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Amongst the most significant extreme meteorological phenomena are the Sand and
Dust Storms (SDS). Owing to significant amounts of airborne mineral dust particles
generated during these events, SDS have impacts on climate, the environment,
human health, and many socio-economic sectors (e.g. aviation, solar energy man-
agement). Many studies and reports have underlined that the society has to under-
stand, manage and mitigate the risks and effects of SDS on life, health, property, the
environment and the economy in a more unified way. The EU-funded European
Cooperation in Science and Technology (COST) Action ‘InDust: International

European Review, Vol. 29, No. 1, 45–59 © 2020 Academia Europaea

doi:10.1017/S1062798720000733

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1062798720000733
Downloaded from https://www.cambridge.org/core. CSIC, on 06 May 2021 at 09:17:11, subject to the Cambridge Core terms of use, available at

mailto:anca@inoe.ro
https://org/10.1017/S1062798720000733
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1062798720000733
https://www.cambridge.org/core


network to encourage the use of monitoring and forecasting Dust products’ has an
overall objective to establish a network involving research institutions, service
providers and potential end users on airborne dust information. We are a multidis-
ciplinary group of international experts on aerosol measurements, aerosol modelling,
stakeholders and social scientists working together, exchanging ideas to better coor-
dinate and harmonize the process of transferring dust observation and prediction data
to users, as well as to assist the diverse socio-economic sectors affected by the presence
of high concentrations of airborne mineral dust. This article highlights the importance
of being actively engaged in research networking activities, supported by EU and
COST actions since common efforts help not only each scientist by shaping their ex-
pertise and strengthening their position, but also all communities.

Introduction

Atmospheric dust, the suspension of tiny soil-derived particles in the atmosphere, is a
global player in the Earth’s system. Dust influences the radiative balance of the
planet in two different ways: directly by scattering and absorbing incoming solar ra-
diation (Boucher et al. 2013) or indirectly by acting as cloud condensation nuclei and
ice nuclei (Li et al. 1996), which in turn affect the optical properties and the lifetime
of clouds, and consequently the precipitation patterns. Dust particles also have
effects on atmospheric chemistry (Krueger et al. 2004), acting as a sink for con-
densable gases and thus facilitating the formation of secondary aerosols, which in
turn contribute to particulate matter concentrations. Dust sedimentation and de-
position at the surface causes changes in the biogeochemical processes of terres-
trial and marine ecosystems through the delivery of primary nutrients (Jickells
et al. 2005). It has been demonstrated that the Amazon rainforest is fertilized sig-
nificantly by Saharan dust (Yu et al. 2015). The essential nutrient elements are iron
and phosphorus oxides carried by dust on their journey through the atmosphere.
Parameterizations of oxides atmospheric processing based on knowledge on geo-
graphic distribution of typical dust minerals in sources estimate their nutrition level
when deposited to terrestrial systems (Shi et al. 2011; Baker and Jickells 2006,
Nickovic et al. 2012; Nickovic et al. 2013). Airborne particles also interact with the
cryosphere at far distances from the warm deserts as well as in high latitudes and
mountains, where cold climate dust sources are located. The deposition of mineral dust
on glaciers has the potential to lower their surface albedo and speed up their melting
(Groot Zwaaftink et al. 2016; Dagsson-Waldhauserova et al. 2019).

Human exposure to airborne mineral dust represents a severe hazard to human
health, causing or aggravating allergies, respiratory and cardiovascular diseases
(Giannadaki et al. 2014; Dominguez-Rodriguez et al. 2020), eye infections
(Goudie 2014), spreading of meningitis in Sahel region (Molesworth et al. 2003), val-
ley fever (Sprigg et al. 2014), and the Kawasaki disease in Japan and Western USA
(Frazer 2012). At the same, Sand and Dust Storms (SDS) can carry anthropogenic
pollutants (Mori et al. 2003; Rodríguez et al. 2011) as well as micro-organisms and
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toxic biogenic allergens (Griffin et al. 2001; Ho et al. 2005). During the last decade,
special attention has been given to the health effects of mineral dust particles from
desert dust. However, evidence on the health effects of desert dust remains un-
clear. Previous reviews, systematic or no, have reported inconsistent results on
the health effects of desert dust studies across different worldwide regions and
methodologies applied. (De Longueville et al. 2013; Hashizume et al. 2010;
Karanasiou et al. 2012; Zhang et al. 2016). The published studies differed in terms
of settings, assessment methods for desert dust and sand storm exposure, lagged
exposures examined and epidemiological study designs applied. Moreover, prelimi-
nary results from a systematic review commissioned by the World Health
Organization (WHO) suggests that desert dust can be related, through different
mechanisms, to a risk increase of cardiovascular mortality and respiratory morbid-
ity, and especially asthma (Tobías et al. 2019). A potential limitation in the literature
is the lack of studies conducted on the long-term health effects of desert dust.

