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Course assignment is a wide-spread problem in education and beyond. Often students have preferences for

bundles of course seats or course schedules over the week, which need to be considered. The problem is

a challenging distributed scheduling task requiring decision support. First-Come First-Served (FCFS) is

simple and the most widely used assignment rule in practice, but it leads to inefficient outcomes and envy in

the allocation. Recent theoretical results suggest alternatives with attractive economic and computational

properties. Bundled Probabilistic Serial (BPS) is a randomized mechanism satisfying ordinal efficiency, envy-

freeness, and weak strategy-proofness. This mechanism also runs in polynomial time, which is important for

the large problem instances in the field. We report empirical results from a first implementation of BPS at the

Technical University of Munich, which allows us to provide important empirical metrics such as the size of the

resulting matching, the average rank, the profile, and the popularity of the assignments. These metrics were

central for the adoption of BPS. In particular, we compare these metrics to Random Serial Dictatorship with

bundle bids (BRSD). The BRSD mechanism is used to simulate the wide-spread First-Come First-Served

(FCFS) mechanism and it allows us to compare FCFS (BRSD) and BPS. While theoretically appealing,

preference elicitation is a major challenge when considering preferences over exponentially many packages. We

introduce tools to elicit preferences which reduce the number of parameters a student needs to a manageable

set. The approach together with BPS yields a computationally effective tool to solve course assignment

problems with thousands of students, and possibly provides an approach for other distributed scheduling

tasks in organizations.
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1. Introduction

Course assignment is arguably one of the most wide-spread assignment problems where money

cannot be used to allocate scarce resources. Such problems appear at most educational institutions.

Matching with preferences has received significant attention in the recent years. While simple

first-come first-served (FCFS) rules are still wide-spread, many organizations adopted matching

mechanisms such as the deferred acceptance algorithm (Gale and Shapley 1962, Diebold et al.
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2014) or course bidding (Sönmez and Ünver 2010, Krishna and Ünver 2008) to allocate scarce

course seats. Although many course assignment problems are similar to the widely studied school

choice problems with students private preferences for one out of many courses, other applications

differ significantly. In particular, students are often interested in schedules of courses across the

week. Assigning schedules of courses has been referred to as the combinatorial assignment problem

(CAP) (Budish 2011). Similar problems arise when siblings should be assigned to the same schools

in school choice (Abdulkadiroğlu et al. 2006), or couples in the context of the hospital residency

matching (Ashlagi et al. 2014). Overall, the CAP can be seen as a general form of a distributed

scheduling problem.

Although there is a huge body of literature on scheduling, the CAP is specific in a number of

ways. First, we can only elicit ordinal preferences and no money must exchange hands. Second,

students have private preferences over course schedules and we want to have mechanisms that

incentivize students to reveal these preferences truthfully. Third, apart from efficiency, fairness

of the allocation is an important concern in matching with preferences (Roth 1982). Fourth, the

allocation of course schedules is a computationally hard (NP-hard) problem and for the problem

sizes with hundreds of students an exact solution might not be tractable.

The need to assign course schedules rather than courses individually became apparent in an

application of matching with preferences at the Technical University of Munich that we will discuss.

The Department of Informatics is using the deferred acceptance algorithm for two-sided matching

problems and random serial dictatorship for one-sided matching problems. These algorithms are

used to assign seminars or practical courses, and every semester about 1500 students are being

matched centrally (Diebold et al. 2014). For seminars and practical courses students need to get

assigned one out of many courses offered per semester.

In the initial three semesters the situation is different. There are large courses with hundreds

of students (e.g. on linear algebra or algorithms). These courses include a lecture and small tutor

groups. Students need to attend one tutor group for three to four courses in each semester. These

tutor groups should not overlap and they should be adjacent to each other such that students do

not have a long commute for each of the tutor groups individually. For example, a student might

want to have two tutorials in the morning and one after lunch on a particular day to reduce his

commute time, and he would have a strong preference for this schedule over one where the tutorials

are scattered across the week. In any case, students have timely preferences over course schedules

that need to be considered, which makes it a combinatorial assignment problem. These problems

are wide-spread in academia.

A first and seminal approach to address this challenging problem, the approximate competitive

equilibrium from equal incomes mechanism (A-CEEI), was published by Budish (2011). In A-CEEI
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students report their complete preferences over schedules of courses, the mechanism assigns a bud-

get of fake money to each student that she can use to purchase packages (or schedules) of courses.

Then an optimization-based mechanism computes approximate competitive equilibrium prices, and

the student is allocated her most preferred bundle given the preferences, budgets, and prices. It is

well known that serial dictatorships are the only strategy-proof and efficient mechanisms for multi-

unit and also combinatorial assignment problems (Pápai 2001, Ehlers and Klaus 2003). A-CEEI is

relaxing design goals such as strategy-proofness and envy-freeness to approximate notions, which

makes it a remarkable and practical contribution to a fundamentally hard problem. The mechanism

has been shown to be approximately strategy-proof, approximately envy-free, and Pareto efficient.

Budish et al. (2017) reports the empirical results at the Wharton School of Business. In addition,

Budish and Kessler (2017) summarize the results of lab experiments.

The work was breaking new ground, but the A-CEEI mechanism is also challenging. First, it is

not guaranteed that a price vector and course allocation exists that satisfies all capacity constraints.

This is not surprising given that prices are linear and anonymous. Second, the problem of computing

the allocation problem in A-CEEI is PPAD-complete and the algorithms proposed might not scale

to larger problem sizes required in the field (Othman et al. 2016). Third, students might not be

able to rank-order an exponential set of bundles, which is a well-known problem (aka. missing

bids problem) in the literature on combinatorial auctions (with money) (Milgrom 2010, Bichler

et al. 2011, 2014). The latter is a general problem in CAP not restricted to A-CEEI, which we will

discuss in much more detail below.

Randomization can be a powerful tool in the design of algorithms, but also in the design of

economic mechanisms. Nguyen et al. (2016) recently provided two randomized mechanisms for one-

sided matching problems, one with cardinal and one with ordinal preferences for bundles of objects.

The mechanism for ordinal preferences is a generalization of probabilistic serial (Bogomolnaia and

Moulin 2001a), called Bundled Probabilistic Serial (BPS). Nguyen et al. (2016) show that this

randomized mechanism is ordinally efficient, envy-free, and weakly strategy-proof. These appealing

properties come at the expense of feasibility, but the constraint violations are limited by the

size of the packages. In course assignment problems the size of the packages is typically small

(e.g., packages with three to four tutor groups) compared to the capacity of the courses or tutor

groups (around 30 seats or more). There is no need for prices or budgets, and computationally the

mechanism runs in polynomial time, which is important for large instances of the course allocation

problem that can frequently be found. This makes BPS a practical approach to many problems

that appear in practice.
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1.1. Contributions

We report on a first large-scale field study of BPS and address important problems in the imple-

mentation of mechanisms for the combinatorial assignment problem that are beyond a purely

theoretical treatment. In particular, preference elicitation is a central concern in combinatorial

mechanisms with a fully expressive bid language and we provide a practical approach that addresses

the combinatorial explosion of possible packages for many applications. Theoretical contributions

of assignment mechanisms largely focus on envy-freeness and efficiency as primary design desider-

ata. We report properties of matchings such as their size, their average rank, the probability of

matching, the profile, and the popularity. These properties are of central importance for the choice

of mechanisms. For IS designers it is important to understand the trade-offs with other mechanism,

in particular with the wide-spread FCFS.

