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On cost design in applications of optimal control

Taouba Jouini and Anders Rantzer

Abstract—A new approach to feedback control design based on
optimal control is proposed. Instead of expensive computations
of the value function for different penalties on the states and
inputs, we use a control Lyapunov function that amounts to be a
value function of an optimal control problem with suitable cost
design and then study combinations of input and state penalty
that are compatible with this value function. This drastically
simplifies the role of the Hamilton-Jacobi-Bellman equation, since
it is no longer a partial differential equation to be solved, but an
algebraic relationship between different terms of the cost. The
paper illustrates this idea in different examples, including .
control and optimal control of coupled oscillators.

Index Terms—Optimal control, Stability of nonlinear systems,
Lyapunov methods

I. INTRODUCTION

HE objective in optimal control problems is to transfer

the state of a dynamical system with minimum cost from
one point to another. The advent of modern control theory,
particularly the formulation of the famous Maximum Principle
of Pontryagin [1] has had a considerable impact on the
treatment of optimization theory. Dynamic programming gives
necessary and sufficient conditions for optimality and optimal
control laws in feedback form, which are very satisfactory but
suffer from several drawbacks [2], [3]. First, analytic solutions
can only be obtained in few cases (in particular linear quadratic
problems). Second, the Hamilton-Jacobi-Bellman (HJB) par-
tial differential equation (PDE) is in general very hard to solve
numerically. The main problem is that the full state space must
be discretized and a huge number of samples are needed to
get reasonable solutions. This is the curse of dimensionality.
For this, many efforts have been dedicated to find solutions
of value function for HIB-PDE, either numerically [4] or by
relaxing the equality to inequality using approximate dynamic
programming [5].

The traditional way to use optimal control is to view the
cost function as a set of tuning knobs that can be used to
influence the trade-off between control effort and error decay
rates. This works well in idealized settings such as linear
quadratic control, but for nonlinear problems the map from
cost function to the optimal controller could be overwhelm-
ingly complicated. The purpose of this paper is to show that
by carefully restricting the choice of the cost function, a
simple map from parameters in the cost function to an explicit
expression for the optimal controller can be obtained also
for nonlinear systems. In fact, our analysis provides a novel
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perspective for the application of optimal control in engineer-
ing systems and makes a significant twist compared to the
classical approach. The idea is that, once a stabilizing feedback
controller with a (control) Lyapunov function is found, then
by appropriate choice of the cost function, involving state
and input penalties, the control Lyapunov function satisfies
the HJB equation and is a value function of the optimal
control problem. As a consequence, a whole family of other
cost functions will fit as well for different penalties on the
states and inputs. This makes it possible to design stabilizing
controllers that are uniquely optimal for nonlinear systems in
a manner comparable to linear quadratic control for linear
systems. Our approach keeps a simple structure of the cost
for nonlinear systems, while adding suitable parametrization
and thus circumvents the computational complexity related to
solving for a value function by suggesting a fixed (control)
Lyapunov function a priori. For this, we showcase the role the
cost design plays in two typical settings of optimal control
problems: first for nominal or disturbance-free and second
for disturbance attenuation or robust H., optimal control [6]—
[8]. Finally, we clarify our results with examples related to
classical equations in linear and nonlinear control theory. As
a continuation of ideas from [9], we opt for an application
to coupled oscillators that can represent for e.g. controlled
inverters in power systems.

The paper unfurls as follows: Section II motivates and
provides the main result on cost design for the nominal and
disturbance attenuation case. Section III applies our theory to
coupled oscillators with numerical simulations.

