El-Barr (2005) explain that all processors have access to the same

memory and access to all memory takes the same amount of time. One type

of shared-memory system that was popular was the vector machine. Russell

(1978) explains that vector machines took the shared-memory system and added

additional synchronicity to the system by making all of the processors issue the

same instruction. This type of parallelism is often referred to as SIMD or single

instruction multiple data, meaning that the same instruction is going to affect

multiple data elements at once.

Vector Machine Performance. The research discussion presented

in this subsection occurred many years ago, but maintains relevance as modern

architectures trend towards similarities with architectures popular during this

time. GPUs, while not strictly SIMD, operate in a comparable fashion with vector

machines as they force instructions to operate in a lock step fashion. Additionally,

Intel MIC architectures are vector processors, with the primary difference being
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a significant update in how memory is managed on these devices versus previous

developments. Due to this similarity, a discussion of research from the vector

machine era is merited.

In the 1980’s Monte Carlo transport algorithms began adapting event-

based methods. The traditional history-based approach was not well suited for

vector architectures, since the particle histories follow independent code paths. In

order to vectorize the algorithms and make them usable on the vector machine

architectures, the codes had to be reorganized to follow the same code paths across

independently computed particle histories. Martin, Nowak, and Rathkopf (1986)

explain that by changing the algorithm to follow events instead of histories, the

Monte Carlo method could be used in a vector based approach.

A common element for work in this area is that the vector approach is often

related to a stack data structure. The challenge then becomes properly organizing

particles into the right sub-stack so that calculations can be performed as explained

in works by Brown and Martin (1984) and also by Bobrowicz, Lynch, Fisher, and

Tabor (1984). Martin et al. (1986) then tried another approach in which there is

only one main particle stack and only the minimum information needed to compute

each of the events is pulled off into sub-stacks. With each of these approaches,

particle events determine not only how the particles are organized but also what

information is needed for processing. The main drawback to the event-based

approach is the added time for data movement or sorting.

Brown and Martin (1984) reported the potential for speedups of 20X-85X

in their theoretical analysis of the use of event-based methods, and deemed this

approach well worth the efforts required to refactor codes in order to use this

approach on vector machines. Martin et al. (1986) saw speedups ranging from 5X
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to 12X using the single big stack, sub-stack approach, depending on the problem

choice and the machine he was running on. Vujic and Martin (1991) vectorized

and parallelized a reactor assembly code using explicit stacks and vectorizable data

structures, reducing wall-clock time by 22X. Bobrowicz et al. (1984) implemented

an explicit stack approach and reached speedups of around 8X - 10X compared

with the original history-based approach. Finally, Burns, Christon, Schweitzer,

Lubeck, and Wasserman (1989) used GAMTEB, the LANL Benchmark code,

to demonstrate similar performance to Bobrowicz et al. (1984) by following an

approach similar to Brown and Martin (1984).

Multi-Threaded Architecture Performance. Other shared-memory

systems, separate from vector machines, were tried in this era. One such machine

was the Tera Multi-Threaded Architecture (MTA) as explained by Snavely et

al. (1998). This approach focused on the use of parallel processors, hardware

threading, and a shared-memory no cache design. The idea was to mask away

memory latency by focusing on threading. This concept is shared in modern GPU

systems. As memory latency is high among individual threads, latency hiding

through massive parallelism is a focus of these devices. Due to this similarity it

is worth understanding the work done in this space.

Majumdar (2000) tried two methods of parallelizing the photon transport

application TPHOT on the Tera MTA. In TPHOT, looping occurred over spatial

zones and all possible energy levels, with photons being computed when their

containing zone/energy level was processed. So for this application Majumdar

chose to parallelize both over zones and over a combination of zones and energies

through loop unrolling. Table 1 shows that the parallelization on the MTA over

zones and energies maintains incredible efficiency giving their application good
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Table 1. Parallel performance of TPHOT on the Tera MTA using multithreading
by Majumdar (2000)

Procs Time (sec) Speedup Efficiency
Parallelization by zones only

1 764 1.00 1.00
2 400 1.91 0.95
4 227 3.37 0.84
8 167 4.58 0.57
Parallelization by zones and energies
1 745 1.00 1.00
2 370 2.01 1.01
4 187 3.98 0.99
8 94 7.92 0.99

speedups, while parallelizing over only zones does not expose enough parallel work

to hide memory latency and so efficiency drops off quickly.

More modern systems utilize shared-memory ideas as well, with a majority

of the scientific efforts utilizing OpenMP threading models for shared-memory

processing. Often this model is overlooked in preference of distributed computing

via MPI but that is not always the case. Given an all particle method, OpenMP

codes tend to scale with good efficiency with the only drawbacks having to do

with possible atomic operations occurring during the collection of output tallies.

In the case of no atomic operations and plenty of work, Siegel, Smith, Romano,

Forget, and Felker (2014) showed that shared-memory Monte Carlo transport

implementations have nearly perfect efficiency on a node.

Distributed-Memory Performance. One of the major transitions in

supercomputing history came with the shift from vector computing to distributed-

memory computing. This type of computing is most often done with MPI and has,

for the last 20 years, been a primary method of achieving parallel performance on
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small scale compute clusters and large scale supercomputers alike. In the message

passing model of parallelism, independent processes work together through the use

of messages to synchronize actions or pass data between processors. Yang, Yu, and

Wang (2015) explain that, in this model, parallel efficiency is generally improved by

spending more time working independently and is negatively affected by time spent

sending messages or idled at a synchronization point.

Yang et al. (2015) tell us that the Monte Carlo particle transport history-

based approach lends itself to the distributed model very well. Each particle

history is independent of any other particle histories and can be easily split up over

processors. However, moving to distributed memory systems creates complications

in handling large and complex geometries. Domain decomposition is typically used

in this case, although it increases the complexity in using message passing. Domain

decomposition challenges are discussed further in subsection 2.3.2 (Load Balance

and Domain Decomposition).

Given the embarrassingly parallel nature of the Monte Carlo transport

problem, the performance of this model produces results as expected. As MPI

processes increase, Monte Carlo transport continues to get a nearly linear speedup.

Majumdar (2000) shows that with 16 nodes and 8 MPI tasks per node, his biggest

run, he was still able to achieve a 88% efficiency in his code that was parallel over

zones and energies. M. J. O’Brien, Brantley, and Joy (2013) demonstrate that in

an all particle code, Mercury at LLNL, parallel efficiencies of ∼95% are seen when

using MPI parallelism up to 2 million processors.

Distributed- + Shared-Memory Performance. Given the

heterogenous nature of today’s computing environment, and even in the fairly

homogenous environment that has been prevalent, it is a common next step to
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consider combining distributed and shared-memory parallel schemes. Shared-

memory parallelism exists not only on the CPU cores of a node, but also on the

threads of a many-core accelerator. Distributed-memory parallelism provides the

opportunity for scaling to large supercomputers or clusters, giving users many

nodes to work with. Given the natural fit between these two models it is surprising

how rarely they are combined in practice. Developers may have avoided using

both types of parallelism to date since distributed-memory approaches work “well

enough” within a node, meaning that each core on a node can be its own MPI task.

With the addition of accelerator architectures developers will no longer be able to

ignore combining shared-memory and distributed-memory models

Wolfe (2014) defines the combined distributed+shared model as MPI+X.

The X in this description being replaced with whichever shared-memory system

is preferred. The most common implementation of MPI+X to date is the MPI

+ OpenMP model. Wolfe (2014) explains that, in the MPI + OpenMP model,

MPI is utilized for node to node communication and OpenMP is used for on node

parallelism.

Yang et al. (2015) has recently shown that the MPI+OpenMP model

has the benefit of achieving nearly perfect parallel efficiency and of significantly

decreasing the memory overhead to an equivalent MPI only implementation. He

was able to show 82-84% parallel efficiency and a decrease in memory cost from

∼1.4GB to ∼200MB for 8 processors. While Majumdar (2000) shows that with

16 nodes and 8 OpenMP threads per node, he was able to achieve a 95% parallel

efficiency which is an improvement over his MPI only method’s 88% parallel

efficiency.
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2.3.2 Load Balance and Domain Decomposition. In order to

achieve high levels of parallelism in transport problems with many geometries or

zones, different parallel execution models are used. The two primary models used

are domain decomposition and replication. Domains are sections of the problem

space or geometry used for organizing where portions of a larger data set are

stored. Procassini, O’Brien, and Taylor (2005) define domain decomposition as

the spatial decomposition of the geometry into domains, and then the assigning of

processors to work on specific domains. Additionally, Procassini et al. (2005) define

replication as storing the geometry information redundantly on each processor and

assigning each processor a different set of particles.

Load balance of domain replication problems is often simply a trivial

splitting of particles across processors. Because of this, load balance is often

discussed in conjunction with domain decomposition specifically. Particles often

migrate between different regions of a problem, meaning not all spatial domains

will require the same amount of computational work. In many applications there is

at least one portion of the calculation that must be completed by all processors

before all the processors can move forward with the calculation. As a result, if

one processor has more work than any other, all of the others must wait for that

processor to complete its work. M. J. O’Brien et al. (2013) demonstrated that

this load imbalance can cause significant issues with scalability as parallelism is

increased from hundreds to millions of processors.

When to Load Balance. A key consideration for performing a load

balanced calculation is understanding the cost of performing that calculation. If too

much time is spent making sure the problem is always perfectly load balanced,

then computational resources are being wasted on a non-essential calculation,
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resulting in overall slower performance. However, if too few resources are devoted

to load balancing then the problem will suffer from load imbalance and the negative

effects that entail. M. O’Brien, Taylor, and Procassini (2005) provide one solution,

which is to perform load balance at the start of each cycle or iteration of a Monte

Carlo transport calculation, but only when that load balance will result in a faster

overall calculation. Their method to determine when to load balance is to use

a criterion that can be checked inexpensively each cycle to determine if a load-

balance operation should take place. The first step is to compute a speedup factor

by comparing current parallel efficiency (εC) to what parallel efficiency would be if

processors were to redistribute their load (εLB). The second step is to predict the

run time by using the time to execute the previous cycle (τPhys), the speedup factor

(S), and finally, the time to compute the load balance itself (τLB). The final step is

to compare the predicted runtime with and without load balancing to determine if

the operation is worthwhile. The equations describing this algorithm then are:

S =
εC
εLB

(2.1)

τ
′
= τPhys · S + τLB (2.2)

τ = τPhys (2.3)

if (τ
′
< 0.9 · τ ) DynamicLoadBalance() (2.4)

Extended Domain Decomposition. As an extension to the domain

decomposition of meshes, M. O’Brien, Joy, Procassini, and Greenman (2009)

demonstrated an algorithm to domain decompose Constructive Solid Geometry

(CSG) in a Monte Carlo transport code. One key difference between mesh and

CSG geometries is that mesh geometries contain a description of cell connectivity,
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whereas cells defined through CSG do not. In order to domain decompose these

CSG cells, each cell was given a bounding box; using this bounding box, a test for

if a cell belongs inside a domain becomes an axis-aligned box-box intersection test.

Greenman, O’Brien, Procassini, and Joy (2009) demonstrated that, in

addition to pure mesh and pure CSG problems, other combinations are sometimes

beneficial, such as the combination of mesh and CSG problems where there are

large-scale heterogeneous and homogeneous regions. In this method, a mesh region

is embedded inside a CSG region allowing for the use of either, based on whichever

region is more optimal.

Load Balance at Scale. When load balancing massively parallel

computers, examining the workload of every processor can affect scalability.

M. J. O’Brien et al. (2013) present a scalable load balancing algorithm that runs

in Θ(log(N)) by using iterative processor-pair-wise balancing steps that ultimately

lead to a balanced workload. Their algorithm demonstrated scalability on up to two

million processors on the Sequoia supercomputer at Lawrence Livermore National

Laboratory.

M. J. O’Brien et al. (2013), using the pair-wise load balancing scheme,

maintained efficiency of 95% at 2 million processors, while the runs without load

balancing dropped in efficiency to around 68% at 2 million processors. In addition,

the load-balanced version was able to maintain near perfect scaling up to 2 million

processors. By dispersing the workload effectively over processors it also decreased

the overall tracking time.

Algorithms that interact with particles and geometries are affected when

domain decomposition is added. M. O’Brien and Brantley (2015) describe three

algorithms which are modified when domain decomposition is added. Specifically a
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Global Particle Find algorithm, a Test For Done algorithm, and Domain Neighbor

Replication. The Global Particle Find algorithm is used to find where a particle

is currently located in the geometry. After domain decomposition a tree search

was added to quickly decide which domain a particle is in before then searching in

specific geometry elements. The Test For Done algorithm, which reports if there are

any particles left to process, can be easily achieved by using MPI I allreduce() in

place of a complex hand coded algorithm. Lastly, the Domain Neighbor Replication

was found to be effective when combined with domain decomposition, as it

increased achieved load balance and reduced the total memory usage.

2.3.3 Nuclear Data. Nuclear data provides simulations with

information for how materials respond to interactions with particles under a

variety of conditions. It consists of microscopic cross section data for nuclear

and atomic collisions for all possible reactions. Additionally, macroscopic cross

section information can be calculated from the microscopic cross sections data.

Both microscopic and macroscopic cross section information is needed in order to

understand what reactions a particle undergoing a collision will do.

Looking up nuclear data information is a large part of Monte Carlo

transport calculations, both in terms of execution time and heavy usage through

many stages of the code. Nuclear data is stored in large tables of information that

are generally interpreted and processed in specialized libraries. McKinley and

Beck (2015) give an example of one of these libraries, the GIDI library at LLNL,

which responds to all of the nuclear data requests from simulation codes. Tramm,

Siegel, Islam, and Schulz (2014) show that, depending on the specific problem

being solved, the time spent looking up nuclear data can vary greatly, ranging from

10% to 85% of the overall runtime. Romano and Forget (2013) and Romano et al.
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(2015) provide additional examples of this behavior in the Monte Carlo application

OpenMC.

There are two primary methods for storing and looking up nuclear cross

section data: continuous energy and multi-group. The continuous energy model

spends more time looking up cross section data since energy values are stored as a

large sequence of points and exact values are found through interpolation. Multi-

group cross section data is stored in some number of bins and all energies that land

in the bin are given the same value. This method is often much faster, sometimes

reducing searches by orders of magnitude, but less accurate.

Research that deals with nuclear data lookups is often concerned with

speeding up the search for a given cross section at a given energy. This search

problem is the main bottleneck in cross section lookup algorithms. Linear

searches, binary searches, and hash-based searches are often employed. In addition,

combining isotopes into a unionized grid is a common method for reducing the total

number of searches required, though it greatly increases the memory needed to

store the cross section data. Wang, Brun, Malvagi, and Calvin (2016) defined and

compared the following algorithms for continuous energy model access:

Hashing. Each material’s whole energy range is divided up into N equal

intervals, and for every individual isotope inside the material an extra table is

established to store isotopic bounding indexes of each interval. The new search

intervals are thus largely narrowed with respect to the original range and can be

reached by a single float division. The hashing can be performed on a linear or

logarithmic scale; the search inside each interval can be performed by a binary

search or linear search. In the original paper by Brown (2014), a logarithmic
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hashing was chosen with N ' 8000 as the best compromise between performance

and memory usage. Another variant is to perform the hashing at the isotope level.

Unionized grid. A global unionized table gathers all possible energy

points in the simulation and a second table provides their corresponding indices

in each isotope energy grid as defined by Leppänen (2009). Every time an energy

lookup is performed, only one search is required in the unionized grid and the

isotope index is directly provided by the secondary index table. Lund and Siegel

(2015) provide timing results which show that this method has a significant

speedup over the conventional binary search but can require up to a 36× more

memory space.

Fractional cascading. This is a technique to speedup search operations

for the same value in a series of related data sets. Lund and Siegel (2015) explains

that the basic idea is to build a unified grid for the first and second isotopes, then

for second and third isotopes, etc. When using the mapping technique, once the

energy index in the first energy grid is found all the following indices can be read

directly from the extra index tables without further computations. Compared to

the global unionized methods, the fractional cascading technique greatly reduces

memory usage.

2.3.4 Variance Reduction Techniques. Variance reduction is a

key concept in Monte Carlo transport problems. The solutions to Monte Carlo

problems are given in the form of statistics and so reducing the variance in those

statistics leads to more accurate or easier to compute solutions. Often without

some use of variance reduction, certain problems would take an incredible amount

of time and computing power to find a solution. Kahn and Marshall (1953) explain

that the idea behind variance reduction is to increase the efficiency of Monte Carlo
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calculations and permit the reduction of the sample size in order to achieve a fixed

level of accuracy or increase accuracy at a fixed sample size. Some commonly used

variance reduction techniques are common random numbers, antithetic variates,

control variates, importance sampling and stratified sampling, although most

common methods used in Monte Carlo transport are some variation of importance

sampling.

Common Random Numbers. Kahn and Marshall (1953) define this

method of variance reduction, which involves comparing two or more alternative

configurations instead of only a single configuration, also referred to as correlation

of samples. Variance reduction is achieved by introducing an element of a positive

correlation between the sets. This can be accomplished through ensuring that all

configurations of a problem use the same random numbers to find solutions. The

article Variance reduction (2021) provides a clear example: “in queueing theory, if

we are comparing two different configurations of tellers in a bank, we would want

the (random) time of arrival of the Nth customer to be generated using the same

draw from a random number stream for both configurations.”

Antithetic Variates. Antithetic Variates (2021) is a method of variance

reduction which involves taking the antithetic path for each path sampled — so for

a given path {ε1, ..., εM} one would also take the path {−ε1, ...,−εM}. This method

reduces the number of samples needed and reduces the variance of the sampled

paths.

Control Variates. Control Variates (2021) is a method of variance

reduction which involves creating a correlation coefficient by using information

about a known quantity to reduce the error in an unknown quantity. This method
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is equivalent to solving a least squares system and so is often called regression

sampling.

Importance Sampling. Kahn and Marshall (1953) defines this

method of variance reduction which involves estimating properties of a particular

distribution, while only having samples generated from a different distribution than

the distribution of interest. This method emphasizes important values by sampling

them more frequently and sampling unimportant values less frequently. Melnik-

Melnikov and Dekhtyaruk (2000) explains that this is often achieved through

methods known as splitting or Russian roulette. In splitting and Russian roulette

particles are each given a weight and if particles enter an area of higher importance

they are split into more particles with less weight giving a larger sample size. If

particles travel in a region that is not important they undergo Russian roulette

where some particles are killed off and others are given more weight to account for

those removed.

Stratified Sampling. Stratified Sampling (2021) is a method of variance

reduction which is accomplished by separating members of a population into

homogeneous groups before sampling. Sampling each stratum reduces sampling

error and can produce weighted means that have less variability than the arithmetic

mean of a simple sampling of the population.

Recent research in the area of variance reduction techniques often includes

a specific problem that requires a more focused study to utilize one of these

previously described patterns. For example, in the problem of atmospheric radiative

transfer modeling, Iwabuchi (2015) recently published work describing a proposal

for some variance reduction techniques that they can use to help solve the problem

of solar radiance calculations. Described are four methods that are developed
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directly from their problem. The first is to use a type of Russian roulette on

values that will contribute small or meaningless amounts to the overall calculation

within some threshold. Other methods include approximation methods for sharply

peaked regions of the phase space, forcing collisions in under sampled regions, and

numerical diffusion to smooth out noise.

2.4 State of the Art: GPU Research

This section considers recent advances in Monte Carlo research on GPU

architectures. It first surveys different approaches for utilizing the GPU. It then

surveys Monte Carlo transport from the medical transport perspective in order

compare approaches from the different communities. The section goes on to survey

uses of ray tracing within a Monte Carlo transport application. Finally, this section

will survey new algorithm choices through event-based Monte Carlo transport.

Comparing CPU and GPU Architectures.

“A simple way to understand the difference between a CPU and GPU

is to compare how they process tasks. A CPU consists of a few cores

optimized for sequential serial processing while a GPU has a massively

parallel architecture consisting of thousands of smaller, more efficient

cores designed for handling multiple tasks simultaneously.” – What is

GPU Computing? (2015)

A CPU has been developed to optimize the performance of a single task. In

order to accomplish this CPUs have been latency optimized, meaning that the time

to complete one task, including gathering the necessary memory, has been reduced

in any way possible. GPUs, on the other hand have been throughput optimized in

order to complete as many tasks as possible in a given amount of time. This means

that the time for a GPU to complete a single task is most likely significantly longer
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Figure 1. A visual representation of the difference between CPU and GPU
hardware

than for a CPU, but, in a fixed amount of time the GPU will be able to accomplish

many more tasks. So given a large enough number of tasks that can be carried out

in parallel, the GPU can likely execute faster.

2.4.1 Monte Carlo Transport on a GPU. This subsection

analyzes the different initial approaches Monte Carlo transport codes have taken

in order to utilize GPU architectures. It begins by comparing and contrasting

different approaches by evaluating a few key areas of the studies that have been

done: accuracy, performance and algorithmic choices. Following is an evaluation

of the effectiveness of the approaches for the range of problems being addressed.

As a side note it is important to notice that speedups reported come from each

paper on the hardware they were using at the time of their study; GPU hardware

has changed in computing power dramatically over the last ten years in terms of

performance and additional features.
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Accuracy. One of the first considerations the scientific community has

when being introduced to a new computing platform is what levels of accuracy

can they achieve with their simulation codes. Since the change from CPU to

GPU computing brings a completely different hardware design it is important

to understand how that design might affect the accuracy of any calculations it

is performing. This concern was especially important in the early days of GPU

computing when double-precision was not supported and often even single-precision

answers would provide slightly different results. There are three key areas of

accuracy to consider: Floating point precision, differences between CPU and GPU

results, and IEEE-754 compliance.

It was commonly assumed in the early stages of GPU computing that

accuracy was lacking. Many early attempts at GPU computing included discussions

of accuracy in order to validate the correctness of their results. While modern

GPGPUs support double-precision much better than before, making much of the

worry irrelevant, it is still important to consider the accuracy of a method that runs

on a new hardware and may use a new algorithm.

Floating Point Accuracy. One of the primary concerns of the early

GPU studies involved understanding the limits of floating point arithmetic on

the GPU architecture. Nelson (2009) describes one of his primary accuracy

considerations as being the difference between single and double-precision

calculations. In older GPU hardware there was no support for double-precision

in the hardware and so in order to achieve double-precision significantly more

calculations were needed. In modern GPU hardware 64 bit double-precision

is becoming increasingly better supported and in the GPGPU cards there are

dedicated double-precision units.
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Differences Between CPU and GPU results. An even larger

concern than the differences between single and double-precision is differences

in results that arise when using the same precision but on different architectures.

Goldberg (1991) explains that this concern can be understood by considering how

floating-point math is accomplished on a computer. There are two main reasons

that differences arise. The first is that floating point mathematical operations

performed in different orders might produce different results and, due to the

nature of parallel computing, the ordering of these calculations is not guaranteed.

The second reason is that modern day CPUs using x86 processors perform math

internally on 80 bit registers while a GPU does it on 32 bit (single-precision) or 64

bit (double-precision) registers. Because of this, each math operation on a CPU

might stay in registers and only be rounded down to 64 bits when it is saved to

memory.

Jia et al. (2010) showed that in their development of a Monte Carlo dose

calculation code they could achieve speedups of 5 to 6.6 times over their CPU

version while maintaining within 1% of the dosing for more than 98% of the

calculation points. They considered this adequate accuracy to consider using GPUs

for doing these computations. Yepes, Mirkovic, and Taddei (2010) also considered

accuracy in their assessment of their GPU implementation. They concluded that,

in terms of accuracy, there was a good agreement between the dose distributions

calculated with each version they ran, with the largest discrepancies being only

∼3%, and so they could run the GPU version as accurately as any general-purpose

Monte Carlo program. As these two groups have shown, this amount of error is

often very small, and over the entire course of the simulation only brings 1-3%

errors.
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IEEE-754 Compliance. Nelson (2009) discussed accuracy in his thesis

work as floating-point arithmetic accuracy was not fully IEEE-754 compliant

during the time of his work. Additionally, since NVIDIA has complete control

over the implementation of floating point calculations on their GPUs there may

be differences between generations that mitigate the usefulness of an accuracy

study on one generation of hardware. Current generations of the NVIDIA GPU

hardware are IEEE-754 compliant however. In order to address issues of floating

point accuracy NVIDIA included a detailed description of the standard and their

implementation in CUDA. This description as well as details about how NVIDIA

chose to follow the standard can be found in the CUDA Toolkit, in the section

Floating Point and IEEE 754 (2015). So, while floating point accuracy is still a

concern, it is now no more a concern than it was on a CPU implementation.