Implementing and testing new IS artifacts for coordination in organizations is challenging and we

are grateful for the possibility to run a large-scale field experiment at the Department of Informatics

of the Technical University of Munich (TUM). This is particularly true for a non-trivial mechanism

such as BPS, which involves advanced optimization and randomization. Yet, we can report on the

assignment of 1439 students in the summer term 2017 to 67 tutor groups for 4 classes and the

assignment of 1778 students in the winter term 2017/2018 to 66 tutor groups for 4 classes using

BPS.1 Based on this data the department has adopted the new mechanism for good.

For such a large application we could not elicit preferences of students for BPS and let them

participate in FCFS simultaneously. Instead we simulated FCFS via a version of Random Serial

Dictatorship that allows for bundles (BRSD), which is of independent interest as an assignment

mechanism. In our numerical experiments we simulated FCFS via a large number of random order

arrivals in BRSD using the preferences elicited in BPS and average across all of them. This approach

allows for a comparison between BPS and BRSD (FCFS) on equal footing.

FCFS only collects limited information about the preferences of participants, a single package

only. Mechanisms for the combinatorial assignment problem allow participants to specify prefer-

ences for all possible packages. However, a fully enumerative bid language requires participants to

submit preferences for an exponential set of packages which is impractical. Preference elicitation

and user interface design have long been a topic in IS research (Santos and Bariff 1988, Lee and

Benbasat 2011). We contribute an approach that is applicable in a wide array of CAP applications

where timely preferences matter. We elicit a small number of parameters about breaks and pre-

ferred times and days of the week. Together with some prior knowledge about student preferences

this allows us to score and rank-order all possible packages. Students could iteratively adapt the

1 Not all students submitted a non empty preference list. Therefore, we consider in our evaluation only 1415 students
in summer term and 1736 students in winter term.
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parameters and the ranking, which then served as an input for BPS. While such ranking algorithms

will differ among types of applications, adequate decision support that aids the ranking of expo-

nentially many packages is a crucial prerequisite to actually achieve the benefits of combinatorial

assignment in real-world applications.

In our empirical analysis, we show that BPS has many advantages over BRSD in all of the

properties introduced earlier. While the differences in these criteria are small, envy-freeness turns

out to be the most compelling advantage of BPS. The level of envy that we find in BRSD is

substantial in spite of the limited complementarities in student preferences, who are only interested

in packages with at most four tutor groups. This has to be traded off with the simplicity of

FCFS. Overall, we empirically test and illustrate theory that has been developed only recently. We

show that randomized matching mechanisms together with appropriate decision support tools are

a powerful new IS design recipe for daunting coordination problems in organizations. Thus, we

contribute to the traditional IS research stream in decision support and design science research,

but introduce new methods and applications (Banker and Kauffman 2004).

2. Combinatorial Assignment Problems

Let us now define the combinatorial assignment problem (CAP) in the context of course assignment

applications, desirable properties, and randomized mechanisms.

2.1. Assignment Problems

Assigning objects to agents with preferences but without money is a fundamental problem referred

to as assignment problem with preferences or one-sided matching with preferences. We will use the

term assignment or matching interchangeably. In course assignment, students express ordinal pref-

erences which need to be considered in the assignment. A one-sided one-to-many course assignment

problem consists of a finite set of n students (or agents) S and a finite set of m courses (or objects)

C with the maximum capacities q= (q1, q2, . . . , qm).

In the combinatorial assignment problem in the context of course allocation, every student i∈ S

has a complete and transitive preference relation �i∈ P over subsets (or bundles) of elements of

C. A preference profile �= (�1, · · · ,�n) ∈ P |S| is an n-tuple of preference relations. For most of

the paper we will assume strict preferences, but we discuss indifferences in the conclusions. We

can model the demand of the students with binary vectors b ∈ {0,1}m, where bj = 1 if course j

is included in b. We define the size of a bundle b with size(b) =
∑m

j=1 bj, the number of different

courses included in the bundle. Let B be the set of all feasible bundles b. Let xib be a binary

variable describing if bundle b is assigned to student i. Then we can model the demand and supply

as linear constraints. The supply constraints make sure that the capacity of the courses are not
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exceeded, and the demand constraints determine that each student can win at most one bundle.

∑
i∈I,b∈B

xibbj ≤ qj j ∈C (supply)∑
b∈B

xib ≤ 1 ∀i∈ S (demand)

xib ∈ {0,1} ∀i∈ S, b∈B (binary)

Courses in our application are actually tutor groups and each tutor group belongs to one of `

classes. Students in our application can only select bundles with at most one tutor group in each of

these classes. For example, a student might select a bundle with a course seat in a tutor group for

mathematics on Monday at 1 pm, and another tutor group in software engineering two hours later,

but no additional tutor group in mathematics or software engineering in this bundle. As a result,

the possible size of a bundle b is size(b)≤ `�m. The Web interface takes care that students only

submit valid bundles, which have at most one tutor group for each of the ` classes and a size less

than or equal to `.

A deterministic combinatorial assignment (deterministic matching) is a mapping M ⊂ S × B

of students S and bundles B of courses C. M describes the set of all deterministic matchings.

A matching is feasible if it is a feasible integer solution to the constraints demand and supply.

Random combinatorial assignments (random matchings) are related to fractional assignments with

0 ≤ xib ≤ 1 and random assignment mechanisms can be used to fractionally allocate bundles of

course seats to students.

For (non-combinatorial) assignment problems with single-unit demands the Birkhoff-von-

Neumann theorem (Birkhoff 1946, Von Neumann 1953) says that every fractional allocation can

be written as a unique probability distribution over feasible deterministic assignments. That is,

any random assignment can be implemented as a lottery over feasible deterministic assignments,

such that the expected outcome of this lottery equals the random assignment. One can describe a

random assignment as a bistochastic matrix, where pic is the probability that student i is assigned

to course c. The Birkhoff-von-Neumann theorem shows that such a bistochastic matrix can be

decomposed into a convex combination of permutation matrices, which describe feasible determin-

istic assignments. However, the Birkhoff-von-Neumann theorem fails when bundles of course seats

need to be assigned. Nguyen et al. (2016) generalize this result and show that any fractional solu-

tion respecting the demand and supply constraints can be implemented as a lottery over integral

allocations that violate the supply constraints only by at most `− 1 course seats.
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2.2. Design Desiderata

Efficiency, envy-freeness, and strategy-proofness are design desiderata of first-order importance

typically considered in the theoretical literature on deterministic assignment problems. For ran-

domized mechanisms one has to reconsider these design desiderata and we will briefly introduce

relevant definitions in this section. Stochastic dominance (SD) is the key concept among all of these

definitions as it provides a natural way to compare random assignments. Let ∆ describe the set

of all possible random matchings. With pi we refer to the assignment of student i in the random

matching p, and denote with pib the probability that student i gets allocated bundle b. We will omit

the subscript i when it is clear which student is meant. Given two random assignments p, q ∈∆,

student i SD-prefers p to q if, for every bundle b, the probability that p yields a bundle at least

as good as b is at least as large as the probability that q yields a bundle at least as good as b.

Definition 1 (SD-prefer). A student i ∈ S SD-prefers an assignment p ∈ ∆ over q ∈ ∆,

p�SDi q, if ∑
b′�ib

pib′ ≥
∑
b′�ib

qib′ ,∀b∈B (2)

In other words, a student i prefers the random assignment p to the random assignment q if pi

stochastically dominates qi. Note, that �SD is not a complete relation. That is there might be

assignments p and q, which are not comparable with this relation. First-order stochastic dominance

holds for all increasing utility functions and implies second-order stochastic dominance, which is

defined on increasing concave (risk-averse) utility functions. In other words, risk-averse expected-

utility maximizers prefer a second-order stochastically dominant gamble to a dominated one.