Notation: Let 1, denote the column vector of all ones
and [, the n—th dimensional identity matrix. We denote by
P > 0 a symmetric and positive definite matrix and R be
the set of positive real numbers. Let ||-||p = /(-) TP (). Given
a vector v, let ||v|| =sup;_; ,|vi|, sin(v) and cos(v) be the
vector-valued sine and cosine functions. Given a differentiable
function V(x), let V,.V = ‘3—‘; be the the gradient of V at x and
V2V is the Hessian of V at x. Given a matrix A, let Im(A)
denote its image space. Consider a connected undirected graph
G = (V,€) consisting of |V| =n nodes and |E| = m edges. By
assigning an arbitrary orientation to the m edges, the incidence
matrix B € R"™" is defined element-wise as B; = 1, if node
i is the sink of the /—th edge, B; = —1 if i is the source of
the /—th edge, and B; = 0 otherwise. We denote by N; the
neighbor set of node i € V.

II. MAIN RESULT

We start our analysis with the following motivating example.



Example 1: For the matrices R = RT > 0, consider the
following nonlinear optimal control problem

Vo) i=min [ (q(+(9) + [u()]) ds

x(0) = xo,
xEX={xeR": {|lx]l <7m/2: 1 cos(x) >c},

s.t. & = —sin(x) + u,

for some 0 < ¢ < n, for two different cases,

Case 1:
Case 2:

2

q(x) = |Ix[I°,

: 2
q(x) = [Isin()17  g-14:
The first case may look simpler on the surface, since the cost
function is quadratic in x. However, a closer look at Case 1
leads to a HIB partial differential equation, that is difficult
to solve. At the same time, as we will see in the remainder,
Case 2 is a special case of a rich class of problems that have
a simple explicit solution. In fact, the optimal control law is
given by

1
u (x) = fER_lsiin(x),
and the value function amounts to
V(x) = —1, cos(x) +n,

To see that V is positive definite, note that V(0) =0 and V(x)
is strictly convex and thus positive definite (V2V (x) > 0 for all
x € X). Notice that the matrix R appears in the expression for
g, but not in the value function V. Hence, when the penalty on
the input is increased, the penalty on the corresponding state
is decreased. This makes it convenient to use R for tuning with
appropriate trade-offs between control effort and error decay.

Motivated by the previous example, we consider the follow-
ing nonlinear optimal control problem

min max /0 g(6R,S)+ [ula — Ellw2ds, (1)
s.t. x = f(x) —i—GT(x)u—l—@T(x)w, (1b)

x(0) = xo.

Here, x € R" denotes the state vector, x(0) = xq is the initial
state and f(x) is a nonlinear vector field representing a
mapping from R” to R". We assume that f(x) is continuous
and locally Lipschitz with f(0) = 0, that is the zero state
is a steady state when no inputs are applied. The input
matrix G(x) = [g] (x),...,&4(x)]" € R™" is given by the
nonlinear functions g;(x),i=1,...m that are mappings from
R" to R" and continuous over R". The disturbance input
matrix G(x) = [g] (x),...,g, (¥)]" € R™*" and given by
the nonlinear functions g;(x),i = 1,...n,, that are mappings
from R” to R" and continuous over R". We denote by
w € R™ an unknown disturbance, £ is a positive constant,
R=R" >0,5S=5" >0 are design matrices. Moreover, the
mapping ¢ : R" — Ry vanishes only at the origin, that is
q(0) =0 and will be determined in the remainder.

Our goal is to find a state feedback controller u*(x) € R™
that solves the following Hamiltonian-Jacobi-Isaacs-Equation
(HJIE) to optimality.

rr}linmwzjlx {L(x,u,w,R,S) +V]v (f(x) + G (x) u) } =0, (2

where L(x,u,w,R,S) = q(x,R,S) + |jul|z — &|w||3, and V :
R" — R is a the value function of the optimal control
problem, defined as [8, Ch.2]

Vo) = intsup [ (g(e.R.)+ il ~ & wl3) ds.
w

Throughout this work, we illustrate feedback control synthe-
sis via cost design and using a control Lyapunov function [10],
i.e., a Lyapunov function for the closed-loop system associated
with some choice of the control law.