Performance. Performance is a second important factor for Monte

Carlo transport on GPUs. Most early GPU studies emphasize their speedups over

CPUs as the primary advantage for moving over to the GPU hardware. Given the

change in supercomputing designs these comparisons have become increasingly

more important.

Often, performance is compared to the hardware maximums such as peak of

FLOPS or memory bandwidth. It is often assumed that an increase in available

FLOPS will translate directly into incredible performance gains. V. W. Lee

et al. (2010) in his article “Debunking the 100X GPU vs. CPU myth”, brings

this discussion of performance into new light, showing the relative performance

gains for different types of applications. The important thing to consider is the

limiting factor between the hardware and the code. As a result, comparing current

performance with that of peak performance is often very misleading.
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The following discussions show the relative performances of Monte Carlo

transport applications that either underwent a transformation to use GPUs or

performed a study comparing with GPU hardware. We will not see the 100x

performance that is often sought after, but instead we can understand the impact

that each applications problem, algorithms, and implementation differences had on

the performance as a whole.

Photon Transport. Badal and Badano (2009) present work on photon

transport in a voxelized geometry showing results around 27X over a single core

CPU. Their work emphasizes the use of CUDA for GPU performance on radiograph

problems.

Ren et al. (2010) present work on photon propagation through tissue,

showing around a 10X performance increase when using the GPU. Their discussion

expressed clearly that the performance was related strongly to the size of the data

set and the number of simulated photons. In addition, their results were negatively

affected by high level divergence when processing different types of tissues.

Alerstam, Svensson, and Andersson-Engels (2008) presented work on a GPU

based photon migration simulation in CUDA with speedups around 1000X over a

single core CPU. This specific problem does not suffer from the same divergence

issues that other Monte Carlo codes have as the algorithm for completing a photon

migration has very little divergence and can be easily optimized for memory

layouts. However, the 1000X speedup discussed here does not cover the entire

application and ignores many factors that limit total speedup due to Amdahl’s Law

effects.

Neutron Transport. Nelson (2009) in his thesis shows a variety of

models and considerations for his performance results. His work solving neutron
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transport considered multiple models for running the problem and optimizing

for the GPU. The model that produced his best results shows 19X from a 49,152

neutrons per batch run for single-precision. The same model shows 23X when

using single-precision and fast math. For double-precision performance the fastest

speedups he observed were 12X.

Work done by Gong et al. (2011) in a MCNP-based application has similar

performance benefits to Nelson’s work. Speedup factors of 16X to 23X were found

depending on problem parameters. This work was only an introductory attempt

at implementing MCNP in CUDA, as MCNP is so large that it is time intensive to

consider more than a subset of possible features and problem types.

Heimlich, Mol, and Pereira (2009) reported a speedup of around 15X for

his neutron transport application when comparing a GPU to an 8-core CPU.

This work focused on optimizing a history-based approach in CUDA for the GPU

and using MPI+OpenMP for the CPU. This particular algorithm contained only

small amounts of divergence in the code path that computes the random walk of

neutrons, providing a possibility for greater use of available parallelism.

Gamma Ray Transport. Work presented by Tickner (2010) on X-

ray and gamma ray transport uses a slightly modified scheme from the others

by launching particles on a per block basis. In this way, he hoped to remove the

instruction-level dependencies between particles running on the GPU. In this

work, he produced speedups of up to 35X over a single core CPU, a significant

improvement over similar methods launching with a particle-per-thread scheme.

Coupled Electron Photon Transport. Jia et al. (2010) discussed

work in a dose calculation code for coupled electron photon transport that follows

a relatively straight-forward algorithm. In their work, they offload the data and
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computations to the GPU, simulate the particles, and then copy memory back.

This method produced a modest performance increase on a GPU of around 5 to

6.6X over their runs on a CPU. The limitation of this speedup was attributed to

the branching of the code.

Track Repeating Algorithm. In contrast to Jia et al.’s work, Yepes

et al. (2010) showed that a different algorithm could greatly improve results. By

converting a track-repeating algorithm instead of a full physics Monte Carlo code,

Yepes et al. gained around 75X the performance on the GPU over the CPU. It is

thought that the simpler logic of this algorithm generated threads which followed

less branching paths than the algorithm presented in Jia et al.’s work.

Performance Evaluation. All of these examples contain a common

theme. While performance can be gained doing Monte Carlo on the GPU, it can be

more difficult to get than expected due to the highly divergent nature of the Monte

Carlo algorithm. Methods to deal with this divergence show promising results.

These outcomes are expected since Monte Carlo applications are embarrassingly

parallel (good for GPUs) but also incredibly divergent (bad for GPUs).

In this section, we have seen a wide range in performances, from as low as

5X to as high as 75X, or even 1000X. While simplifications played a large role in

the 75X algorithm we do see a full Monte Carlo application achieving speeds of

35X in the case of the work by Tickner (2010). It is important to note that while

some of the differences in performance are due to the nature of each problem being

solved, the algorithmic choices made can have a significant impact on the GPU

implementations.

Algorithms. Based on the preceding performance studies, it is important

to highlight the algorithmic approaches that were taken in order to understand the
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performance of each approach. Clearly identifying algorithms that show positive

performance results has the potential for gain in other codes. Therefore, this

section surveys several of the important algorithms.

Monte Carlo transport applications tend to follow a simple model where

each tracked particle is given its own thread and computation progresses in an

embarrassingly parallel fashion. On a GPU, this also makes sense as a starting

point since particles are independent and this progression leads to a naturally

parallel approach. It is often pointed out, however, that due to the divergent nature

of Monte Carlo this approach might not be the best way organize Monte Carlo

codes on GPU hardware.

Particle-Per-Block. We will first look at an alternative approach,

the particle-per-block tracking algorithm described by Tickner (2010). First each

tracked particle or quantum of radiation is given to a block of threads. Then

calculations are performed for one particle on each block of threads. For example

the particle intersection tests with the background geometry can be performed in

parallel on those threads for each piece of geometry that particle might be able

to collide with. Areas where these parallel instructions can be utilized within a

particle’s calculation are then used by the threads in a block computing for that

particle.

This particle-per-block technique is effective in mitigating the divergence

issue. Particles often diverge quickly from one another in the code paths they

follow. This means that threads in a block are not always able to travel in lock

step and can cause some serialization of the parallel regions. By using only one

particle per block, the divergence problem is nearly removed from the equation.

Additionally, this method introduces a new area of parallelism that is not otherwise
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being taken advantage of: instruction-level parallelism in the calculations for a

single particle.

This method, however, does not take full advantage of the parallelism in the

hardware like the methods that are not sensitive to divergence. Many threads can

execute simultaneously within a block with potential slowdowns coming from when

groupings of 32 threads are held in a warp and forced into the lockstep pattern.

Running only one particle per block can sacrifice some parallelism, as not all tasks

to calculate a particle’s path are parallel operations. Additionally, since warps

are scheduled out of thread blocks, any particle operations that are not done in

parallel among the threads of a block are serializing themselves in a similar manner

as to those algorithms that run one thread per particle and contain high levels of

divergence.

In summary, this method has some merit if it can find enough parallel

work in the thread block to execute additional parallel tasks that would otherwise

be stalled when following a simpler method. Also, this method might end up

showing the same characteristics of the simpler particle-per-thread model if the

extra parallelism is not found, and instead lose out on the parallelism provided by

particles that are not highly divergent from one another.

Event-Based Approaches. A second, possibly more obvious method,

to escape the divergence issue is to switch particle tracking algorithms more

dramatically from a history based version to an event based version. Sub-

section 2.4.4, Event Based Techniques, discusses this topic in more detail. Event

based approaches require much more work then simply transforming an existing

code to use the history based version on the GPU. Four separate works — Xu et

al. (2015) X. Du, Liu, Ji, Xu, and Brown (2013) Liu, Xu, and Carothers (2015)
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Table 2. GPU speedup evaluation results by Ding et al. (2011) for different Monte
Carlo transport approaches

Case Execution Time
TCPU (minutes)

Execution Time
TGPU (minutes)

Speed-up Factor
TCPU/TGPU

Neutron
Transport
Problem

0.496 0.017 29.2

Eigenvalue
/ Criticality
Problem

4.25 0.5 8.5

Voxelization 2380.4 52.3 45.5

Su, Du, Liu, and Xu (2013) — on the Monte Carlo code Archer, show that it is

not simple to get speedups using this method as there are a host of challenges to

still overcome. These challenges include: additional levels of divergence, atomic

operations, data locality/layouts, and portability.

Evaluation. A number of studies were conducted by groups identifying

the potential benefits of GPU hardware but also software development issues with

Monte Carlo applications. Among these concerns are memory limitations, lack of

ECC (error correction code) support in memory, lack of software optimization,

limitations of SIMD architecture, clock speeds, and complex memory allocation

schemes. In addition, the achieved performance often did not exceed that of

unchanged codes on a cluster. In some cases, though, speedups were large and easy

to achieve, such as the approach from Ding et al. (2011). Their evaluations are
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listed in Table 2, including a 45× speedup for their voxelized approach. The only

strong conclusion from these works are that a clear and defined path are not yet

known on how to take full advantage of the available parallelism without suffering

performance penalties in turn.

2.4.2 Monte Carlo and Medicine. Monte Carlo transport in the

area of medicine often gets overlooked by Monte Carlo practitioners. Radiation

transport calculations are used for dose estimations in patients and require close to

real time, highly accurate solutions on desktop style machines. The following are

descriptions from three applications of medical Monte Carlo transport followed by

an evaluation of the effect GPUs have had on the field.

Electromagnetic Monte Carlo transport in GMC. Jahnke,

Fleckenstein, Wenz, and Hesser (2012) described his group’s efforts to develop the

code named GPU Monte Carlo (GMC). GMC is a GPU implementation of the

low energy electromagnetic portion of the Geant4 code using the CUDA interface.

GMC runs in a thread per particle style operating on 32768 particles at a time (128

blocks of 256 threads). GMC runs through a series of kernel launches in a loop each

handling one important aspect of the physics.

The raw performance differences between the CPU version and the GPU

implementation are significant for the problems tested. The average for their study

showed the GMC histories being computed at a rate of 657.60 histories every milli-

second compared to the Geant4 CPU with histories computed at 0.137 histories

per milli-second. Comparing these two numbers produces a speedup factor for

the particle tracking portion of 4860 while maintaining reasonable accuracy in all

cases between CPU and GPU with accuracies greater than 95% in all regions. Total
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runtimes were also brought down to the hundreds of seconds showing the possibility

for clinical usage of applications like this.

Proton Therapy in gPMC. Accurately computing radiation doses is

a critical part of proton radiotherapy, and Monte Carlo simulations are considered

to be the most accurate method to compute those dose calculations. Given the long

time required for traditional applications to use this technique, clinical application

have been severely limited. Jia, Schümann, Paganetti, and Jiang (2012) describes a

fast dose calculation code, gPMC, and how it might enable clinical usage of Monte

Carlo proton dose calculations.

The code gPMC was developed in CUDA for use on a GPU. Using a

batching system to launch groups of particles from a particle stack, gPMC runs

for between 6 and 22 seconds to generate passing rates between 95% and 99%.

Jia et al. (2012) explain that they have successfully developed a dose calculation

code under a certain set of restrictions and are hopeful that their future work

will be able to meet with continuing success as they expand the context for their

application.

Electron-Photon Transport in DPM. Jia et al. (2010), as noted

in Section section 2.4.1 (Coupled Electron Photon Transport), describes the

development of a CUDA based Monte Carlo coupled electron-photon application

for dose planning, called DPM (dose planning method). Their scheme involves

launching a kernel on the GPU that simulates all of the particle histories necessary

to reach some target number of source particles. Each thread of their kernel

simulates the history of one source particle and all secondary particles that it

generated. The kernel ends with an atomic gathering of all the dosing data. DPM
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was only able to achieve speedups of around 5-6.6x on the GPU over the CPU, but

did get excellent agreement on relative uncertainties in their results.

Jia, Gu, Graves, Folkerts, and Jiang (2011) revisits their DPM code and

are able to improve speedups of 5-6.6x into speedups of approximately 69 - 87x.

DPM’s main algorithm changed in a few significant ways. First a single thread only

computed the history of a single particle and any additional particles were placed

on a stack for a future iteration. Second the photon and electron physics were

separated into different kernels so that threads would experience less divergence

when handling the necessary code paths. Other factors such as a better random

number generator and use of the hardware linear interpolation features were

also implemented. With the additions of new features and improvements, DPM

re-evaluated their accuracy and found that their errors were not statistically

significant in over 96% of regions for all problems they tested. Given the now

excellent speedups of 69-87x and acceptable accuracy ranges, real time speeds for

realistic problems was achieved.

Evaluation. These three projects show a variety of challenges and

accomplishments in the medical Monte Carlo field. They are each accomplishing

their tasks on a single GPU as opposed to a cluster of CPUs. There are numerous

stated benefits to this, with cost of purchasing and operating a cluster against

purchasing a single GPU being a large factor. In each case speedups were achieved

that were adequate to bring the time of their simulations down to those that would

be useful in a clinical environment.

2.4.3 Monte Carlo and Ray Tracking. One important and often

computationally expensive aspect of Monte Carlo transport is the step that

determines if the particle will collide with any background geometry, or at least
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cross into a zone of a different material. This is done through a similar method as

that used in ray tracing. Ray tracing (graphics) (2021) is a technique in computer

graphics for “generating an image by tracing the path of light through pixels in an

image plane and simulating the effects of its encounters with virtual objects.”

The general process of ray tracing is very similar to Monte Carlo transport

in the need to do many intersection tests from potentially scattered sources.

Bergmann (2014) decided to study the potential of using the power of a highly

optimized GPU ray tracing library, OptiX as described by OptiX Programming

Guide (2018). Parker et al. (2010) explains that OptiX is a scalable framework for

building ray tracing applications used on NVIDIA hardware.

The first study conducted was to determine the optimum configuration for

OptiX as well as the capability for OptiX to be initialized with random starting

points and directions as is most likely to be the case in a Monte Carlo application.

When using a ray tracing library it is important to consider the two areas that

can scale: the number of concurrently traced rays and the number of geometrical

objects in the scene. Bergmann (2014) explains that nuclear reactor simulations

might contain thousands of material zones in complex geometric layouts; knowing

this last scaling parameter is especially important to not overlook. In these studies,

the rates became fairly consistent after reaching 106 particles. Bergmann (2014)

also notes some important points, such as which acceleration structure was always

best and when memory become a constraint on the problem that could be run. The

conclusion from this study was that OptiX could be used to handle the geometry

representation in a Monte Carlo neutron transport code. Additionally, for best

performance one should use a primitive-based geometry instancing method, a BVH

acceleration structure, and run as many parallel rays as possible.
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In addition to the use of a pre-existing tool like NVIDIA’s OptiX library,

other groups looked at optimizing Monte Carlo transport by focusing on treating

it like a ray tracing problem. Xiao, Chen, Hu, and Zhou (2015) focused on the

data locality issues in all ray tracing applications on GPUs. They describe a new

data locality method based on task partitioning and scheduling in order to enhance

spatial and temporal data locality by ordering random rays into coherent groups.

By applying this method they achieved a 6-8X speedup over the previous GPU

version of radiation therapy Monte Carlo transport. Després, Rinkel, Hasegawa,

and Prevrhal (2008) studied the ray tracing algorithm for tracing a path through

a grid in the context of Monte Carlo applications. Their GPU implementation of

the Suddon algorithm, showed a speedup factor of 6X over the CPU. This work

provides context for an important portion of the Monte Carlo transport problem, a

look at the transport piece itself.

These examples show that progress in connected fields can positively impact

the approaches in Monte Carlo transport. Ray tracing is only one aspect of a full

Monte Carlo transport application but it can be greatly beneficial to look at work

done in these related fields and bring those ideas back into the full application.

2.4.4 Event-Based Techniques. Much discussion has been aimed

at the negative effect divergence in Monte Carlo codes has on performance.

Given the embarrassingly parallel nature of the Monte Carlo transport algorithm,

performance of Monte Carlo transport codes on the GPU should be incredible.

This survey has shown however that the opposite is often seen in practice. Many

applications achieve only marginal speedups, citing that the cause of their lack in

performance was due to divergence in the code.
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In order to combat divergence and given the similarities between the

classic vector machines of the 1980’s/90’s with modern GPU hardware, algorithms

developed for vector machines were re-evaluated for use on GPU architectures. In

particular, the event-based approach worked well on SIMD vector hardware. In the

event-based approach particles are processed in groups which perform the same

event. There are multiple variations to this idea, a few of which are presented here.

Vectorized Algorithm. Early event-based algorithms were designed

for vector machines and were called vectorized algorithms. Martin (1989) describes

a successful vectorized algorithm as well some variations. The conventional Monte

Carlo algorithm cannot be vectorized since treating many histories simultaneously

would immediately fail after the first step of the simulation as each particle can

undergo a different event. In order to achieve vectorization the histories need to be

split into events which are similar and can be processed in a vectorized manner, i.e.,

the same set of instructions. The basic event-based iteration algorithm is described

in Algorithm 3.

In addition to the basic event-based approach there are a few variations

discussed in Martin’s paper that expand on this model. One variation is the stack-

driven approach. In this approach the events are further divided into smaller

computational tasks. Instead of cycling through the tasks in a fixed order, the

computation can move forward by selecting the event with the largest number of

particles. This involves a tradeoff of simplified control flow versus maximizing the

vector lengths of the computational components.

In recent work by Ozog, Malony, and Siegel (2015), multiple approaches to

vectorization were tried. The banks of particles method described in Ozog et al.’s

paper follows the same form as the original basic stack based algorithm, with sub-
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Algorithm 3: The basic iteration event

1 for event n = 0, 1, 2, ... do
2 Fetch Γn

3 Perform free flight analysis:
4 gather the cross section data and geometry data tabulated by

particle,
5 Σ← S,
6 ρ← R;
7 using Σ, sample a vector of distances to collision, dc
8 using ρ, determine vector of minimum distances to boundary, db
9 determine the minimum distances to the end of event,

10 dmin = min[dc, db];
11 update the particle coordinates,
12 rn+1 = rn + Ωn · rmin

13 Perform collision analysis:
14 gather particle attributes,
15 Ω← Γn, E ← Γn;
16 evaluate collision physics for new direction cosines and energies,
17 Ω′ ← Ω, E ′ ← E
18 scatter new particle attributes back into bank,
19 Ω′ ← Γn, E ′ ← Γn

20 Perform the boundary analysis:
21 gather particle zone indices Z,
22 Z ← Γn

23 determine new zone indices,
24 Z ′ ← Z :
25 scatter new zone indices back into bank.
26 Z ′ → Γn

27 Update the particle bank,
28 Γn ⇒ Γn+1 (with Ln+1 particles)
29 (e.g. compress out terminated particles).
30 If Ln+1 6= 0, continue
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stacks to manage vectorizable groupings of particles. A second idea, that offered

performance benefits of 1.6x for an Intel many integrated core (MIC) processor

over an Intel Xeon processor, was to vectorize nuclear data lookup portions of the

code. In this way particles are processed in the same history based manner (little

to no code changes required), and vector units are utilized to perform the expensive

nuclear data lookup and interpolation calculations.

Vectorized versions of the Monte Carlo transport algorithms are generally

based on this original basic algorithm. There are many variations but the principal

differences all depend on the methods used for organizing and treating the vectors

of particles. There are variations using stacks, tags, and tasks. When considering

changing an existing history-based legacy code, the major downside to the event-

based approach is that it requires large modifications to pre-existing source code.

Event-Based for GPU. Event-based methods used for the GPU follow

similar design patterns as those that were developed for vector machines. One

prime example is the event-based version developed by Bergmann (2014) for the

code WARP. Figure 2 outlines the inner transport loop broken into its separate

stages. Figure 3 outlines the outer transport loop between neutron batches.

Bergmann (2014) utilizes a series of kernels that each solve one piece of the

process. Once each neutron knows which path it will go down – i.e. scattering,

fission, etc. – each of those possible paths is launched in a separate kernel. Unlike

the basic vectorized approach or the stack based approach however, all of the

events are launched at once using concurrent kernels due to CUDA streaming

properties. In this way, the main divergent part of the code is broken into relatively

non-divergent kernels which are then launched simultaneously so as to continue to

utilize the full hardware.
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Figure 2. WARP inner transport loop that is executed until all neutrons in a batch
are completed Bergmann (2014)

Figure 3. WARP outer transport loop that is executed in between neutron batches
for criticality source runs Bergmann (2014)

50



Not all attempts at vectorization, or implementing an event-based algorithm

for Monte Carlo transport codes, have been successful. For example, Liu, Du, Ji,

Xu, and Brown (2014) describe an event-based approach that produced a roughly

ten times slower version then the history-based code. This example shows how

complicated the task of implementing an event-based algorithm can be, and that

it is possible as well that not all Monte Carlo transport problems can be solved

efficiently in an event-based fashion. Liu attributed their slow down to the memory

access latency due to the high amount of global memory transactions and showed

that the resulting cost of this in an event-based method did not outweigh the

benefit of reducing thread divergence and increasing warp execution efficiency.

Continuing Work. This dissertation contains results that continue

this work. Chapter III, Tracking Algorithms, gives a detailed account of our first

attempts at event-based Monte Carlo in a research mini-app, ALPSMC. Bleile,

Brantley, Dawson, et al. (2016) and Bleile, Brantley, O’Brien, and Childs (2016)

give a full accounting of this work as well.

More recent work by Hamilton, Slattery, and Evans (2018) expand upon

this idea further. They explain their implementations for history- and event-based

algorithms in the Profugus Monte Carlo code. Additionally, they showed that with

performance optimizations in their history-based approach, targeting reducing

thread level divergence, their history-based approach out performed the event-based

approach by 3 to 7×.

Hamilton and Evans (2019) followed up this work by implementing these

algorithms with some additional improvements in the Monte Carlo code Shift using

a continuous energy model instead of multi-group energy model. Their findings in

this work contradict their previous work showing that the event-based approach
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was a significant improvement when performed in Shift. The reason for this is

attributed to the increased complexity of Shift, increasing register usage and

limiting occupancy when running history-based. Since the event-based method

targets smaller kernels with less registers the higher occupancy is attributed

for the performance gains. This work shows a significant result, that the mini-

app development for this topic might not be representative enough of the full

application for the results to translate to the production application. Because of

these results, we will further investigate some initial event-based results in this

dissertation in Chapter VII Performance at Scale.

2.5 What is Portable Performance

Wolfe (2016) defines portable performance as the ability to achieve a high

level of performance on a variety of architectures. In this case, high performance

is relative to each target system. One important consideration, then, is the target

architectures.

While it is clear that there will be an increase in node-level parallelism,

it is unclear which specific many-core architectures will be used on future

supercomputing platforms. There are many different architectures and vendors to

choose from when designing a supercomputer, and there is currently no consensus

for a single choice among the many options. Currently GPU based systems are a

leading choice, but even among that distinction there are a number of contending

vendors, leading to a wide variety of platforms and ideas to consider in this

space. For example, NVIDIA provides General Purpose Graphics Processing

Units (GPGPUs) which are highly parallel throughput-optimized devices, and the

Summit and Sierra supercomputer procurements are IBM+NVIDIA based systems

as defined by the Fact Sheet: Collaboration of Oak Ridge, Argonne, and Livermore
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(CORAL) (2014). Additionally, back in 2015, Los Alamos National Laboratory

(LANL) chose an Intel Xeon (Haswell) and Xeon Phi based system as described in

the About Trinity (2015) article. Continuing in this may-core trend Thomas (March

2020) explains LLNL’s recent announcement to partner with HPE and AMD on

their next supercomputer procurement, El Capitan.