Nguyen et al. (2016) show that a lottery over allocations of bundles induces probability shares

over these bundles that satisfy demand and supply constraints. Thus a lottery coincides with

a fractional solution to both constraints. However, a fractional solution respecting demand and

supply does not need to have a lottery over deterministic assignments.

One desirable property of matchings is (Pareto) efficiency such that no student can be made

better off without making any other student worse off. A deterministic matching M is efficient

with respect to the students if there is no other feasible matching M ′ such that M ′(i)�iM(i) for

all students i∈ S and M ′(i)�iM(i) for some i∈ S. One can generalize this to random matchings

and lotteries:

Definition 2 (Efficiency). A random assignment p∈∆ is ex post efficient, if p can be imple-

mented into a lottery over Pareto efficient deterministic assignments. A random assignment p∈∆

is ordinally efficient, if there exists no random assignment q such that q stochastically dominates

p, i.e. @q ∈∆ : ∀i∈ S : q�SDi p and ∃i∈ S : q�SDi p.
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Ordinal efficiency comes from the Pareto ordering induced by the stochastic dominance relations

of individual students. It can be shown that ordinal efficiency implies ex post efficiency (Bogomol-

naia and Moulin 2001a).

Fairness is another important design goal. A basic notion of fairness for randomized assignments

is the equal treatment of equals, i.e. students with identical preferences receive identical (symmetric)

random allocations. Envy-freeness is stronger.

Definition 3 (Envy-Freeness). A random assignment p ∈ ∆ is (strongly) SD-envy-free, if

∀i, j ∈ S : pi �SDi pj. We call p weakly SD-envy-free, if @i, j ∈ S : pj �SDi pi.

SD-envy-freeness means that student i weakly SD-prefers the random matching she is faced with

to the random assignment offered to any other student, i.e., a student’s allocation stochastically

dominates the outcome of every other student. For weak SD-envy freeness it is only demanded

that no student’s allocation is stochastically dominated by the allocation of another student. SD-

envy-freeness implies equal treatment of equals.

A randomized assignment mechanism is a function ψ :P |S|→∆ that returns a random matching

p ∈∆. The mechanism ψ(�) = p is ordinally efficient if it produces ordinally efficient allocations.

In terms of fairness, one could aim for a matching where equals are treated equally. We call a

randomized matching mechanism ψ symmetric, if for every pair of students i and j with �i=�j
also pi = pj. This means that students who have the same preference profile also have the same

outcome in expectation. A randomized mechanism is envy-free if it always selects an envy-free

matching.

An important property of a mechanism is strategy-proofness. This means, that there is no incen-

tive for any student not to submit her truthful preferences, no matter which preferences the other

students report. A deterministic assignment mechanism χ is strategy-proof if for any �∈ P |S|

with i ∈ S and �′i∈ P we have χi(�) �i χi(�′i,�S\{i}). It has been shown that participants in

strategy-proof mechanisms such as the Vickrey auction do not necessarily bid truthfully in prac-

tice. Therefore, there was a recent discussion about obvious strategy-proofness of extensive form

games (Li 2017). Intuitively, a mechanism is obviously strategy-proof iff the optimality of truth-

telling can be deduced without contingent reasoning. Pycia and Troyan (2016) show that RSD

is a unique mechanism that is obviously strategy-proof, efficient, and symmetric in mechanisms

without transfers.

For randomized mechanisms we need to adapt the definitions. A random assignment mechanism

is (strongly) SD-strategy-proof if for every preference profile �, and for all i ∈ S and �′i we have

ψ(�i,�−i)�SDi ψ(�i′ ,�−i). A random assignment rule ψ is weakly SD-strategy-proof if for every

preference profile �, there exists no �′ for some student i∈ S such that ψ(�i′ ,�−i)�SDi ψ(�i,�−i).

That is, there may not be any student i, who strictly prefers ψ(�i′ ,�−i) over the truthful outcome,
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but there may be students i who neither prefer ψ(�i′ ,�−i) nor ψ(�i,�−i). This can happen as the

�SD-relation is not complete. We will omit the prefix SD for brevity in the following. Note that

there are also weaker notions of strategy-proofness for randomized mechanisms developed in the

field of probabilistic social choice that we do not consider in this article. These notions are based

on different ways of how to compare lotteries. Interested readers are referred to Brandt (2017).

In section 4.1 we introduce a number of additional design goals that often matter in the practice

and that we analyze empirically.

2.3. Assignment Mechanisms

A lot is known about assignment problems with single-unit demand. Random Serial Dictator-

ship (RSD) selects a permutation of the agents uniformly at random and then sequentially allows

agents to pick their favorite course among the remaining ones. Gibbard (1977) showed that random

dictatorship is the only anonymous and symmetric (in the sense of equal treatment of equals),

strongly SD-strategy-proof, and ex post efficient assignment rule when preferences are strict. Pycia

and Troyan (2016) prove that RSD is a unique mechanism that is obviously strategy-proof, effi-

cient, and symmetric in mechanisms without transfers. In line with this recent result, Ashlagi and

Gonczarowski (2015) show that stable matching mechanisms are not obviously strategy-proof.

However, RSD is not always ordinally efficient, only ex post efficient (Bogomolnaia and Moulin

2001b). Zhou (1990) actually showed that no random mechanism for assigning objects to agents

can satisfy strong notions of strategy-proofness, ordinal efficiency, and symmetry simultaneously

with more than three objects and agents. So, we also cannot hope for these properties in combi-

natorial assignment problems. RSD can also be applied to the combinatorial assignment problem.

The Bundled Random Serial Dictatorship (BRSD) orders the students randomly and assigns the

most preferred bundle which is still available to each student in this order. Although the package

preferences take some toll on the runtime it is still very fast.

First-come first-served (FCFS) can be seen as a serial dictatorship. Students login at a certain

registration and then reserve the most preferred bundle of courses that is still available. Although

the arrival process is not uniform at random, students have little control over who arrives first.

While there is a certain time when the registration starts, hundreds of students log in simultaneously

to get course seats and it is almost random who arrives first. We will simulate FCFS via BRSD

and run the algorithm repeatedly to get estimates for performance metrics of FCFS.

Probabilistic Serial (PS) (Bogomolnaia and Moulin 2001b) produces an envy-free assignment

with respect to the reported unit-demand preferences, and it is ordinally efficient, but it is only

weakly SD-strategy-proof. Bundled Probabilistic Serial (BPS) by Nguyen et al. (2016) is a gener-

alization of PS to the combinatorial assignment problem. BPS computes a fractional solution via a
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generalization of the PS mechanism. The BPS mechanism is also ordinally efficient, envy-free, and

weakly strategy-proof if preferences are strict, which we will discuss as an issue in the conclusions.

Informally, in BPS all agents eat their most preferred bundle in the time interval [0,1] simulta-

neously with the same speed as long as all included objects are available. As soon as one object is

exhausted, every bundle containing this object is deleted and the agents continue eating the next

available bundle in their preference list. The duration with which every bundle was eaten by an

agent specifies the probability for assigning this bundle to this agent.

Algorithm 1: Pseudocode of BPS.