A. Cost design for optimal control

We start our analysis with the nominal optimal control
problem (1) and set w = 0. In the subsequent analysis, we
propose an approach to solve the nonlinear control problem
(1) to optimality with an appropriate choice of the function
q(x,R) in the following theorem.

Theorem IL.1. Consider the nominal optimal control prob-
lem (1), i.e., when w=0. Let V : R" — R~ be a continuously
differentiable function associated with a stabilizing feedback
control law

u*(x,R) = f%R_lG(x) V.V, 3)

where,

VT (f@+GT0)ur (nR)) <~ (e RF @)
Define
4(,R) = VoV T (F()+GT (0" (v, R)) = | (x R (5)

Then, the following statements hold:

1) The unique optimal control is given by u* in (3).

2) The optimal control problem (1) has the optimal value

V(xo)-
Proof. Consider the Hamiltonian function
H(x,u,A) = L(x,u) + AT (f(x) + G (x)u),
where A € R”" is the vector of co-state variables. We minimize
H(x,A) by calculating,
JdH (x,u,A)
du

The optimal controller reads as,

=2Ru"(x)+ G(x)A.

u*(x) = —%R"G(x)l = —%R*'G(x)vx\c

where we set A = V,V, following [11, Ch.1.4]. This coincides
with the stabilizing controller (3).

For the sufficiency for optimality of (3), we plug-in the
controller (3) into (2) and obtain,

q(x,R) = |Gx)ViV |31 + V]V f(x) =0.

By choice of the function ¢(x,R) in (5), the HIBE is satisfied.
The positive definiteness of g(x,R) follows from the inequality
(4). We conclude that V is a value function and the control
law (3) is sufficient for optimality. The optimal value is given
by V(xp) and the proof is standard. See e.g. [3, Ch 5.]



Remark 1. We make the following observations:
o The inequality (4) is equivalent to,

V(x) < —lu’ (0)]%-

This implies by Lyapunov’s second method that the origin
is asymptotically stable for all system trajectories in
closed-loop with (3).

o Our approach relies on feedback design via a control
Lyapunov function V(x) to find a stabilizing controller
u*(x) of the form (3). By cost design of q(x,R) as defined
in (5), V(x) is a value function of (1) and we recover the
optimal controller (3).

o Given a control Lyapunov function V, the matrix R > 0
represents a tuning knob that can be used to improve the
error decay or minimize the control effort. Note that V
is a value function of the optimal control problem (1)
with any positive definite matrix R', where R' < R and
associated with the cost function L(-,R’) given in (1).

o The cost design in (5) exploits the intrinsic properties
of the origin of the open-loop or unforced system (1b)
(i.e., when u=0) to achieve optimality. In particular, if
VIV f(x) <O, then the inequality (4) is always satisfied
(for any positive definite R) and the origin of the unforced
system is asymptotically stable with the Lyapunov func-
tion V(x). In this case, the matrix R > 0 can be tuned
arbitrarily with the same fixed V (x).

Example 2 (Linear systems) Consider the following LTI
system together with g(x,R) = x" Q(R)x, where Q(R) € R™"
is a matrix to be determined with R=R' > 0.

x=Ax+Bu, x(0) = xo, (6)

where A € R™" B € R™™ y € R™ and xg € R". Given the
Lyapunov function defined by

1
Vx)= ExTPx, P=P' >0,

we apply Theorem II.1 and the optimal controller is given by,

1
*(x,R) = —=R~
' (0 R) = =3

'BTPx. (7
We demonstrate in the sequel, that the application of optimal
control theory is simplified, if we keep P fixed and only tune
the matrices R and consequently Q(R) given as in (5) by,
1
O(R) = ZPBR_lBTPfATPfPA. (8)
Given a positive definite Q defined in (8), the matrix R can
be tuned by choice of any positive definite matrices R’ < R
with Q(R') in (8). Thus, we do not need to resolve the
algebraic Riccati equation (8) for every value of the input
matrix R, while fixing the positive definite matrix P.
Special case: Under the assumption that A is asymptotically
stable, let P > O satisfy,