Application developers now face a complex and varied path forward. There

are additional levels of complexity and potentially large changes to designing

simulation codes in order to effectively utilize this increase in parallelism. In

addition, the factors behind supporting a new architecture are often more complex

in the context of legacy codes and/or codes that aim to run effectively on many

architectures. The simulation code developer must now address both the issue of

portability and the issue of performance of their algorithms, or risk their simulation

code becoming outdated or unusable very quickly. This problem is especially

challenging when optimizations are specific to one architecture (i.e. not portable

across platforms). Given this wide array of possible architectures, the value of

portable performance has never before been higher.

2.5.1 Portable Performance Applications. In this section we

will look at the meaning of portability and the uses of portable performance

abstractions in different contexts. Moreland, Larsen, and Childs (2015) discussed

the need for portable performance solutions for visualization software in their

paper, “Visualization for Exascale: Portable Performance is Critical.” While

their context is visualization, their arguments span more than just visualization

applications. Current scientific, legacy applications will not be adequate to run on

exa-scale machines, or even the recent peta-scale machines. Further, applications

such as these need to be ready to run on new machines as they arrive. Therefore,
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these applications should strongly consider portable performance solutions in order

to maintain relevance in the upcoming computing environments.

Portability does not mean the same thing to everyone. In some cases,

portability might be as simple as requiring minimal code changes to run on a

new architecture. Bosilca et al. (2011) describe portability for their application

as requiring no code changes to the main body of code in order to enable GPUs. In

this work, the only allowable changes were those in CUDA to launch kernels while

the code that made up the kernels had to remain unchanged. In this work they

added a scheduler that could launch code regions onto different platforms based on

availability and which one is the most beneficial for performance.

P. Du et al. (2012) describe their work as portable since they transitioned

from CUDA to OpenCL. The goal of their work was to understand the performance

tradeoff between a more portable OpenCL implementation of an algorithm and

the vendor specific GPU language CUDA. In this work Du et al. showed that the

performance of OpenCL was similar to CUDA for the compute intensive kernels

but also had a higher overhead. Also, it is important in OpenCL to account for

architecture specific features or designs for optimum performance.

Portable performance as was laid out in Moreland et al.’s paper can be

seen in recent work done in the field of ray tracing and volume rendering. Larsen,

Meredith, Navrátil, and Childs (2015) presented his work for a method of ray

tracing consisting entirely of data parallel primitives. In this work, all parallel

operations are expressed using data parallel primitives, which are defined in

a library. The definitions of these primitives are then compiled to be CUDA,

OpenMP, or serial executions. The performance of this method is shown to be

competitive with both of the top ray tracing libraries, OptiX from NVIDIA and
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Embree from Intel. In addition to ray tracing Larsen, Labasan, Navrátil, Meredith,

and Childs (2015) followed up this work with a volume rendering capability that

uses the same principles for portable performance. This work shows volume

rendering performance similar to current industry standards while also maintaining

portability.

Portable performance also exists outside of the visualization realm with

scientific codes also utilizing the new methods being developed. Rahaman et al.

(2015) presents work on portable performance for nuclear reactor models by using

the OCCA programming model. OCCA, or the Open Concurrent Computing

Abstraction, provides an interface into parallelism that can be compiled for

different architectures. Like many of the abstraction layers that will be discussed

in Section subsection 2.5.2 (Abstraction Layers), OCCA provides the ability to

write code once and compile it into different known formats such as OpenMP,

CUDA, or serially. Rahaman et al. compared the performance of this abstraction

against native implementations in order to weight the usefulness of the portability

it provided. Their results showed that, for some cases optimal performance could

be achieved simply on both a CPU and a GPU, but in other cases it took complex

specialization in order to make the same kernel work well on both architectures.

Portability has become a pressing point for developing applications in

today’s computing environment. Applications like those Rahaman studied,

which performed less than optimally on some architectures, are quite common as

architecture specific optimizations become increasingly difficult to balance. An

added complication to this issue is the inclusion of legacy codes into the mix. Since

legacy codes are already developed and might require massive rewrites to take on
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a new architecture like a GPU, finding a portable performance solution will be

critical to their future development.

2.5.2 Abstraction Layers. Abstraction layers are a frequently used

method for achieving portable performance. The key idea behind an abstraction

layer is to hide the complexity of parallelism behind an abstraction. Then the

abstraction can handle how to parallelize a given section of code onto separate

hardware architectures. The remainder of this section surveys some of the known

abstraction layers with a summary of their benefits and goals.

OpenMP. Parallelism through OpenMP (2018) is achieved through the

use of compiler directives, library routines, and environmental variables. These

are used to specify the high level parallelism for programs using the Fortran and

C/C++ languages. These directives, routines and variables have been expanded

to include methods to describe how regions of code or data should be moved to

another computing device, like an accelerator.

S. Lee, Min, and Eigenmann (2009) describe several advantages for using

OpenMP as a programming paradigm for use on a GPGPU:

– “OpenMP is efficient at expressing loop-level parallelism in applications,

which is an ideal target for utilizing GPU’s highly parallel computing units

to accelerate data-parallel computations.”

– “The concept of a master thread and a pool of worker threads in OpenMP’s

fork-join model represents well the relationship between the master thread

running on the host CPU and a pool of threads in a GPU device.”

– “Incremental parallelization of applications, which is one of OpenMP’s

features, can add the same benefit to GPGPU programming.”
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Ayguadé et al. (2010) explains that by including target device directives

as well as other supporting features, OpenMP is able to utilize its experiences in

parallel computing and offer a familiar solution to programmers who need to make

new or existing algorithms and codes work for parallel CPUs, GPUs. Additionally,

S. Lee and Eigenmann (2010) expands upon this showing that OpenMP can

be extended to improve GPU specific performance through additional tunable

parameters.

OpenACC. OpenACC (2018) enables the offloading of loops and

regions of code onto accelerator devices. The OpenACC API uses a host-directed

model of execution where the main program runs on the host, or CPU, and

the computational work is offloaded to a device accelerator, like a GPU. The

OpenACC memory model outlines two memory spaces which do not automatically

synchronize, requiring explicit synchronization calls between memory spaces.

Wienke, Springer, Terboven, and an Mey (2012) explain that OpenACC operates

in a similar fashion to OpenMP by using compiler directives to define regions of

code for their operations to affect.

OpenACC (2018) is designed to be portable. Its directive based

programming allows programmers to create high-level host+accelerator applications

without needing to explicitly handle many of the extra aspects to working on an

accelerator.

OpenACC has demonstrated the ability to achieve reasonable performance

on multiple platforms. Wang, Qin, SEE, and Lin (2013) performed a performance

study showing that for some benchmarks the OpenACC versions were able to

achieve more than 82% performance when compared with peak performance for

both the Intel Knights Corner and NVIDIA Kepler architectures.
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Thrust. Thrust - Parallel Algorithms Library (2018) is a library of

algorithms and data structures that can be used to provide an interface to parallel

programming in order to increase a programmer’s productivity. Thrust is designed

similar to the standard template library, allowing programmers familiar with

the C++ STL to feel instantly comfortable working in the Thrust environment.

Hoberock and Bell (2010) explains that through its design, Thrust lowers the

barrier to entry for allowing access to GPU hardware and memory without the

need to interact with the CUDA API.

In addition to adding parallel algorithms, Thrust provides multiple

compilable backend technologies that allow the programmer to write their

algorithms using Thrust and then compile them in CUDA, TBB, and OpenMP.

This enables a wide array of portable solutions that programmers can take

advantage of in order to much more easily write portable and performant

applications.

Thrust offers a variety of algorithms with significant performance advantages

to direct naive implementations, leading to real world performance gains. Some

examples of those performance gains can be seen in the implementations of the fill

and radix sort algorithms. Bell and Hoberock (2011) explain how Thrust provides

a fill algorithm that produces a 32x performance gains over a naive algorithm

implementations as well as a radix sort algorithm that provides a 2.7x performance

gain by utilizing only significant bits when possible. These performance gains come

for free when using a Thrust algorithm to accomplish a data parallel task.

In addition, Thrust provides all of the main data parallel operations defined

by Blelloch (1990). Blelloch’s work is significant in that it provides a foundation for

data parallel processing and algorithm development through a series of well defined
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vectorized operations. One method of achieving performance is to then rewrite an

algorithm using data parallel primitives or algorithms and then use the existing

Thrust methods to perform the operations.

RAJA. The RAJA (2021) portability layer is designed to be a

lightweight method of providing loop-level parallelism in existing codes. The idea

behind the design was that, especially at institutions like Lawrence Livermore

National Laboratory, there are a large number of legacy scientific codes that will

need to make some sort of transition in order to utilize upcoming architectures.

RAJA was designed to be able to replace current loops with a wrapper loop to at

first make no change or impact. Hornung, Keasler, et al. (2014) describes that once

the RAJA abstraction layer is in place, the loop can be changed to run on different

architectures and with different parallel modes.

RAJA achieved their flexibility through macro replacements in their library.

By changing a compile time option the user can define if they want the OpenMP

parallel launcher, a CUDA kernel launcher, or a serial launcher. Hornung, Keasler,

Kunen, Jones, and Beckingsale (2016) explain that, in this manner RAJA is a

useful tool for generically replacing large numbers of parallel loops with a consistent

theme that creates inlined parallel code for the compilers to optimize, instead of

large and sometimes convoluted template models.

In addition to providing a library, the RAJA project provides a second

approach to portability. A RAJA like approach involves simple custom macro

definitions, such as making a parallel loop by replacing a for loop with a macro

function. Then different parallel launchers can be defined for each target

architecture without changing the body of the loop, minimizing code redundancy

between versions. Finally, at compile time one of the architectures or versions
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of the parallel loop is chosen and all of the loops defined with the macro will be

launched for whichever version was chosen.

Kokkos. The Kokkos (2021) C++ library provides a programming model

that enables performance portability across devices. The objective of the Kokkos

library is to allow as much of the user’s code as possible to be compiled for different

devices, while obtaining the same performance as a variant of the code that was

written specifically for that device. Kokkos uses the idea of execution and memory

spaces to provide an abstraction to the problem. In their model, threads are said to

execute in an execution space, while data resides within a memory space. Edwards

and Sunderland (2012) explains that the relationships are defined between the

different execution and memory spaces.

Parallelism in Kokkos comes from parallel execution patterns; data parallel

and task parallel patterns are used. The primary data parallel patterns are:

parallel for, parallel reduce, and parallel scan. The data parallel computational

kernels are implemented as standard C++ functors.

Edwards, Trott, and Sunderland (2014) demonstrated that the Kokkos

abstraction layer can achieve 90% of the performance of optimized architecture

specific versions for kernel tests and mini-applications. Additionally Edwards,

Sunderland, Porter, Amsler, and Mish (2012) demonstrated Kokkos performance on

Xeon, Xeon Phi, and Kepler architectures, showing the portability of this solution.

Chapel. Sidelnik, Maleki, Chamberlain, Garzar’n, and Padua (2012)

described Chapel as an object-oriented parallel programming language which

was designed from first principles. Chapel was developed in order to improve

the programmability and productivity of development on parallel machines.

B. L. Chamberlain, Callahan, and Zima (2007) defines productivity as “a
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combination of performance, programmability, portability, and robustness.”

Chapel used this idea to make a global-view parallel language that uses a block-

imperative programming style. Chapel purposely avoided building on the C or

Fortran languages in order to help programmers avoid falling back into sequential

programming patterns.

Chapel uses a code generation design to generate parallel C or CUDA code.

The Chapel language defines the parallelism and so can be used as the basis for

optimized code generation on many different platforms. Chapel uses this design to

achieve portability and performance with their language.

B. Chamberlain (2013) describes that Chapel’s design goal is to support

any parallel algorithm that a programmer could conceive without the need to fall

back to other parallel libraries. Chapel supports concepts for describing parallelism

separately from those used to describe locality. It supports programming at higher

and lower levels, as well as providing advanced higher-level features such as data

distributions or parallel loop schedules.

VTK-m. VTK-m is the result of a collaboration between three separate

groups and three separate national labs coming together and joining forces with

Kitware, the primary maintainers of the current VTK (Visualization ToolKit)

software. Visualization applications use VTK in order to express visualization

algorithms and data structures in their codes. VTK-m came about from the three

projects, EAVL, DAX, and PISTON, with the design goal of being a portable

performance solution for visualization applications and algorithms.

The VTK-m framework takes the concepts of data parallel primitives and

patterns generated from those primitives to provide a framework for accomplishing

visualization algorithms. These data parallel primitives can be compiled for
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different platforms, helping VTK-m achieve portable performance as described by

Moreland, Sewell, et al. (2016) and Moreland et al. (2015).

The contributions of the three projects to VTK-m are as follows:

– EAVL – Provided a robust data model.

– DAX – Provided a model for parallel work dispatching.

– Piston – Provided many data parallel algorithms and implementations.

EAVL. Meredith, Ahern, Pugmire, and Sisneros (2016) define EAVL,

or the Extreme-scale Analysis and Visualization Library, and describes how it was

developed with three goals in mind:

– A flexible data model – “Expanding on traditional models to support current

and forthcoming scientific data sets.”

– High parallel efficiency – “Improve memory and algorithmic efficiency

through the enhanced data model, and support stricter memory controls and

accelerator device memory models.”

– Scalability – “Support distributed and data parallelism, and transparently

target heterogeneous systems.”

Dax. Moreland, Ayachit, Geveci, and Ma (2016) define Dax, or Data

Analysis at Extreme, as a library developed to support fine grained concurrency

for data analysis and visualization algorithms. This library provides a dispatcher

that schedules worklets onto data items. Additionally, Moreland, Ayachit, Geveci,

and Ma (2011) describes how the Dax toolkit simplifies the development of parallel

visualization algorithms and provides a data parallel framework for scheduling and

launching parallel jobs.
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PISTON. Lo, Sewell, and Ahrens (2012) define The Portable Data-

Parallel Visualization and Analysis Library, referred to as PISTON, A Portable

Cross-Platform Framework for Data-Parallel Visualization Operators (2016),

as a cross-platform library that provides operations for scientific visualization

and analysis. These operations are performed using data parallel primitives and

the NVIDIA Thrust library. PISTON uses Thrust to perform the data parallel

operations and for its cross-platform compatibility. PISTON adds useful algorithms

for data visualization and analysis as well as an interface into the Thrust calls.

2.6 Research Gaps

Understanding what research has been performed already is of vital

importance to understanding and finding what gaps exist in the current available

knowledge. Through the research presented in this chapter, we can see that Monte

Carlo transport applications are both important and complex. We have seen that

supercomputing platforms are changing, with an increased emphasis on on-node

parallelism through many-core architectures. Additionally, we have seen numerous

attempts to make Monte Carlo transport applications run on these architectures

and struggle to gain performance along the way. This work clearly highlights

the complexity of the space as works often contradict, or are forced to focus on

simplified sub-problems to get performance.

Throughout all of the work we can see that there are still a gaps in

understanding how to ensure Monte Carlo transport can run effectively on these

new architectures. In Chapter I, section 1.1 (Research Questions), we state the

topics of interest that the remainder of this dissertation will follow. Firstly, the

question of whether to use a history-based approach continues to vary as multiple

groups have found conditions and applications where one or the other is more
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performant. Secondly, data management through atomics or replications is often

not addressed on the studies presented and clarifying this point will make it easier

for others to continue exploring this space without repeating the same efforts, or

running into unforseen pitfalls. Thirdly, the idea of utilizing the entire node is not

addressed in any of the works we have reviewed, at least not in the context of using

both CPUs and GPUs for computation at the same time. Finally, all of the work

that has been in mini-apps needs to be evaluated in production applications in

order to ensure that our understanding is complete, and not simply a product of

simplifications made when developing the mini-app.
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CHAPTER III

TRACKING ALGORITHMS

The work in this chapter is a combination of two previous publications. The

first publication is in volume 114 of the Transactions of the American Nuclear

Society in Summer 2016. Dr. Patrick Brantley initially identified the need for

this work and provided the application that this work was performed in. I was the

primary contributor to this work in developing the algorithm, writing the new code,

and writing the paper. Dr. Patrick Brantley, Shawn Dawson, and Dr. Matthew

O’Brien provided ideas and feedback throughout the development process and

assisted in editing the paper. Dr. Hank Childs assisted in editing the paper. The

second publication is in volume 115 of the Transactions of the American Nuclear

Society in Winter 2016. This work is an extension of the previous work with the

same division of labor.

3.1 Introduction

In this chapter we present our investigations into event-based Monte

Carlo tracking algorithms and compare them with a traditional history-based

approach. For this research, we began with the ALPSMC Monte Carlo test

code P. S. Brantley (2011) that models particle transport in a one-dimensional

planar geometry binary stochastic medium. This chapter is divided into two parts.

In part one we explore an initial implementation of the history and event-based

algorithm and report on our findings. In part two we develop optimizations for

both our history and event-based approaches and then revisit our findings.

3.2 Part 1: Initial Implementation

This section presents the algorithms for history and event-based Monte

Carlo transport. It then discusses the implementation details of our event based
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algorithm. Finally, this section presents our initial findings, comparing our results

with Thrust, CUDA, and a serial implementation.

3.2.1 History-Based Approach. The ALPSMC code was originally

implemented in C++ using a standard history-based Monte Carlo transport

algorithm, as shown in Alg. 4. This approach follows a single particle from creation

until it is absorbed or leaked. Parallelism is easily added by parallelizing over

particle histories (foreach loop on Line 1), with each thread working independently

on a single particle at a time. In addition, ALPSMC is implemented using double

precision floating point numbers throughout, which is required to attain sufficient

accuracy.

Algorithm 4: History-based Monte Carlo algorithm

1 foreach particle history do
2 generate particle from boundary condition or source
3 while particle not escaped or absorbed do
4 sample distance to collision in material
5 sample distance to material interface
6 compute distance to cell boundary
7 select minimum distance, move particle, and perform event
8 if particle escaped spatial domain then
9 update leakage tally

10 end particle history

11 if particle absorbed then
12 update absorption tally
13 end particle history

3.2.2 Event-Based Approach. Previous researchers, as mentioned

in the related work, have noted that the use of an event-based Monte Carlo particle

transport algorithm such as by Brown and Martin (1984) may be beneficial for

GPU or vector-based architectures. We investigated this idea through the event-

based algorithm shown in Alg. 5 as a way to potentially optimize performance on
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GPU and vector-type architectures. In event-based particle tracking, the individual

events can be treated by a series of data parallel operations. The data parallel

model matches the vector and GPU hardware with an emphasis on performing

the same operations on many pieces of data at one time through SIMD (Single

Instruction Multiple Data) parallelism. GPUs do not require full SIMD parallelism,

but can benefit from it regardless.

Algorithm 5: Event-based Monte Carlo algorithm

1 foreach batch of particle histories (fits in memory constraint) do
2 generate all particles in batch from boundary condition or source
3 determine next event for all particles (collision, material interface

crossing, cell boundary crossing)
4 while particles remaining in batch do
5 foreach event E in (collision, material interface crossing, cell

boundary crossing) do
6 identify all particles whose next event is E
7 perform event E for identified particles and determine next event

for these particles

8 if particle escaped spatial domain then
9 update leakage tally

10 if particle absorbed then
11 update absorption tally

12 delete particles absorbed or leaked

3.2.3 Thrust. Thrust (2014) is a C++ header library using a STL-

like template interface. Thrust provides a number of parallel algorithms and

data structures designed to provide access to GPU computing without needing

to write CUDA (2014) code directly. Additionally, Thrust provides backend

capabilities allowing these algorithms and data structures to target different

devices, including CPUs with OpenMP threads. This design was used for studying

portable performance techniques with Thrust, providing a method of maintaining

only one source code.
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Thrust algorithms are used for implementing procedures across all particles

in a batch. As discussed in Chapter II, these algorithms perform operations such

as the data parallel map, reduce, gather, scatter, or scan operations defined by

Blelloch (1990). Each of these operations can be performed in a data parallel way.

Thrust also provides data types that can be used to manage memory for GPU

devices. The thrust::device vector and thrust::host vector data structures operate

similarly to a C++ std::vector but with automatic memory copying between

host and devices whenever necessary. These data types allow for simple memory

management schemes that work on both GPU and CPU based architectures.

3.2.4 Algorithm Detail. An event-based algorithm focuses on

performing data parallel operations across all particles undergoing the same

event. Additional overhead is needed to find the grouping of particles that

will be operated on and to determine an access pattern for the particles. This

reorganization stage can be costly and is not directly related to solving the

transport problem.

Thrust provides permutation iterators that allow for the unaligned access of

data elements according to an index map. Using this iterator scheme, data elements

do not need to be copied into new locations for each operation. This approach

comes at the cost of performing non-contiguous memory accesses for reading and

writing the information.

In order to perform an event operation on particles using this scheme, a

series of data parallel operations is used to establish the correct index mapping for

the permutation iterator. This scheme is defined as follows and describes in detail

lines six and seven of Alg. 2:
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Step 1: thrust::transform — Fill out a stencil map of 1’s and 0’s of all particles doing

event E (where each particle whose next event is E will get a 1 in the stencil

map at its index location)

Step 2: thrust::reduce — Count the number of elements labeled 1 in the stencil

(determines the number of particles that will perform event E)

Step 3: Check if the number of elements is greater than 0 (check if any particles are

performing event E)

Step 4: thrust::exclusive scan — generate indices for index mapping from stencil map

(indices for each particle performing event E)

Step 5: Allocate a new map of appropriate size (map to hold indices for all particles

performing event E)

Step 6: Scatter indexes from scan into new index map (reduces the exclusive scan

generated indices into the map that holds only enough for particles

performing event E)

Step 7: Use new index map in permutation iterator loops over all particles (combining

the index map with the permutation iterator allows loops over all particles to

operate only on the particles selected in the index map)

3.2.5 Implementations. We implemented the event-based version of

ALPSMC using both the Nvidia CUDA programming model explicitly and the

Nvidia C++ Thrust library. The Thrust implementation of ALPSMC utilizes

data parallel operations and Thrust data types for managing memory. The same

Thrust event-based implementation can be compiled with either CUDA for use on

GPUs or OpenMP for use on CPUs, enabling portability to different platforms.
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In the native CUDA implementation of ALPSMC, we found it useful to continue

to use Thrust algorithms in building various maps, and used CUDA to directly

launch event kernels instead of calling Thrust::foreach. The Thrust and CUDA

implementations of ALPSMC give physics results identical to the original history-

based implementation.

The CUDA implementations for this study matched the algorithm in the

Thrust implementations. The differences in performance come from the capabilities

that native CUDA programming provide that cannot be accomplished with

Thrust. Using CUDA directly enables more fine-grained control at the kernel

level and enables important access to different memory spaces such as GPU shared

memory. The CUDA implementation includes a scheduling algorithm to optimize

the number of active threads on the GPU for each kernel call. Additionally, the

CUDA implementation includes the use of the different available memory spaces,

such as constant and shared memory. For example, Monte Carlo particles were

initially allocated in GPU global memory and then copied to shared memory for all

operations within a kernel. All problem constants such as cross sections and mean

chord length values were placed in GPU constant memory. These optimizations

under certain conditions have a significant impact on the performance of a GPU

kernel.

3.2.6 Initial Results. We performed scaling studies in which

we varied the number of Monte Carlo particle histories (problem size) and the

implementation methodology (Thrust or CUDA). The results presented are for

Case 1a defined by P. S. Brantley (2011), with a spatial domain of 10 cm. We also

examined the differences in performance on three different computer platforms.

LLNL’s Rzgpu computer has Intel Xeon Westmere-EP 2.8 GHz host cores with
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Nvidia Tesla M2070 GPU device accelerators. LLNL’s Max computer has Intel

Sandy Bridge 2.6 GHz host cores with Nvidia Tesla K20X GPU device accelerators.

The Tesla K20X GPU has improved double precision performance over the Tesla

M2070. LLNL’s Rzhasgpu computer has Intel Xeon Haswell 3.2 GHz host cores

with Nvidia Tesla K80 GPU device accelerators. We did not implement an MPI

variation of this code and were therefore only able to utilize approximately half of

the computational power of the Nvidia Tesla K80s.