Dust events strongly affect the air quality conditions in Asia, where the back-
ground situation is often related to high aerosol concentrations (e.g. Wang et al.
2014; Li X et al. 2018). Desert dust outbreaks over southern Europe frequently con-
tribute to exceedances of daily and annual safety thresholds of particulate matter
(PM) set by the European Union directive on ambient air quality (e.g. Barnaba
et al. 2017; Querol et al. 2019; Basart et al. 2012; Pey et al. 2013). Dust also impairs
air quality and affects fragile cryosphere and environments in high latitude regions
(Bullard et al. 2016; Boy et al. 2019).

High dust concentrations significantly reduce visibility through increased
light extinction and may affect aircraft operations and ground transportation.
The high impact of SDS on the aviation industry is related to disturbances in air-
port operations and routes due to poor visibility associated with strong SDS that
cause the closing of airports. Additionally, SDS can cause aircraft engines to de-
teriorate not only through long-term exposure to even small concentrations, but
also by dust melting in the turbines (Clarkson et al. 2016). But we are still far
from answering questions such as: ‘How much dust is needed to significantly
damage aircraft gas turbine engines?’.

SDS also have many negative impacts on the agricultural sector. The eroded ma-
terial may cause mechanical injury to crops and natural vegetation by abrasion, and
blown sand may bury young plants (Sivakumar and Stefanski 2009).

In addition, airborne dust is a serious problem for solar energy power plants
(Schroedter-Homscheidt 2013; Kosmopoulos et al. 2018; Hojan et al. 2019). The
presence of dust aerosol particles reduces the incoming solar irradiance through
the direct radiative effect, and, indirectly, favouring cloud formation. In addition,
in the proximity of deserts, solar energy plants suffer from dust deposition (soiling).
Dust-induced soiling affects photovoltaic (PV) panels, as well as the efficiency of
concentrating solar power (CSP) mirrors and water management. In brief, dust aero-
sol particles reduce the energy generation potential of solar power plants. The lack of
forecasts, or inaccurate forecasts, results in an inefficient operation of the electricity
system and can even endanger the security of supply (Kosmopoulos et al. 2017;
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Neher et al. 2017). Accurate dust forecasts in this case play an important role on the
operation plant’s management.

Although, today, the relevance of mineral dust particles in all these fields is clear
and there are several national and international scientific initiatives for studying
dust-related problems, tailored products for the user communities are not yet avail-
able. Dust observations and models have nowadays reached a level of maturity to be
ready for the translation into user-oriented products.

Procedure

The EU-funded European Cooperation in Science and Technology (COST) Action
InDust (‘International network to encourage the use of monitoring and forecasting
Dust products’, www.cost-indust.eu, CA16202) has the overall objective to establish
a network involving research institutions, service providers and potential
end-users of information on airborne dust that can assist the diverse socio-economic
sectors affected by the presence of high concentrations of atmospheric dust.

Why is studying dust interesting? Why is sharing information on dust important?
Why did we initiated the InDust community? The straightforward answer is that we
want to bridge the gap between providers (scientists) and users, but there were many
links and many possible answers discovered while getting deeper and deeper into this
fascinating subject.