PA+ATP=—-0",0"=0"" >0. )

Then, the matrix Q(R’) in (8) is a positive definite matrix for
any other positive definite matrix R’ > 0. The resulting control
law (7) is optimal using the matrix P in (9).
The following illustrative example is taken from [9].
Example 3 (no dynamics): Consider the optimal control
problem described by,

muin/omq(x(s))+Hu(s)||,2e ds, R=R" >0, (10)

x(0) = xo,

X=u,

where x € R” is the state vector, u € R" is the control input and
the mapping ¢(x, R) is to be determined. Given a continuously
differentiable function V(x) > 0 with V(0) =0, we arrive at
the optimal feedback controller,

1

u*(x,R) = —ER’IVXV, (11)

associated with the cost function given by Theorem II.1 as
1
q(x,R) = Z||VXVH12H.

Observe that, due to the trivial system dynamics, i.e., f(x) =
0, we can select any other control input matrix R’ > 0 with
L(x,R'), while assuring optimality of u*(x,R’) in (11).

B. Cost design for H.—control

We now turn our attention to the disturbed/robust optimal
control problem (1) by setting w # 0. We arrive to the
following result.

Proposition I1.2. Consider the robust optimal control prob-
lem (22) together with continuously differentiable function

V : R" — R<g associated with a controller u* in (3). Let
w*(x) = iSilé(x)VxV. Assume that,
VT (46T @0 +G W ) (2

<~ @IE+& w13,
and define
40,R,S) == VYT (f(0)+GT (0w () +G ()w (x))
(13)
— @I+ & I @3-

Then,

1) The optimal control u* is given by (3).
2) The robust optimal control problem (22) has the optimal
value V(xop).

Proof. For w =0, the optimal controller is given by (3). For
u =0, we determine the worst case disturbance w = w*, i.e.,
that maximizes the Hamiltonian function,

H(x,u,V,V) = max{L(x,u,w) + V] V(f(x) + G, (x)w)}.
w
This is achieved at w = w*, where

—2ESw* +G(x)V,V =0,



which in turn implies that,

1
W* (x) = ﬁ
Next, we plug in (3) into HJIE (2) and obtain,

S~IG(x)V,V. (14)

d(,R,S)+ VIV ( Fl) - %GT (x)RlG(x)VXV>

+VIVG' (x)w* (x) — Ellw* )|} = 0.

By letting w*(x) as in (14), we arrive at the function
q(x,R,S) in (13) and the HJIE in (2) is satisfied. The positive
definiteness of g(x, R, S) is guaranteed by (12). This shows that
V is a value function of the robust optimal control problem
(22). The optimal value is given by V(xp) and the proof is
standard. See e.g. [8, Thm 4.15].

O

Remark 2. We have the following observations:

o The system in closed-loop with (3) is finite-gain Ly—
stable with L, gain less than or equal to 2\/8.

o For a given value function V(x), the design matrices
R > 0 and S > 0 are tuning knobs that can be exploited
to penalize the control input and disturbance deviations
with the same V and any positive definite matrices R' and
S" with R <R, §' > S and L(-,R',S") in (1).

o If it holds that,

VIV(f(x)+G' (x)w*(x)) <0,

then, the origin is asymptotically stable for the worst case
disturbance w*(x) and V (x) is a Lyapunov function of the
unforced system. Thus, condition (12) is always satisfied
and q(x,R',S") in (17) is positive definite independently
of the choice of R' and S' and we can tune these design
matrices arbitrarily using the same fixed V.

