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Background: Different stand-alone cerclage configurations and their optimal twisting techniques have 

been investigated over the years. This study tests for the stabilizing effect of different supplemental cer- 

clage materials in combination with locked plating of distal tibia fractures. 

Methods: Locking plate fixation of a distal tibial spiral fracture was tested as stand-alone and with sup- 

plemental cerclage materials (one cable, two cables, wire, fiber tape). Construct stiffness and fracture gap 

movements were investigated under quasi-static and dynamic loads and compared to the stand-alone 

locking plate. 

Results: With each of the tested cerclages, stiffness was significantly higher than for a solitary plate 

osteosynthesis. Most reduction in fracture gap movement was achieved by cable cerclages, followed by 

double-looped wire and double-looped fiber tape cerclages. Under dynamic loading an additional cable 

cerclage reduces excessive gap movement. 

Conclusion: Compared to solitary plate osteosynthesis all supplemental cerclage materials were generally 

superior with reduced fracture gap movements whereas cable cerclages showing the greatest stabilizing 

effect. 

© 2021 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ntroduction 

Cerclage wires have long been used for the fixation of diaphy- 

eal fractures, either alone or in combination with other fixation 

ethods [ 1 , 2 ]. Due to large mechanical stability provided by bone

lates and intramedullary nails, nowadays cerclage wires play no 

mportant role as solitary fracture fixation device in shaft frac- 

ures. However, cerclages are frequently employed as supplemen- 

ary fixation tools to aid reposition, improve alignment and in- 

rease fixation stability. In particular femoral shaft, subtrochanteric 

nd periprosthetic fractures benefit from supplementary cerclage 

xation [2–6] . Also in supracondylar femoral shaft fractures, addi- 
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ional wire cerclages proved to be more than just a reposition tool 

nd increased the overall strength of the osteosynthesis construct 

7] . Despite promising clinical reports in recent literature [ 6 , 8 ] the

se of cerclages for fracture fixation remains controversially dis- 

ussed. Major concerns include potential metallosis [ 9 , 10 ] or soft 

issue damage with periosteal ischemia, which is actually not jus- 

ified according to a recent literature review [11] . 

Improved stability of diaphyseal fractures might potentially be 

eneficial for the fixation of distal tibia fractures. Especially geri- 

tric patients [12] can hardly adhere to post-operative weight- 

earing restrictions [ 13 , 14 ] and might benefit from enhanced im- 

lant stability due to supplemental cerclage wiring. In a distal tibia 

racture model it was recently shown, that in combination to angle 

table plate osteosynthesis an additional cable cerclage increases 

xial stiffness and significantly reduces shear movements to a clin- 

cally relevant amount [15] . From a biomechanical point of view, 

his would allow immediate weight-bearing as tolerated. 
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Beside well-known steel cable and wire cerclages, further ap- 

roaches like suture wires exist as supplemental fixation tools [16–

8] . These cerclage materials differ in their locking mechanism and 

echanical behavior under induced load. For stand-alone cerclages 

elevant studies exist, comparing biomechanical performances of 

ifferent cerclage configurations and their twisting [18–21] . How- 

ver, none of these studies showed a stabilizing effect in combina- 

ion with locked plating of the distal tibia. 

The aim of this study was to investigate the stabilizing ef- 

ect of three different supplemental cerclage materials in combina- 

ion with locked plating in a clinically relevant distal tibia fracture 

odel and compare these results to solitary plate osteosynthesis. 

e postulate that under clinically relevant loads different types of 

erclage materials reduce interfragmentary movements to different 

mounts, but are generally superior to solitary plate osteosynthe- 

is. Moreover we assume that under cyclic loading a supplemental 

erclage prevents from excessive interfragmentary movement and 

owers the permanent loss of reduction. 

aterials and methods 

Synthetic composite tibiae were chosen as bone surrogates for 

his study (large left tibia, fourth generation, Sawbones Europe AB, 

almoe, Sweden). As described in detail in a recent study [15] , a 

eproducible spiral fracture (AO/OTA 42-A1.1c) was cut at the distal 

hird of the shaft. With a template the fracture was anatomically 

educed and stabilized by a metaphyseal locking plate (424.814, 

ePuy Synthes Companies, Oberdorf, Switzerland) with standard 

crew configuration by an experienced surgeon (SF) ( Fig. 1 A). To 

odel imperfect fracture surfaces a gap of 1 mm was left that was 

ubsequently reduced by the cerclage. A reproducible plate-to-bone 

istance was achieved with a 2 mm spacer at the level of the frac- 

ure and guaranteed sufficient space for cerclage wiring. 