Through the actions taken within InDust, we are trying to harmonize data and
coordinate the information exchange between the implicated communities – the ben-
efit of EU-funded research programmes – to users and society. This interdisciplinary
research stimulated innovations that are needed to solve some of the major problems
facing society. In line with this main objective, the network is working on the iden-
tification and engagement of representatives of dust-affected socio-economic sectors
(targeting air quality and health, aviation and solar energy) from different countries
in Europe, North Africa and the Middle East. The scientists involved in InDust have
been investigating current needs and future directions for airborne dust observations
and applications, and also the specific needs of the users not supported by existing
dust products, based on feedback obtained from user’s communities.

This collaborative effort is done through a range of networking tools, such as
workshops, conferences, training schools, short-term scientific missions (STSMs),
and dissemination activities. Activities requiring cooperation amongst members
have been accomplished mainly through STSMs. These exchanges specifically con-
tributed to the scientific objectives of InDust, at the same time allowing the Grantees
to learn new techniques, gain access to specific data, instruments and/or methods not
available in their own institutions/organizations. Several researchers took the oppor-
tunity of the STMS (https://cost-indust.eu/grants/grantees) and were able to submit
several scientific articles proving fruitful collaborations (e.g. Gama et al. 2019; Gama
et al. 2020; Kosmopoulos et al. 2018; Marmureanu et al. 2019).
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Within InDust, cooperation with institutions from near-neighbouring and inter-
national partner countries in Northern Africa and the Middle East has proved to be
essential and of mutual benefit. This is because dust concentrations are markedly
higher there and the adverse effects more severe near the sources than far downwind.
Moreover, the participation of South African, American and, importantly, Asian
partners brought the possibility of extending the application of the developed prod-
ucts, protocols and tools well beyond European borders. Including areas such as
Asian regions, where dust particles play a significant role in the air quality and mete-
orological processes, was beneficial for all communities.

Outcome

The primary outcomes of the network are the identification of the needs of the user's
communities and new dust-related products and services able to satisfy their needs.
As a first result, the network has been working on a dust catalogue that includes an
overview of the current available observations (ground-based and satellite) and
model products. Moving towards the development of an open collaboration and dis-
cussion platform between scientists and users of dust-related products and services, a
survey is being shared within different user communities. The results of the survey are
helping us to better identify the primary needs of each particular socio-economic sec-
tor and, furthermore, the collaborations between the groups involved have been fo-
cused on the themes emerging from the survey.

The use of online models to predict airborne dust quantities for radiation calcu-
lations and cloud formation in numerical weather prediction models is being increas-
ingly recognized as important to improve the accuracy of short-range weather
forecasts (Baklanov et al. 2014) and air quality forecasts. Dust prediction faces a
number of challenges owing to the complexity of the dust cycle (i.e. emission, trans-
port and deposition, see Benedetti et al., 2018). At the centre of the problem is the
vast range of scales required to fully account for all of the physical processes related
to dust emission, transport and deposition (i.e. time scales ranging from seconds to
weeks). Another limiting factor is the paucity of suitable dust observations available
for model developments, evaluation and assimilation, particularly over desert dust
sources (Mona et al. 2020). Recent years have seen a considerable increase in the
number and complexity of dust models used both for research and for operational
purposes. Due to the increase in computer power, these models can be run at higher
spatial resolutions to allow for investigations of smaller-scale meteorological pro-
cesses (<5 km), such as the effects of cold outflows from thunderstorms on dust emis-
sion (i.e. haboobs, see Vukovic et al. 2014; Heinold et al. 2013; Solomos et al. 2018).
Additionally, high-resolution model maps (<1 km) of sources are capable of recog-
nizing dust hotspots, which in many cases have larger aerosol emissions than the
other dust-productive areas. At the same time, there have been some new
approaches to treating emission processes in the models at high resolution
(Kok 2011; Klose and Shao 2016) as well as to including soil mineralogy
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(Nickovic et al. 2012) and more refined size distribution parametrizations (Ryder
et al. 2013), to better characterize varying conditions in source regions.