Our first study aimed to identify the speedups of our event-based algorithm

when compared to the initial serial history-based implementation. We computed

speedups over a serial calculation by dividing the wall clock time of a serial run

of the history-based version of ALPSMC on the host core of the given machine

by the wall clock time of the event-based version of ALPSMC running on both a

single host CPU and the GPU device. The speedups obtained on each computing

platform are shown in Table 3.

Table 3. ALPSMC event-based Monte Carlo GPU speedups over serial history-
based version

Number Particle Histories
106 107 108

CUDA (K20X) 5.90 11.88 11.91
CUDA (1/2 K80) 4.88 10.49 10.51
CUDA (M2070) 3.96 6.05 6.05
Thrust (K20X) 2.11 2.60 2.60

Thrust (1/2 K80) 1.77 2.17 2.17
Thrust (M2070) 1.42 1.64 1.63

Thrust OpenMP Event 2.54 2.15 2.22

For this test, the Thrust implementation produces speedups ranging from

approximately 1.4 to 2.6. Therefore, while the Thrust library potentially provides

an approach to obtaining a portable implementation, it does not produce the
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significant speedups we would expect on the GPU hardware. For this test, the

speedups obtained using the CUDA implementation of the event-based algorithm

are significantly larger than those obtained using the Thrust implementation by

up to over a factor of four. We attribute this improved performance to the fact

that CUDA offers more control over the memory spaces available on the GPU

(e.g. shared memory) when operating on large kernels that perform multiple

read/write actions. Thrust does not offer such flexibility and manages the memory

allocation internally. We conclude based on these preliminary investigations that

a direct CUDA implementation is more efficient than a Thrust implementation for

event-based Monte Carlo. Also, the speedups on the Max platform (Tesla K20X

GPU) are larger than on the Rzgpu platform (Tesla M2070 GPU) by up to a

factor of approximately two, presumably a result of the improved double precision

performance of the K20X. Furthermore, the Rzhasgpu platform (Tesla K80 GPU)

shows similar performance to the Max platform (K20X GPU); we can assume

around twice the performance were we to modify the research code to fully utilize

all of the available K80 hardware.

The same Thrust event-based code implementation was compiled with

OpenMP for use on the host CPU, demonstrating the portability of the Thrust

implementation. The scaling study was repeated on Rzhasgpu’s Intel Xeon Haswell

CPUs with OpenMP using 16 threads/cores. The CPU performs similar to the

GPU when Thrust is used to gain parallelism, with speedups of approximately

2.2. Using 16 OpenMP threads, we would expect a significantly larger speedup

for Monte Carlo particle transport. Since the same code base is used with Thrust

on both the CPU and the GPU, we can see the potential that exists for a single

code base on multiple platforms. For this particular example, however, significantly
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higher performance is achieved using the native choice of the CUDA event-based

implementation for the GPU.

We performed a second more extensive scaling study varying the number

of particle histories for the Thrust and CUDA event-based versions and the serial

history-based version on Rzhasgpu (Tesla K80 GPU). The results of the scaling

study are shown in Figure 4. We can see that both the Thrust and CUDA event-

based versions have significantly higher overhead than the serial history-based

version at low numbers of particle histories. But at a higher number of particle

histories (starting at approximately 105 particle histories), the event-based versions

of the code begin outperforming the serial history-based versions. We also observe

that the performance gains of the CUDA version over the Thrust version start to

become significant at higher numbers of particle histories.

Figure 4. Log-log plot giving the timing for a scaling study comparing Thrust,
CUDA and serial event-based approaches as a function of particle histories.
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The linear behavior observed at the higher particle history counts is a result

of the particle batching scheme we used to avoid exhausting GPU device memory.

Once the batching begins, we no longer gain any additional performance increases.

At that point, the only performance improvement possible would be to process a

greater number of particle histories, and that number is hardware dependent.

3.3 Part 2: Optimized Implementation

In this section we highlight two important changes required to bring speedup

to ALPSMC on GPUs. The first was to understand the effect of a data structure

striding change, changing our particle data structure from an array of structures to

a structure of arrays. The second was to understand the effect of particle removal

schemes in our event based algorithm. Finally, with those changes, along with other

minor modifications, we revisit our results from part 1 with new data.

3.3.1 Arrays of Structures Versus Structures of Arrays. One

way to gain performance on Nvidia GPUs is to coalesce global memory accesses

in a streaming multiprocessor (SM) NVIDIA (2015). SMs schedule and execute

threads in lock-step groups of 32 threads called warps. Memory accesses in each

warp are coalesced in order to produce fewer memory transactions overall. For 16

threads in a warp, we can pull all 16 array values into the threads with a single call

into global memory if we access the array in consecutive order. Since the threads

in a warp operate in lock step, if memory accesses are not coalesced, more memory

transactions are needed causing the threads in a warp to stall while more memory

transactions are issued.

In order to accomplish coalesced memory accesses on larger data

structures, such as the particle class used in the ALPSMC C++ Monte Carlo

implementation P. S. Brantley (2011), a common recommendation is to transition
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from an array of structures (AOS) data structure to a structure of arrays (SOA)

data structure. This transition is important for all SIMD or vector architectures

(not only GPU architectures — see Pharr and Mark (2012)) and so makes sense as

a starting point for continuing optimizations in our ALPSMC study. For ALPSMC,

this transformation requires that the member variables in the particle class are

separated into different arrays of those members in a parent class. This entire

process can be encapsulated in a higher level interface allowing for a compile

time choice to be made for which data structure option to use: AOS or SOA.

Maintaining flexibility in this type of option is important when running on a

diverse set of hardware, where common and important optimizations on one set

of hardware might lead to performance loss on another.

We encapsulated the entire AOS/SOA choice in a particle vault data

structure that allows access to its member variables through an interface. For

the AOS case, the particle vault data structure is simply a container holding an

array of particles. Accessing a particle’s member variables from the particle vault

requires getting a particle at an index and then grabbing its member, i.e.,

“Get X(index){ particle vault.particle[index].x }.” For the SOA case, the

particle vault data structure now holds arrays for each of the particle’s member

variables. Accessing a particle’s member variables from the particle vault requires

first choosing the member and then accessing a value from an index location, i.e.,

“Get X(index){ particle vault.x[index] }.”

3.3.2 Optimized Particle Removal Scheme. One discovery

we made while pursuing optimizations for the event-based algorithm was the

significant percentage of time spent removing inactive particles from the particle

list. (The event-based algorithm is described in detail in Ref. Bleile, Brantley,
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Dawson, et al. (2016).) The algorithm originally collected all particles undergoing

each of the events and then performed that event on the list of particles. The

last stage of the original algorithm was to always remove inactive particles (e.g.

particles that were absorbed), i.e. perform material interface crossing events, zone

boundary crossing events, collision events, and then remove inactive particles.

Table 4 shows the wall clock times of each event for an example problem (Case

1a P. S. Brantley (2011) with a spatial domain of 10 cm) with ten million particles

for both the AOS and SOA data structure implementations. All simulations in this

section were performed on the LLNL Rzhasgpu computer. We can clearly see that

always removing inactive particles dominates the time spent processing the events.

We conjectured that if we could minimize this removal function, even at the cost

of increasing compute time, we might be able to decrease the overall time spent

processing events.

Table 4. Wall clock times [seconds] for each event for a 10 million particle study
using the CUDA event-based method.

AOS Data Structure
Event Remove Always Remove Never Remove Half Size

Material Interface 0.50 4.13 0.60
Zone Boundary 0.81 4.79 0.90

Collision 1.14 5.55 1.35
Remove 2.83 3.15 0.88

Total 5.28 17.62 3.77

SOA Data Structure
Event Remove Always Remove Never Remove Half Size

Material Interface 0.39 2.23 0.44
Zone Boundary 0.64 2.98 0.77

Collision 0.73 3.50 0.93
Remove 4.46 1.48 0.87

Total 6.22 10.19 3.01
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In order to justify removing inactive particles at all, we investigated not

removing particles to show that, while removing particles is an expensive operation,

it is more costly to operate on the full list every time. There is still some amount

of time spent in the Remove stage of the algorithm because it is necessary to

check if all particles have completed processing, which is the end condition for the

simulation. In light of our conjecture above, we also implemented an algorithm in

which we only remove inactive particles when removing them produces a significant

impact on the size of the list. Following numerical experimentation, we chose to

perform the remove operation if the number of inactive particles to be removed

is at least half the size of the list. As a result, the maximum number of times we

perform the expensive removal operation becomes log(n), where n is the size of the

list. As shown in Table 4, the “Remove Half Size” algorithm produces a 1.4X and

2.1X improvement in total wall clock time over the “Remove Always” algorithm for

the AOS and SOA implementations, respectively. Finally, we observe that the SOA

implementation produces a 1.3X improvement in total wall clock compared to the

AOS implementation.

We also investigated replacing the Remove function with a sort function

to understand the full effect on compute and remove times, both sorting each

iteration and in the same remove half scheme described above. The sorting resulted

in a significant slowdown for each method when compared to the most efficient

approach: 84.9X slower when sorting each time and 3.2X slower when using the

remove half scheme. Overall, increasing removal times (that includes the time

for the sort) far outweighs the cost of decreasing the compute times. As a result,

sorting is not effective, even when we include the new conditional sorting scheme.
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3.3.3 Results Revisited. All simulations in this section were

performed on the LLNL Rzhasgpu computer that has 16 Intel Xeon Haswell

3.2 GHz host cores with 2 Nvidia Tesla K80 GPU device accelerators per node.

GPU results are run in maximum batch sizes of 10 million particles on a given

CUDA device, with multiple batches able to run on different devices at one time.

Each Nvidia Tesla K80 appears as two devices, so there are four CUDA devices

usable at a time.

3.3.3.1 Thrust and CUDA Event-Based Approach. The

main conclusion from our previous results was that the event-based Monte Carlo

transport algorithm is viable on GPU architectures, but the use of the Thrust

library portability abstraction resulted in a significant performance penalty. With

the goal of reducing this performance penalty, we reimplemented the Thrust library

version of the code (that could run on CPUs and GPUs) based on the the most

efficient CUDA version that incorporated the algorithmic modifications described

above as well as some additional minor optimizations. This section presents the

results of this work.

Figure 5 shows the results of a particle scaling study performed with the

optimized event-based CUDA version compared to the original, serial, history-based

version. The CUDA version has a higher initial overhead and so is less efficient

than the serial history-based version at low numbers of Monte Carlo particles. As

the number of Monte Carlo particles increases, the CUDA version scales in a super

linear fashion. After the number of particles exceeds the batching threshold, the

wall clock time of the CUDA version begins scaling linearly as expected.

Figure 6 shows the results of a particle scaling study performed with the

optimized Thrust version of the ALPSMC code that was generated from the
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Figure 5. Log-log plot showing wall clock times versus number of particles for
the CUDA event-based algorithm using SOA and AOS formats, compared to the
original serial history-based algorithm.

optimized CUDA version. In contrast to the results of our previous section, the

optimized Thrust version now exhibits the same performance characteristics as

the optimized CUDA version. After making these algorithmic transformations, the

Thrust version now performed slightly more efficiently than the CUDA version.

This outcome demonstrates that an abstraction layer can be performant as long as

the code in the abstraction layer uses the same optimizations utilized in the explicit

CUDA implementation.

Closely inspecting the results from the explicit CUDA version compared

with those from the Thrust CUDA version revealed an interesting and unexpected

result. Figure 7 shows the comparison of the CUDA and Thrust CUDA event-based

version using the SOA data structures. The Thrust version is slightly faster than

the CUDA version for all numbers of particles. We expect that this result is due

to two possible factors. First, the Thrust scheduler may be launching kernels more
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Figure 6. Log-log plot showing wall clock times versus number of particles for the
Thrust event-based algorithm running with a CUDA backend using SOA and AOS
formats, compared to the serial history-based algorithm.

effectively then the kernel launching scheme we implemented. Second, the memory

locations of the read-only tallies and written tallies are stored with the Thrust

functor which may allow Thrust to optimize what memory exists in registers or

caches when the kernel launches. In the explicit CUDA version, the memory exists

in either global memory or the constant memory which is already predetermined.

3.3.3.2 Re-Evaluating the History-Based Method. Work

performed by Nvidia’s Anthony Scudiero Scudiero (2016) suggests that it may

be possible to achieve performance on GPUs using a history-based Monte Carlo

transport algorithm if the correct transformations are made. Additionally, since

Monte Carlo transport is a memory-bound problem, using a less compute-optimized

approach with lower memory overhead might be a more efficient approach.

To re-evaluate the use of the history-based algorithm on GPUs, we began by

making changes suggested by Scudiero (2016). First, we moved those calculations
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Figure 7. Log-log plot showing wall clock times versus number of particles for the
Thrust event-based algorithm running with a CUDA backend compared to the
explicit CUDA event-based version both using SOA.

that only needed to be performed once for all particles out of the single large

kernel. Second, we utilized shared memory for storing the particle data structure

and read-only constant memory for storing the material data (e.g. cross section

values). Finally, we removed all atomic tally updates and replaced them with

a shared per particle tally that is reduced to single values after the kernel is

complete. The results of this work are shown in Figure 8.

The results from this test were very promising. This plot shows that the

CUDA history-based algorithm has better scaling with number of particles as

well as a significant performance increase at high numbers of particles. At low

numbers of particles, the wall time of the CUDA version is constant, regardless

of the number of particles, which is due to the overhead involved with accessing the

GPU hardware. This overhead is sufficiently low (on the order of 0.01 seconds) that

it should only affect problems using an unrealistically low number of particles.
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Figure 8. Log-log plot showing wall clock times versus number of particles for the
CUDA history-based algorithm compared to the serial history-based algorithm.

3.3.3.3 Thrust and CPU. In order for the Thrust implementation

to be considered portable, we must be able to demonstrate the possibility for

performance of the Thrust approach on multiple platforms. For this study, we will

compared the particle and processor scaling of the Thrust event-based method

compiled with both the CUDA backend (for GPUs) and the OpenMP backend

(for CPUs) to that of the original serial history-based method running on a single

CPU core. The speedups of the event-based method compared to the original serial

method are shown in Figure 9. The event-based method is slower on the CPU than

the history-based method for a single thread, with a 0.5X speedup corresponding

to a 2X slowdown. The Thrust event-based method with two OpenMP threads is

roughly equivalent to the original history-based serial method. The Thrust event-

based model reaches speedups around 5X at 16 threads when compared to the

original serial history-based algorithm.
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The speedups of the Thrust event-based method compared to the same

Thrust event-based method run serially are shown in Figure 10. The speedups are

generally as expected up to four threads but are less than expected at eight and

sixteen threads. The Thrust event-based model reaches maximum speedups around

10X compared to the Thrust model run serially.

3.3.4 Results Summary. Table 5 shows the speedups achieved for

each method running 109 particles on either two Nvidia Tesla K80 GPUs or a CPU

with sixteen OpenMP threads. These results demonstrate that a significant amount

of performance potential exists in the optimization choices that are made. The use

of Thrust as a portability abstraction is not only viable but outperforms the other

methods on the GPU. In addition, history-based approaches perform better or at

least as well as the event-based approaches on the GPU for this problem. While

the event-based Thrust OpenMP results are significantly less than optimal, they do

demonstrate portability and some performance gain.

Table 5. Maximum speedups for each approach when compared to the original
history-based serial method in ALPSMC

Method Speedup
CUDA Event SOA 31.32

CUDA History 52.78
Thrust Event CUDA SOA 54.62

Thrust Event OpenMP SOA 5.54

3.4 Conclusions

In this chapter we described our investigations of portable event-based

Monte Carlo algorithms implemented using the Nvidia Thrust library in the

research Monte Carlo test code, ALPSMC. We found that our initial explicit

CUDA implementation of an event-based Monte Carlo algorithm performed

significantly more efficiently than a Thrust implementation on GPU platforms,
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Figure 9. Speedups versus number of particles for the event-based Thrust CPU
method with 1, 2, 4, 8, and 16 OpenMP threads compared to the original serial
history-based algorithm.
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Figure 10. Speedups versus number of particles for the event-based Thrust CPU
method with 1, 2, 4, 8, and 16 OpenMP threads compared to the Thrust CPU
method serially.

most likely as a result of additional flexibility in access to different memory spaces

on the GPU. We have also shown that, with the same optimization choices, the
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Thrust abstraction layer can be just as effective as writing native CUDA. This

work has shown that the event-based approach for Monte Carlo transport on

GPU architectures is viable and can achieve node level speedup results that are

acceptable.

While investigating this problem, we also discovered that the performance of

the event-based algorithm is affected by what tallies are being used. A zonal scalar

flux tally requires atomic operations that significantly impacted the performance of

the code, in some cases producing slowdowns instead of speedups. We decided to

remove the tally in order to focus on the effectiveness of the event-based algorithm.

Chapter V (Data Race Management: Output Tally Data) will perform a deep dive

into more effective ways of handling such tallies.

We have also demonstrated that the history-based Monte Carlo transport

algorithm can perform efficiently on the GPU. As a result, the history-based

approach should be investigated further for use on GPU architectures. For the

Monte Carlo test code and numerical problem we investigated, we see even greater

speedups with the CUDA history-based approach then we do with the CUDA

event-based approach, and it required significantly fewer code modifications.

Finally, we were able to create a portable algorithm that scales with

processors on a node level. The event-based approach shows some viability, but

does not significantly outpace the history-based approach. Further study in

evaluating the history-based approach in a larger application presented first in

Chapter IV, and further in Chapter VII, which is important given the possible

effects that code size has on this result.
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CHAPTER IV

DATA RACE MANAGEMENT: THREADING MODELS

The work presented in this chapter was first published in the International

Conference on High Performance Computing & Simulation (HPCS) in July 2019.

I was the primary contributor to this work in developing the algorithm, writing

the new code, and writing the paper. Dr. Patrick Brantley, Shawn Dawson, Dr.

Michael Scott McKinley, Dr. David Richards, and Dr. Matthew O’Brien provided

ideas and feedback throughout the development process and assisted in editing the

paper. Dr. Hank Childs assisted in editing the paper.

4.1 Introduction

In this chapter we introduce Thin-Threads (defined in Section 4.3.2), a new

threading approach for Monte Carlo particle transport problems. While elements

of Thin-Threads have appeared in previous research, our contribution lies in

combining these elements, providing a thorough description of implementation,

and evaluating its efficacy. Additionally, we look at new methods for overlapping

computation and communication using Thin-Threads. Finally, we show that the

Thin-Threads approach is capable of outperforming the traditional “Fat-Threads”

(defined in Section 4.3.1) approach, up to three times faster on CPUs and ten times

faster on GPUs for certain workloads.

4.2 Background

The work related to this chapter was conducted in the Quicksilver proxy

application, which is described in the article Co-design at Lawrence Livermore

National Lab: Quicksilver (2017). Quicksilver solves the Monte Carlo particle

transport problem by using distributed particle streaming and a multi-group energy

nuclear data energy representation. Quicksilver originally implemented threading
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through a Fat-Threads model, described in Section 4.3.1. An initial implementation

of the Thin-Threads model was added to Quicksilver in order to provide a feasible

method for GPU computing. A discussion of the process that led to Thin-Threads

as well as the key features of the OpenMP 4.5 and CUDA implementations are

presented by Richards et al. (2017).

Quicksilver is a proxy application of the full production code, Mercury

(2019). Quicksilver was originally developed to model Mercury’s call tree and

memory usage patterns for streaming multi-group problems. Mercury uses

distributed memory particle streaming as well as domain replication to scale

across nodes. Additionally, it also uses both continuous energy and multi-group

energy cross sections. Mercury implemented threads using OpenMP and the Fat-

Threads threading model, described by P. Brantley et al. (2013). Mercury has since

implemented the Thin-Threads threading model discussed in this paper.

The importance of this model and primary reason for its development,

was to change the unfavorable data access pattern by the previously favored,

Fat-Threads model. By designing a threading model around the data access

pattern that is more feasible and amenible to the GPU hardware, we are able to

better understand and control how data is managed in our Monte Carlo transport

applications.

This chapter extends the discussion of this work and clearly defines the

elements that make up the Thin-Threads model. By explicitly defining this

threading model we can facilitate more discussion on this topic. Additionally, this

provides a starting point for others to begin working on Monte Carlo transport

problems on GPUs.
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4.3 Threading Models

To solve Monte Carlo particle transport problems, millions to billions of

particles need to be processed. Parallel computing is necessary to process this

number of particles in a reasonable amount of time. Monte Carlo particle transport

problems are embarrassingly parallel, since the unit of work — a particle — is

completely independent of all others. As supercomputer architectures have shifted

to increased parallelism within a node, adding parallelization through threading has

become increasingly common and necessary.

There are two major approaches to solving Monte Carlo particle transport

problems: history-based and event-based. The work presented in this paper applies

the Thin-Threads threading model to the history-based Monte Carlo transport

problem. With the history-based tracking algorithm, individual particle histories

are tracked until a predetermined amount of particles has been simulated. These

particles are processed one at a time, until there are no more particles left to

process. For the event-based tracking algorithm, particles are continually regrouped

by the event they will process next. With this algorithm, each event group is

processed in parallel before needing to regroup particles again.

History-based Monte Carlo particle transport applications generally divide

work into three distinct sections: cycle initialize, cycle tracking, and cycle finalize.

These three sections are described in pseudocode in Figure 11. Cycle initialize

and cycle finalize are both relatively small and straight forward. Cycle initialize

handles setting up inputs, such as sourcing particles, and doing variance reduction

calculations. Cycle finalize handles reducing output data, such as tallies collected

during tracking. Cycle tracking is the core of the code, containing the large

majority of the functionality and physics. The work done during cycle tracking is
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almost entirely contained within a loop over particles. Inside the loop, each particle

computes which event it will do next, via sampling probability distributions and

using random numbers to make decisions. Then the particle executes its given

event, e.g., moving through the mesh, colliding with the background material, etc.

Particles continue to do this two-step process — compute distances then apply the

nearest event — until they reach an end condition, such as absorption or census.

c y c l e i n i t ( ) {
source in p a r t i c l e s
populat ion c o n t r o l

}

c y c l e t r a c k i n g ( ) {
f o r a l l p a r t i c l e s {

do {
compute d i s t anc e to census
compute d i s t anc e to f a c e t
compute d i s t anc e to r e a c t i o n
do segment with s h o r t e s t d i s t anc e
increment t a l l i e s

} u n t i l census , absorbed , escaped
}

}

c y c l e f i n a l i z e ( ) {
reduce a l l t a l l i e s

}

Figure 11. Pseudocode for the three major phases of a history-based Monte Carlo
transport algorithm.

Parallelization usually occurs over the “for all particles” loop in

cycle tracking(). Traditionally, particles are split across threads in groups,

providing each thread with its own unique chunk of work to complete. We refer

to this as the “Fat-Threads” approach, which we describe in more detail in

Section 4.3.1. An alternative approach is for threads to share a chunk of particles,
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with each thread operating on a single particle within the collection of particles.

We refer to this as the Thin-Threads approach, which we describe in Section 4.3.2.

4.3.1 Traditional Fat-Threads Approach.

Overview.

A Fat-Threads threading model is one where all potential data races are

handled through replication of data structures. This allows each thread to work

completely independently of one another. Each thread is assigned its own collection

of particles to work on, and all output tally and buffer type data structures are

replicated. Replicating tally data can be non-trivial, as tally data structures exist

in multiple forms: tallies for a single value over the whole problem, tallies for each

element in the problem, and tallies for each material in the problem. Each of

these tallies requires different amounts of memory to store their data. Using this

threading model and combining it with a load balancing algorithm, M. J. O’Brien

et al. (2013) showed its ability to scale well on CPU platforms, to over 2 million

processors.

Quicksilver implements Fat-Threads in a typical fashion. Its fundamental

unit of work is advancing a particle, its primary data element is the particle, and

its data structure for a particle contains roughly 200 bytes of information. Particles

are stored in “particle vaults,” which is a container class for grouping particles

together and defining functions on sets of particles. At the highest level in the data

structure, there is a “particle vault container” (PVC) that can hold a changing

number of particle vaults, as well as shared data between vaults. Finally, each rank

is given a PVC to organize its workload, and each thread associated with that rank

is then given a particle vault from the PVC.
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In Monte Carlo transport problems, distributed-memory parallelism is

commonly used to split up large geometries into separate domains across ranks.