Eight plate-bone constructs were tested as solitary osteosyn- 

hesis (Solitary Plate) and subsequently the following cerclage 

ypes and configurations were placed below the plate at the 

ame level of the fracture ( Fig. 1 ): first, a steel cable cerclage

Cable + Plate) (298.801.01, ø 1.7 mm, DePuy Synthes Companies, 

berdorf, Switzerland) was tightened at manufacturer’s recom- 

ended 50 Nm and closed by crimping. Next, two steel cables of 

dentical type (2Cables + Plate) were looped 10 mm more proximal 

nd 10 mm more distal around the fracture zone. Third, a double- 
ig. 1. Sample configuration and test setup: Fractured Sawbones tibia instrumented with 

n the samples treated with a supplemental cable cerclage closed with a crimp mechan

erclage with the twist bent downwards (D, Wire + Plate), and a double-looped fiber tape c

nd distal cardan joints (F). 

2127 
ooped steel wire cerclage (Wire + Plate) (291.130, ø 1.5 mm, DePuy 

ynthes Companies, Oberdorf, Switzerland) was placed. To repre- 

ent surgical conditions, the wire was tightened manually with pli- 

rs under permanent tension and with a torque limiter a consis- 

ent torque was provided for all samples. After closure, the sym- 

etrical twist was bent downwards. Finally, a fiber tape cerclage 

FiberTape + Plate) (AR-7267T, TigerTape cerclage suture, Arthrex, 

aples, FL, US) made of ultra-high molecular weight polyethylene 

nd polyester was looped twice around the fracture zone as rec- 

mmended by the manufacturer. For closure the cerclage suture 

as shuttled through the pre-tied knot, tightened at 50 Nm and 

ecured by two alternating half-hitches according to the manufac- 

urer’s recommendation. 

Mechanical testing was performed on a servo-hydraulic testing 

achine (Instron 8874, Dynacell, measuring range ±10 kN, accu- 

acy ±2% and ±100 Nm, accuracy ±1%, Instron Structural Test- 

ng GmbH, High Wycombe, UK) with cardan joints on the proxi- 

al and distal side to avoid constraint forces ( Fig. 1 F). To mount

he sample, the tibia was embedded proximally and distally in 

olyurethane (RenCast FC 53 A/B + Füller DT 082, Huntsman, The 

oodlands, TX, US) with the shaft aligned vertical. Prior to em- 

edding, the plate and the screw tips were sealed with modeling 

lay to avoid embedding of the implant. 

Clinically relevant loads were applied by 750 N axial load and 

7 Nm torsional load acting on the proximal embedding [22] . Pos- 

tive applied torsion represents external rotation and resulted in 

racture gap closing, while negative torsion represents internal ro- 

ation and opened the fracture gap. To settle the construct and 

rior to main testing, a 10-200 N sinusoidal load was applied for 

00 cycles at a frequency of 1 Hz. To investigate the effect of dif- 

erent load patterns, the samples were tested under the following 

uasi-static load scenarios: pure axial loading (750 N), pure pos- 

tive torsion ( + 7 Nm) and pure negative torsion (-7 Nm). As the 

amples were loaded in the linear elastic region, the tibiae were 

eused for testing of the defined configurations with n = 8 for each 

roup. 

Based on quasi-static test results, two groups were identified to 

e tested under combined axial and torsional dynamic load in a 

ubsequent test series (n = 4 Solitary Plate; n = 4 Cable + Plate). 

o mimic a physiological and clinically relevant load pattern, ax- 

al sinusoidal load started at partial weight-bearing loads between 

0 N (valley) and 200 N (peak) at 1 Hz. Additionally, alternating 
a metaphyseal medial locking plate in frontal view (A, Solitary Plate). Medial views 

ism (B, Cable + Plate), two cable cerclages (C, 2Cables + Plate), a double-looped wire 

erclage fixed with a knot (E, FiberTape + Plate). Mechanical test setup with proximal 
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Fig. 3. Quasi-static test results for fracture gap movements under ±7 Nm pure tor- 

sional loading. Rotations around the shaft axis (A) are shown by gap closing (pos- 

itive torsion) and gap opening (negative torsion). Shear movements in horizontal 

plane (B) are given for positive and negative applied torsion. Values are given as 

mean ± standard deviation. 
ositive and negative torsion of ±4 Nm were applied at a fre- 

uency of 0.5 Hz. After every 10 0 0 cycles axial peak load increased

y 50 N, while torsion remained constant. Termination was defined 

s either catastrophic failure of the construct or when reaching a 

eak load of 20 0 0 N. 