Input: Preferences (�i)i∈S
t= 0

xib = 0, ∀i∈ S, b∈B

while t < 1 do
D= ∅

demj = 0, ∀j ∈C

forall i∈ S do choose first valid bundle b∈�i: D← b

forall b∈D do
forall j ∈ b do demj++

∆ =min
{
demj

qj
| j ∈C

}
t+ = ∆

∆∗ = ∆− (t−min {1, t})

forall i∈ S do xib+ = ∆∗

forall j ∈C do
qj−= ∆∗ · demj

if qj = 0 then ∀b∈B : j ∈ b : delete b

Output: Allocation x∗ = (xib)i∈S,b∈B

2.4. Implementing Random Assignments

Unfortunately, in contrast to the result of PS, the outcome of BPS is not implementable into a

lottery of deterministic matchings in general if ` > 1. To circumvent this, one can either scale

x∗ by a factor α ∈ [0,1] such that the decomposition becomes possible (Lavi and Swamy 2011)

or one allows for the relaxation of some constraints. Nguyen et al. (2016) present a mechanism

to decompose the BPS solution into a lottery over deterministic matchings, which over-allocate

each course by at most `− 1 seats, i.e. the demand constraints are fulfilled and only the supply

constraints are relaxed.
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In the polynomial time lottery algorithm (see Algorithm 3), we find at most d+1 integral points,

the convex hull of which is arbitrarily close to the fractional solution x∗, which we get from BPS.

The lottery algorithm then returns a lottery over these d+ 1 integral vectors, which is close to

x∗ in expectation. Variable d describes the dimensions of the problem. In this lottery algorithm,

we use a subroutine to return an integer point x̄ such that uτ x̄≥ uτx∗. This subroutine is called

iterative rounding algorithm (IRA) and proceeds as described in Algorithm 2.

Algorithm 2: Pseudocode of the iterative rounding algorithm.

1a: Delete all xi = 0, xi = 1, update the constraints and go to 1b.

1b:
If there is no xi ∈ {1,0} one can find at least one supply-constraint with∑

i∈S

∑
b:j∈b

bjdxibe ≤ qj + `− 1

Delete those constraints and go to 2.

2
Solve max{uτx | (demand), (supply), x∈R≥0}

if all xi ∈ {0,1} then return x

else go to 1a

Now, we can discuss the lottery algorithm (see Algorithm 3). Let B(x∗, δ) = {x | |x∗−x| ≤ δ} ⊆

{x ∈ R≥0 | (Demand)} with δ > 0. The parameter δ in B(x∗, δ) determines some space around x∗

such that the demand constraint
∑

b∈B xib ≤ 1 is not violated. It is always possible to determine

such a δ. If there is no slack in the demand constraints one has to scale down the fractional solution

x∗. Afterwards one has to adjust the allowed error ε such that after scaling and decomposition the

original ε is still fulfilled. Here, |x− y| describes the Euclidean distance between two vectors x and

y.

Figure 1 shows a graphical representation of one algorithm iteration. In each iteration the algo-

rithm decreases the distance between y and x∗ by adding a new integral solution to the solution set

Z and terminates when the distance between y and x∗ is smaller than ε. That is, we consider y as

a good approximation for x∗ and return the support of y. The algorithm tries to get x∗ covered by

the convex hull of Z (conv(Z)). All solutions in Z that are not part of the support of y, calculated

in the quadratic optimization problem (QOP) in step 2, are deleted (step 3). Thus, although we

add a new integral solution to Z in each iteration, the size of Z never grows above d+ 1, since as

long as y 6= x∗, y always has to be on a face of conv(Z). Hence, the support of y consists of at most

d solutions. Step 4 ensures that we search in the right direction for new integral solutions. As a
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Algorithm 3: Pseudocode of the lottery algorithm.

Input: Fractional solution x∗

1: Set Z = {IRA(x∗)}, i.e., find integer solution via IRA.

2:
y= argmin{|x∗− y| | y ∈ conv(Z)}

if |x∗− y|< ε then END

3: Choose Z ′ ⊂Z of size |Z ′| ≤ d and y ∈ conv(Z ′) : z = x∗+ δ x∗−y
|x∗−y|

4: Find optimal integral z′ s.t. (Demand),(Supply) and (x∗− y)τz′ ≥ (x∗− y)τz via IRA

5: Z =Z ′ ∪{z′} and go back to 2.

Output: Convex combination of final y

y
x∗z

z′

Z

conv(Z)

Figure 1 Graphical representation of one iteration of the lottery algorithm.

side product the QOP also calculates the coefficients λ(k) for the convex combination and we have

x∗ ≈ y=
∑|Z|

k=1 λ
(k)x(k), for x(k) ∈Z.

3. Preference Elicitation

This section focuses on the preference elicitation, which is important given the exponential set

of possible bundles students might be interested in. We first introduce the environment and the

problem for students, before we discuss different approaches to elicit their preferences.

3.1. Background on the Application

The Department of Informatics has been using stable matching mechanisms for the assignment

of students to courses since 2014 (Diebold and Bichler 2017, Diebold et al. 2014). The system

provides a web-based user interface and every semester almost 1500 students are being matched to

lab courses or seminars via the deferred acceptance algorithm for two-sided matching or random

serial dictatorship for one-sided matching problems.



Bichler, Merting, and Uzunoglu: Assigning Course Schedules
Article submitted to ; manuscript no. 0001 13

In the context of the study reported in this paper, the web-based software was extended with

BPS, the lottery mechanism for decomposing fractional solutions, and BRSD. 1439 Students in

computer science and information systems in their second semester participated in the matching

during the summer term 2017 and they could choose tutorial groups from several courses includ-

ing linear algebra, algorithms, software engineering, and operations research. A computer science

student could have preferences for up to 5760 (= 10 · 24 · 24) bundles2 and an information systems

student could have preferences for up to 5184 (= 9 · 24 · 24) bundles.3 During the winter term

2017/2018, 1778 computer science and information systems students in their third semester partic-

ipated in the matching and could choose bundles of tutor groups out of four classes. A computer

science student could have more than 700,000 different bundles.4

3.2. Automated Ranking of Packages

A naive approach would be to let the students rank bundles on their own by choosing the time slots

they want to have in their preference list. This would take a lot of time and lead to a substantial

missing bids problem. We developed an algorithm that allows to rank-order all possible packages

based on a few parameters that students need to specify. For this, we can leverage prior knowledge

about timely preferences of students for schedules of tutorials and lectures.

Students’ preferences mainly concern their commute and the possibility to free large contiguous

blocks of time (e.g., a day or a half-day) that they can plan for other activites (e.g., a part-time

job). In larger cities such as Munich, the time that students spend for commuting is significant.

Also long waiting times between courses are perceived as a waste of time as it is often hard for

them to work productively in several one- or two-hour breaks without appropriate office facilities

available. For example, if a student had a tutorial on linear algebra in the morning, a lunch break,

and then the tutorials for algorithms and software engineering in the afternoon of the same day

with the minimal time for breaks specified, this would be considered ideal. The desired length for

breaks between tutorials and for the lunch break are considered parameters with default values in

the preference elicitation.

Figure 2 shows the initial page where a student can select the courses of interest. On this page

students choose the lectures and tutorials they are interested in. The selected lectures will be

considered in the bundle generation as constraints, i.e. if a time slot of a tutorial overlaps with

the time of a selected lecture, then it will no longer be considered in order to allow students to

participate in the lecture. In a second step, the student marks available time ranges in a weekly

2 Consisting of the courses: linear algebra, algorithms, software engineering.

3 Consisting of the courses: operations research, algorithms, software engineering.

4 The computer science students need tutorials from all four classes (< 22 · 25 · 26 · 52).
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Figure 2 User Interface to Select Courses

schedule (see Figure 3). The day is partitioned into weekdays and time blocks of 30 minutes from

8:00 AM to 8:30 PM. If a tutorial is selected, all time slots of this tutorial will be highlighted with

a specific color. Thus, students learn when the tutorials and lectures of interest take place.