Separate geometric domains add the need for particles to be communicated across

ranks as they move through the geometry. In the Fat-Threads model, particles

are communicated asynchronously across ranks when needed by the cycle tracking

function. When a rank runs out of particle vaults to give to threads, that rank can

receive a buffer of particles from another rank, and then fill up new particle vaults,

continuing the current cycle. In addition, threads can perform the send and receives

themselves as they fill buffers or need more work.

This model for running particles on ranks and threads works well on CPU

platforms, by maintaining data locality in a thread and removing the need to deal

with data races between threads. The communication cost of sending particles to

different ranks is almost completely masked by the computation of particles on each

rank, since the computation of particles on each rank occurs while particles are in

flight. Additionally, particle vaults become an obvious organization structure for

dealing with load balance, providing a flexible infrastructure for running threads.

Barriers on GPUs.

There are two primary concerns with the Fat-Threads model — memory

footprint and communication from accelerators.

With respect to memory footprint, the issue is that the Fat-Threads model

is likely to use too much memory on GPU devices. When switching from a CPU

platform to a GPU platform, the number of threads per rank goes from tens of

threads (at most) to thousands of threads or more. If data structures continued

to be replicated in the same manner on a GPU platform, providing each GPU

thread with its own data structures to read from or write to, then available memory
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would quickly run out. This is a concern even if a code extends GPU memory

via paging in memory from the host. Even given infinite access to host memory,

GPU architectures would struggle from a complete lack of coalesced memory access

and a need to constantly page-in data, resulting in an inability to get acceptable

performance.

With respect to communication from accelerators, the fundamental issue

is the lack of MPI functionality from a GPU device. The GPU cannot make

the same MPI function calls that a CPU can during particle tracking. This is

particularly problematic for the Fat-Threads model, since it relies heavily on the

use of asynchronous communication to move particles from rank to rank while

computation is being done. Since the MPI calls cannot be made while processing

particles, new methods for communicating particles across boundaries must be

investigated.

Between these two issues, the Fat-Threads model appears to be incongruent

with GPU architectures.

4.3.2 Thin-Threads.

Overview.

Thin-Threads have multiple beneficial properties for history-based Monte

Carlo on GPUs. First, Thin-Threads are threads that are light on memory usage

and communication. Second, Thin-Threads handle all potential data races directly,

primarily through use of atomics. This model allows for a larger number of threads

to be callable at once, reducing the memory footprint when threading. Threads

primarily work independently, although there is some interaction via their shared

atomic operations. Third, Thin-Threads do not access MPI or other forms of

92



inter-node communication directly. Instead, Thin-Threads employ a batching and

asynchronous communication model.

Overall, Thin-Threads adapt to modern HPC architectures, in that:

– They are lightweight, in order to match decreases in single thread

performance.

– Their communication management is aligned with current restrictions (i.e.,

MPI communication is not possible, or it is possible but not performant).

– Its design accounts for the currently popular use of accelerators, specifically in

achieving overlap in communication and computation.

Figure 12 outlines pseudocode for a new cycle tracking function for the Thin-

Threads approach.

c y c l e t r a c k i n g ( ) {
whi le ( ! done ){

f o r each batch {
Do Kernel
Do MPI Send
Do MPI Receive
Clean Extra Vaults

}
t e s t f o r done
i f ( ! done )

Co l lapse Vaults
}

}

Figure 12. Pseudocode for batching control flow in the Thin-Threads approach. Do
Kernel refers to launching the cycle tracking kernel. Clean Extra Vaults refers to
the process of ensuring there is adequate space for the next kernel launch. Collapse
Vaults refers to the process of reducing the particles in the particle vault container
into the minimum number of vaults required to contain them.
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While the basic concept of Thin-Threads is relatively straight-forward, it

requires significant attention to detail in implementation. The implementation

details are described in depth in the following sections.

Basic Implementation Details.

There are two primary tasks required to implement the Thin-Threads

model. The first task is to make the tracking loop thread-safe. This requires adding

atomics for writing to output tally data and modifying the particle container

data structure to allow for threaded reading and writing. The second task is to

remove all MPI from within the tracking loop. This requires adding a replacement

MPI model after the tracking loop, as well as additional MPI buffers that get

filled during the tracking loop. This MPI model is asynchronous and provides the

groundwork for a batching model.

Implementation Details - Batching Model.

We built the batch model around three key concepts. First, memory is

allocated from the host side, since memory allocations on the GPU are typically

slow and limited to device-only memory. Second, the number of particle vaults in

the PVC must be capable of being changed dynamically, i.e., we can add particle

vaults to a PVC if needed. The number of particles a single rank may see cannot

be known in advance and so we must have a flexible system to allow for new

particles to be added. Third, we cannot access the MPI region of the code from

within the main body of the tracking loop. All MPI must be handled outside the

main body of tracking, although we still need a way to handle particles that need

to be communicated. Each of these three key concepts are discussed further in the

remainder of this section.
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In order to satisfy the first key concept, avoiding new data allocation on

GPUs, we determined that the number of particles within a given particle vault

needs to be fixed. This allows a particle vault to define the group of particles that

will execute together in a kernel. A side effect of the fixed vault size is the need for

an extra buffer for managing particles created during tracking, since we cannot

know the actual number of particles any given cycle will produce. In order to

guarantee there is enough space in the extra buffer, we pre-allocate enough particle

vaults to handle the case where every particle undergoes the maximum production

in a reaction. This can be determined through a heuristic calculation as long as

any particle that produces new particles for computation is also added to the new

particle list (i.e., its computation is postponed) to guarantee the size of the extra

particle list is bounded. The extra vaults and postponing computation of a particle

ensures that we will not need to allocate new data during the tracking kernel.

The second key concept, dynamically changing the number of particle vaults

in a PVC, must work within the context of the first key concept, data allocations

only from the host (i.e., not from the GPUs). To accomplish this, we designed

a host-side data structure (the PVC, which is on the host only) that (1) can

dynamically change sizes, and (2) always contains enough memory for each kernel

on the device (through the particle vaults it contains). More details on specific data

structure choices are explained in Section 4.3.2.

In order to satisfy the third key concept, no MPI communication during

particle tracking, all MPI was removed from the tracking loop itself. Instead, when

a particle leaves a given rank’s domain during the tracking loop, it is placed in a

buffer. After the tracking loop finishes, the host inspects this buffer and performs

the appropriate communication. The size of this buffer has a clear upper bound,
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since it cannot exceed the fixed batch size in a single particle vault, i.e., the number

of particles needing to be sent via MPI will not exceed the number of particles we

are tracking in each batch. In terms of implementation, we create an index list of

particles in the kernel which identifies the particles that need to be communicated

via MPI, as well as to which neighbor they need to be sent. This simple tuple of

data can be generated quickly in the kernel, allowing for faster compute times,

at the cost of needing to loop over the index of particles later, on the host, and

copying them into MPI buffers. This method has so far not shown itself to be

performance critical, spending orders of magnitude less time than the actual kernel

compute times.

Implementation Details - Data Structures.

The preceding subsection (4.3.2) defined three key concepts for the Thin-

Threads batch model. One of these key concepts enabled growth in the number of

particles stored on a given rank. There are two reasons that particle growth on a

rank can occur: through reactions in cycle tracking or through receiving particles

via MPI communication.

When a new particle is created, it needs to be added into a particle vault.

Of course, in our scheme, the GPU cannot allocate new memory. Our solution is to

allocate extra particle vaults prior to executing the tracking kernel, and then have

the kernel add new particles to these extra particle vaults as it executes. These new

particles can then be considered for future processing. Therefore, the particle vault

container must not only be dynamic in size, but also must allow direct access for

passing in batches to kernels. We use a vector (from the C++ Standard Template

Library) of particle vault pointers to handle these requirements. By making a

vector of pointers, our particle vault container can change sizes through a two
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Vault<PV*>
PV [P]

PV [P]

Extra<PV*> PV [P]

sendQueue <Tuple> (PI,NI)

Key:
PVC: 
PV:   
P:     
PI:    
NI:

Particle Vault Container
Particle Vault
Particle
Particle Index
Neighbor Index

Figure 13. A visual representation of the Particle Vault Container (PVC) data
structure.

step process: allocating the pointer (built into the vector class) and then allocating

the particle vaults to which the pointers point (custom allocation function). In

addition, it allows us to re-organize the vaults in the container as necessary, such

as swapping an empty vault for a filled one (which becomes as easy as swapping

two pointers instead of needing to perform a deep copy). Figure 13 details the new

structure for the particle vault container to enable this new work flow.

After each iteration of kernel launch followed by MPI communication,

our algorithm cleans up the extra vaults and combines newly received and newly

created particles. This process creates new batches for use in future iterations.

Implementation Details - Control Flow.

Figure 12, which appeared earlier in the Thin-Threads overview section,

describes how the Thin-Threads model incorporates batching into the control flow.

Its control flow allows for overlapping computation with communication, and lets
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us recover lost performance on CPUs, compared to Fat-Threads model. The Thin-

Threads control flow works as follows. First, a vault is taken out of the particle

vault container and sent into the Kernel (Do Kernel). Second, any particles that

need to be sent are pulled into MPI buffers based on the values in the send queue

tuples, particles index in vault, and neighbor rank index (Do MPI Send). Third,

the host checks to see whether or not any particles need to be received (Do MPI

Receive). Fourth, newly created particles and received particles are condensed

into particle vaults that are then added to the PVC. The extra particle vaults are

populated again with all empty vaults (Clean Extra Vaults). Once this process has

been completed, the data structures are ready to handle another pass through this

process, i.e., a filled vault is ready for kernel launches, and extra vaults are ready to

receive new particles.

One significant element of this application is the need to run on the CPUs

and GPUs through a single source code base. To achieve this, a simple execution

policy model was established which allowed for ranks to determine what form the

kernel would take. The amount of replicated code for each policy available was

reduced to a single function call inside each kernel or for loop. This means that

each policy only needs to define the parameters necessary to launch the kernel, or

run the for loop. The available policies are Serial, OpenMP 2.0, OpenMP 4.5, and

CUDA. The use of macros around language specific functions, such as atomics,

allows each of these methods to run through the same code on CPUs as well as

GPUs. Additionally, this execution policy model will be the basis of future work,

where we can explore the use of CPUs and GPUs at the same time.
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4.4 Thin-Threads Performance Studies

This section describes the results from studies performed on Lawrence

Livermore’s IBM/Nvidia GPU test platform, Ray. This machine uses two IBM

Power8 CPUs and four Nvidia Pascal P100 GPUs per node. The IBM Power8 CPU

has 10 cores and can run up to 8 threads per core. That said, our best performance

comes from running threaded CPU runs with four threads per core, and so we only

use four of the eight threads in our experiments.

A Monte Carlo particle transport workload is defined by two major factors

— the types of reactions and likelihood of mesh facet crossings. For the types of

reactions, the key elements are the cross section and material information. For

the likelihood of mesh-facet crossings, the key elements are the mesh layout and

decomposition. While the elements defining the types of reaction are defined by the

underlying physics, the elements defining the likelihood of mesh-facet crossings can

be varied. Therefore, our performance study varies the elements behind mesh-facet

crossings (mesh layout and decomposition).

For the material and cross section information, we considered the Godiva

in water problem as defined by Cullen, Clouse, Procassini, and Little (2003).

Specifically, we replicated the ratios of particle streaming to collisions, as well as

the ratios of the types of reactions that occur in the collisions.

For the mesh-facet crossings, we defined the size of the mesh elements so

that the likelihood of events is roughly equal (i.e., so the occurrences of mesh facet

crossing and collision events are balanced). The problem defines a Cartesian mesh

of 10x10x10 mesh elements per rank (one decomposition element) in a rectangular,

doubling, scaling pattern. For example, one rank would use [10x10x10] mesh

elements, where as two ranks would use [20x10x10] mesh elements, and four ranks
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would use [20x20x10] elements. Given the simplicity of running problems in a rank

per GPU mode we opted to use four ranks for the base problem and define one

node worth of performance as the result of running on four P100 Pascal GPUs. In

order to maintain a fair comparison when running on CPUs, we opted to also use

four ranks per node and use OpenMP threading to fully utilize a node. At four

threads per core and five cores per rank, the CPU data was generated using four

ranks with twenty threads per rank.

In terms of runtime per cycle, our goal was to pick workloads that reflected

real world problems. On the one hand, runtimes that are very short would not

reflect real world problems (and also skew analysis). On the other, long runtimes,

while more common in practice, limit the number of tests we could perform.

Overall, we decided to consider runtimes of approximately two seconds per cycle.

To accomplish this, we opted to run one million particles per rank, which completes

in roughly two seconds per cycle on a GPU. Given four ranks per node as our

baseline, we ran four million particles per node and scale accordingly during scaling

studies.

4.4.1 Effect of Batch Size on Performance. In this section, we

analyze the effect batch size has on the overall performance for Thin-Threads.

Batch size has multiple, potential impacts on performance. First, it determines

the number of threads that can be running simultaneously on a rank, which has a

profound impact on the performance of threading. Second, it allows for different

amounts of computation to overlap with communication, providing a tunable

knob for optimizing MPI. Finally, batch size choices also determine the number

and size of memory allocations that need to occur, which should be minimized in

this setting. The results for this section are plotted in Figures 14a and 14b. In
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these figures, batch size is plotted on the x-axis and runtime in seconds on the

y-axis; with respect to performance, lower is better. The experiments performed

were somewhat asymmetric: our minimum batch size was 100 for the CPU and

1000 for the GPU. We had to increase the minimum batch size for the GPU, since

batch sizes of 100 did not complete within a reasonable amount of time, due to not

utilizing the GPU adequately.

The effect of batch size on the availability of threads has profound

performance implications. This is especially true on GPU architectures, as the

batch size determines the kernel size of the particle vaults. Large kernels are needed

to efficiently utilize all of the cores on GPU hardware. Figure 14a clearly shows the

trend of increased performance (decreased runtime) as the batch size increases.

The trend in runtime decreases linearly as we increase batch size, up until the

GPU hardware is adequately saturated. Once GPU has enough work (at around

a batch size of 50,000), the performance benefit plateaus. Batch sizes above 50,000

provide similar performance, reducing the need to find a specific value for optimum

performance. At higher batch sizes (approaching one million), the curve trends up

slightly, most likely due to there being less MPI overlap occurring in that regime.

Figure 14b shows the performance trends on CPU architectures at different

scales. The trends for CPUs have a similar shape to GPUs. The primary difference

between the two architectures is that the maximum performance (lowest runtime)

point for CPUs occurs much earlier than it does for GPUs. Both sets of results

show a decrease in performance (increase in runtime) as when batch sizes become

much smaller than the total number of particles. For CPUs, our results consider

batch sizes as small as 100. Increasing the batch size to 1000 results in almost an

order of magnitude increase in performance.
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Figure 14. These plots show weak scaling studies of cycle tracking time versus
batch size, for 1 to 32 Nodes. This data shows batch size has considerable impact
on performance. For GPU runs (sub-figure (a)), the optimum batch size is 300,000
particles per batch. For CPU runs (sub-figure (b)), 100,000 particles per batch was
the optimum size, although the performance differences for batch sizes over 1000
were much smaller. The most important takeaway from these plots are the trends
across all nodes, rather than the line corresponding to a single configuration of
nodes.
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Another interesting point is that this trend shows nearly identical

performance at different scales, meaning that even at poor batch sizes for GPU

performance the MPI weak scaling is still managing well. This is true on CPUs as

well when running 4 ranks per node. In our previous experience, not shown here,

we witnessed negative side effects to running with batch sizes that were too large

when run at large scale (thousands of ranks).

Table 6. Weak scaling results for Thin-Threads on CPUs and GPUs, compared to
the weak scaling results for Fat-Threads for the same configuration. Time is listed
in seconds. A batch size of 300,000 was used for the Thin-Thread+GPU runs and
100,000 was used for the Thin-Thread+CPU runs. There was no batching in the
Fat-Thread code. All models were run with four ranks, and the CPU runs used 20
threads per rank.

Nodes / Ranks Thin (GPU) [s] Thin (CPU) [s] Fat (CPU) [s]
1 / 4 1.866e+02 5.247e+02 6.788e+02
2 / 8 2.013e+02 5.470e+02 8.531e+02
4 / 16 2.130e+02 5.777e+02 1.998e+03
8 / 32 2.250e+02 8.482e+02 2.380e+03
16 / 64 2.537e+02 8.166e+02 2.327e+03
32 / 128 2.610e+02 8.902e+02 2.725e+03

4.4.2 Weak Scaling Efficiency Comparisons. In this next phase of

results, we consider two topics: weak scaling and comparison to Fat-Threads. Our

experiments here incorporated the optimum batch sizes from the previous phase of

results (Section 4.4.1).

Table 6 lists the results from a weak scaling study (1 node to 32), comparing

the same configuration for Thin-Threads with GPUs, Thin-Threads with CPUs,

and Fat-Threads on CPUs. The entries in each table are the actual runtimes. This

table highlights the added benefits of the Thin-Threads model, especially at this

103



Table 7. Efficiency data from the weak scaling study. Basic parallel efficiency is
given by comparing to single node performance. Relative efficiency is given by
comparing to previous size performance (i.e., 2 nodes efficiency is tracking time
as [1 Node / 2 Nodes], whereas 4 node efficiency is tracking time as [2 Nodes / 4
Nodes]).

Nodes Thin (GPU) Thin (CPU)
Ranks Eff. 1 Node Rel. Eff. Eff. 1 Node Rel. Eff.
1 / 4 100% — 100% —
2 / 8 92.69% 92.69% 95.92% 95.92%
4 / 16 87.61% 94.51% 90.83% 94.69%
8 / 32 82.93% 94.67% 61.86% 68.11%
16 / 64 73.55% 88.69% 64.25% 103.9%
32 / 128 71.49% 97.20% 58.94% 91.73%

Fat (CPU)
Eff. 1 Node Rel. Eff.

100% —
79.56% 79.56%
33.97% 42.70%
28.52% 83.95%
29.17% 102.3%
24.92% 85.39%

scale, as even the CPU results show improvement over the original Fat-Threads

model.

The data is most representative of real-world workloads at higher node

counts. With low node counts, each node’s domain has fewer neighbors, which

means less time is spent doing communication. For example, with four nodes, each

node’s domain has only two neighbors. As the node counts get higher and higher,

then most of the nodes will have six neighbors (+/-X, +/-Y, +/-Z). In particular,

slowdowns in performance can be seen at 8 and 16 nodes, as nodes at these levels

of concurrency have more neighbors than smaller concurrencies. Specifically, at 16

nodes and 64 ranks has ranks that needs to send and receive messages with up to
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six neighbors. We can see this effect on the weak scaling data, especially for the

Thin-Threaded CPU code, as the complexity of the MPI increases the runtime

increases to match but settles again at a new steady value.

Table 6 shows that, for 32 nodes and 128 ranks, the GPUs running

Thin-Threads are 3.4× faster than the CPUs running Thin-Threads and 10.4×

faster than this same configuration of CPUs running Fat-Threads. We consider

this performance to be very successful in the context of Monte Carlo particle

transport. Since the Monte Carlo particle transport algorithm is not bound by the

resources that the GPU makes readily available (compute and streaming memory

throughput), it is inherently difficult to achieve significant GPU performance.

Instead, it is bound by memory latency and filled with branching divergent paths,

both of which are identifiable as significant limiting factors with this algorithm on

GPUs.

Table 7 shows the scaling efficiency up to 32 nodes. This can be calculated

directly from Table 6. The efficiency is calculated using a single node as a baseline.

This table shows that the GPU maintains a weak scaling value of just over 70%

efficiency at 32 nodes compared to using just one node. On a CPU platform, this

is just under 60% for Thin-Threads and only 25% for Fat-Threads. This drop in

performance on CPU platforms is in part due to the greater sensitivity that the

CPU performance is showing to the added MPI complexity of higher scales, as well

as the fact that 4 ranks, with 20 threads per rank, is not the optimum CPU layout

for this machine.

Table 7 also shows the relative efficiency of scaling, for each increase in

node count. This table highlights a number of interesting points about the scaling

pattern. That said, some of the effects are due to the relationship between node
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count and problem size. As we increase the problem by a factor of 2, we are

doing so only in one dimension at a time. At 16 nodes we have a perfect cube

for problem dimensions [4x4x4], where as at 8 or 32 nodes we have a rectangular

problem domain instead ([4x4x2] and [8x4x4], respectively). This informs some of

the findings of the table. First, not all of the scales are slower. Specifically, on the

CPU runs, the 16 nodes experiments shows better performance than the 8 or 32

node runs. This is most likely a side effect of load balancing in the scaling study

itself. Second, there are a few definite points where efficiency drops dramatically

compared to the previous scale. This highlights a step in complexity, as the

subsequent scales do not continue to drop dramatically.

An important take away from this efficiency data is that the Thin-Threaded

model exhibits promising scaling behavior. This data shows the viability of this

approach and that under these circumstances Thin-Threads performs best. That

said, Monte Carlo particle transport problems can have irregular performance

behaviors, and a more comprehensive study at higher node counts and more

workloads could be useful.

4.4.3 Weak Scaling on BGQ. This section describes results on

Lawrence Livermore’s Vulcan machine, which uses the BGQ architecture. Table 8

shows the scaling data we gathered. The performance data comes from a similar

workload as was run in Section 4.4.2, with the only significant difference being

less particles per node. This change was necessary since a node of BGQ is less

performant than a GPU node on Ray.

Our data in this section is presented with respect to a figure of merit

(FOM), specifically how many segments per second each problem ran on average.

One advantage to considering results with respect to the FOM is that a doubling
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Table 8. Figure of Merit and efficiency data from weak scaling runs on Vulcan, with
4 ranks per node and 16 threads per rank. Efficiency against the 1 node runs and
the relative efficiency for each step are shown. Relative efficiency is calculated in
the same way as described in Table 7.

Nodes FOM [seg/sec] Eff. 1 Node Rel. Eff.
1 2.068e+06 100% –
2 4.018e+06 97.15% 97.15%
4 7.622e+06 92.14% 94.85%
8 1.443e+07 87.22% 94.66%
16 2.773e+07 83.81% 96.08%
32 5.447e+07 82.31% 98.21%
64 1.072e+08 81.00% 98.40%
128 2.124e+08 80.24% 99.07%
256 4.216e+08 79.64% 99.25%
512 8.359e+08 78.95% 99.13%
1024 1.665e+09 78.63% 99.59%
2048 3.314e+09 78.25% 99.52%
4096 6.600e+09 77.92% 99.58%
8192 1.301e+10 76.80% 98.56%
16384 2.612e+10 77.09% 100.38%
24576 3.909e+10 76.91% 99.77%

in resources should produce a doubling in the FOM. This is represented as percent

efficiency — 100% efficiency means double the nodes led to a doubling of the FOM.

This data shows that the Thin-Threads solution scales well up to the

entirety of the Vulcan portion of the Sequoia supercomputer. While we see higher

efficiency on Vulcan than on Ray, this is most likely due to the nature of each

machine. The BGQ system is designed from the ground up to minimize per-node

variation in performance and has advanced networking features allowing codes

to scale efficiently. Ray does not have these advantages — it has variation in

performance per node (since it has power-based CPU clock throttling) and it has

a simpler network architecture. Since Ray is a test bed machine, it is likely that
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some of our efficiency loss comes from the unoptimized network setup, or clock

speed throttling resulting from using more and more of the system. Despite these

differences, we see similar performance patterns between the two systems.

Comparing the CPU Thin-Threaded results on Ray with the CPU results on

Vulcan, we can see that the same pattern of decreased efficiency at low scales with

a leveling out of performance as we increase the scale. Given the similarity in these

data sets we believe that a larger system could expect similar scaling performance

even at much higher scales.

4.5 Conclusion

In this chapter we demonstrated the effectiveness of the Thin-Threads

approach for history-based Monte Carlo particle transport problems on GPUs.