Both fracture fragments were equipped with adhesive marker 

oints, which were tracked by an optical 3D-motion tracking sys- 

em (ARAMIS Professional 5M, GOM GmbH, Braunschweig, Ger- 

any). Fracture gap was analyzed for translations and rotations 

ased on a coordinate system oriented along the shaft axis rep- 

esenting the vertical axis. Shear movement was defined as move- 

ent in horizontal plane. Axial stiffness was calculated by the lin- 

ar slope of the force-displacement data of the pure axial load 

amp. Using the motion tracking software (GOM Correlate Pro- 

essional, GOM GmbH, Braunschweig, Germany) interfragmentary 

ovements were analyzed at 750 N and ±7 Nm for quasi-static 

ests and 20 0 0 N after dynamic loading. Plastic deformation after 

0 0 0 N was defined as residual movement at 50 N load valley. 

For statistical analysis, data were tested for normal distribution 

ith Shapiro-Wilk test. Axial stiffness as well as quasi-static move- 

ents were compared to Solitary Plate group using Wilcoxon test 

nd dynamic results were compared using Student’s t-tests (SPSS 

tatistics, Version 26, IBM, Armonk, NY, US). Values are given as 

ean and standard deviation and alpha level was set to 0.05. 

esults 

With each tested additional cerclage axial stiffness was signif- 

cantly larger than for solitary plate osteosynthesis (p ≤ 0.012; 

83 ± 355 N/mm Solitary Plate; 2882 ± 739 N/mm Cable + Plate; 

103 ± 1002 N/mm 2Cables + Plate; 1597 ± 452 N/mm Wire + Plate; 

322 ± 374 N/mm FiberTape + Plate). 

Under quasi-static pure axial load, Solitary Plate experienced 

xial movement of 0.9 ± 0.2 mm and shear movement of 

.3 ± 0.2 mm ( Fig. 2 ). Each additionally applied cerclage re- 

uced axial movement significantly compared to Solitary Plate 

p ≤ 0.012), while shear movements were significantly reduced for 

oth cable cerclage groups only (p ≤ 0.035). 

Under pure torsional loading, largest rotations around the shaft 

xis occurred for Solitary Plate at gap opening with 7.6 °±0.5 °
 Fig. 3 ). Gap closing led to compression of the fracture zone with

ower rotation of 3.2 °±0.7 °. Each supplemental cerclage reduced 

otational movements significantly for gap opening (p ≤ 0.012) as 

ell as for gap closing (p ≤ 0.017). Smallest rotations were mea- 

ured for both cable cerclage groups, followed by wire and fiber 

ape cerclages. Shear movements under positive torsion (gap clos- 
ig. 2. Quasi-static test results for axial (solid bar) and shear (striped bar) move- 

ent under 750 N pure axial loading. Values are given as mean ± standard devia- 

ion. 

i

w

(

m

s

c

d

c

l

(

a

m

w

t

p  

(

o

o

2128 
ng) remained rather low for Solitary Plate (0.5 ± 0.2 mm) and 

ere further reduced by more than 50% with each applied cerclage 

p ≤ 0.012). Under negative torsion (gap opening) shear move- 

ents increased up to 3.2 ± 0.1 mm for Solitary Plate and were 

ignificantly reduced below 0.5 mm for both cable and wire cer- 

lages and below 1 mm for fiber tape cerclages (p ≤ 0.012). 

Focusing on cable cerclages only, addition of a second cable re- 

uced shear movements under torsion (p ≤ 0.018), but had no dis- 

ernible effect on interfragmentary movement generated by axial 

oading (p > 0.05). 

All tibiae survived the dynamic load protocol up to 20 0 0 N 

36,0 0 0 cycles), except for one Solitary Plate sample that failed 

t 1950 N due to plate breakage at the most proximal small frag- 

ent screw. Under maximum loading, axial and shear movements 

ere significantly reduced by approximately 68% with an addi- 

ional cable cerclage (axial from 2.5 ± 0.9 mm to 0.8 ± 0.2 mm, 

 = 0.043; shear from 1.8 ± 0.3 mm to 0.6 ± 0.1 mm, p = 0.004)

 Fig. 4 ). Respective amounts of plastic deformation as a measure 

f loss of reduction were generally low. For the Solitary Plate loss 

f reduction amounted to 0.4 mm and was reduced by 50% with 
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Fig. 4. Results at maximum applied load (20 0 0 N, -4 Nm) following the dynamic 

load protocol for axial and shear movements (A) and rotational movements (B) 

around the shaft axis (Z-rot) and the sagittal axis (Y-rot) for Solitary Plate and 