A student can set a minimal amount of time for a lunch break and a minimal amount of time

in-between two events (default value is 15 minutes). We also allow students to provide weights

{1, . . . ,5} for the different days. That is, the students can express preferences over the days.

The preferences elicited on this screen are input for an algorithm that uses prior knowledge about

student preferences to rank-order all possible packages. The algorithm first generates bundles that

satisfy all constraints and then ranks them. Finding the bundles that do not violate constraints

(e.g., lectures to be attended) of the students can be cast as a constraint satisfaction problem.

After the feasible bundles are generated, we rank these bundles. For this we assign a score to each

bundle that considers

• how many days a student needs to come to the university per week in total,

• the preference ordering over the days,

• the total time a student has to stay at the university each day, and

• the length of the lunch breaks between courses.

The score for a package b of courses across the week is the sum of the daily score (score(b, d))

for all weekdays d. The daily score is computed as
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Figure 3 The Week Schedule

score(b, day) =

(
w(b, day)

sp(b, day)
· f(sp(b, day)) + br(b, day)

)
· prio(day) (3)

This score is scaled between 0 and 27.5 at a maximum and it considers how well the day is utilized

with courses. Ideally, a student would have all his tutorials on a single day, his most preferred day,

have a 1-hour lunch break and a minimal time for breaks inbetween courses. This would yield 27.5

points.

The time spent at the university per day sp(b, day) is considered relative to the time a student

attends courses on that day (w(b, day)). These courses include tutorials and lectures. The ratio is

used to weigh the score for a day (f(sp(b, day))). This way a day where students do not spend more

time in breaks than the minimum number of minutes specified maximizes the score. The function
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f(·) assigns 1 point for up to 2 hours spent at the university on a day (sp(b, day)≤ 2), 2 points for

up to 4 hours, 6 points for up to 3 hours, 4 points for up to 8 hours, but only 2 points for days

where a student is between 8 and 10 hours at the university. Longer schedules are not permitted.

A second component in the daily score (score(b, d)) is the lunch break. A 1-hour break was

considered best. The scoring function br(·) would assign 0 points for lunch breaks less than 30

minutes, 1 point for 30-45 minutes, 1.5 points for 45-60 minutes, 2 points for 60-75 minutes, and

again a low number of points for longer breaks. Students could also exclude schedules with a break

less than a certain time, say 30 minutes.

If the student does not have to visit the university at day d, he gets a fixed score of 30 for day

d. The daily scores are then multiplied by the priority of the day [1..5]. The overall score of a

bundle b is the sum of the score(b, d) for all weekdays. As a result of this scoring rule, the more

days the student can stay at home, the higher is the score of this bundle. As a simplified example,

if a student had to come to the university on three different days to attend one course only, this

bundle would get a score of less than 25, while if he could attend all courses on a single day with

minimal breaks, this will get an overall score of more than 80 (for these three days).

In other words, the scoring rule will place bundles, that use a minimal number of days (ideally

the most preferred days) with only a few breaks but a one hour lunch break on top of the preference

list. This would minimize the commute time and maximize the contiguous time a student can

devote to learning or work. If the breaks between courses grow larger or courses take place on

different or more days, this decreases the score. Ties are not impossible but almost never occur

such that the algorithm typically generates a strict ranking of the feasible packages.

Even if it is a fair assumption that students have quite homogeneous preference structures, there

might be some special cases we cannot cover with such a scoring rule. Therefore we give the students

the possibility to adjust the outcome of this scoring procedure. On the ranking page, we display

the 30 top rated pre-ranked bundles and the students can adapt this ranking manually, go back

to the previous screen and adapt the input parameters, or just accept the ranking with a single

click (see Figure 4). Note that ≈ 90% of the students received one of their top ten ranked packages

and only a few students received a package with a rank less than 30. So, if a student inspects and

confirms the ranking of the first 10-30 packages, this covers the most important quantile of the

overall ranking list. We generated a ranking over 200 bundles for each student in advance based

on the pre-specified parameters and further preferences only if necessary.

So far, we described the user interface for the winter term 2017/18. The user interface in the

summer term 2017 required students to explicitly drag and drop the pre-ranked packages on a

screen. This was considered tedious such that in the winter term the generated ranking was sug-

gested to students right away without any drag-and-drop activies required and could be confirmed
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Figure 4 Page with top-ranked packages

without much effort. The main web page and the main steps a student had to take are summarized

in Figure 5.

3.3. Challenges of Course-Level Scoring

Ranking an exponential set of packages is a general issue in course assignment problems, and

one might ask if alternative methods are available. Budish et al. (2017) describes the preference

elicitation used at the Wharton School of Business. Students could report cardinal item values on

a scale of 1 to 100 for any course they were interested in taking. In addition, they could report

adjustments for pairs of courses, which assigned an additional value to schedules that had both

course sections together. Courses were then scored and transformed into an ordinal ranking over

feasible schedules. The authors argue that they felt that “adding more ways to express non-additive

preferences would make the language too complicated.” Wharton also provided a decision support

tool listing the 10 most-preferred bundles, which allowed students to inspect top-ranked schedules

and modify the cardinal values.

Two problems make this method challenging to apply. First, the ranking is sensitive to minor

changes in the weights, which is a well-known issue in multi-criteria decision making with additive

value functions. Evaluation is characterized by a substantial degree of random error, and the

amount of error tends to increase as the decision maker attempts to consider an increasing number
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Figure 5 Process to rank-order packages

of attributes (or courses in our case) (Bowman 1963, Fischer 1972). Difficulties in the calibration

of scores for each course can lead to substantial differences in the resulting ranking.

Second, and more importantly, significant non-linearities arise due to the timely preferences of

students in the assignment of tutorials, making it impossible to describe the preferences via a course-

level utility function as proposed by Budish et al. (2017). Even if three tutorials get a high number

of points, this does not mean that their combination is preferable by a student as these tutorials
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might be on different days or have long breaks inbetween. To see this, we translated the ranking

of packages into a set of inequalities with weights (w) as variables. Following revealed preference

theory (Mas-Colell et al. 1995), we use these inequalities to understand whether there is any set

of weights that would allow to describe the ranking using a utility function
∑
i∈C

biwi +
∑
i,j∈C
j>i

bibjwij.

The function r(b) describes the rank of a bundle, while b is a binary parameter vector with each

component bi ∈ {0,1} showing whether a course i ∈ C is part of a package or not. The objective

function minimizes the sum of error variables ε in REV. If there is any set of weights that could

reflect the ranking of packages in our experiments without these error variables, the resulting

optimal objective value would be zero. For every violation of a constraint one has to increase the

respective error variable to a positive value.

Min
s.t.

err(ε) =
∑
b∈B

εb +
∑
i,j∈C
j>i

εij (REV)∑
i∈C

biwi +
∑
i,j∈C
j>i

bibjwij + εb ≥
∑
i∈C

b′iwi +
∑
i,j∈C
j>i

b′ib
′
jwij ∀b, b′ : r(b′) = r(b) + 1

wi +wj +wij + εij ≥ 0 ∀i, j ∈C, j > i
wi ∈ [0,1] ∀i∈C
wij ≥ −2 ∀i, j ∈C, j > i

εb, εij ≥ 0 ∀i, j ∈C, j > i, b∈B
We solved the linear program for a large number of student preferences and in our environment,

and none of the problems was feasible. We report results for a sample of students in Appendix

B. We had preferences ranking 4000 to 12000 bundles for the courses of the winter term. None of

these settings could be solved with objective value zero, that is, the generated preference lists are

not representable with a linear model with adjustment-terms used by Budish et al. (2017). Even

if it was possible to find such a vector of course-level weights, it would probably be very difficult

to parametrize by students. The way Budish et al. (2017) elicit preferences might be sufficient for

settings, where students only are interested in a very small subset of groups of the courses. However,

assuming that students are able to adjust weights for up to 50 groups per course is utopian.