Additionally, Thin-Threads have also shown a degree of portability as both CPU

and GPU forms of this approach have proved to be performant. On GPU platforms

we achieved about 3× greater performance over the Thin-Threads CPU model and

about 10× greater performance over the Fat-Threads CPU model.

One reason the Thin-Threads approach was effective was the inclusion of an

asynchronous MPI batching model. The batching scheme presented in this paper

has the added benefit of being a tunable parameter. This means that for problems

where MPI is a dominating factor for performance, finding a good batch size could

provide a starting point for optimizing performance. In some cases, we also noticed

that the batch size was not a significant factor in performance. In these cases,

as long as the batch size provided adequate parallelism, other factors dominated

performance aside from time spent in MPI, therefore, overlapping computation with

communication had little effect. Even in these cases, however, providing enough

parallelism is an important factor and so it is important to determine a good batch
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size for the hardware. Through our experiences on Ray and Vulcan we saw that

batch sizes of 100,000 or more worked well for GPU platforms and batch sizes

greater than one thousand worked well for CPU platforms.

An important aspect of our study on Thin-Thread performance was the

parallel efficiency when scaling up to large numbers of nodes. Specifically, we

wanted to evaluate the performance of our new Batching+Asynchronous MPI

approach. On Vulcan we showed that we could maintain nearly perfect relative

efficiency (most being at or greater than 99%) and an overall parallel efficiency of

greater than 75% on 24 thousand nodes (98304 ranks) when compared to a single

node. On Ray we found we could maintain relative efficiencies in the 90% range

after the initial dip around 8 nodes, and maintained a greater than 70% efficiency

at 32 nodes on GPUs.

The performance and scalable efficiency of the Thin-Threads approach

provides the basis to move forward in developing a GPU version of the full

production application, using a single code base and threading model for both the

CPU and GPU. The Thin-Threads model was developed inside of the Quicksilver

mini-app available on Github (See: Quicksilver. A proxy app for the Monte Carlo

Transport Code, Mercury. LLNL-CODE-684037 (2017)).
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CHAPTER V

DATA RACE MANAGEMENT: OUTPUT TALLY DATA

The work presented in this chapter is from an unpublished work. I was the

primary contributor to this work in developing the tests, writing the new code, and

writing the paper. Dr. Patrick Brantley, Dr. David Richards, and Dr. Matthew

O’Brien provided ideas and feedback throughout the development process. Dr.

Hank Childs assisted in editing this work.

5.1 Introduction

This chapter presents a new method for managing tally output data, called

variable replication. This method has the ability to mitigate performance concerns

by providing a new parameter that can be used to trade memory for performance.

This ability is crucial to the performance of Monte Carlo transport when the cost

of collecting tallies becomes high. The remainder of this chapter is organized

as follows. section 5.2 (Motivation) explains the need for this work. section 5.3

(Variable Replication) describes the variable replication method itself. Finally,

section 5.4 (Understanding Atomic Performance) describes a study on the behavior

of atomics, to better understand the conditions where variable replication is needed

and useful.

5.2 Motivation

For the Fat-Threads model, described in subsection 4.3.1 (Traditional Fat-

Threads Approach), tally data is fully replicated. This means that each thread

has its own copy of all of the tally data. Further since tallies are distributed across

multiple resources, reductions are required to get the final result. The introduction

of the Thin-Threads model, see subsection 4.3.2 (Thin-Threads), moved away

from full replication. That said, moving to a heavy reliance on atomic operations
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brought with it significant performance concerns. In particular atomic operations

on double-precision data was detrimental to an application’s performance prior to

NVIDIA’s Pascal architecture. This was mainly due to lack of support for double

precision atomics in the hardware, leaving only software implementations which

were incredibly costly to use. With the inclusion of double precision support in

the Pascal generation hardware and above, our understanding about the effect of

atomic performance needs to be revisited.

5.3 Variable Replication

Variable replication is the idea that tally data can be replicated less

than the total number of threads. Access to tally memory still requires atomic

operations, but as the number of replications increases, the likelihood of any two

threads contesting that memory decreases. For example, if N threads all write to a

single memory location then there is at most N collisions occurring on that atomic

write, essentially serializing that operation. If instead of a single memory location,

all of the threads write to two separate locations, we have effectively reduced the

number of possible conflicts to N/2.

This concept is a simple extension of the tally data, that provides a user

settable parameter to determine the amount of times any given tally is replicated.

The idea is that by increasing this value, the total memory usage will increase, but

so too will the performance be improved. This provides a good way to trade some

memory for performance, without requiring full replication of the data for every

thread of execution. Additionally, it ensures that we can still operate in a Thin-

Threads threading model by relying on atomics for data management.

In our implementation, tallies are defined by types and there is a parameter

for each type to determine the number of times that tally will be replicated. Also,
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access to tally memory is based on a threads local thread id. In order to access a

tally, a thread uses an index value that is its thread id modulo the number of times

that tally was replicated. In this way, threads that are near each other, such as in a

GPU warp, are going to request memory that is not the same as its neighbors given

a large enough number of replications available.

5.4 Understanding Atomic Performance

To test atomic performance, we ran trials in Quicksilver using multiple

levels of variable replication as well as with and without atomics enabled. We

disabled atomic operations by encapsulating them in a MACRO and compiling

them out. This had the side effect of producing the wrong answers in the output

tally data, but did not effect the execution path of the code. On Intel and IBM

CPU platforms we found no performance difference when running Quicksilver with

variable replications — Balance Tallies 16x replicated and Mesh based tallies 1x

replicated — compared to running with atomics compiled out completely. Similarly,

on the Nvidia Pascal GPU, we found that the impact of atomics on performance

not measurable. From this study we can conclude that atomics will not significantly

and negatively impact performance of Monte Carlo transport problems, and

therefore are a useful method for handling output tally data.

To verify our current conclusion, that atomics with variable replication

will work well for handling output tallies in Quicksilver, we created seven small

isolated kernels to test atomics under a well known set of circumstances. Through

a combination of seven kernels, we test the impact of data size, coalesced reads,

and multiple divergent reads while performing an atomic reduction. The specific

aspects that each kernel represents are described in Table 9. The seven reduction
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kernels can additionally be described by how they acquire the data for the atomic

reduction:

Simple: A hardcoded number

Array 1: Read from an array of doubles, coalesced

Array 2: Read from an array of doubles, random

Class 1: Read from a large class, coalesced

Class 2: Read from a large class, random

Search 1: Linear search on array of doubles

Search 2: Linear search on array of large objects

Table 9. This table describes the key features that each kernel highlights. Data
size small = 1 Double. Data size large = 26 Doubles + 26 Ints. For the case of
the Linear search kernels each read is of a consistent size but happens a random
number of times. Additionally, as data is read linearly in the search coalescing is
possible but caching is more likely to help as early on each thread will need to read
the same data.

Kernel Size of Data Coalesced Read Divergence
Simple Small N.A. None
Array 1 Small Yes None
Array 2 Small No None
Class 1 Large Yes None
Class 2 Large No None

Search 1 Many Small N.A. Yes
Search 2 Many Large N.A. Yes

In order to measure the impact that atomic contention has on the overall

performance, the variable replication scheme was added to each kernel. In this
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scheme, the atomic reduction is done into an array where the index being written

to is given by the number of replications modulo the threads index. In this way,

as more replications are added the overall atomic contention is reduced as well as

the contention in each WARP of threads. The data in Table 10 summarizes the

findings after running an ensemble of runs for each kernel at replication levels from

1 to 1024 by powers of 2. Additionally, each kernel was run with its own unique

optimum choice for deciding thread-block layouts for best performance of that

kernel, which was found in advance.

Table 10. This table is a summary of findings from the ensemble runs used to
understand the impact of each kernel.

Kernel Measurable Impact
Simple Significant
Array 1 Significant
Array 2 Minor
Class 1 Unmeasurable
Class 2 Unmeasurable

Search 1 Unmeasurable
Search 2 Unmeasurable

Table 10 and Figures 15, 16, and 17 provide concrete evidence for the

usability of atomics in Quicksilver. Of the seven kernels tested in this study, only

the kernels with little to no memory latency issues showed any adverse effects

due to atomic contention. Every kernel with larger or multiple memory reads was

completely unaffected. Additionally, the edge case of a single double being read

from coalesced memory versus from random memory addresses shows that even

a small amount of additional memory latency almost completely mitigates any

performance loss due to atomic contention.

114



4 X 10-3

16 X 10-3

62 X 10-3

250 X 10-3

1 X 100

4 X 100

 1  4  16  64  256  1024

K
e
rn

e
l 
Ti

m
e
 [

se
co

n
d
s]

Number of Replications

Simple Reduction

Figure 15. Log-Log plot of total kernel time versus number of replications. 2×
number of replications halves the atomic contention. The slope of this curve closely
following this 2× drop in runtime, meaning that atomic contention is dominating
the performance for this kernel. The Simple and Array 1 kernels both show this
behavior, and benefit from ways to mitigate contention, such as replication.
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Figure 16. Log-Log plot of total kernel time versus number of replications. 2×
number of replications does not reduces the atomic contention by a factor of 2.
Instead, we see only a very small benefit from adding replication. This indicates
that atomic contention is only mildly affecting overall kernel performance and that
other factors affect performance more. The Array 2 kernel shows this behavior.
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Figure 17. Log-Log plot of total kernel time versus number of replications.
2× number of replications does not affect performance at all. This indicates
that atomic contention is either not an issue, or so small of an effect that it is
dwarfed by the other aspects of the kernel. The kernels that have this behavior
characteristic are: Class 1, Class 2, Search 1, and Search 2.

Monte Carlo transport codes are filled with many memory reads of small

and large sizes from random locations in memory. Due to the nature of the

algorithm there are not any good ways to mitigate this memory latency issue.

Given this, some amount of atomic usage in the kernel should not negatively affect

the overall performance. With out study, we demonstrated that variable replication

is a useful tool for mitigating the overall impact of atomic, for the cases where they

do impact performance. By extension then atomics are a very useful way of dealing

with the race conditions associated with writing to output tallies, and variable

replication can be used to mitigate any performance losses seen using this strategy.
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CHAPTER VI

HETEROGENEOUS ARCHITECTURE UTILIZATION

The work presented in this chapter is from a paper in-submission to the

International Conference on Computational Science (ICCS) in June 2021. I was

the primary contributor to this work in developing the algorithm, writing the new

code, and writing the paper. Dr. Patrick Brantley, Dr. Matthew O’Brien, and Dr.

Hank Childs provided ideas and feedback throughout the development process and

assisted in editing the paper.

6.1 Introduction

In this chapter we will present a new load balancing algorithm to tackle

the problem of dynamic replication in a domain decomposed, heterogeneous

environment. In section 6.2 (Motivation), we outline the reason behind choosing

to use all of a heterogeneous node architecture for computation, and show a recent

work that started the process of making this possible. In section 6.3 (Background),

we provide background information about the use of domain decomposition

algorithms in Monte Carlo transport. Then in section 6.4 (Related Works), we

provide the necessary background information to understand where this work

fits in based on previously existing algorithms and developments. In section 6.5

(Our Method), we describe our contributions to the three steps that make up

a dynamic replication approach. More specifically, in subsection 6.5.1 (Step 1:

Assignment) we describe our new load balancing algorithm, in subsection 6.5.2

(Step 2: Distribution) the single domain load balancing algorithm is described, and

in subsection 6.5.3 (Step 3: Mapping) we describe our new mapping algorithm.

Finally, the details that describe our experiments are explained in section 6.6
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(Experiment Overview), with the result of using this algorithm in practice

presented in section 6.7 (Results).

6.2 Motivation

A typical strategy for a heterogenous supercomputer is to use the CPUs

only for management and communication with other compute nodes and to use

the GPUs to transport particles. This approach usually pairs each GPU with

one CPU core to drive the application, and leaves the rest of the CPU cores idle.

Based on the relative FLOPS, utilizing the CPU only for management tasks would

appear to be an acceptable strategy. Using Livermore Computing Center High

Performance Computing: RZAnsel (2020) supercomputer as an example, the GPUs

make up 1,512 TFLOPS, while the CPUs make up 58 TFLOPS, for a total system

GPU+CPU count of 1,570 TFLOPS. This means that GPUs and CPUs make up

96.3% and 3.7% of the total FLOPS, respectively — the programmer effort to

engage the CPU may not be viewed as worthwhile. However, CPUs have other

benefits, including increased memory size and reduced latency to access memory.

Further, many operations for Monte Carlo photon transport are not FLOP-bound.

In all, engaging CPUs to carry out computation has the potential to add benefits

beyond their FLOPS contributions (e.g., beyond 3.7%).

M. O’Brien et al. (2019) were the first to demonstrate benefits from

incorporating CPUs alongside GPUs to carry out Monte Carlo photon transport.

That said, their algorithm was limited in utility, because it could only be applied

to meshes that could fit entirely within GPU memory. This limitation is crucial

in the context of supercomputers, since typical simulations at large scale use

computational meshes that exceed GPU memory. Such meshes are decomposed

into domains (or blocks), with each block small enough to fit within memory and

118



each compute node working on one (or more) blocks. This domain decomposition

complicates execution, as each compute node can only transport particles where it

has valid data. In this paper, we expand upon the work by O’Brien et al. to deal

with domain-decomposed meshes. We accomplish this by introducing two new

algorithms: one for load balancing and one for building communication graphs.

We also analyze the effects of domain decomposition on the performance of hybrid

heterogeneous approaches. In all, the contribution of this work is a practical

algorithm that translates the potential demonstrated by O’Brien et al. into a real

world setting.

6.3 Background

Monte Carlo photon transport problems divide their spatial domains

amongst its compute resources (i.e., MPI Ranks) in a non-traditional manner.

In many physics simulations, there is a one-to-one mapping between compute

resources and spatial domains — a physics simulation with N compute resources

has N spatial domains, and each compute resource has its own unique spatial

domain. With Monte Carlo photon transport problems, the full mesh is often

too large to fit into one compute resource’s memory, but not so large that it must

be fully partitioned across the total memory of all the compute nodes. Saying it

another way, there are often fewer spatial domains than compute resources, and

so multiple computational resources can operate on the same domain at the same

time. Consider a simple example with two spatial domains (D0 and D1) and four

compute resources (P0, P1, P2, and P3). One possible assignment is for D0 to be on

P0, P1, and P2 and D1 to be on P3, another possible assignment is for D0 to be P0

and P1 and D1 to be on P2 and P3, and so on. Overall, domain assignment is an

additional component for optimizing performance.
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In the Monte Carlo community, the mapping of spatial domains to compute

resources is referred to as “replication,” as the mapping will replicate some domains

across the resources. There are two main strategies for replication: static and

dynamic. Static replication makes assignments when the program first begins

and uses those assignments throughout execution. Dynamic replication changes

assignments as the algorithm executes, in order to maintain load balancing. Both

replication strategies aim to improve efficiency — they operate by replicating the

spatial domains that have more particles, in order to distribute the workload more

evenly across compute resources.

Dynamic replication is part of an overall approach for Monte Carlo

transport. Each cycle of a Monte Carlo approach consists of three phases:

initialization, tracking, and finalization. When incorporating a dynamic replication

algorithm, the initialization phase executes the dynamic replication algorithm.

The tracking phase does a combination of particle transport and communicating

particles. Particle transport can operate in an embarrassingly parallel fashion,

until MPI communication is required as particles move from one spatial domain

to another (and thus need to be re-assigned to a compute resource that has that

spatial domain). The finalization phase processes the distributed results of the

tracking phase. Importantly, the initialization phase determines the performance

of the tracking phase — if the domain assignments from the dynamic replication

algorithm create balanced work for each compute resource, then all compute

resources should complete the tracking phase at the same time, ensuring parallel

efficiency.

Tracking is the computationally dominant portion of the algorithm. During

tracking, each particle makes small advancements for short periods of time, and

120



each advancement is referred to as a “segment.” The type of activity within

a segment can vary, which affects the computational cost and duration of the

advancement for a segment. In this paper the three relevant activities are: (1)

collisions with the background material, (2) moving between mesh elements, and

(3) moving to the end of the time step. Tracking concludes when each particle

has advanced for a period equal to the overall cycle duration — if the overall cycle

takes ∆T seconds, if a given particle advances via N segments for that cycle, and if

each segment i advances for some time ti seconds, then
∑N−1

i=0 ti = ∆T .

6.4 Related Works

Many works have studied spatial domain decomposition methods for

Monte Carlo particle transport. The method was introduced by Alme, Rodrigue,

and Zimmerman (2001), as they split a problem into a few parts, allowing

for replications of spatial domains in order to parallelize the workloads while

maintaining processor independence. Their proposed method was adopted by the

Mercury simulation code and implemented in a production environment; Procassini

et al. (2005) then provided empirical evidence for its efficacy. Spatial domain

decomposition methods were further analyzed by Brunner and Brantley (2009);

Brunner et al. (2006), who also contributed improvements for increasing scalability

and improving performance overall. One of their important improvements for

scalability was to add point-to-point communication, allowing processors in

different spatial domains to communicate directly with one another. This was a

change from a model where each spatial domain had a single processor which was

in charge of all communication for that group of processors.

Work by M. J. O’Brien et al. (2013) introduced dynamic replication. Their

scheme performed regular evaluation of parallel efficiency and then performed
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load balancing when efficiency dropped below a specified threshold. M. O’Brien

(2007) extended this work by adding a communication graph, which defined which

processors can perform point-to-point communication during a cycle. Using these

new communication graph algorithms, O’Brien et al. was able to successfully

scale Mercury on LLNL’s Sequoia supercomputer to over one million processors

while maintaining good parallel performance. This work showed that keeping

the load balance during particle communication within a cycle is important for

scaling parallel performance. When particles were communicated to neighbors

without considering load balance, a single processor could become bogged down

with significantly more work — work which potentially could have been shared.

Additional extensions to this work can be seen in other groups as well, such as with

Ellis et al. (2019) who looked into additional mapping algorithms under specific

conditions in the Monte Carlo transport code, Shift. Their work extends the

communication graph concept by combining it with Monte Carlo variance reduction

techniques to improve the overall efficiency for their use-cases.

While many works have focused on algorithmic improvements, many

others have focused on evaluating load imbalance effects. In his PhD thesis,

Romano (2013) expanded upon the concept of domain decomposition algorithms

by providing new analytical understanding. In particular, Romano provided

a basis for understanding the importance of load imbalance and being able to

determine analytically the benefit of this method. Wagner et al. (2011) took

a more empirical approach when studying load imbalance of reactor physics

problems. They considered the problem of load imbalance stemming from spatial

decomposition, and proposed new decomposition methods for handling this issue.

Similarly, Horelik, Siegel, Forget, and Smith (2014) explored several spatial domain
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decomposition methods and analyzed their effect on load imbalance. In summary,

each of these groups identified load imbalance as a problem and proposed analysis

and solutions that fit their specific needs.

As noted in the Motivation section, our closest comparator is a separate

work from M. O’Brien et al. (2019). This work considered the problem of balancing

particles in a given spatial domain among processors of varying speeds, but it did

not consider domain decomposed meshes. As domain replication strategy is an

important aspect to achieve performant algorithms, developing an algorithm that

supports both heterogenous computing and domain decomposition is non-trivial

and requires fresh investigation. This gap is the focus of our work.

6.5 Our Method

This section describes our novel dynamic replication algorithm for Monte

Carlo transport. Our algorithm is optimized for heterogenous architectures —

it assumes that individual computational resources will have different levels of

compute power, and makes assignments based on that knowledge. Our algorithm

consists of three steps:

1. Assignment (Section 6.5.1): identify how many times to replicate each

spatial domain, and then assign those domains to compute resources.

2. Distribution (Section 6.5.2): partition the particles across compute

resources.

3. Mapping (Section 6.5.3): build a communication graph between compute

resources in order to communicate particles that have exited their current

spatial domain during tracking.

6.5.1 Step 1: Assignment. This step produces an assignment of

compute resources to spatial domains, with the goal of making an assignment that
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minimizes execution time. In particular, the number of particles per spatial domain

varies, and so the goal is to replicate the domains with the most particles in order

to assign a commensurate level of compute to each domain. The algorithm works

by considering work and compute as proportions — if a domain has 10% of the

particles, then that domain should be replicated so that it gets 10% of the compute

resources. Further, if the assignments are effective, then all compute resources

should complete at the same time during the tracking phase.

To make assignments, our algorithm needs to understand (1) how much

work needs to be performed and (2) how capable the compute resources are. In

both cases, we use results from the previous cycle, which we find to be a good

representation for what work to expect in the next cycle. Explicitly, the total work

for each domain is the number of segments to execute. We consider the per-domain

work from the previous cycle as our estimate for the upcoming cycle. For compute

rate, we consider how many segments per second each type of resource achieved.

That is, we measure the average number of segments per second over all of the

CPUs and the same for GPUs. Using past performance automatically accounts for

variation in translating FLOPS to segments across hardware; where the FLOP ratio

between a GPU and CPU may be 100:1, the ratio in average number of segments

per second may be much lower, like 20:1.

Our algorithm depends on considering both work and compute in proportion

to the whole, and we define three terms for ease of reference. Let PWi be the

proportion of work within spatial domain i. For example, if domain i has 10% of

the total estimated work, then PWi = 0.1. Further, let PC-GPU and PC-CPU

be the proportion of total compute for a GPU and a CPU, respectively. For

example, if a GPU can do 100 million segments per second, if a CPU can do 5
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million segments per second, and if there are 4 GPUs and 20 CPUs, then the

total capability is 500 million segments per second, and PC-GPU = 0.2 and

PC-CPU = 0.01.

At the beginning of program execution, we assign each domain one GPU

and one CPU. This ensures that every domain has “surge” capability in case the

work assignment estimates are incorrect (which can happen when particles migrate

from one domain to another at a high rate). Such surge capability prevents the

worst case scenario — one compute resource takes a long time to complete its work,

and the others sit idle. Further, one of these compute resources (either the CPU or

GPU) can act as a “foreman” for its spatial domain. These foremen are bound

to a spatial domain throughout program execution. When a compute resource

is assigned a new spatial domain, it can get that domain from the appropriate

foreman. The remaining compute resources can then be assigned to work on spatial

domains dynamically.

Our assignment algorithm works in two phases. The first phase decides how

many compute resources should be assigned to each spatial domain, and what type

they should be. The second phase uses this information to make actual assignments

to specific compute resources, being careful to minimize communication by keeping

the same spatial domains on the same compute resources when possible.

The first phase employs a greedy algorithm, and is described in pseudocode

below labeled “MakeGreedyAssignments.” It begins by setting up an array

variable that tracks how much work is remaining for each spatial domain

(“RemainingWork”) using the predicted work (PWi) and taking into account

the pre-allocated resources (one CPU and one GPU for each of the M spatial

domains). The final step is to assign the remaining compute resources to spatial
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domains. NGPU is the number of GPUs, it begins by assigning the NGPU −M

available GPUs to spatial domains, one at a time. Each time, the algorithm first

finds the spatial domain d with most remaining work, i.e., its evaluations takes

into account that resources have been assigned previously. After the GPUs, it then

makes assignments for each of the NCPU −M available CPUs in a similar manner.

def MakeGreedyAssignments(M, NGPU, NCPU, PW, PCGPU, PCCPU):

for i in range(M):

WorkRemaining[i] = PW[i]

# Account for preallocated resources

for i in range(M):

WorkRemaining[i] -= (PCGPU+PCCPU)

NGPU -= M

NCPU -= M

# Replicate remaining compute resources greedily

for i in range(NGPU):

d = FindDomainWithMostWork(WorkRemaining)

WorkRemaining[d] -= PCGPU

AssignGPUToSpatialDomain(d)

for i in range(NCPU):

d = FindDomainWithMostWork(WorkRemaining)

WorkRemaining[d] -= PCCPU

AssignCPUToSpatialDomain(d)

All replication schemes nearly always have some load imbalance. Consider a

problem with two spatial domains with equal amounts of particles (PW0 = PW1 =

0.5) and three GPU compute resources, C0, C1, C2 where PC-GPU = 0.333. Then
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C0 and C1 will be foremen, and the only question is whether to replicate domain

0 or 1 on C2. Whatever the outcome, one domain will have a WorkRemaining

value of 0.167. In this example, it would be up to the foreman to carry out this

extra work and it would be likely that the extra compute resources would be idle

as it does so. Fortunately, these effects get smaller as concurrencies get larger.