Cable + Plate groups. Values are given as mean ± standard deviation. Additionally 

the loss of reduction (plastic deformation) is displayed (dotted proportion). 
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dditional cable fixation. Rotations were highest for Solitary Plate 

round the sagittal axis with 6.1 ° ± 1.9 ° and approximately 1 ° of 

ermanent loss of reduction. Cable + Plate lowered this rotation by 

7% to 2.0 ° ± 0.6 ° (p = 0.035). Rotation around the shaft axis was 

inimized to 1.0 ° ± 0.2 ° by Cable + Plate and increased by 110% to 

.1 ° ± 1.2 ° with Solitary Plate (p = 0.221). Plastic deformation re- 

ained negligible below 0.4 °. 

iscussion 

This study demonstrates a substantial stabilizing effect of addi- 

ional cerclage wiring in locked plating of distal tibia spiral frac- 

ures. All tested cerclage materials showed different reduction in 

nterfragmentary movement and were generally superior to soli- 

ary plate osteosynthesis. Largest reductions in movement were 

chieved by either one or two steel cable cerclages. While pre- 

ious studies focused only on stand-alone cerclage configurations 

nd their optimal knot and twisting techniques [ 19 , 20 ] our study 

rovided a comparison of different cerclage types in a clinically 

elevant fracture model. Since use of cerclage wires as additional 

racture stabilizing tools is still controversially discussed, this study 

rovides further information on the understanding of cerclages and 

heir mechanical benefit in combination with locked plating. 

Our results demonstrate that limited movements due to addi- 

ional cerclage wiring come along with increased stiffness. For frac- 

ure gaps ≤3 mm, stiffness values above 2500 N/mm are said to 

romote good healing [23] . In our fracture model with ≤1 mm gap 

his favorable stiffness was reached in both cable cerclage groups 

nly. However, further research is needed to properly interpret 

hese data for clinical relevant settings. The key to achieve a good 

urgical outcome and physiological foot loading is a proper frac- 

ure reduction with correct three-dimensional restoration of the 

ibia axis [24] . Furthermore the osteosynthesis should reduce shear 

ovement to a minimum to avoid healing delays and improve cal- 
2129 
us formation [ 25 , 26 ]. Recently, a similar study demonstrated that 

upplemental cable cerclages reduce interfragmentary movements 

o a clinically relevant amount and from a biomechanical point 

f view immediate post-operative weight-bearing as tolerated is 

llowed [15] . In the current study significant reduction in shear 

ovement was achieved by all cerclage groups compared to Soli- 

ary Plate, except for Wire + Plate and FiberTape + Plate under pure 

xial loading. From a biomechanical aspect, cable cerclages should 

e preferred to wire or fiber tape cerclages, as they show highest 

tiffness and largest reduction of shear movements. Importantly, 

ur findings demonstrated that addition of a second cable cerclage 

oes not improve the mechanical performance but may increase 

oft tissue irritation and invasiveness. 

The superiority of cable cerclages in terms of stiffness and sta- 

ility compared to wire or fiber tape cerclages might be explained 

y the difference in material and their twisting. For both steel cer- 

lages (cable and wire) the closing mechanism is supposed to be 

he decisive factor [20] . While cables are closed at recommended 

0 Nm by crimping, wires are tightened manually with pliers 

nd twisted under permanent tension. To achieve a stable and 

ong lasting twist, it was perpendicular bent downwards [20] . De- 

pite this thorough application we observed higher interfragmen- 

ary movements for wire cerclages than for cable cerclages, which 

s in accordance to previous findings [ 19 , 20 ]. This implies that the

not plays a key role in maintaining stability and wires are more 

rone to loss of pretension. Another decisive factor might be that 

elatively smooth and flexible cables can adapt more easily to the 

rregular bone surface and reach higher amounts of bone-cerclage 

ontact [27] . Lenz et al. found that double-looped wire cerclages 

re comparable to single cable cerclages, which might be true for 

tand-alone cerclage testing, but in combination with locked plat- 

ng this finding cannot be confirmed by our results [19] . 