Coordinated work has led to better understanding of the interactions between
aerosols and atmospheric processes and is thus contributing to reducing the uncer-
tainties in modelling the chemical composition of the atmosphere and in the quan-
tification of the direct and indirect radiative forcing attributed to natural aerosols
(Granados-Munoz et al. 2019; Gkikas et al. 2018, Nickovic et al. 2018). Within
the air quality community, there are ongoing discussions about the methodologies
currently available to quantitatively report on contributions of this natural source
to ambient particulate matter levels in Europe, in compliance with the EU Air
Quality Directive (2008/50/CE). A matter of discussion is also how the dust forecast-
ing models can help in the design of early warning systems (Solomos et al. 2018;
Gama et al. 2019; Gama et al. 2020; Marmureanu et al. 2019; El-Nadry et al.
2019; Wenzhao et al. 2019). Mei et al.’s (2020) article bridges the gap between
the dust modelling communities and the providers of satellite dust observations, im-
proving data quality and ensuring data standards compliance. Gama et al. (2019) did
a performance assessment of CHIMERE and EURAD-IM’ dust modules, while
Konsta et al. (2018) provides an analysis of the CALIPSO limitations and uncertain-
ties on the detection of strong dust activity, contributing to the differences between
the simulations (regional dust model BSC-DREAM8b) and observations above the
dust sources of Bodelé and Algeria.

InDust research activities have been extended far behind the main desert areas of
the world into the high latitudes and Polar Regions. Such regions respond to dust
impacts to a greater extent than lower latitude regions, through interactions with
the cryosphere and fragile ecosystems, which have effects on climate.

On the other side, tailored tools developed within InDust help users to exploit the
positive impacts of dust information.

For aviation, all efforts are in the development of early warning systems for
hazard alerting, and potentially reducing the impact of dust on air traffic and
management (e.g. Papagiannopoulos et al. 2020).

For solar energy, Kosmopoulos et al. (2018) showed that under extreme dust con-
ditions, daily energy losses can reach 60%. Such reductions can cause financial losses
that exceed daily revenue values. The estimates of the impact of dust aerosols were
based on reductions of surface solar radiation and solar energy in Egypt, based on
Earth Observation (EO) related techniques. Soiling due to aerosol particles (mainly
dust) challenges CSP plant operators to find the optimized cleaning strategy of the
solar field. Low mirror cleanliness and revenues have to be balanced against higher
cleaning costs, field efficiencies and water consumption. Kishcha et al. (2020) use a
dust regional model to understand the negative effects of dust deposition on the per-
formance of solar panels and on insulator flashover in the Israeli power electric net-
work. Terhag et al. (2019) discussed the optimization potential of cleaning strategies
based on dust aerosol particle induced soiling rate forecasts.

For health, Tobias and Stafoggia (2020) reviewed the exposure metric used to in-
vestigate the health effects of desert dust. Dust exposure can be defined using a
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binary metric and comparing the number of health events between days with and
without dust events. Alternatively, dust exposure can be defined with a continuous
metric quantifying the amount of mineral dust during those days with dust events
and quantifying its association with the health outcome. Thus, the apparently simple
question ‘does desert dust impact human health?’ requires a careful definition of
what is the relevant dust exposure of interest and how such effects can be quantified,
to identify and understand which health effects are plausible. The InDust scientists
have proposed a general standardized modelling approach for investigating the
short-term effects of desert dust on human health, in and near hotspots, which would
allow more consistent evidence on the health effects of desert dust in future studies.

Conclusions

A large number of scientists (250) from (45) countries are working together in order to:

• enhance the collaboration among scientists, data providers and interdis-
ciplinary end users of aerosol dust;

• find new ways to link measurements and modelling of airborne dust and
its effects on climate, the environment and other socioeconomic sectors;

• work on transferring scientific knowledge about dust observation and
modelling from top research institutes to various scientists and dust users
from different countries;

• collaborate on publishing a number of scientific papers on airborne dust
science and effects (ten papers in 2 years)

Remote areas in Europe, such as deserts at high latitudes, gain great support in dust
research and monitoring through InDust, while InDust includes them as important
and full partners in global dust monitoring and forecasting. This multidisciplinary
network, funded by the EU COST action programme, definitely improves scientific
progress due to an increase of the research into the impact of dust in different socio-
economic sectors which benefits policymakers, public decision-makers and the pri-
vate sector. It also contributes to the strengthening of European research and inno-
vation capabilities in an international context.
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