Also, the heterogeneous nature of compute helps on this front, as there are more

resources (the CPUs) that are smaller (i.e., smaller values of PC-CPU) leading

WorkRemaining values being closer to 0 on the whole.

The second phase assigns specific compute resources. Every time a

compute resource is assigned a new domain, it must retrieve this domain from its

corresponding foreman, incurring a communication cost. So the goal of this phase

is to repeat assignments between compute resources and domains. For example, if

the output of the first phase indicates that domain d should have 3 GPUs, then

the second phase checks to see if there are 3 GPUs that had d in the previous

cycle. If so, then those GPUs should be assigned to d again for the current cycle,

as this prevents unnecessary communication. Of course, as the number of compute

resources applied to a domain increases, new compute resources must be located

and communicate costs are inevitable.

6.5.2 Step 2: Distribution. This step partitions the particles across

compute resources. This partitioning must honor the spatial domain assignments,

i.e., if particle P lies within spatial domain D, then the particle can only be

assigned to compute resources that were assigned D. In our approach, we perform

this partitioning relative to performance — GPU compute resources get more

particles and CPU compute resources get less, and the proportion between them
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corresponds to PC-GPU
PC-CPU

. The remainder of implementation details follow trivially

from previous work M. O’Brien et al. (2019).

Figure 18. Result of our Map step
with 4 spatial domains, 4 GPU
compute resources, and 6 CPU
compute resources. The square boxes
show which domains neighbor (1-2,
2-3, 3-4).
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6.5.3 Step 3: Mapping.

Mapping refers to establishing a

communication graph between compute

resources. This mapping is needed when

particles exit their spatial domain. When

this happens, they need to be sent from

their current compute resource to another

compute resource that is operating on their

new spatial domain.

In a domain replication environment,

a poor communication graph can affect

overall performance. For example, assume

that domain d is replicated by K compute resources — C0, C1, ... C(K−1). One

possible communication graph could instruct all other compute resources to send

their particle entering d to C0. This is bad: C0 would spend more time doing

communication than the other Ci resources and it also will end up with more

particles to transport. Instead, a better mapping would lead to an even spread of

particles between the Ci’s.

For a given compute resource, our Map algorithm makes connections to all

neighboring domains. It uses a round robin algorithm to prevent load imbalance,

specifically:

indexA mod sizeB = indexB mod sizeA
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where A is a list of resources from one domain and B is a list of resources from a

second domain (see Figure 18). Our Map algorithm makes two connections for each

neighboring domain d — one to a CPU compute resource that contains d and one

to a GPU compute resource that contains d. Each connection also has a weighting

which dictates the proportion of particles communicated. For our experiments,

we set the weights to be proportional to their compute abilities (PC-GPU and

PC-CPU), i.e., a GPU resource would be sent many more particles than a CPU

resource. That said, exploring different weights would be interesting future work, in

particular weights where CPUs get more particles.

6.6 Experiment Overview

This section provides an overview of our experiments, and is organized into

three subsections. Subsection 6.6.1 describes the hardware and software used for

our experiments. Subsection 6.6.2 describes the factors we vary to form our set

of experiments. Finally, Subsection 6.6.3 describes the measurements we use to

evaluate our results.

6.6.1 Hardware and Software. Our experiments were run on

LLNL’s RZAnsel supercomputer. This platform has two Power 9 CPUs (22 cores

per CPU, of which 20 are usable), 4 Nvidia Volta GPUs (84 SMs per GPU), and

NVLink-2 Connections between the sockets on each node. In addition, there are a

total of 256 GB of CPU memory and 64 GB of GPU memory per node Livermore

Computing Center High Performance Computing: RZAnsel (2020). For software,

we used Imp, by P. Brantley et al. (August, 2019), a Monte Carlo code that solves

time-dependent thermal x-ray photon transport problems.

129



6.6.2 Experimental Factors. Our experiments vary two factors:

workload (11 options) and hardware configuration (3 options). We ran the cross

product of experiments, meaning 33 experiments overall.

Workloads: our 11 unique workloads consisted of three distinct problems

(“Crooked Pipe,” “Holhraum,” and “Gold Block”), with one of those problems

(“Gold Block”) having nine different variations. Details for each of the three

distinct problems are as follows:

– Crooked Pipe: a problem that simulates transport through an optically

thin pipe with a U-shaped kink surrounded by an optically thick material.

The Crooked Pipe problem is load imbalanced since particles are sourced into

the leading edge of the pipe, causing spatial domains that contain this region

to have a much higher amount of work per cycle than the others. This is a

common test problem in the Monte Carlo photon transport community as

well as an excellent driver for testing load balancing methods.

– Hohlraum: a problem that simulates the effects of Lawrence Livermore’s

NIF laser on a gold hohlraum. Particles in this problem start in an incredibly

hot gold wall and then propagate throughout the mostly hollow interior,

colliding with a central obstruction as well as the surrounding gasses. This

problem starts out very load imbalanced with most work in the hot region.

– Gold Block: a homogenous test problem that simulates a heated chunk

of gold. This problem is a solid cylinder of gold with reflecting boundary

conditions. Since this problem is a homogeneous material with reflecting

boundary conditions, we can modify the length scale of the problem in order

to change the ratio of the number of collision segments with the number of

total segments by changing the number of mesh element crossing segments
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and leaving all else fixed. We use this length scaling to create a total of 9

configurations, with an unscaled version at the center we refer to as the Base

Gold Block. Specifically, we took our Base Gold Block problem and halved

the length scale 4 times consecutively, and similarly doubled the length

scale 4 times consecutively to create these configurations. The goal with

this scaling is to understand performance with respect to the percent of time

performing collisions segments versus other segment types.

Hardware configurations: we ran each of the workloads with:

– Hybrid: our algorithm, scheduled with both GPUs and CPUs.

– CPU-Only: scheduled using only CPU resources

– GPU-Only: scheduled using only GPU resources

For the CPU-Only and GPU-Only tests, we were able to perform experiments

using our algorithm, since our algorithm simplifies to be the same as predecessor

work when the resources are homogeneous. Further, all experiments were run on 4

nodes, meaning we used: for CPU-Only 160 CPU resources, for GPU-Only 16 GPU

resources, and for Hybrid 144 CPU resources + 16 GPU resources.

6.6.3 Measurements. To analyze our results, we considered three

types of measurements:

– Throughput defines the number of segments, on average, that a processor

will be able to process in one second. This metric is used to compare

application performance in a consistent manner, regardless of hardware or

software configuration.

– Segment Counters divide the segments into the three different activity

types considered in this paper (see Section 6.3). Specifically, these counters
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count the total number of times each type of segment has occurred across all

segments in the simulation. Segment counters are useful for understanding

how performance varies with respect to different segment types.

– Efficiency determines the success of a load balance algorithm. For each

domain i, we calculate the ratio of the compute resource applied to that

domain (sums of PC-GPU and PC-CPU for the assigned Ci’s) and work

for that domain (PWi). For example, a given domain may have 8% of

the compute resources and 10% of the total work, for a ratio of 0.8 or an

efficiency of 80%. Our efficiency metric is the minimum of these ratios over

all domains, meaning 1.0, 100%, is a perfect score (compute resources applied

perfectly in proportion to work for all domains) and less than 1.0 indicates

the inefficiency — a score of 0.5 indicates that one domain has been given

half the resources it needs, i.e. it has an efficiency of 50%.

6.7 Results

Our results are organized into two parts:

– Section 6.7.1 evaluates the performance of our overall heterogenous algorithm.

– Section 6.7.2 evaluates the efficacy of our load balancing algorithm.

6.7.1 Algorithm Performance. Figure 19 shows the performance

results for our 33 experiments. This figure contains a line for “peak” performance.

This does not represent actual experiments, but rather a theoretical analysis of the

potential peak speedup from using both CPUs and GPUs. This line was calculated

by taking the GPU performance and adding 90% of the CPU performance

(since some CPUs are needed to manage GPUs in a heterogeneous environment,

specifically 36 of the 40 CPU cores were used for computation, while the remaining
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Figure 19. Plot showing throughput (segments per second) as a function of what
proportion of the segments were of the type “collision.” It plots four lines, one
for each of our three hardware configurations, and one for a theoretical “peak”
configuration (described in Section 6.7.1). Each of the dots come from our
workloads — the left-most (∼0% collisions) come from the Crooked Pipe problem,
the right-most (∼100% collisions) come from the Hohlraum problem, and the
remainder come from variations of the Gold Block problem.
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4 managed GPUs). This peak line should be viewed as a “guaranteed-not-to-

exceed” comparator.

One important finding is on the potential of heterogenous computing for

this problem. While the CPUs have only 3% of the FLOPs of the GPUs, their

performance (i.e., throughput) is much better than 3%. CPUs have 26.2% of the

throughput for the Crooked Pipe problem, 20.4% for the Base Gold Block problem,

and 10.4% for the Hohlraum problem. In all, this provides important evidence

that including CPUs can be much more beneficial than a basic FLOP analysis.

Of course, this potential can only be leveraged with an effective algorithm.

With respect to actual achieved performance, our heterogenous algorithm

(“Hybrid”) performed quite well. It was 20.4% faster than GPU-only for the

Crooked Pipe problem, and approximately 10% faster for the other problems.
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Relative to the peak line, our algorithm achieved 95.1% for Crooked Pipe, 91.8%

for Base Gold Block, and 99.6% for Hohlraum. The performance is greatest

where the amount of collision segments is dominant, which is also where there is

a larger amount of compute used by the resources. In this region, the CPUs are less

valuable, but still more valuable than the hardware specification predicts. On the

other end of the spectrum, where there are less collisions and more mesh element

crossing segments, the compute is lower, and the GPUs are less performant. This

enables the CPUs to provide an even greater benefit overall.

Table 11. This table shows the efficiency for our three workloads over a full
program execution. Minimum efficiency represents the worst assignment over all
compute resources and cycles: for one cycle of the Crooked Pipe problem, there was
a compute resources which had about 20% too much work to finish on time with
the other compute resources. Maximum efficiency speaks to the best cycle: for one
cycle of the Crooked Pipe problem, the most underpowered compute resource had
only 0.1% too much work. Average efficiency speaks to the behavior across cycles:
(1) for each cycle, identify the most underpowered compute resource and calculate
how much extra work it has, and (2) take the average over all cycles of the extra
work amounts. For the Crooked Pipe problem, the average efficiency is 99.55%,
meaning that the average slowdown for completing a cycle due to load balancing
was <0.5%.

Problem Minimum Efficiency Maximum Efficiency Average Efficiency
Crooked Pipe 81.76% 99.92% 99.55%

Base Gold Block 81.76% 99.9% 99.90%
Hohlraum 81.76% 86.16% 85.80%

6.7.2 Load Balance Efficiency. Table 11 plots efficiency results

for our three workloads. On the whole, the minimum efficiency values for these

workloads are low. That said, these conditions occur in the first few cycles, as these

cycles do not have a history of performance to base their load balancing decisions

on. For Crooked Pipe and Base Gold Block, the average efficiencies indicate that

good load balance is achieved quickly and maintained throughout the run. The
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Hohlraum problem had worse efficiency. This was because one domain was a “hot

spot” — it had much more work than the other domains. This topic is explored

further in the following subsection.

6.7.3 Surge Capability. The Hohlraum workload demonstrates the

value in our “surge capability” (ensuring that one GPU and CPU are assigned to

each domain). This workload had 4 domains, and domain 1 had the majority of

particles, to the point meriting assignment of every non-foreman compute resource.

That said, during a compute cycle, domain 1’s particles stream out rapidly into

neighboring domains. Our surge capability ensured extra compute resources were

allocated, and this made a 3X performance improvement for this case. Figure 20

has more details on this comparison, with Gantt charts that show behavior within

a cycle. Finally, the “surge” allocation had no impact on the other two problems

since their work was more balanced, and they would have received those resources

anyway.

6.8 Conclusion

In this chapter, we introduce a novel load balancing algorithm which

can efficiently partition heterogeneous compute resources across domains. We

demonstrate results using this algorithm, in a production Monte Carlo photon

transport code, running a variety of workloads. This work was motivated by the

performance difference seen in practice between Monte Carlo transport codes

running on CPUs and GPUs when compared with the ratio of the available

FLOPs. Our algorithm demonstrated up to a 20% performance benefit, which is

much greater than the 3.7% predicted by solely looking at the ratio of FLOPs.

Additionally, our algorithm achieves 85% to 99% load balancing efficiency on the

problems demonstrated.
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Figure 20. Gantt charts for a single cycle of the Hohlraum workload. The left
Gantt chart corresponds to our algorithm, and completes in 30s. The right
Gantt chart is a variant of our algorithm where there is no minimum compute
allocation (i.e., the “surge capability” is disabled). This variant took 113s, 3.8X
slower. The Gantt plots show an evolution over time per compute resource, with
red representing “idle” time, yellow representing communication time (“MPI
Send/Recv”), and green representing time spent tracking particles. The blank
spaces in the right chart occur because there is no compute resource assigned to
that domain, for example no GPU resource for domain 3. Finally, these Gantt
charts show only the first CPU and first GPU for a domain, and the other compute
resources are not plotted. In particular, the remaining compute resources in the left
Gantt chart (our algorithm) are doing tracking (green) at a high rate, consistent
with the overall efficiency of 85% — some of the worst performers for this workload
(domains 0, 2, and 3) are being plotted.
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CHAPTER VII

PERFORMANCE AT SCALE

The work presented in this chapter comes from a publication that is

currently in preperation. I was the primary contributor in developing the tests,

running experiments, and writing. Dr. Patrick Brantley, Dr. Matthew O’Brien, and

Dr. Hank Childs provided ideas and feedback throughout the development process

and also assisted in editing the content.

7.1 Motivation

In this dissertation many ideas are presented that provide a guide

to developing an effective Monte Carlo transport algorithm for many-core

architectures. That said, it is important to confirm that the techniques will work

in real-world settings. In particular, techniques may work well at lower concurrency,

but be less effective at scale, or techniques may not work in combination. The goal

of this chapter is to review the combined effects from using these ideas on a fully

featured application when scaled on a GPU based supercomputer. In order to

evaluate the effectiveness of these ideas, experiments are used which cover a wide

variety of workloads. This evaluation provides evidence for which decisions, many

of which were made in mini-apps, are applicable when considering fully featured

applications and MPI scaling.

This chapter explores the real-world viability issue via fully featured Monte

Carlo transport applications with additions from each research topic. First, the

research in mini-apps from Chapter III suggests that history-based Monte Carlo

should work on GPUs, but that large complex kernels could benefit from an event-

based approach. As a result, the experiments will focus primarily on the history-

based approach to map out its viability in a full scale application, though initial
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results with an event-based approach are explored as well. Second, the Thin-

Threads threading model described in Chapter IV is used for both CPU and

GPU results. Third, the concept of variable replication of tally data, explained

in Chapter V, is used for the balance tallies — frequently used single value tallies

— with 16 replications used to reduce contentious atomics. Fourth, the hybrid

CPU+GPU approach, described in Chapter VI, is compared with CPU only and

GPU only approaches in order to better understand the workloads and scales where

the hybrid approach is beneficial and/or viable.

The remainder of the chapter is organized as follows. Section 7.2

(Experiment Overview) gives an overview of the hardware, software, and

experiments that are used to generate the data. Section 7.3 (Results) presents

the evaluation of each experiment. Finally, section 7.4 (Conclusion) summarizes

the important factors presented in the Results section, showing the viability of the

approaches presented in this dissertation.

7.2 Experiment Overview

This section provides an overview of the experiments for this study.

Subsection 7.2.1 provides an overview of the hardware and software used to

generate the results. Subsection 7.2.2 describes the set of measurements taken and

presented during the study. Subsection 7.2.3 describes the study configuration,

including the factors varied to form these configurations. Subsection 7.2.4 provides

a description for each problem used in this study.

7.2.1 Hardware and Software.

All of the results gathered in this chapter were generated on LLNL’s

RzAnsel supercomputer, described by Livermore Computing Center High

Performance Computing: RZAnsel (2020). This platform has 54 compute nodes,
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with each compute node composed of 2 IBM Power9 CPUs (each of which has

22 cores, 20 usable) and 4 Nvidia Volta (V100) GPGPUs. This hardware gives

a combined peak performance of 1,570 TFLOPs, with the CPUs providing 58

TFLOPs and the GPUs providing 1,512 TFLOPs.

The software used to generate the results in this chapter are the LLNL

production codes Mercury and Imp, described by Mercury (2019) and P. Brantley

et al. (August, 2019), respectively. Mercury and Imp are Monte Carlo transport

codes that share infrastructural source code for all general functionality. That said,

each code has its own code-specific implementations for calculating the specifics of

physics equations. Specifically, Mercury handles the neutron, light element charged

particle, and gamma photon transport capability, while Imp handles the thermal x-

ray photon transport capability. Additionally, Mercury can run using a continuous

energy model or a multi-group energy model — where energies are stored in groups

but treated as continuous values when tracking (not utilizing a specialized multi-

group treatment).

7.2.2 Measurements.

The primary measurement used to understand the impact of each problem is

simulation wall-clock time, specifically, the time spent in the cycle tracking portion

of the Monte Carlo transport algorithm. This data will be presented in three

distinct ways. First as time associated with each collected data point. Second, as

speedup which is calculated by treating the CPU only experiments as a baseline

and dividing by this time. Third, as scaling efficiency which is calculated for weak

and strong scaling studies. We use this formula for weak scaling efficiency:

Weakeff =
T1

Tn
× 100
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and this formula for strong scaling efficiency:

Strongeff =
T1

N × Tn
× 100

where T is time and N is number of nodes.

In order to understand a large problem space, we will vary multiple factors

in this experiment. These factors are described below in subsection 7.2.3 (Factors).

7.2.3 Factors.

The workloads for this study were generated by varying four primary

factors: problem, node count, workload, and approach. Each of these factors

enables understanding the impact of underlying phenomena. In all we ran a total

of 162 experiments, with 144 of the experiments running with Imp and 18 running

with Mercury. The 144 Imp experiments covered the following cross product of

these factors:

– 2 problems: Crooked Pipe and Hohlraum.

– 6 node counts: 1, 2, 4, 8, 16 and 32 nodes.

– 4 workloads: 2.5, 5, 10, and 20 million particles per node.

– 3 approaches: CPU only, GPU only, and Hybrid CPU+GPU.

The 18 Mercury experiments covered the cross product of these factors:

– 1 problem: Godiva in water.

– 6 node counts: 1, 2, 4, 8, 16 and 32 nodes.

– 1 workload: 20 million particles per node.

– 3 approaches: CPU only, GPU only history-based, and GPU only event-

based.
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The following subsections will describe the importance of each of these

factors as well as how varying this factor is accomplished.

7.2.3.1 Problem.

The first important factor to vary in our experiments is the problem that

we are solving. Varying this factor allows for comparisons in performance between

neutron transport and photon transport physics routines, as well as comparing

streaming particle performance with collisions physics focused problems. Mercury is

used to solve neutron transport problems and Imp is used to solve photon transport

problems. Since both of these codes rely on shared infrastructural source code,

the mesh based tracking portion of the code will be the same for all problems.

However, Imp and Mercury each implement separate collision physics routines

to solve their specific problems, providing a variety in code paths and levels of

complexity to explore.

Details for each of the test problems can be found in subsection 7.2.4

(Problem Descriptions).

7.2.3.2 Node Count.

The second factor to vary in our experiments is the node count. Varying

this factor modifies the impact that MPI has on performance and can highlight

areas where algorithms rely on MPI communication. The ability for algorithms to

scale efficienctly is critical for use in a supercomputer environment and this factor

is crucial to understanding this impact.

7.2.3.3 Workload.

The third important factor is workload, which can greatly affect

performance. When used in combination with varying the node count workload

141



studies are used to gain an understanding of the weak scaling and strong scaling

capabilities of an application.

A weak-scaling study is generated by keeping the number of particles per

node fixed as the number of nodes in use is increased. A strong-scaling study is

generated by keeping the total number of particles fixed as the number of nodes is

increased. In order to produce the strong scaling results in this study, we ran four

weak scaling studies at different fixed sizes: 2.5, 5, 10, 20 million particles per node.

In doing this we generate a series of smaller strong scaling results which span the

scale of the problem.

7.2.3.4 Approach.

The final factor to vary is which approach to use, both hardware and

software. Varying these approaches is critical to understanding the impact that

all of our changes have made to many-core Monte Carlo transport applications.

Hardware approaches include: CPU only, GPU only, or a Hybrid CPU+GPU

approach. A CPU only approach provides a baseline comparator for evaluating

performance gains. A GPU only approach is the result of most of the work

presented in this dissertation and provides evidence of the success of many

of the algorithms. A Hybrid CPU+GPU approach (referred to as the Hybrid

approach) is an extension of the GPU only method that provides a possibility for

increased performance and which merits further study. For each of these hardware

approaches there are two possible software approaches. Software approaches

include: history-based or event-based tracking algorithm. When discussing

problems in Imp we will only look at the history-based software approach. When

discussing problems in Mercury we consider both history and event-based software

approaches for the GPU only hardware approach.

142



7.2.4 Problem Descriptions.

This section describes the specific problems used to generate results. Each of

these subsections also corresponds to a section in the results section describing the

results running this problem.

7.2.4.1 Crooked Pipe.

Figure 21. The Crooked Pipe 2D test problem where the green region represents
the optically thick material and the red region represents the optically thin region.

The Crooked Pipe test problem, initially described by Graziani and LeBlanc

(2000), simulates transport through an optically thin pipe with a U-shaped kink

surrounded by an optically thick material. Photons are sourced into the leading

end of the pipe and travel the interior of the pipe easily. These same photons

collide frequently with the walls of the pipe and when inside the surrounding thick

material. Figure 21 gives a visual representation of this problem in 2D.

The Crooked Pipe problem is inherently load imbalanced due to the

particles sourced into the leading edge of simulation. Figure 22 shows the

radiation temperature of this problem at four separate cycles, highlighting this

load imbalance. This causes the spatial domains that contain this source region

to have a much higher amount of work per cycle than the others, thus requiring
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(a) Cycle 10 (b) Cycle 250

(c) Cycle 750 (d) Cycle 1000

Figure 22. The radiation temperature for the Crooked Pipe test problem at four
points in time: (a) Cycle 10 or 9.00e-9[s], (b) Cycle 250 or 2.49e-07[s], (c) Cycle
750 or 7.49e-07[s], (d) Cycle 1000 or 9.99e-07[s]. In this problem color represents
how hot the material is with red indicating high temperature, green indicating a
moderate temperature, light blue indicating low temperature and blue indicating
baseline temperatures.

that domain decomposed algorithms manage load imbalance well in order to not

become bogged down on this problem. This is a common test problem in the Monte

Carlo photon transport community as well as an excellent driver for testing load

balancing methods.

7.2.4.2 Hohlraum.

Figure 23. The Hohlraum test problem. The red region represents gold, tan
represents tantalum, yellow represents a silicon foam, and light green represents
helium gas.
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(a) Cycle 1 (b) Cycle 10

(c) Cycle 20 (d) Cycle 30

Figure 24. The electron temperature for the hohlraum test problem at four points
in time: (a) Cycle 1 or 0.000000e+00[s], (b) Cycle 10 or 8.435049e-11[s], (c) Cycle
20 or 3.147996e-10[s], (d) Cycle 30 or 9.046136e-10[s]. In this problem color
represents how hot the material is with red indicating high temperature, green
indicating moderate temperature, and blue indicating low temperature.

The hohlraum test problem, described by Yee, Olivier, Southworth, Holec,

and Haut (accepted (2021)), simulates the effects of Lawrence Livermore’s NIF

laser on a gold hohlraum. The NIF laser targets the inner wall of the hohlraum

causing it to rapidly heat up and emit x-ray photons. In order to simulate this

effect, particles in this problem start by being thermally sourced from a hot spot

in the gold wall of the hohlraum. These particles then propagate throughout the

interior of the hohlraum and collide with a central obstruction or the surrounding

gasses that fill the hohlraum. Figure 23 shows the structure of this test problem.