Least reduction in movement was identified for fiber tape cer- 

lages, which is contrary to previous observations [ 17 , 18 ]. Accord- 

ng to Westberg et al. sutures are comparable or superior to wire 

erclages in simplified tension tests [18] . Although a standardized 

not procedure and tightening at 50 Nm allow comparability to the 

ther cerclage types, we assume that its polyethylene and polyester 

aterial facilitates more elasticity. Their mechanical benefit as sup- 

lemental fixation tools to plate osteosynthesis at distal tibia frac- 

ures should be interpreted carefully and needs further research. 

uture cerclages represent common fixation techniques in shoul- 

er arthroplasty [ 28 , 29 ] and cruciate ligament reconstruction [30] , 

ut their application in lower limb fractures should be considered 

ith caution [16] . 

To further investigate the superior stabilizing effect of cable 

erclages, they were compared to Solitary Plate group in a step- 

ise increasing load protocol. Since post-operative management 

till recommends weight-bearing restrictions, this protocol started 

t partial weight-bearing loads and covered full and also exces- 

ive weight-bearing up to 20 0 0 N. Supplemental cable cerclages 

educed excessive movements and contributed to the overall im- 

lant stability during cyclic loading. The remaining amount of de- 

ormation after loading gives information about loss of reduction 

nd was highest for Solitary Plate in axial movement (0.4 mm) and 

n rotation around the sagittal axis (0.9 °). Against our assumption, 

 similar loss of reduction was found for Cable + Plate. One possible 

eason could be the multiple filaments of the cable that marginally 

ealign under tension. To what extent these findings are transfer- 

ble into clinical settings and whether similar results are achieved 

y wire or fiber tape cerclages have to be investigated in further 

tudies. 

Despite promising results in recent literature, the fear of pe- 

iosteal ischemia due to impaired blood supply is still a major ar- 

ument for refusal of supplemental cerclages. However, in a recent 

eview the harmful effect of cerclages on osseous blood supply and 



S. Förch, S. Sandriesser, E. Mayr et al. Injury 52 (2021) 2126–2130 

i

s

r

c

c

o

s

p

o

t

b

s

l

s

f

t

f

f

d

i

a

m

b

i

i

s

m

l

p

a  

b

l

e

e

p

T

t

o

m

t

i

D

c

i

F

D

R

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

[  

[  

[  

[

[  

[  

[  

[  

[  

[  

[  

[

[  

[  
mpairment of fracture healing could not be affirmed [11] . Other 

tudies confirmed that radially oriented blood vessels are not dis- 

upted by cerclage wiring [31] and depending on bone geometry 

erclages have only partial bone contact so that blood supply is 

ompensated by surrounding vessels [27] . Nonetheless, it is rec- 

mmended to keep the contact area to the bone as small as pos- 

ible [32] and careful cerclage selection with tissue-conserving ap- 

roaches using minimally invasive techniques for the application 

f cerclages are of utmost importance. With non-metallic cerclages 

he likelihood of vascular disruption is smaller, however this has to 

e confirmed in future studies [16] . 

The used synthetic bone surrogate represents idealized bone 

tructure and therefore might limit our study. However, perceptible 

oosening or migration of cerclages along the conical and slippery 

ynthetic bone as a possible reason for different stabilizing per- 

ormances was not observed. Further, after cyclic loading, no cut- 

hrough or noticeable abrasion of the synthetic cortical layer was 

ound. A reproducible plate-to-bone distance of 2 mm prevented 

rom mechanically induced metallosis and no metal debris was 

etected after loading. In clinical situations complications includ- 

ng metallosis should be taken seriously when looping the cerclage 

nd selecting and placing the plate [9] . Also when focusing on the 

echanical behavior of the cerclage materials under loading, the 

one surrogate represents a reasonable alternative to human spec- 

mens and further excludes inter-specimen variabilities [33] . While 

ntramedullary nailing is another treatment option for distal tibia 

haft fractures, this study focused on locked plating. Although no 

uscle forces were considered, physiological and clinically relevant 

oad scenarios were defined [22] . Excessive movement of 6 ° led to 

late breakage in one Solitary Plate sample, thus it was analyzed 

t the inferior load step at 1900 N. This did not affect the relia-

ility or interpretation of data. Finally, cerclage wiring is obviously 

imited to oblique or spiral fractures and has no further stabilizing 

ffect in transverse or comminuted fractures. 

In conclusion, we demonstrated the stabilizing effect of differ- 

nt supplemental cerclage materials in combination with locked 

lating in a clinically relevant fracture model of the distal tibia. 

he findings from this study favor a single cable cerclage rather 

han wire or fiber tape, as it was able to better reinforce plate 

steosynthesis in terms of higher stiffness and reduced interfrag- 

entary movements. Whether our results can be transferred into 

he clinical routine has to be investigated in further clinical stud- 

es. 
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