We illustrate our approach using the following example.
Example 4 (Linear systems) Given the LTI system,

i¥=Ax+Bu+Bw, x(0)=x (15)

where B € R"™ is disturbance input matrix and w € R™ is
unknown additive disturbance. We define the cost function,

L(x,u,w,R,S) = |lxp+ llullz — E W[5, & >0.  (16)

Following Proposition I1.2, we select

O(R,S) = %PBR_IBTP— éPES‘IETP—PA —ATP. (17)
Given a positive definite matrix P, so that Q > 0, where Q is
given in (17). Then we can tune the design matrices S and R
by choice of positive definite matrices R’ and S’ with R'<R
and §'>S using the same matrix P with L(-,R’,S’) in (16).
Special case: Under the assumption that A is asymptotically
stable, given a positive definite solution P = K~ where,

1 _
AK+KAT+EBTS_IB <0,
then Q(R’,S’) > 0 as given in (17) and for any other positive

definite matrices R’ and §’, the control law (7) is optimal using
the same matrix P with L(-,R',S’) in (16).

III. APPLICATION
A. Optimal control of coupled oscillators

Consider a network of n—coupled oscillators whose i—th
oscillator dynamics are described by the following differential
equations.

9,':(0,‘, izl...n, (18)
M,'(D,' = —D,' w; — Z b,’j (sin(Gi/-) — sm(Gf;)) s
JEN;

with M; > 0 and D; > 0 and b;; > 0 denotes the coupling
strength between the oscillators i and j. Each oscillator is rep-
resented by its phase angle 6; € R and frequency @; € R. Let
o=[0,...,0,)",0=161,...,6,] and 6" =[6},...,0;]" be
the vector of the relative (to a nominal) oscillator frequencies,
oscillator angles and nominal steady state angles respectively.
Define 6;; = 6; — 6; and 9;} =0/ — 9;.‘. Let BB be the incidence
matrix of the underlying graph G.

Given a trajectory [0(t)",(t)"]T of (18), then [(6(t) +
al,)T,0()"]", @ € R is also a trajectory of the system
(18). To eliminate this rotational invariance, we consider the
following coordinate transformation,

5(r)=B"0(t) cR™. (19)

Let 6° be an induced steady state angle of (20) with steady
state frequency ®* =0, §° =B760* and §* = B'0* € R™ be
the nominal angle differences. Observe that local asymptotic
stability of [8°T,07]" is equivalent to local asymptotic con-
vergence of the solutions of (18) to [6°7,07]". See for e.g.
[12]. Next, we make the following assumption.

Assumption 1 ( [12]). Assume that the steady state vector
0% € R™ satisfies,

B E sin(0*) = B Esin(8*),
59"

Next, consider the following optimization problem,

m}ﬂ/jé]@@)@@)) +lus) [k =& Iws)l3 ds
st. 6=B"o+u,
M®=—-Dw—BE (sin(§) —sin(6*)) + w,
(6(0),0(0)) = (8o, @),

where M > 0 and D > 0 are diagonal matrices of inertia
and damping coefficients and the coupling strengths b;; > 0
are collected in the diagonal matrix Z = diag(b;;). Let &
be a positive constant and R = R" and S =S be positive
definite matrices, u = [u1,...,u,]" € R™ be the input and
w = [wi,...,w,] | €R" the disturbance vector. Furthermore,
consider the following function (see e.g. [12], [13]) given by,

for all 8° € Im(B")N(—

(20)

V(65 0) =3 0l 1] = (cos(8)  cos(5"))
— (6-8")" Zsin(8°). 1)

It is noteworthy that under Assumption 1, V(d — 8%, ®) in
(21) is locally (i.e., in a neighborhood Q of (8%,0)) positive
definite. Next, we have the following corollary.



Corollary IIL.1. Consider the optimal control problem (20)
under Assumption 1. The value function V(6—0°,®) given
by (21) satisfies the HIBE (2) together with the following
formulas for the cost functions.

1) For w=0, then

2 2
=R-1 E+ ||w||D

4(8,0,R) = sin(®) —sin(3"

2) For w#0, ifD—iS‘l > 0, then

1 .
q(8, ®,R,S) = ||sin(8) —sin(8") Erzt Hw||,23_i

Moreover, the optimal controller is uniquely given by

w(8.R) = —3 R E(sin(5) —sin(8).  (22)

Proof. The two statements follow directly from Theorem II.1
and Proposition II.2 with the Lyapunov function (21). To see
this, Lie derivative of V is given by

V(§-8",0)=—|o|} <o.