Eliciting preferences for hundreds of packages is a challenging problem, but the quality of any

mechanism for CAP depends crucially on this input. There will be differences in the type of decision

support one can provide in various types of applications. However, it is typically important that

the timely preferences for students are captured.

4. Results

In Section 2.2 we have summarized first-order design goals for assignment problems: strategy-

proofness, fairness, and efficiency. Now we introduce second-order design goals and respective

metrics allowing us to compare the assignments of BPS and FCFS empirically. Then we provide

numeric results and summarize the outcomes of a survey we conducted after the matching.
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4.1. Metrics

Apart from efficiency, fairness, and strategy-proofness, popularity was raised as a design goal. An

assignment is called popular if there is no other assignment that is preferred by a majority of the

agents. Popular deterministic assignments might not always exist, but popular random assignments

exist and can be computed in polynomial time (Kavitha et al. 2011). However, Brandt et al.

(2017) prove that popularity is incompatible with very weak notions of strategy-proofness and

envy-freeness, but it is interesting to understand the popularity of BPS vs. BRSD. In our empirical

evaluation we analyze whether BPS or FCFS are more popular. To measure popularity we first

define the function φi(b, b
′) :B×B→{±1,0} associated with the preference relations:

φi(b, b
′) =


+1 if b�i b′

−1 if b′ �i b
0 else

(4)

Definition 4 (Popularity). A random assignment p∈∆ is more popular than an assignment

q, denoted pI q, if pop(p, q)> 0 with

pop(p, q) =
∑
i∈S

∑
b,b′∈B

pib · qib′ ·φi(b, b′) (5)

A random assignment p is popular, if @q ∈∆ : qI p.

Apart from popularity, the size and the average or median rank are of interest. The size of a

matching simply describes the number of matched agents. The average rank is only meaningful

in combination with the size of the matching, because a smaller matching could easily have a

smaller average rank. We report the average rank, because it has been used as a metric to gauge

the difference in welfare of matching algorithms in Budish et al. (2017) and Abdulkadiroğlu et al.

(2009), two of the few experimental papers on matching mechanisms.

The profile contains more information as it compares how many students were (fractionally)

assigned to their first choice, how many to their second choice, and so on. The profile of two

matchings is not straightforward to compare. We want to compare multiple profiles based on a

single metric, and decided to use a metric similar to the Area under the Curve of a Receiver

Operating Characteristic in signal processing (Hanley and McNeil 1982) which was already used by

Diebold and Bichler (2017). The Area Under the Profile Curve Ratio (AUPCR) is the ratio of the

Area Under the Profile Curve (AUPC) and the total area (TA) and is scaled between 0 and 100%,

where the AUPC describes the integral below the profile curve. The AUPCR up to a specific rank

n is equal to the probability that a matching mechanism will match a randomly chosen student

higher than his n-th preference.
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Definition 5 (AUPCR (Diebold and Bichler 2017)). Let C be the possible courses with

c ∈ C and Q be the sum of all capacities, regarding the students i ∈ S the AUPCR is defined as

follows:

TA (M) = |C| ·min { |S| ,Q}

AUPC (M) =

|C|∑
r=1

|{(i, c)∈M | rank (i, c)≤ r}|

AUPCR (M) =
AUPC (M)

TA (M)

For the allocation of bundles we have to rewrite the definition of the AUPCR.

Lemma 1 (AUPCR). With R denoting the number of possible ranks and b ∈B, the AUPCR

can be rewritten as:

AUPCR (M) =
1

R

R∑
r=1

|{(i, b)∈M | rank (i, b)≤ r}|
|S|

Appendix A provides a proof. We have already introduced stochastic orders in Section 2.2. We

use second order stochastic dominance to compare two rankings (Levy 1992).

4.2. Empirical Results

The first application from the summer term 2017 comprised 1415 students and 67 courses (see

Table 2). Overall, we had a list of 5847 different bundles for the summer term. We simulated FCFS

via BRSD on the preferences collected for the BPS. BPS is weakly strategy-proof and in such a

large application it is fair to assume that students do not have sufficient information about the

preferences of others. In the survey, we will see that a small proportion of the students reported

that they deviated from truthful bidding and did not report some of their preferred time slots.

However, taking the preferences for bundles of tutor groups elicited for the BPS allows for a

comparison with BRSD. To compare the result of BPS and BRSD we actually would have to run

the BRSD for all permutations of the students. Note that computing probabilities of alternatives

in RSD explicitly is #P -complete (Aziz et al. 2013). We ran BRSD 1000 to 1,000,000 times with

the same preferences but random permutations of the order of students and derived estimates for

the different metrics. Since these results are very close, one can assume, that 1Mio runs of BRSD

generate a good approximation to the (real) induced random matching.
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4.2.1. Popularity For the data from the summer and the winter term, BPS is more popular

than BRSD(1000000). 636 students prefer BPS to FCFS, while 96 students prefer FCFS to BPS.

683 students are indifferent (see Table 1). A positive popularity score as described in Definition

4 means, that BPS is more popular than the BRSD outcome and the score for BPS is 2.74 for

the summer term and 3.41 for the winter term (compared to BRSD(1000000)). For the data from

the winter term 754 students prefer BPS to FCFS, while 120 students prefer FCFS to BPS. 862

students are indifferent (see Table 1). Table 1 summarizes popularity and stochastic dominance

for the summer and the winter term. The syntax for the SD-preference is the number of students

preferring (BPS|BRSD(x)). It shows that BPS is preferable to BRSD according to SD-preference.

Metric BRSD(1000000)
popularity summer 2.73635
popularity winter 3.41499
SD-prefer summer (636|96)
SD-prefer winter (754|120)

Table 1 Popularity and stochastic dominance of BPS vs. BRSD

4.2.2. Rank and Size Table 2 reports that in terms of average rank, average size, and the

probability of being matched to one of the first 100 ranks BPS achieves higher scores in the summer

term. Only the AUPCR for BRSD(1000000) is slightly better than for BPS. The computation

times were negligible for BRSD (0.007 seconds per run). BPS required 0.12 seconds computation

time with additional 6 minutes for the lottery algorithm in the summer term. This shows that BPS

is a practical technique even for large assignment problems.

Metric BPS BRSD(1000000)
exp. rank 2.20163 2.20835
exp. size 1086.58 1085.79

prob. match (top 100) 0.767901 0.767345
AUPCR 0.747419 0.750782

weak envy 0 381
strong envy 0 1064

Table 2 Summary statistics for the summer term 2017.

In the BPS outcome 72.735% of the students receive an assignment ranked in their top ten

while in BRSD 72.637% receive such an outcome (see Table 3 for BPS and 4 for BRSD w. 1 mio.

permutations of the students). Table 3 reports the probability of being matched to a particular

rank and the AUPC in percentage for BPS, and Table 4 shows the rank profile for BRSD.
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Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 54.174 5.691 4.542 2.025 1.506 0.935 1.167 0.940 1.141 0.613
AUPC in (%) 54.174 59.865 64.407 66.432 67.938 68.874 70.041 70.981 72.122 72.735

Table 3 Rank profiles for BPS in summer term 2017.

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 53.973 5.725 4.538 2.053 1.529 0.931 1.181 0.948 1.150 0.610
AUPC in (%) 53.973 59.697 64.236 66.289 67.818 68.748 69.929 70.877 72.027 72.637

Table 4 Rank profile BRSD(1000000) in summer term 2017.