This problem starts out very load imbalanced with most work in the hot region and

over time starts to balance out as particles move through the problem heating up

other regions while the hot spot cools. Figure 24 shows the electron temperature at

four differing cycles in order to demonstrate the workload distribution.
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7.2.4.3 Godiva In Water.

Figure 25. The Godiva in water test problem configuration. The red region is
uranium, the green region is water, and the blue region is air. Outside the blue
region is a vacuum boundary condition. This is a 2D slice of a 3D problem.

The Godiva sphere is a well understood and commonly used benchmark

problem for neutron transport applications. The Godiva in water test problem is a

small variation on this problem that surrounds the sphere of uranium with water

and air in order to determine its new criticality, and is defined by Cullen et al.

(2003). In order to calculate criticality we will use the static-k method. Figure 25

shows this setup on a 2D cross section for an octant of the full test problem. An

octant of the full 3D test problem is simulated using reflecting boundary conditions,

creating results for the spherical geometry. In order to understand the aggregate

movement of neutrons, scalar flux values are computed on the problem mesh.

Figure 26 shows the underlying scalar flux quantities for two of the 230 energy

groups used in our calculations.
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(a) Energy Group 150 (b) Energy Group 100

Figure 26. This data shows the scalar flux values for the Godiva in water test
problem after one cycle. This calculation was run with a total of 230 energy groups
and the values of scalar flux for two energy groups are displayed.

7.3 Results

This section describes results from the Imp and Mercury evaluations.

Subsection 7.3.1 (Imp Crooked Pipe Analysis) examines Imp’s Crooked Pipe

problem through analysis of weak and strong scaling, scaling efficiencies, and

speedup evaluations. Subsection 7.3.2 (Imp Hohlraum Analysis) examines Imp’s

Hohlraum problem through analysis of weak and strong scaling, scaling efficiencies,

and speedup evaluations. Subsection 7.3.3 (Mercury Godiva In Water Analysis)

examines Mercury’s Godiva in water problem through analysis of weak and strong

scaling, scaling efficiencies, and speedup evaluations. Finally, subsection 7.3.4

makes further comparisons between Mercury and Imp performance on these various

problems and configurations.

7.3.1 Imp Crooked Pipe Analysis.

The Crooked Pipe problem in Imp is described in detail in

subsubsection 7.2.4.1 (Crooked Pipe). There are two primary characteristics of

interest that define this problem. Firstly, there are significantly more mesh element
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crossing events than collisions events. Secondly, the problem is load imbalanced

with more work in the domain that contains the source.
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Figure 27. A weak scaling study of the Crooked Pipe problem on 1 to 32 nodes
using 20 million particles per node. Results are shown that compare the CPU,
GPU, and Hybrid approaches.

The first step to understanding the performance characteristics of this

problem is to look at a weak scaling study comparing CPUs, GPUs, and the

Hybrid approaches. Figure 27 shows the weak scaling results when running the

Crooked Pipe problem with four domains and 20 million particles per node on

up to 32 nodes. In this plot, a horizontal line represents perfect weak scaling.

This plot shows that the CPU results have excellent weak scalability — their

performance exceeds perfect scaling until the 32 node mark. At this point the plot

starts to trend upwards, showing the introduction of minor inefficiencies at scale.

Interestingly, the GPU results continue to improve up to the 32 node mark. This

can be explained by looking at the load balancing characteristics of this problem.

Firstly, with 4 GPUs per node, and 4 domains, there is no load balancing occurring

with a single node. Further, it makes sense that the load balancing efficiency would
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improve as more resources can be devoted to load balancing the problem. At 32

nodes, there is no longer continued improvement over 16 nodes, indicating that

scaling inefficiencies are increasingly likely to emerge at higher and higher scales.

Finally, the Hybrid results show a combination of the two previous patterns. The

Hybrid approach does not gain as much of a benefit from increased number of

GPUs as the GPU only approach does, but it starts out with better results at

low scales. At higher scales, the CPUs are affecting the performance of the Hybrid

approach in a negative way, with 8 nodes and above performing worse than the

GPU only approach.
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Figure 28. Efficiency for weak scaling study of the Crooked Pipe problem on 1 to
32 nodes using 20 million particles per node. Results are shown that compare the
CPU, GPU, and Hybrid approaches.

Further understanding these weak scaling results requires evaluating the

efficiency; these efficiency results are plotted in Figure 28. Interestingly, although

efficiency often drops as the number of nodes increases, this does not happen

for these experiments. For example, as mentioned previously, the GPUs show a

significant performance improvement at node counts up to 16 nodes. This plot
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makes it very clear that from 16 to 32 nodes is the turning point where increasing

nodes no longer is beneficial to performance because of decreased efficiency due to

load balance. Additionally, the CPU and Hybrid approaches behave much more

similarly, which is most likely due to them containing the same number of MPI

ranks — scaling effects in the code are affecting them in a similar way. The Hybrid

approach has an additional benefit of maintaining its efficiency at around 100%

when both the CPU and GPU results show more dramatic variations.
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Figure 29. Crooked Pipe speedup of GPU and Hybrid approaches over CPU only
approach

Speedup is a final way to analyze the results from this weak scaling study.

Figure 34 gives the speedup of the GPU only and Hybrid approaches over the CPU

only approach. From this plot we can see that the Hybrid approach is clearly faster

when the GPUs are not able to load balance well — i.e., when the number of GPUs

is close to the number of domains. This plot also shows that while the Hybrid

approach does not maintain its lead, it still closely follows the GPU curve at higher

node counts. This tells us that a slight improvement to the Hybrid approach could
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recover this performance difference, allowing it to always be more efficient than

GPU only for this problem.

Another form of analysis is to look at the strong scaling capability of Imp.

In order to generate studies for strong scaling results, four weak scaling studies

were used. By using four weak scaling studies to produce these results a partial

weak/strong scaling study can be observed. In this study, horizontal direction

indicates a weak scaling study and diagonal direction indicates a strong scaling

study.

Figure 30 provides the partial strong scaling study results for CPU, GPU,

and Hybrid approaches, while Figure 31 plots the data for the efficiencies of this

study. These results show that, firstly, the weak scaling of each approach is close

to a perfect horizontal line, indicating good weak scaling efficiency. The only

outlier to this case is that the CPU 16 to 32 node jump shows a higher time,

and the additionally, the Hybrid lower particles per node show increasing lines

up to 32 nodes. The strong scaling results look quite good, and the efficiencies

agree for most cases. All of the strong scaling lines maintain a downward linear

slope, indicating good efficiency, and the efficiency plots corroborate this with

most maintaining near the 100% mark. The only outlier to this data is that the

Hybrid approach shows poor strong scaling characteristics. This quick drop in

efficiency can be explained by the increase in computing power of the Hybrid

approach when compared to GPU or CPU approaches. Since the GPUs require a

large amount of work to remain saturated, decreasing the amount of work per node,

but also including CPUs to take some of the work, makes the Hybrid case show this

behavior.

7.3.2 Imp Hohlraum Analysis.
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(b) GPU approach

 1
 2
 4
 8

 16
 32
 64

 128
 256
 512

 1  2  4  8  16  32

Ti
m

e
 [

se
co

n
d
s]

Nodes

HYB Crooked Pipe Strong Scaling Study

(c) Hybrid approach

Figure 30. A weak/strong scaling study of the Crooked Pipe problem using (a)
CPU, (b) GPU, and (c) Hybrid approaches.
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Figure 31. Efficiency of each strong scaling line from each of the studies done for
(a) CPU, (b) GPU, and (c) Hybrid cases.
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The Hohlraum problem in Imp is described in detail in subsubsection 7.2.4.2

(Hohlraum). There are three primary characteristics of interest that define this

problem. Firstly, there are significantly more collision events than mesh element

crossings. Secondly, the problem is load imbalanced with more work in the domain

that contains the hot spot, but the work load also diffuses over time. Thirdly, the

problem has a variable time step over the first 30 cycles and a fixed time step after

30 cycles. This leads to different amounts of work occurring each cycle and is a

common method for managing complex interactions in Monte Carlo transport

problems.
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Figure 32. A weak scaling study of the Hohlraum problem on 1 to 32 nodes using
20 million particles per node. Results are shown that compare the CPU, GPU, and
Hybrid approaches.

Figure 32 shows the weak scaling results for running this problem with 20

million particles per node and up to 32 nodes. These results show weak scaling

plots that are nearly perfectly flat. This means that the weak scaling is happening

nearly perfectly. While there are some slight variations in the 8 and 32 node cases
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where the time increases slightly, there are no indications of a bad scaling curve at

this scale.
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Figure 33. Efficiency for weak scaling study of the Hohlraum problem on 1 to 32
nodes using 20 million particles per node. Results are shown that compare the
CPU, GPU, and Hybrid approaches.

Figure 33 shows the weak scaling efficiency. From this plot we can see that

there are two modes. At node levels 2, 8, and 32 we can see a downward trend that

drops from 100% efficiency to around 93% efficiency for all approaches. However, at

node levels 1, 4, and 16 we can see a significantly better trend where the data only

drops from 100% to 99.5% for all approaches. This is an interesting performance

characteristic that warrants future study, but in either case shows very strong weak

scaling efficiency for this problem.

Figure 34 shows the speedup for Hybrid and GPU only approaches over

the CPU only approach. This shows that the GPUs are very effective at providing

performance for this problem, giving greater than 7× speedup for all scales. In

addition, the Hybrid approach shows performance benefits at all scales over the

GPU only approach with most speedup values at or above 8×. This data shows
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Figure 34. Speedup of GPU and Hybrid approached over CPU only approach

that the Hybrid approach is very effective at providing speedups for this problem

and continues to provide speedup even up to 32 nodes.

Figure 35 shows the strong scaling ability of each approach through four

weak scaling studies. In this plot we can see that the CPU results show nearly

perfect weak scaling at all levels, and the strong scaling lines appear to follow the

correct pattern, indicating good strong scaling as well. The GPU results show good

weak scaling but with a slight upward trend which means that while this is still

strong scaling well it is less than perfect. Finally, the Hybrid results show nearly

identical performance characteristics as the GPU results, showing that the addition

of the CPUs did not cause a significant loss in strong or weak scaling performance.

Figure 36 shows the strong scaling efficiencies of each strong scaling line

in the previous weak/strong plots. This data indicates that the previous analysis

was correct. The CPU results show excellent strong scaling staying at nearly 100%

load balance at all scales. The GPU and Hybrid results show that at most scales

the strong scaling drops to around 80% efficient, which makes sense for the GPU
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(b) GPU approach
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(c) Hybrid approach

Figure 35. A partial strong scaling study of the Hohlraum problem using (a) CPU,
(b) GPU, and (c) Hybrid approaches.
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Figure 36. Efficiency of each strong scaling line from each of the studies done for
(a) CPU, (b) GPU, and (c) Hybrid cases.
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platforms. Since GPUs need a large amount of work to remain saturated and

operating efficiently, the GPU architecture will strong scale poorly once the work

saturation limit is reached — i.e. once the amount of work per GPU drops below

the limit that keeps the GPUs fully saturated they will not strong scale well.

7.3.3 Mercury Godiva In Water Analysis. The Godiva in

water problem in Mercury is described in detail in subsubsection 7.2.4.3 (Godiva

In Water). The primary reason to include this problem in this study is that

the collision physics routines in Mercury are far more complex that in Imp,

requiring calls into a nuclear data library, a deeper call stack, and more options for

divergence. This problem provides a good example of the factors that make Monte

Carlo transport problems difficult to run on GPUs.
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Figure 37. Weak scaling study for Godiva in water problem for CPU, GPU history-
based, and GPU event-based approaches on up to 32 nodes.

The first study to understand performance is to evaluate the weak scaling

ability of Mercury on CPUs and GPUs, as show in Figure 37. In addition to the

history-based approach, included are results for our preliminary implementation

of an event-based approach. The first observation is that the GPU history
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based approach is almost exactly the same speed as the CPU only approach.

Additionally, we can see there is performance benefit from an event-based approach

on this problem. Furthermore, all variations of this problem are weak scaling nearly

perfectly up to 32 nodes.
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Figure 38. Weak scaling efficiencies for Godiva in water problem for CPU, GPU
history-based, and GPU event-based approaches on up to 32 nodes.

To better understand the weak scaling results we evaluate the weak scaling

efficiencies. Figure 38 gives the weak scaling efficiencies corresponding to the weak

scaling study. From this data we can see that the CPUs are scaling at better

than perfect weak scaling. Additionally, the history-based and event-based GPU

approaches are weak scaling perfectly until 32 nodes. At 32 nodes the history-based

approach drops to ∼90% efficiency while the event-based approach drops to ∼95%

efficiency.

Figure 39 shows the speedups for our GPU approaches over the CPU

approach. We can see that our history-based approach sits right along the 1×

speedup while the event-based approach is closer to 3.5× speedup at all scales.

7.3.4 Imp Mercury Comparisons.
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Figure 39. Speedup of GPU history-based and GPU event-based approaches over
CPU only approach.

Evaluating the differences in speedup between all of the results presented in

this chapter provides insight into the problems faced by Monte Carlo transport

applications. Focusing on the Imp GPU speedup results we can see that for

Crooked Pipe GPUs produce a speedup between 3-4.6×, while the Hohlraum

problem has speedups around 7.3×. The difference between these two problems

is that the Hohlraum problem is mostly photon collision physics while the Crooked

Pipe problem is mostly particle streaming. Comparing this result to the history-

based GPU speedup result from Mercury, ∼1×, we can see that the complexity of

the Mercury collision physics is not being handled well by the GPUs since it is less

efficient than both of the Imp results. Only when we added an event-based method

did we start to see some performance benefits, ∼3.5×.

For all results in all problems, we did not see any significant performance

degradation due to MPI scaling. More scaling is necessary to ensure that this holds

true at massive scale, but on a reasonably large number of GPUs we showed we

could maintain performance and weak and strong scale effectively.
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7.4 Conclusion

In this chapter we analyzed the performance of Monte Carlo transport

applications on GPUs and at scale. From this data we showed good performance

and excellent scalability for fully featured problems run on 32 nodes of RZAnsel.

We showed that by combining the ideas presented in this dissertation into a

fully featured application we could achieve performance and maintain excellent

scalability.

For the simpler photon collision physics problems in Imp, we showed that

a history-based approach is viable and able to achieve over a 8.5× speedup, node

to node, versus using CPU only. In addition, for the complex collision physics

problems in Mercury we showed that an event-based approach was able to achieve a

3.5× speedup, node to node. In addition to speedup, we showed that almost perfect

weak-scaling and excellent strong scaling results are maintained when running on

GPUs.
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CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

This dissertation answers the research question:

What changes to Monte Carlo particle transport algorithms

will enable effective utilization of many-core architectures?

Answering this question required answering a series of shorter questions which

together provide a complete picture.

Chapter III (Tracking Algorithms) addresses the research question: What

tracking algorithms are best suited for portable performance of Monte Carlo

transport on modern many-core systems? This chapter shows a modernized event-

based algorithm which is implemented and tested against a GPU optimized version

of the history-based algorithm. The result of this study was to find that in a small

scale application both methods are valid and performant on the GPU. In fact,

even at larger scale both methods have now been shown to work, but as the size

of an application scales up, the more challenging it becomes to get performance

out of a history-based approach on GPUs. In all, our primary finding is that an

event-based approach is the most suitable for many-core architectures. Finally, this

work also addresses portability by introducing the Thrust parallel abstraction and

showing the potential for enabling both GPU performance as well as CPU threaded

performance.

Chapter IV (Data Race Management: Threading Models) and Chapter

V (Data Race Management: Output Tally Data) together answer the research

question: What is the best way to manage data-races and the memory needs of

many-core platforms? Chapter IV looks at data management through developing
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a new threading model and defining the differences between the threading models.

This work showed that our Thin-Threads threading model — one that focuses on

reducing redundant information and streamlines the data a single thread needs

— is a performant solution for GPUs and CPUs alike. Chapter V looks at data

management through developing methods for handling output tally data, namely

variable replication with atomics. We introduce the idea of variable replication

and show that through a combination of variable replication and atomics we can

implement the Thin-Threads model without losing performance due to atomic

operations colliding on memory accesses. We also studied the performance of

atomics on GPUs to understand the impact different types of memory access

patterns have on the performance of an atomic operation. Together we show a

concrete methodology for handling the race-conditions and data needs of many-

core machines. This work also shows results on CPU based platforms, showing

that the change in threading model did not negatively impact performance on this

architecture, and maintained good scalable efficiency at over 24 thousand nodes on

LLNL’s Vulcan supercomputer.

Chapter VI (Heterogeneous Architecture Utilization) answers the question:

Is it worthwhile to fully utilize heterogenous node architectures? In this chapter

we introduce a new dynamic replication load balancing scheme and introduce the

idea that CPUs can be used for compute alongside the GPUs on modern systems.

We show in practice that we can gain 20% additional performance by including

the CPUs in the calculation. This work shows that new load balancing algorithms

are needed to utilize a heterogeneous node architecture if all processing elements

are going to be used for compute. This work handles portability by introducing a

method that works for load balancing both homogeneous or heterogeneous systems.
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In addition, it makes no assumptions about the hardware performance and instead

relies on collecting data during a run or user provided input to make its decisions

for how to assign work to processors.

Chapter VII (Performance at Scale) answers the question: How does many-

core focused algorithm development impact performance concerns as we scale

up MPI resources? In this chapter we analyze the scaling performance of Imp

and Mercury on up to 32 nodes. In all problems that we ran, both codes showed

excellent scaling performance. In addition, we demonstrated performance of up to

8.5× a CPU only approach in Imp and 3.5× a CPU only approach in Mercury. In

this analysis we demonstrated that a history-based approach works well for Imp

and an event-based approach works better for Mercury. All together these results

demonstrated a successful approach to Monte Carlo particle transport on GPUs.

The primary research question has been answered by taking the combination

of all the presented works. All together and exemplified in the studies given in

Chapter VII, are described: an effective transport algorithm, a concrete threading

model, new data management techniques, and a new method for fully utilizing

heterogeneous node architectures. In addition, all of these solutions were provided

in a single source code base that works for CPU and GPU systems without the

need for recompilation, or significant amounts of architecture-specific coding.

All of the work in this dissertation followed a development strategy that

provided a space for developing research concepts quickly and then extending them

into a full implementation in a large production application. The proxy apps,

Quicksilver and ALPSMC, were used for prototyping and testing initial research

concepts. The production applications, Mercury and Imp, were the locations for

full implementations of these concepts. The use of proxy apps has enabled faster

165



prototyping of different approaches as well as provided an avenue for hardware

vendor interactions. Additionally, access to the production applications has enabled

testing at scale and validation of previous experiments in real world settings.

This process was necessary since a requirement and goal of my research was the

eventual, full implementation of these ideas into a full scale production application

in order to support the LLNL mission.

In addition to the specific benefits to Monte Carlo particle transport, there

are many aspects of the works presented in this dissertation that can be generalized

to a larger community. Many large multi-physics application face similar struggles

when developing for many-core applications and will benefit from this knowledge.

Three primary take aways for any application considering many-core environments

include:

1. In large divergent kernels, divergence is not the primary problem if the

algorithm is memory-latency bound. As long as there is enough parallel work

to be done, context switching while waiting for memory will hide much of

the divergence. Namely, divergence is not the primary performance factor

and efforts to improve memory access times generally improve performance

the most. This is exemplified in the study looking at history-based and

event-based tracking algorithms in chapter III; the performance benefit from

switching to event-based came only after many memory related optimizations

were added. In addition, in the final study with Mercury it is the case that

splitting the kernel from history-based to event-based provided performance

primarily because of the large memory requirement of the more complex

neutron physics, meaning splitting this functionality out from the rest of the

work was able to provide greater benefit.
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2. The performance of atomics on GPUs are not a problem if the memory

system is already heavily affected by the number or size of memory reads

and writes. Additionally, the concept of variable replication can be applied to

any algorithm that can benefit from the tradeoff of memory for performance.

3. Heterogeneous load balancing is possible and can be done efficiently.

The algorithm presented in Chapter VI will work with any workload and

distribution of processor speeds.

8.2 Future Work

While this dissertation provides a path forward for Monte Carlo transport to

efficiently utilize many-core architectures, additional directions may yield even more

performance. In this section we will address these areas and provide initial ideas

and thoughts for future work.

8.2.1 Algorithm Development. In this dissertation we addressed

the history- versus event-based algorithm debate. The difficulty however, is that

both solutions are doable, and can be made performant under the right conditions.

To take this to the next level, a much more detailed analysis of the possible

optimizations for each approach could be considered.

One such optimization example is to better understand the possibility

for simplifying the history-based approach with macros, templating, or other

compile time optimizations, which could significantly impact the optimizations a

compiler could make as well as changing the number of registers needed for a kernel

dramatically. Extending this concept, if a single large kernel could separate the

complex/divergent/expensive code paths into compile time known paths, then a

set of simpler kernels could be devised, each of which is faster than the single large

kernel. If a particle falls into the category that allows for it to take this optimized
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fast path, it will, and if it cannot, a slower less optimized kernel could be used for

a subset of those particles which were not ”fast” particles. A scheme such as this

has been the topic of discussion in Monte Carlo transport community meetings, but

to my knowledge has not been fully developed outside of simple, proof of concept

tests. A simple extension would be to do the same thing for each of the event-based

kernels.

Subsequently, if this approach is viable there are probably many more

optimizations that can be pursued that might offer more performance for either

history-based or event-based. In all, reducing kernel complexity is a very promising

area that is worthy of exploration.

8.2.2 Memory Management. In this dissertation we introduced

the idea of variable replication. We showed that this concept works, and works

well. It has the added benefit of fitting in nicely with the work done so far on

threading models, and with the way production codes already handle tally data.

Other tally data schemes exist however, and it would be a goal for future research

to look into these other schemes and see if any offer added performance for GPU

platforms. Many of these other schemes are avoided due to added complexity but

offer a possible use of a heterogeneous systems resources in interesting ways.

One concept that could be further explored is the idea of a tally server

designed for GPU systems. In this concept tallies are processed by a separate

entity which manages atomics or reduction. Each thread, instead of writing a tally

directly, provides its data to the tally server. This data can be provided directly,

or as a series of replays, where each thread simply keeps a list of tallies it needs to

perform and handles those off to the tally server at certain synchronization points.

In this way threads never have to worry about keeping the full state of the tally
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data, and do not contend with each other for shared memory resources. There are

obvious complications and limitations to this concept, but there are also interesting

use cases that make this concept worthy of investigation. For example, if the CPUs

on a system run a tally server while the GPUs perform compute, then the CPUs

can communicate reductions and manage data while the GPUS focus on tracking

particles. This provides a use for CPUs which are often left idle on heterogeneous

systems. Successfully implementing this concept would require CPUs to collect

data from GPU memory quickly enough that the GPUs could keep processing

without stalling. In addition, the CPUs could handle most of the reductions ahead

of time, ensuring that the finalization phase of a cycle is performed quickly.

8.2.3 Performance and Heterogeneous Architectures. The

work we presented in Chapter VI demonstrated the value of a heterogeneous

computational model, but there are still more areas to explore in this space. For

example, step 3 of the dynamic replication algorithm is to develop a communication

map for processors. There are a large number of possible mappings that can be

made and optimizing this can lead to increased performance and greater scalability.

In addition, complementary schemes could be implemented, such as dividing the

work between two problems, one homogeneous GPU problem with some percent

of the work, and a homogeneous CPU problem with the remaining percent of the

work. The two subproblems could then be run together and their results could be

combined. This and other concepts could be tested and might provide a simpler

way to achieve hybrid performance without requiring CPUs and GPUs to work

together on compute at once.

Studying all of this work at a significantly larger scale is also important. It

would be very useful to know if any of the presented ideas or concepts break down
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at larger and larger node counts. For example, the Mercury simulation code scaled

well until it was run on over one million processors on Sequoia. At that point new

load balancing algorithms were required that did not scale poorly with number

of processors. While this dissertation’s scaling study mitigates some of the risk of

scaling inefficiency, considering tens of thousands of GPUs would fully answer the

question.
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