Under Assumption 1, the sub-level sets of V are bounded
in a neighborhood Q of [6°7,07]". By applying Lasalle’s
invariance principle [14], the trajectories of the dynamical
system (20) starting at Q converge to the set where @ =0,
which in turn implies that 6 = 8%, where 6* — 6 is a con-
stant angle vector. This establishes that [§*T,07]T is locally
asymptotically stable and V in (21) is a Lyapunov function
for the system dynamics (20), for all x € Q. For the second
statement, the condition D > éS‘l ensures that ¢(-,R,S) >0
as in Proposition I1.2. O

Note that the controller u*(5,R) in (22) is locally optimal,
i.e., valid in a neighborhood Q of [§*",07]" and distributed,
i.e., depends on the angle differences of the neighboring oscil-
lator angles and the functions g(-,R’) and g(-,R’,S’) remain
positive for any other positive definite matrices R, S’ > 0.

B. Simulations

We adopt the same setup as in [9] and consider a network of
three inverters with system dynamics (18). The parameters M;
and D; represent inertia and damping coefficients. The invert-
ers are connected by purely inductive transmission lines with
line susceptance b;; > 0 as shown in Figure 1. We test numer-
ically the derived optimal controller (22) for nominal (w = 0)
and disturbance attenuation (w # 0) settings. The disturbance
w=[wi,...,w,]" € R" models for e.g. DC-side generation
and AC side fluctuations [15]. For simplicity, we set all line
susceptances b;; to one per unit (p.u.). The parameters in (18)
are chosen uniformly with M; = M, = M3 = 0.01[s” /rad] and
Dy, =D; =D3 =0.1[s/rad].

Time-domain simulations of the open-loop angle differences
and frequencies of the three inverter system with the unforced
inverter system (i.e., u = 0) in (18) and the desired steady
state angle differences &* = [0,0,0]", starting at §(0) =
[0.02;0.015,0,0] show that &* = [0.0113,0.0113,—0.0113]
and thus satisfy Assumption 1. Moreover, the inverters fre-
quencies synchronize at ®* = 0.

s

92 = W2,
Mty = —Dywy — (P — Py)

91:0-/1,
Myin = —Dyw — (P — PY)

-

Madsz = —Dsws — (P — Py)

Fig. 1. Three inverter system with dynamics given in (18), where P =
Yjen; bijsin(6;;) and P =Y jc nr, bijsin(6;;) for i=1,2,3.

Next, we consider the optimal control problem (20) and
implement the control law (22) both for nominal (w = 0) and
disturbance attenuation (w # 0). We additionally verify the
optimal controller for two examples of the design matrix R;
and R;. Once in closed-loop with the optimal controller (22),
all frequencies synchronize at nominal with a decay towards
zero and improved transient behavior both for Ry = 0.1-1;
and Ry = 0.01- 15 in Figures 2 and 3 respectively. Compared
to the input matrix R;, the matrix R, penalizes less the input
variations and thus allows for more control input effort leading
to faster error decay rate. In the presence of non-zero, additive
and randomly generated disturbances w = [w3,w,w;] ", Figure
4 shows that the frequencies remain bounded, albeit non-
synchronized, which is in accordance with our theory. The
nominal and disturbed cost functions are decreasing towards
a value that is nearby zero.

IV. CONCLUSION

We studied the role of cost design for optimal feedback
control in satisfying HIBE or HJIE in theory and via examples
and an application to control of oscillatory systems. The
optimal control problem reduces to a decision on how to tune
the control gains, while the value function remains unchanged.
The optimal controller is thus comparable to a linear quadratic
regulator. It is in our future interest to investigate the ramifi-
cations of the proposed design method on the study of passive
systems and constrained optimal control problems.
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