The second application in the winter term included 1736 students and 66 courses. Overall, we

had a list of 20,845 different bundles for the winter term. Again, BPS achieved better results than

BRSD in all metrics (see Table 5).

In the BPS outcome 89.047% of the students receive an assignment ranked in their top ten

while in BRSD 88.891% receive such an outcome (see Table 6 for BPS and 7 for BRSD with 1

mio. permultations of the students). The computation times were again very low. BPS required

0.382 seconds, but the lottery algorithm around 30 minutes due to the higher number of bundles

generated in the winter term.

Metric BPS BRSD(1000000)
exp rank 1.97372 1.97873
exp size 1603.01 1600.84

prob match (top 100) 0.922253 0.922142
AUPCR 0.889512 0.888058

weak envy 0 451
strong envy 0 1202

Table 5 Summary statistics for the winter term 2017/2018.

4.2.3. Envy Our experiments in the summer and the winter term confirm the theoretical

result that BPS is (strongly) envy-free. BRSD is neither weakly nor strongly envy-free. In the

summer term, 1064 students do not fulfill the envy-freeness condition (see Definition 3), from which

381 students do not even fulfill the weak envy-freeness condition (see BRSD(1000000) in Table 2).

Similarly, for the winter term 1202 students do not SD-prefer their outcome over the outcomes

of every other student, and 451 of those students even prefer an outcome of another student (see

BRSD(1000000) in Table 5).

Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 73.596 7.083 3.392 1.660 1.041 0.698 0.465 0.447 0.366 0.299
AUPC in (%) 73.596 80.678 84.070 85.730 86.772 87.470 87.935 88.381 88.747 89.047

Table 6 Rank profiles for BPS in winter term 2017/2018.
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Rank 1 2 3 4 5 6 7 8 9 10
Prob match(%) 73.452 7.046 3.382 1.673 1.040 0.704 0.486 0.443 0.358 0.307
AUPC in (%) 73.452 80.497 83.879 85.553 86.593 87.297 87.783 88.226 88.584 88.891

Table 7 Rank profile BRSD(1000000) in winter term 2017/2018

4.3. The Lottery of the Summer Term Instance

We already have discussed, that we still have to decompose the solution of BPS into a lottery

over integral solutions, to choose a deterministic allocation. This subsection presents exemplary

with the Data from summer term 2017, how such a lottery is structured, and how significant the

problem of overallocation is in practice.

Figure 6 The lottery: Probabilities (λ) and size of the different deterministic matchings returned by Algorithm

3.

Figure 6 shows the lottery resulting from decomposing the BPS solution described in 2 into a

lottery over approximative feasible integral solutions via Algorithm 3. We see that most solutions

are close to the fractional solution in terms of number of allocated students (remember: the size of

the BPS solution is 1086.58).

One interesting question is how the solutions with a bigger size differ from the matchings with a

lower number of allocated students. We computed the average ranks of the deterministic solutions

and compared them with the size of the particular matchings. Figure 7 shows the distribution of
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Figure 7 Average rank vs. size of the matchings in the lottery.

the different matchings in the lottery with respect to size and average rank. In the first fourth

of the x-axis (the size of the matching) the variance is high for the average rank but the pattern

gets clearer for a size higher than 1150 – there is a trade-off between size of the matching and the

average rank of the allocated students.

In section 2.3 and 2.4 we already discussed that the capacity constraints of the courses might be

violated. In the reported instance, `= 4. Hence, the worst case violation of these constraints is 3.

For the computation, we run the lottery with ε= 2.0. Let ex(k),L be the number of goods that

experienced a supply violation by L units in the (integral) solution x(k), λ(k) the probability of

matching x(k) and

EL(Z) =
∑
x(k)∈Z

λ(k) · ex(k),L

shows us how often an over allocation of exact L seats occurs in the set of the lottery Z on average.

With the settings mentioned above we receive:

• E1(X) = 5.36

• E2(X) = 0.64

• E3(X) = 0.07

We see that an over allocation by 3 seats rarely happens. Even a violation of 2 seats occurs on

average only in 0.64 of the 67 time courses. An over allocation of 1 seat occurs on average in 5.36
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courses. In the actual application this overallocation did not even require special procedures and

course organizers could typically accommodate one or two more students without problems.

The violations also barely change for results with ε= 1.0:

• E1(X) = 5.23

• E2(X) = 0.9

• E3(X) = 0.06

We informed the course organizer before the matching, that small violations of the capacities are

possible and no one had a problem with that. If the capacities of some courses were tight, on could

solve the problem, by defining a smaller capacity for those courses. Theoretically one had to reduce

the capacity by `− 1 (3 in our case). However, our empirical results suggest, that a reduction of

one seat should be sufficient, to ensure a feasible allocation with a high probability. The reduction

of the capacities; however, come of cost of a lower efficiency of the matching in general.

4.4. Survey Results

After the students were assigned to the tutor groups and the courses started, we conducted a

survey among the students using a 5-point Likert scale (1 = strongly agree, 2 = agree, 5 = strongly

disagree). 169 students out of 1736 students participated in the survey in the winter term and we

report their responses in Table 8. Note that the students were exposed to FCFS in other semesters

and now participated in BPS, which allowed them to compare both mechanisms.

Students neither had to participate and we made clear that the feedback was used for research

purposes only. The responses indicate that the majority of the students responding found the

system easy to use and that they could express their preferences well. More than 50% agreed (2) or

strongly agreed (1) to questions 1 to 6. A majority also considers the system as fair (question 7),

but almost 22% of the respondents also disagreed to this statement. Note that students might have

had an understanding of fairness that is different from envy-freeness or equal treatment of equals.

For example, some students felt that in FCFS they could improve their assignment by making sure

that they are among the first to register. This was perceived as fair as the additional effort would

lead to higher chances of getting their best allocation as compared to those students who do not

care about the assignment as much.

62.1% of the respondents were satisfied with the outcome (agreed or strongly agreed), while

28.4% were not. It is unclear how those students who did not respond perceived the outcome, but

there is a tendency that students, who are unhappy with the outcome, rather respond than students

who got a high ranked bundle. Hence, the sample of students who respond might be slightly biased

towards unsatisfaction. The ranking and profile information reported earlier provides alternative

information about satisfaction of students with the outcome.
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Question 1 2 3 4 5
1 I had no problems to select my time ranges in the weekly schedule 34.9 34.9 11.8 9.5 8.9
2 The ranking of the generated sets of time slots was easy 26.6 26.6 18.9 14.8 13.0
3 The instructions on the matching system were sufficient 25.4 37.3 18.3 10.1 8.9
4 The generated sets of tutorial groups met my expectations 37.9 27.8 10.1 9.5 14.8
5 I was able to express my preferences on sets of tutor groups well 42.6 24.9 13.6 7.7 11.2
6 I consider the way bundles are allocated through the matching system as fair 32.5 27.2 18.3 5.9 16.0
7 I am satisfied with the matching outcome 45.0 17.0 9.5 6.5 21.9
8 I felt like I had control over my schedule 29.0 18.9 13.0 17.2 21.9
9 I was expressing my preferences truthfully 72.4 13.4 4.2 3.6 6.5

10 I was strategically hiding some of my most preferred time slots 5.3 4.7 8.3 13.6 68.0
11 I was strategically hiding some of my least preferred time slots 16.0 12.4 16.0 12.4 43.2

Table 8 Survey results, values in %

85.8% of the respondents reported that they were expressing their preferences truthfully in BPS

(agreed or strongly agreed), while around 10.1% did not (disagreed or strongly disagreed). 10.1%

were also indicating that they were hiding some of their most preferred time slots, while even 28.4%

agreed or strongly agreed to the statement that they were hiding some of their least preferred time

slots. This high percentage needs to be seen in conjunction with the exponentially large set of

possible packages. If a student provides many possible time slots, then the list of packages grows

very large. Therefore, there might have been a tendency to narrow down the selection of acceptable

time slots, i.e. not rank the least preferred time slots.

Still, the fact that a significant part of the students indicate that they did not report preferences

truthfully is a tangible difference to FCFS. In FCFS, students only provide their single best package

at the point in time, when they log in. This is simple, intuitive, and obviously strategy-proof. This

property has to be traded off against the level of envy in BPS.

In a final question students were asked whether they prefer FCFS or BPS: 106 students (62,7%)

preferred BPS, while 63 (37.3%) preferred FCFS. To understand the concerns of those students

who preferred FCFS, it is useful to look at the written comments. Some students who provided

comments were unhappy with the outcome, others were unhappy about the effort to rank-order

their packages.

4.5. Discussion of Differences

The results from our field experiments and the survey reveal a number of interesting insights.

Overall, BPS dominates BRSD on all metrics from our empirical evaluation in both field studies.

It has a better average rank, a higher average size and a higher probability of matching, and it

does not exhibit envy. However, the differences in average rank, average size, and the profile curve

(AUPCR) are small, which is interesting given the fact that only a small number of preferences

per student are considered via FCFS.

There are a number of reasons that help explain the close performance of BPS and FCFS in

these metrics. First, Che and Kojima (2010) find that random serial dictatorship and probabilistic
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serial become equivalent when the market becomes large, i.e. the random assignments in these

mechanisms converge to each other as the number of copies of each object type grows, and the

inefficiency of RSD becomes small. Our empirical results suggest that differences might also be

small in large combinatorial assignment markets with limited complementarities.

Second, ordinal preferences do not allow to express the intensity of preferences. Suppose there

are two students who both prefer course c1 to c2, each having one course seat only. No matter who

gets course c1, the average rank and size of the matching as well as the profile will be the same even

though one student might desperately want to attend c1, while the second student only has a mild

preference for c1. Without cardinal information about the intensity of a preference the differences

in aggregate metrics can be small.

Third, an earlier comparison of FCFS with a deferred acceptance algorithm by Diebold et al.

(2014) also showed that FCFS yielded surprisingly good results. While the average rank of FCFS

was worse, the size of the matching resulting from FCFS was significantly larger compared to that

from the deferred acceptance algorithm. For the combinatorial assignment problem, BPS actually

had a larger average size than FCFS in both studies. For applications of matching in practice it is

important to understand these trade-offs.

5. Conclusions

We report two large field studies and show that BPS performs well on a number of additional

criteria including average rank, average size, probability of a matching among the first 100 ranks,

and the overall profile of ranks (in terms of AUPC of a specific rank) assuming a complete, truthful,

and strict ranking of all packages. The matching based on BPS is also more popular than BRSD

based on the preferences submitted for BPS. The level of envy in FCFS is significant, even though

the size of the packages that can be submitted is limited to the number of classes (three to four

groups per package).

The assignment of tutor groups is specific as preferences are mainly about times of the week.

The preferred time slots in a week are different from student to student. However, the way how

tutor groups should be ordered within these time slots (e.g., time for breaks) can be described with

a few parameters such that it was possible to generate packages according to a score. The feedback

of students was that this automated ranking met their preferences well and we argue that this

is a good way to address the missing bids problem in similar applications. In other applications,

generating good bundles might not be as straightforward and this will have an impact on efficiency.

Compact and domain-specific bid languages have been discussed in the auction literature (Bichler

et al. 2011), and they could also be a possibility to allow mechanisms without transfers circumvent

the missing bids problem.
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The paper highlights basic trade-offs in market design without money: FCFS can be seen as

a version of serial dictatorship which is ex post efficient, and obviously strategy-proof and treats

students equally. It is also transparent and simple to implement and understand for students. BPS

is a new randomized mechanism that is only weakly strategy-proof, but envy-free, and ordinally

efficient, which is stronger than ex-post efficiency assuming strict preferences. Note that these

properties hinge on the availability of strict preferences over all, exponentially many, bundles.

Even if the missing bids problem can be addressed, two important problems remain: First, in

contrast to FCFS the BPS mechanism is not obviously strategy-proof and a part of the students in

the survey already indicated that they either hid their most preferred or least preferred time slots

strategically.5 Second, the assumption of strict preferences is strong in the presence of exponentially

many bundles. Unfortunately, extending PS or BPS to preferences with ties is not without loss.

On the one hand, Katta and Sethuraman (2006) extended PS to preferences with indifferences

and showed that it is not possible for any mechanism to find an envy-free, ordinally efficient

assignment that satisfies even weak strategy-proofness as in the strict preference domain. On

the other hand, with indifferences and random tie breaking efficiency cannot be guaranteed. Our

preference elicitation technique generated a strict and complete ranking of course bundles based

on a few input parameters and is one way to address these issues.

The key difference between BPS and FCFS is the absence of envy. The level of envy in FCFS

is significant. Note that it might be even more pronounced if students were allowed to pick larger

packages. Envy-freeness or stability has been raised as one of the arguments why the Gale-Shapley

mechanism for simple assignment problems where agents have unit-demand (i.e. demand for only

one course seat) is so successful in practice (Roth 2002). If the market outcome is unstable, there

is an agent or apir of agents who have the incentive to circumvent the match. We argue that this

property is as important for the assignment of course schedules. So, it envy-freeness matters, the

elegant BPS mechanism has a number of attractive economic properties and is computationally

tractable.
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Bogomolnaia, Anna, Hervé Moulin. 2001a. A new solution to the random assignment problem. Journal of

Economic theory 100(2) 295–328.
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student 1 student 2 student 3 student 4
min lunch time 45 min 0 min
time ranges 8am to 6pm 10am to 6pm
feasible days (score) Mo(2), Tu(4), We(5), Th(4), Fr(1) Tu(5), We(5), Th(2) Mo(5), Tu(3), We(5), Th(3) Mo(5), Tu(5), We(5), Th(2), Fr(1)
# of bundles 8503 4120 4425 12370
err(ε) ≈ 0.005 ≈ 0.004 ≈ 0.004 ≈ 0.005

Table 9 Parameters of the REV on the data for the winter term.

Appendix A: Proof

S ince students are interested in seats in more than one course, the sum of capacities of all

selectable courses (tutor groups) is significantly higher than the number of participating students, therefore

min {Q, |S| }= |S|

For matching problems with single unit demand, the number of possible ranks equals the number of

courses, i.e. |C|=R. That is, we can rewrite TA(M) =R · |S|. Since the students do not rank single courses

but bundles of courses, we have to replace c∈C by b∈B. We use this to get our conclusion:

AUPCR (M) =
AUPC (M)

TA (M)
=

∑R

r=1 |{(i, b)∈M | rank (i, b)≤ r}|
R|S|

=
1

R

R∑
r=1

|{(i, b)∈M | rank (i, b)≤ r}|
|S|

Appendix B: Sample Preferences in REV

It is interesting to understand whether a simple course-level scoring rule as used in Budish et al. (2017) is

expressive enough to describe the preference profiles with timely preferences in course assignment. Table 9

shows the parameters, the number of generated bundles as well as the respective objective function value

of REV for the different sample preferences. None of the preference profiles we tested allowed for a feasible

solution in REV.
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